MATH 214 (R1) Winter 2008

Intermediate Calculus I

Problem Set \#4

Completion Date: Monday February 11, 2008

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. [Sec. 12.9, \# 6] Find a power series representation for the function

$$
f(x)=\frac{1}{1+9 x^{2}}
$$

and determine the interval of convergence.
Question 2 [Sec. 12.9, \# 16] Find a power series representation for the function

$$
f(x)=\frac{x^{2}}{(1-2 x)^{2}}
$$

and determine the radius of convergence.
Question 3. [Sec. 12.9, \# 18] Find a power series representation for the function

$$
f(x)=\arctan (x / 3)
$$

and determine the radius of convergence.
Question 4. [Sec. 12.9, \# 30] Use a power series representation to approximate the integral

$$
f(x)=\int_{0}^{1 / 2} \frac{d x}{1+x^{6}}
$$

to six decimal places.
Question 5. [Sec. 12.9, \# 32] Show that the function

$$
f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

is a solution to the differential equation

$$
f^{\prime \prime}(x)+f(x)=0
$$

Question 6. [Sec. 12.10, \#4] Find the Maclaurin series for

$$
f(x)=\sin 2 x
$$

using the definition of a Maclaurin series. [Assume that f has a power series expansion. Do not show that $R_{n}(x) \rightarrow 0$.] Also find the associated radius of convergence.

Question 7. [Sec. 12.10, \# 14] Find the Taylor series for

$$
f(x)=\ln x
$$

centered at the value $a=2$. [Assume that f has a power series expansion. Do not show that $R_{n}(x) \rightarrow 0$.]

Question 8. [Sec. 12.10, \# 22] Prove that the Maclaurin series for

$$
f(x)=\cosh x
$$

represents $\cosh x$ for all x.
Question 9. [Sec. 12.10, \# 30] Use a known Maclaurin series to obtain the Maclaurin series for the function

$$
f(x)=\cos ^{2} x
$$

Hint: Use $\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$.
Question 10. [Sec. 12.10, \# 46] Use series to approximate the definite integral

$$
\int_{0}^{1 / 2} x^{2} e^{-x^{2}} d x
$$

to within the accuracy \mid error $\mid<0.001$.
Question 11. [Sec. 12.10, \# 56] Find the sum of the series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}
$$

Question 12. [Sec. 12.12, \# 16a,b] Approximate

$$
f(x)=\cos x
$$

by a Taylor polynomial T_{n} with degree $n=4$ at the number $a=\frac{\pi}{3}$, and use Taylor's Inequality to estimate the accuracy of the approximation $f(x) \approx T_{n}(x)$ when x lies in the interval $0 \leq x \leq 2 \pi / 3$.

Question 13. [Sec. 12.12, \# 20a,b] Approximate

$$
f(x)=x \ln x
$$

by a Taylor polynomial T_{n} with degree $n=3$ at the number $a=1$, and use Taylor's Inequality to estimate the accuracy of the approximation $f(x) \approx T_{n}(x)$ when x lies in the interval $1 / 2 \leq x \leq 3 / 2$.

Question 14. [Sec. 12.12, \# 26] How many terms of the Maclaurin series for $\ln (1+x)$ do you need to use to estimate $\ln 1.4$ to within 0.001 ?

