CMPUT 204: Algorithms I (Winter 2004 Course Page)

Time	Monday	Tuesday	Wednesday	Thursday	Friday
08:00- 08:50		J2/EJ2 (CAB 281):		J5/EJ5 (CAB 269):	
10:00- 10:50	B1/EB1 (V 114): Bowling		B1/EB1 (V 114): Bowling		B1/EB1 (V 114): Bowling
12:00- 12:50	B2/EB2 (CSC B10): Lin		B2/EB2 (CSC B10): Lin		B2/EB2 (CSC B10): Lin
13:00- 13:50				J6/EJ6 (BS M 141):	
14:00- 14:50	B3/EB3 (V 112): Leonard		B3/EB3 (V 112): Leonard		B3/EB3 (V 112): Leonard
16:00- 16:50	J1/EJ1 (CAB 273):		J4/EJ4 (CAB 269):		
17:00- 17:50		J3/EJ3 (CAB 269):			

	Michael Bowling	ui Lin (Course coordinator) <u>ualberta.ca</u> <u>ghlin@cs.ualberta.</u> Ath 343 492-3737		
Instructors:	Guohui Lin (Course coordinator)	<u>ghlin@cs.ualberta.</u> <u>ca</u>	Ath 343	492-3737
	Ed Leonard	<u>isaac@cs.ualberta.</u> <u>ca</u>	CAB 679	492-2388

CMPUT 204

- : What's new
- :: <u>Textbook</u>
- :: Lecture Slides & Calendar
- :: Grading Scheme
- :: Assignment Lists
- :: <u>Seminars</u>
- :: Smart Studying Scheme

::: <u>Department Catalogue Description</u> Textbook : T. H. Cormen, C. E.

:::Code of Student Behavior

What's New: (204 students check this page often !)

- 1. Dec 1, 2003: Course page up. Most of the links will be activated before the class.
- 2. Newsgroup: <u>ualberta.courses.</u> <u>cmput.204</u>

Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (Second Edition). McGraw Hill. 2001.

Lecture Slides & Calendar

Week	Date	Seminars	Lecture Topics	Slides
	Jan 5	no seminar	Course overview, basic concepts (Chap 1)	Pre01. pdf
1	Jan 7		Getting started with insertion sort (Chap 1- 2, Appendix A-C)	
	Jan 9		Insertion sort: analysis (Chap 2)	Pre03. pdf
	Jan 12	Orientation/ Teaching (Mon-Thu)	Merge sort: analysis (Chap 2); big <i>O</i> (Chap 3)	Pre04. pdf
2	Jan 14		Growth of functions (Chap 3)	Pre05. pdf
	Jan 16		Example answers to problems	<u>Pre06.</u> pdf

	Jan 19		Recurrence and iterated substitution (Chap 4)	<u>Pre07.</u> pdf
3	Jan 21	Teaching Assignment 1 due Friday in class	More iterated substitution examples and recursion tree (Chap 4)	<u>Pre08.</u> pdf
	Jan 23		Iterated substitution leading to Master Theorem (Chap 4)	Pre09. pdf
	Jan 26	Quiz 1 (Mon-Thu)	Full version of Master Theorem, and its limit (Chap 4)	Pre10. pdf
4	Jan 28		Recurrence review and example answers to problems	Pre11. pdf
	Jan 30		Heap, its properties and construction (Chap 6)	Pre12. pdf
	Feb 2		Heapsort: algorithm and its analysis (Chap 6)	Pre13. pdf
5	Feb 4	Teaching Assignment 2 due Friday in class	Heapsort analysis and more discussion (Chap 6)	Pre14. pdf
	Feb 6		Priority queue and quicksort algorithm (Chap 6-7)	<u>Pre15.</u> pdf

	Feb 9		Quicksort BC, WC running time (Chap 7)	<u>Pre16.</u> pdf
6	Feb 11	Quiz 2 (Mon-Thu)	Quicksort AC running time and two kinds of trees (Chap 7-8.1)	<u>Pre17.</u> pdf
	Feb 13		Decision tree lower bound (Chap 8.1) and DP (Chap 15)	Pre18. pdf
7	Feb 16	Reading wee	k	
	Feb 23		DP concepts and Matrix- chain multiplication (Chap 15.2-3)	<u>Pre19.</u> pdf
8	Feb 25	Teaching Assignment 3 due Friday in class	DP more characteristics and LCS problem (Chap 15.4)	Pre20. pdf
	Feb 27		DP review and example answers to problems	Pre21. pdf
	Mar 1		Graph notions (Chap 22.1)	Pre22. pdf
9	Mar 3	Quiz 3 (Mon-Thu)	Disjoint sets: array of representatives (Chap 21.1-2)	Pre23. pdf
	Mar 5		Midterm	
	Mar 8		Disjoint sets: forest of rooted trees (Chap 21.3)	Pre24. pdf
		Teaching		

10	Mar 10	Assignment 4 due Friday in class	Union by rank and compressed find (Chap 21.4)	Pre25. pdf
	Mar 12		Graph notions and Breadth- First-Search (Chap 22.1-2)	<u>Pre26.</u> pdf
	Mar 15		Depth-First- Search and bicomponents (Chap 22.3, Prob 22-2)	Pre27. pdf
11	Mar 17	Quiz 4 (Mon-Thu)	Review: graph notions, BFS/ DFS, bicomponents	Pre28. pdf
	Mar 19		Greedy algorithms, MST problem (Chap 23.0-2)	Pre29. pdf
	Mar 22		Greedy, MST problem, Prim's algorithm (Chap 23.0-2)	Pre30. pdf
12	Mar 24	Teaching Assignment 5 due Friday in class	Prim's and Kruskal's MST algorithms (Chap 23.2)	Pre31. pdf
	Mar 26		SSSP problem and Dijkstra's algorithm (Chap 24.0, 24.3)	Pre32. pdf
	Mar 29		Bellman- Ford's algorithm (Chap 24.1)	Pre33. pdf
		Quiz 5		

	3	Mar 31	(Mon-Thu)	Main ideas and basic concepts (Chap 34)	Pre34. pdf
		Apr 2		Polynomial time reduction and NP- completeness (Chap 34)	Pre35. pdf
1	4	Apr 5	Teaching Assignment 6 due Wednesday	Cook's Theorem and NP- completeness proofs (Chap 34)	Pre36. pdf
		Apr 7	Wednesday in class	Example NP- completeness proofs (Chap 34)	Pre37. pdf

Grading Scheme (Winter 2004) : Mark distribution:

- 1. 26% (5% + 5% + 5% + 5% + 4% + 2%) 6 Assignments
- 2. 24% (5% + 5% + 5% + 5% + 4%) 5 Quizzes
- 3. 15% Midterm (in class, 50 minutes)
- 4. 35% Final Exam (3 hours)

Note:

 Any questions concerning the marking of an assignment or a term test (quiz or midterm) should be brought to the attention of the marker (this will be either the instructor or a TA) within <u>7</u> days of the date on which the assignment or the test has been returned to the class (lecture or seminar) in question; After that time, marks cannot be

changed.

- No late policy for assignments. Assignments are due in lecture classes.
- Quizzes, Midterm, and Final Exam absence may result in a mark of 0, unless an acceptable excuse exists and is supported by documentation, in which case
 - for a missed quiz, the marks will be added to either the midterm or the final exam, whichever comes next;
 - for a missed Midterm, the marks will be added to the final exam;
 - for a missed Final Exam, the student must apply to the Faculty of Science (not the instructor) for permission to write the deferred exam. The time/date of the deferred exam for Winter 2004 will be Friday April 23, 2004, 1:00pm, ATH 332.
 - <u>The University's exam</u> policy.
- Following recent departmental practice, all cases of <u>plagiarism</u> will be forwarded by the instructor to the dean.
 See <u>The Code of Student</u>

Behavior.

- Grade cutoffs will be assigned within a few points of each of the following, taking into consideration the final distribution of marks:
 - o A 90
 - o B 78
 - o C 65
 - o D 50
- This course has multiple sections. You must write all exams/quizzes in the lecture/seminar sections in which you are registered, because lectures and exams vary slightly

between sections. So should you attend the lectures in which you are registered.

• Final grade cutoffs for each section will be set individually, in consultation with the instructors of the other sections.

	Topics covered	Partial solutions
Assignment 1	Loop invariant Insertion-sort Merge-sort Asymptotic notations	Partial solution 1
Assignment 2	Recurrences Heaps	Partial solution 2
Assignment 3	Heap-sort Priority-queue Quick-sort Sorting lower bound	Partial solution 3
Midterm		Sample Midterm
<u>Assignment</u> 4	Dynamic programming concepts Matrix-chain multiplication Longest common subsequence Disjoint-sets and Union-find	Partial solution 4
<u>Assignment</u> 5	Graph traversals: BFS & DFS Biconnected component MST algorithms (Kruskal & Prim)	Partial solution 5
Assignment	Decision problems, P & NP, NP-	Partial solution 6

Assignment Lists :

Sample Final

Note:

- Problems on polynomial time reductions and NP-completeness proof (pages 984-1021, read very carefully and do all the exercises) are <u>not</u> covered in the quizzes. However, they are topics to be covered in the Final Exam too.
- Partial solutions to each assignment will be posted on Sunday following the assignment due date.

Seminars :

- There are 6 seminars used for teaching, where students are encouraged to discuss; There are 5 seminars used for monitoring quizzes, each of which consists of 3 questions similar to questions in the corresponding assignment.
- Unless otherwise authorized by an instructor, students must write the quiz in the section in which they are registered.

Smart Studying Scheme : It is strongly recommended that you understand the topics in the lecturing days. Leaving them behind causes serious trouble according to former CMPUT 204 students. Some key points of success are listed in the following. (Nonetheless, following them all does not necessarily guarantee high marks.)

- Lecturing contents:
 - <u>Before the lectures</u>, print out the agenda and have (at least) 30 minutes going

through the related textbook chapters (appendix);

- <u>After the lecture</u>, have (at least) 30 minutes going through the slides and the related textbook chapters (appendix) again.
- Turn to either instructors (after lecture or office hours) or TAs (seminars, emails, newgroups) for the parts you don't understand well.
- Assignments:
 - After reviewing the lecture contents, solve the related questions in the assignments. Students are encouraged to discuss and study in small groups.
 Nonetheless, software will be applied to scan for plagiarism/cheating.
 - Turn to instructors or TAs for help, <u>ONLY</u> after you have seriously thought about the questions for some time.
- Quizzes & Midterm:
 - Check with TAs and/or instructors to make sure you can solve every question in the Quizzes and Midterm.
 - Don't miss any one of the questions! Similar questions might occur again in the Final.
- Using office hours:
 - Take advantage of the office hours! If you do have time conflicts, send emails to request for an appointment.
- The expected hours per week: <u>at</u> <u>least 10</u>.

Best view: set text size to median on an 18 inch screen. This page is under construction (12/12/2003). 2