MATH 214 (R1) Winter 2008

Intermediate Calculus I

Problem Set \#10

Completion Date: Friday April 11, 2008

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. [Sec. 15.2, \# 8] Find the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+\sin ^{2} y}{2 x^{2}+y^{2}}
$$

if it exists, or show that the limit does not exist.
Question 2. [Sec. 15.2, \# 16] Find the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{4}}{x^{2}+y^{8}}
$$

if it exists, or show that the limit does not exist.
Question 3. [Sec. 15.2, \# 36] Determine the set of points at which the function

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x y}{x^{2}+x y+y^{2}} & \text { if } \quad(x, y) \neq(0,0) \\
0 & \text { if } \quad(x, y)=(0,0)
\end{array}\right.
$$

is continuous.
Question 4. [Sec. 15.3, \# 22] Find the first partial derivatives of the function

$$
f(x, t)=\arctan (x \sqrt{t})
$$

Question 5. [Sec. 15.3, \# 24] Find the first partial derivatives of the function

$$
f(x, y)=\int_{y}^{x} \cos \left(t^{2}\right) d t
$$

Question 6. [Sec. 15.3, \# 30] Find the first partial derivatives of the function

$$
u=x^{y / z}
$$

Question 7. [Sec. 15.3, \# 44] Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if

$$
\sin (x y z)=x+2 y+3 z
$$

Question 8. [Sec. 15.3, \# 46] Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for
(a) $z=f(x) g(y)$
(b) $z=f(x y)$
(c) $z=f(x / y)$.

Question 9. [Sec. 15.3, \# 60] Given the function

$$
f(r, s, t)=r \ln \left(r s^{2} t^{3}\right)
$$

find the partial derivatives $f_{r s s}$ and $f_{r s t}$.
Question 10. [Sec. 15.4, \# 6] Find an equation of the tangent plane to the surface

$$
z=e^{x^{2}-y^{2}}
$$

at the point $(1,-1,1)$.
Question 11. [Sec. 15.4, \# 16] Explain why the function

$$
f(x, y)=\sin (2 x+3 y)
$$

is differentiable at the point $(-3,2)$ and find the linearization $L(x, y)$ of the function at that point.
Question 12. [Sec. 15.4, \# 18] Find the linear approximation to the function

$$
f(x, y, z)=\ln (x-3 y)
$$

at the point $(7,2)$ and use it to approximate $f(6.9,2.06)$. Illustrate by graphing f and the tangent plane.
Question 13. [Sec. 15.4, \# 34] Use differentials to estimate the amount of metal in a closed cylindrical can that is 10 cm high and 4 cm in diameter if the metal in the top and bottom is 0.1 cm thick and the metal in the sides is 0.05 cm thick.

Question 14. [Sec. 15.5, \# 10] Use the Chain Rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ if

$$
z=e^{x y} \tan y, \quad x=s+2 t, \quad y=s / t
$$

Question 15. [Sec. 15.5, \# 14] Let

$$
W(s, t)=F(u(s, t), v(s, t))
$$

where F, u, and v are differentiable, and where

$$
\begin{aligned}
u(1,0) & =2, \quad u_{s}(1,0)=-2, \quad u_{t}(1,0)=6 \\
v(1,0) & =3, \quad v_{s}(1,0)=5, \quad v_{t}(1,0)=4 \\
F_{u}(2,3) & =-1, \quad F_{v}(2,3)=10
\end{aligned}
$$

Find $W_{s}(1,0)$ and $W_{t}(1,0)$.
Question 16. [Sec. 15.5, \# 26] Let $Y=w \tan ^{-1}(u v)$ where

$$
u=r+s, \quad v=s+t, \quad w=t+r .
$$

Find the partial derivatives $\frac{\partial Y}{\partial r}, \frac{\partial Y}{\partial s}$, and $\frac{\partial Y}{\partial t}$ when $r=1, s=0, t=1$.
Question 17. [Sec. 15.5, \# 30] Use the equation

$$
\frac{d y}{d x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}=-\frac{F_{x}}{F_{y}}
$$

to find $\frac{d y}{d x}$ if

$$
\sin x+\cos y=\sin x \cos y
$$

