
CMPUT101 Introduction to Computing - Spring 2001

Chapter 6: An Introduction to System Software ... 1

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 1

An Introduction to System Software and
Virtual Machines

Chapter 6.1-6.3
Topics:

System Software
Assemblers and Assembly Language

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 2

von Neumann

Architecture

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 3

The Naked Machine
� Difficult to use:

�Store program in RAM
�Put address of first instruction in PC, ...

� Difficult to program:
� Machine language instructions look like: 1010000 ...

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 4

User Interfaces
� User interfaces

� Hide the details of hardware (users require no in-
depth knowledge of hardware), thus, allow easy
access to the hardware resources.

� Use all the time in our daily life, e.g.:
� Dashboard in a car
� Control of a stereo/VCR
� Punch keys on a microwave

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 5

System Software
� System software provides us with an simpler

interface to operate and program the computer:
� Is a collection of programs that manage the resources

of the computer, and act as an intermediary between
the user and the computer.

� Hide the details of the Von Neumann architecture
� Present information in understandable way
� Allow user to access the hardware resources in a

simple, safe, and efficient way.

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 6

Virtual Machine
� The services (interface) provided by the system

software is what the user sees, that environment is
called, a virtual machine (or virtual environment).

System Software

Hardware

Virtual machine interface

CMPUT101 Introduction to Computing - Spring 2001

Chapter 6: An Introduction to System Software ... 2

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 7

Typical System Software
� Language translators

� Assemblers, compilers.
� Memory managers

� Allocate space and load programs into memory.
� File systems

� Storage/Retrieval of information from mass-storage devices
� Scheduler

� Schedules the order of execution of programs.
� Utilities

� E.g. text editors.

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 8

Using the Machine
� We want to write and run a program:

� Use a text editor to create the program.
� Store the file on the file system.
� Use a language translator (compiler) to translate

program into machine code.
� Memory manager, or loader, allocates space and

loads program into memory (RAM).
� Scheduler, executes the program.

� We are interacting with the system software!

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 9

Programming the Machine
� Algorithms/Programs must be translated into

machine-code before they can run on the computer:

Pseudo-code Programming
Language

Machine Code

T1

T2T1: by a programmer
T2: by a computer program

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 10

Programming the Machine
� Instead of writing in machine code (yuck!) we

can write our programs using a more "friendly"
programming language:
� Assembly language (learn now)
� C++ (learn later)

� System software provides us with software tools
to translate programs into machine code:
� Assembler
� Compiler

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 11

Assembly Language
� Similar instruction as in machine-code, except:

� Can use symbolic names for instructions, addresses
� Values can be stated as decimal
� Can use comments

� Much simpler to use, for example, instead of
0001 000001001001

we can write
LOAD A -- Load value of variable A into register

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 12

Assembly Instruction Format

� Labels are used to mark the location of:
� Instruction we need to JUMP to.
� Memory locations (variables) we want to refer to.

� Op-code mnemonics
� The instructions in the computer instruction set.

� Address field
� The address the instruction works with, or more

typically, a label indicating the address.

Address fieldOp-code mnemonicLabel:

CMPUT101 Introduction to Computing - Spring 2001

Chapter 6: An Introduction to System Software ... 3

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 13

Instruction Set for Our Von Neumann Machine

HALT
OUT
IN
JUMPxx
JUMPGT
JUMP

COMPARE
DECREMENT
SUBTRACT
INCREMENT
ADD
CLEAR
STORE
LOAD
Opcode Mnemonic

X
X
X
X
X

X
X
X
X
X
X
X
X
Address

R - CON(X) --> R

Stop program execution
Output, in decimal notation, content of memory loc. X
Input an integer value and store in X
xx = LT / EQ / NEQ
Get next instruction from memory loc. X if GT=1
Get next instruction from memory location X

If CON(X) > R then GT = 1 else 0
If CON(X) = R then EQ = 1 else 0
If CON(X) < R then LT = 1 else 0

CON(X) - 1 --> CON(X)

CON(X) + 1 --> CON(X)
R + CON(X) --> R
0 --> CON(X)
R --> CON(X)
CON(X) --> R
Meaning

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 14

Additional Format
� In addition to the aforementioned instructions,

we use three pseudo instructions (do not
generate any machine-code):
� .BEGIN indicates beginning of program
� .END indicates end of program
� .DATA reserves memory for a data value

� Can include comments, by using --.
� LOAD A -- This is a comment!

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 15

Typical Assembly Program Structure

Label:
...

...

-- End of program.END
.DATA...

-- Data declaration.DATAA:
-- Stop programHALT

-- Machine instructions...
-- Beginning of program.BEGIN

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 16

Practice Question #1
� Write an assembly program that reads in 2 numbers, adds

them together, and outputs their sum (algorithm given
below).

Stop
Print the value of C
Set the value of C to (A+B)
Get values for A and B

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 17

0
0
0

C
C
B
A
B
A

-- Reserving memory for variables.DATAA:
-- StopHALT

-- A, B, and C..DATAB:
.DATAC:
.END

-- Print the value of COUT
STORE
ADD

-- Set the value of C to (A + B)LOAD
IN

-- Get values for A and BIN
.BEGIN

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 18

Practice Question #2
� Write an assembly program that reads in 5 numbers

and prints out their sum (algorithm given below):

Print the value of Sum
Stop

End of loop
Add 1 to i
Set the value of Sum to (Sum + N)
Get a value for N

While i <= 5 do
Set the value of i to 1
Set the value of Sum to 0

CMPUT101 Introduction to Computing - Spring 2001

Chapter 6: An Introduction to System Software ... 4

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 19

-- While i <= 5 doFiveLOADLoop:

-- Print the value of SumSumOUTEndloop:

0.DATAN:
0.DATAi:

-- Constant 11.DATAOne:

-- Reserve memory for variables.0.DATASum:

-- End of loopLoopJUMP
-- Add 1 to iiINCREMENT

SumSTORE

5

N
Sum
N
Endloop
i

i
One
Sum

ADD
-- Set Sum to (Sum + N)LOAD

-- StopHALT

-- Constant 5.DATAFive:
.END

-- Get the value of NIN
JUMPGT
COMPARE

STORE
-- Set the value of i to 1LOAD
-- Set the value of Sum to 0CLEAR

.BEGIN

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 20

Practice Question #3
� Write an assembly program that reads in 2

numbers, and prints out the larger of the two
(algorithm given below):

Stop
Print the value of B

Else
Print the value of A

If A >= B then
Get values for A and B

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 21

0.DATAB:
-- Reserve memory for variables.0.DATAA:

HALTEndif:
B
Endif
A
Else
A
B
B
A

OUTElse:
JUMP

.END

-- Print the value of AOUT
JUMPLT

-- If A >= B thenCOMPARE
LOAD
IN

-- Get values for A and BIN
.BEGIN

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 22

Translation
� An assembler translates assembly programs into

machine code.
� Converts symbolic op-codes to binary.

� Simply a table-lookup.
� Converts symbolic addresses to binary. Two passes:

1. Establishing bindings between labels and addresses
2. Convert references to labels to binary according to bindings.

� The resulting file with the machine code is called an
object file.

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 23

Translation, Build Bindings
Program Location Counter Bindings

.BEGIN Labels addr�s
Loop: IN X 0 Loop 0

LOAD X 1 Done 5
COMPARE Y 2 X 7
JUMPLT Done 3
JUMP Loop 4

Done : OUT Y 5
HALT 6

X: .DATA 0 7
.END

CMPUT101 Introduction to Computing (c) Jia You, Vadim Bulitko, Yngvi Bjornsson 24

LOADING

By a program called loader which

� reads instructions of an object program into RAM

� places the address of first instruction to Program

Counter (PC) to initiate execution.

