
CMPUT101 Introduction to Computing - Spring 2001

Chapter 7: High-level Language Programming 1

Introduction to High-Level Language
Programming

Chapter 7

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 2

Pseudo-code vs. Assembly
Set sum to 0
Set i to 1
While i ≤ ≤ ≤ ≤ 5 do

Get value for N
Add N to sum
Increase value of i by 1

End loop
Print the value of sum

.BEGIN -- Sum 5 numbers
Loop: LOAD Five

COMPARE i
JUMPGT Done
IN N
LOAD sum
ADD N
STORE sum
INCREMENTi
JUMP Loop

Done: OUT sum
HALT

Five: .DATA 5
i: .DATA 1
sum: .DATA 0
N: .DATA 0
.END

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 3

Disadvantages of Assembly
� The programmer must manage movement of

data items between memory locations and the
ALU.

� Programmer must take a �microscopic� view of a
task, breaking it down to manipulate individual
memory locations.

� Assembly language is machine-specific.
� Statements are not English-like (Pseudo-code)

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 4

Pseudo-code vs. High-level Programs

Set sum to 0
Set i to 1
While i ≤ 5 do

Get value for N
Add N to sum
Increase value of i by 1

End loop
Print the value of sum

Wouldn�t it be nice if we
could instead write
our program in a
language more similar
to a pseudo-code?

void main()
{

int i, sum, N;
sum = 0;
i = 1;
while (i <= 5) {

cin >> N;
sum = sum + N;
i = i + 1;

}
cout << sum;

}

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 5

High-level Programming Languages
� The programmer need not manage the details of the

movement of data items between memory and ALU.
� Doesn�t even have know there is a register in the ALU for

performing arithmetic.
� The programmer has more macroscopic view of a task,

using less primitive building blocks
� E.g. doesn�t work with individual memory locations anymore.

� High-level languages are portable.
� Same program can run on different architectures.

� More English (pseudo-code) like!
CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 6

Program Translation

LOAD
STORE 0101A=B+C Compiler Assembler

0101
1001
0110

Linker Loader

01011001

CMPUT101 Introduction to Computing - Spring 2001

Chapter 7: High-level Language Programming 2

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 7

The C++ Programming Language

� We will use (a subset of) the C++ programming
language to introduce you to programming in a
high-level language.

� Although the syntax differ from one programming
language to the next, the basic concepts apply to
all (most) high-level languages.

� C++ is an object-oriented language
� although we will not learn about that in this course
� but you can learn all about it in CMPUT114 !

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 8

Example C++ Program
// Program Numerology. This program gets the user�s favorite
// number and prints a greeting.

#include <iostream.h>

void main()
{

int your_number;

cout << �Please enter your favorite number:�;
cin >> your_number;
cout << endl;
cout << �Your favorite number is � << your_number << �.� << endl;
cout << �That is a nice number.� << endl;

}

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 9

General C++ Program Structure

Prologue comment [optional]
Include directives [optional]
Functions [optional]
Main function
{

Declarations [optional]
Body

}
CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 10

Structure of Example Program
// This program gets the user�s favorite
// number and prints a greeting.

#include <iostream.h>

void main()
{
int your_number;

cout << �Please enter your favorite number:�;
cin >> your_number;
cout << endl;
cout << �Your favorite number is � << �
cout << �That is a nice number.� << endl;
}

Prologue comment
Include directives
Functions
Main function
{
Declarations
Body

}

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 11

Virtual Data Storage (Data items)
� One improvement of a high-level language is to

make data manipulation easier.
� J: .DATA -1 -- tedious in an assembly!
� LOAD J and STORE J

� Instead of working with individual memory
locations (as in assembly), we work with more
abstraction in form of data items.

� In the program we give English like names to
data items to identify them.

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 12

Identifiers
� Names in programs are called identifiers.

� An identifier can consist of any combination of
letters, digits, and _ , except:
� cannot start with a digit
� cannot be same name as a C++ keyword.

� Should try to use descriptive names

� Identifier are case-sensitive, for example
� a and A do refer to different data items

CMPUT101 Introduction to Computing - Spring 2001

Chapter 7: High-level Language Programming 3

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 13

Example of identifiers
� Legitimate names:

� cmput101, My1stCar
� A, b
� Your_Guess, Number_Of_Homeruns
� A_speling_mistake

� Not legitimate names (Why?)
� 1stCar
� int
� Iwin!
� arrrgg@#!#t

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 14

Data items
� Store data used in program:

� read in from user (Get / In �)
� constants used in program (N: .DATA 5)

� A data item can be declared either as a constant
or a variable.
� Constants are initialized with a value, but their value

cannot be changed after that.
� The value of a variable can be changed as needed.

� The keyword const in the declaration indicates
that the data item is a constant.

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 15

Declaration of data items.
� We need to declare data items in our program prior

to using them.
� The declaration tells:

� whether the data item is a constant or a
variable.

� the identifier that will be used in the program to
name the data item.

� the data type for the data item.

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 16

Standard Data Types in C++
� Following are examples of predefined data types

used in C++:
� There are more basic data types.
� Programmers can create their own types.

int an integer number (e.g. 10, -5).
double a real number (e.g. 3.1415, 2.1).
char a character (e.g. �a�, �C�).

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 17

Example
void main()
{

// Declaring a constant.
const double PI = 3.1416;

// Single variable declared at a time.
int my_number;
double GPA;
char initial_letter;

// Can declare many data-items of the same type together.
int height, base;

}
CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 18

Example
void main()
{

// Declaring constants
const int MIN_VALUE = 0;
const int MAX_VALUE; // Error

MIN_VALUE = 45; // Error

cout << �MIN_VALUE is now � <<
MIN_VALUE;

}

CMPUT101 Introduction to Computing - Spring 2001

Chapter 7: High-level Language Programming 4

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 19

Statement Types
� Three different kind of statements:

� Input/Output (I/O) Statements
� Assignment Statements
� Control Statements

� Notes:
� An executable statement ends with a ; (semi-colon).

� Can split one statement between lines!
� Comments: // Indicates that the rest of the line is a

comment.

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 20

Input/Output Statements
� In algorithms:

� Get value of A
� Print value of A

� In assembly:
� IN A
� OUT A

� In C++:
� cin >> A;
� cout << A;

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 21

Input Statement

� The input statement reads a value from the
input stream (keyboard) into a variable

� Upon entering the input statement the
program stops and waits for the user to enter
a value, e.g.

The variable your_number now contains the
value 24

cin >> your_number;

24 <enter>

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 22

Output Statement

� The output statement writes a value of a
variable(s) to the output stream (screen)

� We can write more than one value at a time:

cout << your_number;

cout << �Your number is � << your_number << endl;

Your number is 24

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 23

Special considerations

� We need to include the compiler directive

to tell in which library the cin and cout
commands are.

� When printing text we enclose it within � �, e.g.
� cout << �My lucky number is: � << endl;
� endl forces a line-break on the screen

#include <iostream.h>

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 24

Example program using I/O
� Let us look at our example program again

// Example Program Using I/O.
#include <iostream.h>

void main()
{

int your_number;

cout << �Please enter your favorite number:�;
cin >> your_number;
cout << endl;
cout << �Your favorite number is � << your_number << endl;
cout << �That is a nice number.� << endl;

}

CMPUT101 Introduction to Computing - Spring 2001

Chapter 7: High-level Language Programming 5

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 25

Output when we run the program

Please enter your favorite number:

2

Your favorite number is 24
That is a nice number.

4 <enter>

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 26

The Assignment Statement
� The assignment statement assigns a value to a

program variable.
� General format in C++:

The expression to the right gets evaluated, and
the result is written into the memory location
referenced to by the variable.

<variable> = <expression>;

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 27

Examples of assignments
void main()
{

int A, B, C;
int my_number, your_number, our_number;

A = 0;
B = -2;
C = (A-B) / B + (2*B) ;
...
my_number = 5;
your_number = 3;
our_number = my_number + your_number;
...

} CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 28

Arithmetic Operations in Expressions

C = A / B;/Division

C = A * B;*Multiplication

C = A � B;-Subtraction

C = A + B;+Addition

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 29

A Practice Problem
Write a program that calculates the area of a triangle,
given its height and base.

height

base

A = (height x base) / 2

Get values for height and base
Set value of area to (height*base)/2
Print value of area

Write the algorithm in pseudo-code:

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 30

// This program calculates the area of a triangle, given its
// height and base.
#include <iostream.h>
void main()
{
double area, height, base;

cout << �Enter the height of the triangle:�;
cin >> height;
cout << �Enter the base of the triangle:�;
cin >> base;
area = (height * base) / 2; // Note parentheses!
cout << � The area of the triangle is � << area << endl;

}

C++ code

CMPUT101 Introduction to Computing - Spring 2001

Chapter 7: High-level Language Programming 6

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 31

Running Our Program

Enter the height of the triangle: 2

The area of the triangle is 4
Enter the base of the triangle: 4

Enter the height of the triangle: 10

The area of the triangle is 25
Enter the base of the triangle: 5

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 32

Control Flow Statements

� We have three types of a control flow in a
program:

�Sequential

�Conditional

�Looping

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 33

Sequential Flow of Control

� The default case.
� No special commands needed.

S3

S2

S1

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 34

Example:Sequential Flow in C++

// An example of sequential flow.

#include <iostream.h>

void main()
{

int your_number;

cout << �Please enter a number:�;
cin >> your_number;
cout << �Your number is � << your_number << �.� << endl;

}

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 35

Example Program Output
Please enter a number: 2

Your number is 2.

Please enter a number: 5

Your number is 5.

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 36

Conditional Flow of Control

� Begins with evaluating a Boolean
condition.

� If condition is true, then execute
statement S1.

� Otherwise, if condition is false,
execute statement S2.

� In both cases, statement S3 is
executed next.

S3

S2

true false

S1

CMPUT101 Introduction to Computing - Spring 2001

Chapter 7: High-level Language Programming 7

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 37

If-else Statement in C++

if (<boolean expression>)
<statement-1>;

else
<statement-2>;

if (<boolean expression>)
<statement-1>;

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 38

Example: Conditional Flow in C++

// An example of conditional flow.
#include <iostream.h>
void main()
{

const int lucky_number = 8;
int your_number;

cout << �Please guess my lucky number:�;
cin >> your_number;
cout << �Your number is � << your_number << �.� << endl;
if (your_number == lucky_number) // boolean expression

cout << �You win!�;
else

cout << �You lose!�;
}

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 39

Example Program Output
Please, guess my lucky number: 2

You lose!

Please, guess my lucky number: 8

You win!

Your number is 2.

Your number is 8.

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 40

Multi-way If-else Statement

if (<condition>)
...

else if (<condition>)
...

else if (<condition>)
...

else
...

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 41

Boolean Conditions (Expressions)

� Expression can be either true or false.

(A+1) < B

A != B

A == 0

A=1; B=2;A=0; B=1;Expression

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 42

C++ Comparison Operators

true2 != 5!=Not the same value as

false2 >= 5>=Greater than or equal to

false2 > 5>Greater than

true5 <= 5<=Less than or equal to

true2 < 5<Less than

false2 == 5==The same value as

CMPUT101 Introduction to Computing - Spring 2001

Chapter 7: High-level Language Programming 8

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 43

Examples: Comparison Operators

if (your_number == 8)
cout << �You win!�;

else
cout << �You lose!�;

if (your_weight_lbs > your_ideal_weight_lbs)
cout << �You need to diet!�;

else
cout << �More ice-cream?�;

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 44

C++ Boolean Operators
� Boolean operators can be used to make more

complex Boolean expressions.

true!(2==5)!NOT

true(2<5) || (2>7)||OR

false(2<5) && (2>7)&&AND

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 45

Examples: Boolean Operators

if ((your_number > 5) && (your_number<8))
cout << �You win!�;

else
cout << �You lose!�;

if ((your_weight < your_lower_limit_weight) ||
(your_weight > your_upper_limit_weight))
cout << �See your doctor about your weight.�;

else
cout << �You are in a good shape.�;

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 46

Compound Statements
� What if we want to execute more than one

statement within a if-statement?
� We can group arbitrary many statements together by

enclosing them within { }.

{
<statement-1>;
<statement-2>;

}

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 47

Example: Compound statements

if ((your_number > 5) && (your_number<8))
{

cout << �You win!�;
cout << �Guess you got lucky!�;

}
else
{

cout << �You lose!�;
cout << �You�ll never guess the right number!�;

}

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 48

// Example program using a compound if-else statement.
#include <iostream.h>
void main()
{
int your_number, my_number;

cout << �Please enter a positive number:�;
cin >> your_number;

if (your_number >= 0) // need to use a compound form
{

my_number = 2 * your_number;
cout << �My number is � << my_number;

}
else // not necessary to use a compound form.
{

cout << �Sorry, your number is negative!� << endl;
}

}

CMPUT101 Introduction to Computing - Spring 2001

Chapter 7: High-level Language Programming 9

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 49

Looping Flow of Control (while)

� Begins with evaluating a Boolean
condition.

� While condition is true execute
statement S1 and then re-evaluate
Boolean condition. Repeat until ...

� ... condition is false, then go to
statement S2.S2

true

false

S1

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 50

While-loop Statement in C++

while (<Boolean expression>)
{

<statement-1>;
.
.
.

<statement-n>;
}

while (<Boolean expression>)
<statement-1>;

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 51

Examples of while loops

while (i <= 5)
{

cout << "Enter a grade: ";
cin >> grade;
total = total + grade;
i = i + 1;

}

while (M >= 1)
M = M - 2;

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 52

What does this program print out?

// What is the output?
#include <iostream.h>
void main()
{
int number;
number = 1;
while (number > 0)

cout << number << endl;
number = number - 1;

cout << number;
}

// What is the output?
#include <iostream.h>
void main()
{
int number;
number = 1;
while (number > 0)
{

cout << number << endl;
number = number - 1;

}
cout << number;

}

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 53

// Example #1: Use of the while statement.
// The user guesses the program�s lucky number!
#include <iostream.h>
void main()
{

const int lucky_number = 8;
int your_number ;
cout << "Please, guess my lucky number: ";
cin >> your_number;
while (your_number != lucky_number)
{

cout << "Sorry, enter another number: ";
cin >> your_number;

}

cout << "You guessed " << lucky_number
<< ", my lucky number!";

} CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 54

Example #1: Program Output

Please, guess my lucky number: 2
Sorry, enter another number: 6
Sorry, enter another number: 9
Sorry, enter another number: 8
You guessed 8, my lucky number!

CMPUT101 Introduction to Computing - Spring 2001

Chapter 7: High-level Language Programming 10

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 55

// Example #2: Use of the while-statement.
// The user enters a number, and the program divides
// the number in half while it is greater or equal to one,
// printing out all the intermediate results.
#include <iostream.h>

void main()
{

int number;
cout << "Enter a number: ";
cin >> number;
while (number >= 1)
{

cout << number << endl;
number = number / 2;

}
} CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 56

Example #2: Program Output

Enter a number: 40

20

10

5

2

1

40

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 57

// Example #3: Use of the while statement.
// The program determines if a given number is odd or even.
#include <iostream.h>
void main()
{
int number ;
cout << "Enter a positive number: ";
cin >> number;
while (number >= 1)
{

number = number - 2;
}

if (number == 0)
cout << "The number is even.";

else
cout << "The number is odd.";

}
CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 58

Example #3: Program Output

Enter a positive number: 4
The number is even.

Enter a positive number: 7
The number is odd.

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 59

Practice Problem 1
� Write a program that calculates the user's GPA. Before entering

the grades the user first enters how many grades there are.

Get a value for N, the number of courses
Set the value of total to 0
Set the value of i to 1
While i ≤≤≤≤ N do

Get a value for grade
Set total to (total + grade)
Increase the value of i by 1

End loop
Set the value of GPA to (total / N)
Print the value of GPA

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 60

// Example #4: This program calculates GPA.
#include <iostream.h>
void main()
{

int i, N;
double grade, GPA, total;

total = 0.0;
cout << "Enter the number of courses taken: ";
cin >> N;
i = 1;
while (i <= N) {

cout << "Enter a grade: ";
cin >> grade;
total = total + grade;
i = i + 1;

}
GPA = total / N;
cout << "The GPA is " << GPA << endl;

}

CMPUT101 Introduction to Computing - Spring 2001

Chapter 7: High-level Language Programming 11

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 61

Practice Problem 1: Program Output

Enter the number of courses taken: 5
Enter a grade: 5
Enter a grade: 7
Enter a grade: 8
Enter a grade: 5
Enter a grade: 8
The GPA is 6.6

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 62

Practice Problem 2 (take one)

� Write a program that reads in 5 integers and
prints out the numbers that are larger than the
last number entered (i.e. the fifth number).

Get values for N1, N2, ..., N5
Set i to 1
While i <<<< 5 do

If Ni > N5 then
Print Ni

Increase i by 1
End loop

� How do we write this algorithm in C++?

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 63

The Array Data Type
� An array groups together a collection of data

items of the same type, e.g.

� In a C++ program we:
� Specify the size of the array when we declare it.
� Use an index in the range 0, ..., size-1 to refer to

individual elements in the array.

51083549165
9876543210

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 64

Arrays in C++
#include <iostream.h>
void main()
{

int grade[10]; // Declaring an array of 10 integers.
int i;

grade[0] = 9;
grade[1] = 6;
...
grade[9] = 8;

i = 0; // Note: indexing range is from 0 ... 9
while (i < 10) {

cout << grade[i] << endl;
i = i + 1;

}
}

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 65

Arrays in C++
// This program reads in 5 integers and stores them in an array.
#include <iostream.h>

void main()
{

const int MAX = 5; // The number of integers to read in.
int a[MAX];
int n, i;

i = 0;
while (i < MAX)
{

cout << "Enter a number: ";
cin >> n; // Note: Why not cin >> a[i] ? Limitation in lab-software!
a[i] = n;
i = i + 1;

}
}

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 66

Practice Problem 2 (take two)

Get values for N1, N2, ..., N5
Set i to 1
While i <<<< 5 do

If Ni > N5 then
Print Ni

Increase i by 1
End loop

� Write a program that reads in 5 integers and
prints out the numbers that are larger than the
last number entered (i.e. the fifth number).

CMPUT101 Introduction to Computing - Spring 2001

Chapter 7: High-level Language Programming 12

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 67

#include <iostream.h>
void main()
{

const int MAX = 5; // Number of values to read in.
int i, n, N[MAX];

// Read in the integers; use a loop!
cout << "Enter the numbers: " << endl;
i = 0;
while (i < MAX) {

cin >> n;
N[i] = n;
++i; // Note: same as i = i + 1;

}

// Print out the numbers that are larger than the last (fifth) number.
cout << "Larger than last:";
i = 0; // Remember to reset i
while (i < MAX-1) { // Note: MAX-1 !

if (N[i] > N[MAX-1])
cout << " " << N[i];

i = i + 1;
}

}
CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 68

Enter the numbers:
2
5
1
8
4

5Larger than last: 8

Practice Problem 2: Program Output

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 69

Repeat Loops
� What if we use a Repeat loop in the algorithm?

Get values for N1, N2, ..., N5
Set i to 1
Repeat until i ≥ 5 do

If Ni > N5 then
Print Ni

Increase i by 1
End loop

� How do we code Repeat loops in C++?
CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 70

Repeat vs. While
� We can always rewrite a Repeat as a While loop

� C++ has a loop similar to Repeat, but we will not
look at that in this course.

Get values for N1, N2, ..., N5
Set i to 1
While i <<<< 5 do

If Ni > N5 then
Print Ni

Increase i by 1
End loop

Get values for N1, N2, ..., N5
Set i to 1
Repeat until i ≥ 5 do

If Ni > N5 then
Print Ni

Increase i by 1
End loop

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 71

Elements Correctness and Style
� Important to make our programs correct:

� Logically correct (do what supposed to do)
� Syntactically correct (so can compile)

� Also, important to make them readable (why?):
� No more than one statement in each line.
� Proper indentation.
� Descriptive identifier names.
� Documentation (comments).

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 72

What does this program do?

#include <iostream.h>
void main() {
int x; int q10; x=1; cout <<

"Enter a number: "; cin
>> q10; while (q10 > 1) {

x = x * q10;
q10 = q10 - 1;

} cout << x; }

CMPUT101 Introduction to Computing - Spring 2001

Chapter 7: High-level Language Programming 13

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 73

Continued � One statement each line
#include <iostream.h>
void main()
{
int x;
int q10;
x=1;
cout << "Enter a number: ";
cin >> q10;
while (q10 > 1)
{
x = x * q10;
q10 = q10 - 1;
}
cout << x;
} CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 74

Continued � Proper indentation
#include <iostream.h>
void main()
{

int x;
int q10;
x = 1;
cout << "Enter a number: ";
cin >> q10;
while (q10 > 1)
{

x = x * q10;
q10 = q10 - 1;

}
cout << x;

}

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 75

Continued � Descriptive identifier names
#include <iostream.h>
void main()
{
int factorial;
int n;
factorial = 1;
cout << "Enter a number: ";
cin >> n;
while (n > 1)
{

factorial = factorial * n;
n = n - 1;

}
cout << factorial;

} CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 76

Continued � Documentation added.
// Given a number n the program outputs n factorial, e.g.
// n! = n * (n-1) * (n-2) * � * 2 * 1
#include <iostream.h>
void main()
{

int factorial;
int n;
factorial = 1; // 0! = 1
cout << "Enter a number: ";
cin >> n;
while (n > 1)
{

factorial = factorial * n;
n = n - 1;

}
cout << factorial;

}

