
CMPUT101 Introduction to Computing - Spring 2001

Chapter 5: The Von Neumann Architecture 1

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 1

The Von Neumann Architecture
Odds and Ends
Chapter 5.1-5.2

Von Neumann
Architecture

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 2

Designing Computers

� All computers more or less based on the same
basic design, the Von Neumann Architecture!

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 3

The Von Neumann Architecture
� Model for designing and building computers,

based on the following three characteristics:
1) The computer consists of four main sub-systems:

� Memory
� ALU (Arithmetic/Logic Unit)
� Control Unit
� Input/Output System (I/O)

2) Program is stored in memory during execution.
3) Program instructions are executed sequentially.

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 4

The Von Neumann Architecture

Memory

Processor (CPU)

Input-Output
Control Unit

ALU
Store data and program

Execute program

Do arithmetic/logic operations
requested by program

Communicate with
"outside world", e.g.
� Screen
� Keyboard
� Storage devices
� ...

Bus

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 5

Structure of the Memory Subsystem
� Fetch(address)

� Load address into MAR.
� Decode the address in MAR.
� Copy the content of memory cell with

specified address into MDR.
� Store(address, value)

� Load the address into MAR.
� Load the value into MDR.
� Decode the address in MAR
� Copy the content of MDR into

memory cell with the specified
address.

MAR MDR

...

Memory
decoder
circuit

Fetch/Store
controller

F/S

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 6

Implementation of the Memory Subsystem

CMPUT101 Introduction to Computing - Spring 2001

Chapter 5: The Von Neumann Architecture 2

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 7

CACHE - Modern addition

� High-speed memory, integrated
on the CPU
� Ca. 10 times faster than RAM
� Relatively small (128-256K)

� Stores data most recently used
� Principle of Locality

� When CPU needs data:
� First looks in the cache, only if not

there, then fetch from RAM.
� If cache full, new data overwrites

older entries in cache.

Memory

Processor (CPU)

I/O

Control Unit

ALU

Cache

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 8

I/O Subsystem: Hard-Drives
� Uses magnetic surfaces to store the data.

� Each surface has many circular tracks.
� Each track consists of many sectors.

The surfaces rotate at a high speed
Typically ~7000 rev/min

The read/write arm moves:
back and forth to locate a track

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 9

Hard-Drive

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 10

Disk Access Time
� The time it takes to read/write data to a disk, consists of:

� Seek time
� The time it takes to position the read/write head over correct track

(depends on arm movement speed).
� Latency

� The time waiting for the beginning of the desired sector to get under the
read/write head (depends on rotation speed)

� Transfer time
� The time needed for the sector to pass under the read/write head

(depends on rotation speed)
� Disk Access Time = Seek time + Latency + Transfer time

� Measure worst, best, and average case. (Example: p. 189)

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 11

Structure of the ALU
� Registers:

� Very fast local memory cells, that
store operands of operations and
intermediate results.

� CCR (condition code register), a
special purpose register that stores
the result of <, = , > operations

� ALU circuitry:
� Contains an array of circuits to do

mathematical/logic operations.
� Bus:

� Data path interconnecting the
registers to the ALU circuitry.

ALU circuitry

GT EQ LT

R0
R1
R2

Rn

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 12

Implementation of the ALU

ALU
Circuitry

Every circuit
produces a
result but only
the desired one
is selected

CMPUT101 Introduction to Computing - Spring 2001

Chapter 5: The Von Neumann Architecture 3

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 13

Structure of the Control Unit
� PC (Program Counter):

� stores the address of next instruction to fetch
� IR (Instruction Register):

� stores the instruction fetched from memory
� Instruction Decoder:

� Decodes instruction and activates necessary circuitry

Instruction
Decoder

IR

+1

PC

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 14

Machine Language Instructions
� A machine language instruction consists of:

� Operation code, telling which operation to perform
� Address field(s), telling the memory addresses of the

values on which the operation works.
� Example: ADD X, Y (Add content of memory locations

X and Y, and store back in memory location Y).
� Assume: opcode for ADD is 9, and addresses X=99, Y=100

00001001 0000000001100011 0000000001100100
Opcode (8 bits) Address 1 (16 bits) Address 2 (16 bits)

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 15

Implementation of the Control Unit

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 16

von Neumann

Architecture

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 17

How does this all work together?

� Program Execution:
� PC is set to the address where the first program

instruction is stored in memory.
� Repeat until HALT instruction or fatal error

Fetch instruction
Decode instruction
Execute instruction

End of loop

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 18

Program Execution (cont.)
� Fetch phase

� PC --> MAR (put address in PC into MAR)
� Fetch signal (signal memory to fetch value into MDR)
� MDR --> IR (move value to Instruction Register)
� PC + 1 --> PC (Increase address in program counter)

� Decode Phase
� IR -> Instruction decoder (decode instruction in IR)
� Instruction decoder will then generate the signals to

activate the circuitry to carry out the instruction

CMPUT101 Introduction to Computing - Spring 2001

Chapter 5: The Von Neumann Architecture 4

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 19

Program Execution (cont.)
� Execute Phase

� Differs from one instruction to the next.
� Example:

� LOAD X (load value in addr. X into register)
� IR_address -> MAR
� Fetch signal
� MDR --> R

� ADD X
� left as an exercise

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 20

Instruction Set for Our Von Neumann Machine

R - CON(X) --> RSUBTRACT X0101

Stop program executionHALT1111
Output, in decimal notation, content of mem. loc. XOUT X1110
Input an integer value and store in XIN X1101
xx = LT / EQ / NEQJUMPxx X...
Get next instruction from memory loc. X if GT=1JUMPGT X1001
Get next instruction from memory location XJUMP X1000

If CON(X) > R then GT = 1 else 0
If CON(X) = R then EQ = 1 else 0
If CON(X) < R then LT = 1 else 0

COMPARE X
0111

CON(X) - 1 --> CON(X)DECREMENT X0101

CON(X) + 1 --> CON(X)INCREMENT X0100
R + CON(X) --> RADD X0011
0 --> CON(X)CLEAR X0010
R --> CON(X)STORE X0001
CON(X) --> RLOAD X0000
MeaningOperationOpcode

