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An Introduction to System Software and 
Virtual Machines

Chapter 6.1-6.3
Topics:

System Software
Assemblers and Assembly Language
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von Neumann

Architecture
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The Naked Machine
� Difficult to use:

�Store program in RAM
�Put address of first instruction in PC, ...

� Difficult to program:
� Machine language instructions look like:  1010000 ...
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User Interfaces
� User interfaces 

� Hide the details of hardware (users require no in-
depth knowledge of hardware), thus, allow easy 
access to the hardware resources.

� Use all the time in our daily life, e.g.:
� Dashboard in a car
� Control of a stereo/VCR
� Punch keys on a microwave
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System Software
� System software provides us with an simpler 

interface to operate and program the computer:
� Is a collection of programs that manage the resources 

of the computer, and act as an intermediary between 
the user and the computer.

� Hide the details of the Von Neumann architecture
� Present information in understandable way
� Allow user to access the hardware resources in a 

simple, safe, and efficient way.
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Virtual Machine
� The services (interface) provided by the system 

software is what the user sees, that environment is 
called, a virtual machine (or virtual environment).

System Software

Hardware

Virtual machine interface
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Typical System Software
� Language translators

� Assemblers, compilers.
� Memory managers

� Allocate space and load programs into memory.
� File systems

� Storage/Retrieval of information from mass-storage devices
� Scheduler

� Schedules the order of execution of programs.
� Utilities

� E.g. text editors.
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Using the Machine
� We want to write and run a program:

� Use a text editor to create the program.
� Store the file on the file system.
� Use a language translator (compiler) to translate 

program into machine code.
� Memory manager, or loader, allocates space and 

loads program into memory (RAM).
� Scheduler, executes the program.

� We are interacting with the system software!
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Programming the Machine
� Algorithms/Programs must be translated into 

machine-code before they can run on the computer:

Pseudo-code Programming
Language

Machine Code

T1

T2T1: by a programmer
T2: by a computer program
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Programming the Machine
� Instead of writing in machine code (yuck!) we 

can write our programs using a more "friendly" 
programming language:
� Assembly language (learn now)
� C++ (learn later)

� System software provides us with software tools 
to translate programs into machine code:
� Assembler
� Compiler
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Assembly Language
� Similar instruction as in machine-code, except:

� Can use symbolic names for instructions, addresses
� Values can be stated as decimal
� Can use comments 

� Much simpler to use, for example, instead of
0001 000001001001

we can write
LOAD A  -- Load value of variable A into register
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Assembly Instruction Format

� Labels are used to mark the location of:
� Instruction we need to JUMP to.
� Memory locations (variables) we want to refer to.

� Op-code mnemonics
� The instructions in the computer instruction set.

� Address field
� The address the instruction works with, or more 

typically, a label indicating the address.

Address fieldOp-code mnemonicLabel:
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Instruction Set for Our Von Neumann Machine

HALT
OUT 
IN
JUMPxx 
JUMPGT 
JUMP

COMPARE
DECREMENT
SUBTRACT
INCREMENT
ADD
CLEAR
STORE
LOAD
Opcode Mnemonic

X
X
X
X
X

X
X
X
X
X
X
X
X
Address

R - CON(X) --> R

Stop program execution
Output, in decimal notation, content of memory loc. X
Input an integer value and store in X
xx = LT / EQ / NEQ
Get next instruction from memory loc. X if GT=1
Get next instruction from memory location X

If CON(X) > R then GT = 1 else 0
If CON(X) = R then EQ = 1 else 0
If CON(X) < R then LT = 1 else 0

CON(X) - 1 --> CON(X)

CON(X) + 1 --> CON(X)
R + CON(X) --> R
0 --> CON(X)
R --> CON(X)
CON(X) --> R
Meaning
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Additional Format
� In addition to the aforementioned instructions, 

we use three pseudo instructions (do not 
generate any machine-code):
� .BEGIN indicates beginning of program
� .END indicates end of program
� .DATA reserves memory for a data value

� Can include comments, by using --.
� LOAD  A   -- This is a comment! 
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Typical Assembly Program Structure

Label:
...

...

-- End of program.END
.DATA...

-- Data declaration.DATAA:
-- Stop programHALT

-- Machine instructions...
-- Beginning of program.BEGIN
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Practice Question #1
� Write an assembly program that reads in 2 numbers, adds 

them together, and outputs their sum (algorithm given 
below).

Stop
Print the value of C
Set the value of C to (A+B)
Get values for A and B
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0
0
0

C
C
B
A
B
A

-- Reserving memory for variables.DATAA:
-- StopHALT

-- A, B, and C..DATAB:
.DATAC:
.END

-- Print the value of COUT 
STORE 
ADD

-- Set the value of C to (A +  B)LOAD
IN

-- Get values for A and BIN
.BEGIN
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Practice Question #2
� Write an assembly program that reads in 5 numbers 

and prints out their sum (algorithm given below):

Print the value of Sum 
Stop

End of loop
Add 1 to i
Set the value of Sum to (Sum + N)
Get a value for N

While i <= 5 do 
Set the value of i to 1
Set the value of Sum to 0
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-- While i <= 5 doFiveLOADLoop:

-- Print the value of SumSumOUTEndloop:

0.DATAN:
0.DATAi:

-- Constant 11.DATAOne:

-- Reserve memory for variables.0.DATASum:

-- End of loopLoopJUMP
-- Add 1 to iiINCREMENT

SumSTORE 

5

N
Sum
N
Endloop
i

i
One
Sum

ADD
-- Set Sum to (Sum + N)LOAD

-- StopHALT

-- Constant 5.DATAFive:
.END

-- Get the value of NIN
JUMPGT
COMPARE

STORE 
-- Set the value of i to 1LOAD
-- Set the value of Sum to 0CLEAR

.BEGIN
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Practice Question #3
� Write an assembly program that reads in 2 

numbers, and prints out the larger of the two 
(algorithm given below):

Stop
Print the value of B

Else
Print the value of A

If A >= B then
Get values for A and B
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0.DATAB:
-- Reserve memory for variables.0.DATAA:

HALTEndif:
B
Endif
A
Else
A
B
B
A

OUTElse:
JUMP

.END

-- Print the value of AOUT
JUMPLT

-- If A >= B thenCOMPARE
LOAD
IN

-- Get values for A and BIN
.BEGIN
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Translation
� An assembler translates assembly programs into 

machine code.
� Converts symbolic op-codes to binary. 

� Simply a table-lookup.
� Converts symbolic addresses to binary. Two passes:

1. Establishing bindings between labels and addresses
2. Convert references to labels to binary according to bindings.

� The resulting file with the machine code is called an 
object file.
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Translation, Build Bindings
Program                  Location Counter           Bindings

.BEGIN Labels      addr�s
Loop:    IN     X              0                          Loop            0

LOAD          X             1                          Done            5
COMPARE  Y          2                           X                 7
JUMPLT      Done       3
JUMP          Loop        4

Done :   OUT           Y              5
HALT                          6

X:         .DATA         0               7
.END
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LOADING

By a program called loader which

� reads instructions of an object program into RAM

� places the address of first instruction to Program 

Counter (PC) to initiate execution.


