MATH 214 (R1) Winter 2008

Intermediate Calculus I

Problem Set \#3

Completion Date: Monday February 4, 2008

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. [Sec. 12.6, \# 4] Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{n^{4}}
$$

is absolutely convergent, conditionally convergent, or divergent.
Question 2. [Sec. 12.6, \# 8] Determine whether the series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{n^{2}+1}
$$

is absolutely convergent, conditionally convergent, or divergent.
Question 3. [Sec. 12.6, \# 14] Determine whether the series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2} 2^{n}}{n!}
$$

is absolutely convergent, conditionally convergent, or divergent.
Question 4. [Sec. 12.6, \# 16] Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{3-\cos n}{n^{2 / 3}-2}
$$

is absolutely convergent, conditionally convergent, or divergent.
Question 5. [Sec. 12.6, \# 18] Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{n!}{n^{n}}
$$

is absolutely convergent, conditionally convergent, or divergent.
Question 6. [Sec. 12.6, \# 22] Determine whether the series

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \ln n}
$$

is absolutely convergent, conditionally convergent, or divergent.
Question 7. [Sec. 12.6, \# 24] Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(\arctan n)^{n}}
$$

is absolutely convergent, conditionally convergent, or divergent.

Question 8. [Sec. 12.6, \# 32] For which positive integers k is the series $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(k n)!}$ convergent?
Question 9. [Sec. 12.7, \# 10] Test the series $\sum_{n=1}^{\infty} n^{2} e^{-n^{3}}$ for convergence or divergence.
Question 10. [Sec. 12.7,\# 24] Test the series $\sum_{n=1}^{\infty} \frac{\cos (n / 2)}{n^{2}+4 n}$ for convergence or divergence.
Question 11. [Sec. 12.7, \# 28] Test the series $\sum_{n=1}^{\infty} \frac{e^{1 / n}}{n^{2}}$ for convergence or divergence.
Question 12. [Sec. 12.7, \# 32] Test the series $\sum_{n=1}^{\infty} \frac{(2 n)^{n}}{n^{2 n}}$ for convergence or divergence.
Question 13. [Sec. 12.8, \# 16] Find the radius of convergence and interval of convergence of the power series

$$
\sum_{n=0}^{\infty} n^{3}(x-5)^{n}
$$

Question 14. [Sec. 12.8, \# 20] Find the radius of convergence and interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(3 x-2)^{n}}{n 3^{n}}
$$

Question 15. [Sec. 12.8, \# 28] Find the radius of convergence and interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots \cdot(2 n)}{1 \cdot 3 \cdot 5 \cdots \cdot(2 n-1)} x^{n}
$$

