CMPUTI101 Introduction to Computing - Spring 2001

The Von Neumann Architecture
Odds and Ends
Chapter 5.1-5.2

Von Neumann
Architecture

CMPUT101 Introduction to Computing (c) Yngyi Bjornsson & Vadim Bulitko 1

Designing Computers

+ All computers more or less based on the same
basic design, the Von Neumann Architecture!

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 2

The Von Neumann Architecture

+ Model for designing and building computers,
based on the following three characteristics:
1) The computer consists of four main sub-systems:
* Memory
* ALU (Arithmetic/Logic Unit)
+ Control Unit
¢+ Input/Output System (I/O)
2) Program is stored in memory during execution.
3) Program instructions are executed sequentially.

CMPUT101 Introduction to Computing (c) Yngyi Bjornsson & Vadim Bulitko 3

Chapter 5:

The Von Neumann Architecture

CMPUTI101 Introduction to Computing - Spring 2001

The Von Neumann Architecture

Store data and program

Execute program

CMPUT101 Introduction to Computing

Do arithmetic/logic operations
requested by program

Bus
1 1 1
Processor (CPU)
Memory Input-Output
Control Unit
Communicate with

"outside world", e.g.
+ Screen

+ Keyboard

+ Storage devices

(c) Yngvi Bjornsson & Vadim Bulitko

MAR MDR

FIS

Memory
decoder
circuit

Fetch/Store
controller

CMPUT101 Introduction to Computing

Structure of the Memory Subsystem

+ Fetch(address)
- Load address into MAR.
— Decode the address in MAR.
- Copy the content of memory cell with
specified address into MDR.
+ Store(address, value)
- Load the address into MAR.
- Load the value into MDR.
- Decode the address in MAR

— Copy the content of MDR into
memory cell with the specified
address.

(c) Yngvi Bjomsson & Vadim Bulitko

N=4

1| Decoder circuit

Implementation of the Memory Subsystem

Address

(24=16 output lines) Memory
| 0000
0001
0010

)
(1)
(2)

1110 (14)
111 (15)

Chapter 5: The Von Neumann Architecture

CMPUTI101 Introduction to Computing - Spring 2001

CACHE - Modern addition

+ High-speed memory, integrated

on the CPU Processor (CPU)
- Ca. 10 times faster than RAM
- Relatively small (128-256K) Memory Ilo
+ Stores data most recently used
— Principle of Locality
+ When CPU needs data:
— First looks in the cache, only if not ALU

there, then fetch from RAM.

- If cache full, new data overwrites
older entries in cache.

CMPUT101 Introduction to Computing (c) Yngyi Bjornsson & Vadim Bulitko 7

1/0 Subsystem: Hard-Drives

+ Uses magnetic surfaces to store the data.
- Each surface has many circular tracks.
- Each track consists of many sectors.

Stepper Molor

Magnetic Platters
The surfaces rotate at a high speed
Typically ~7000 rev/min
The read/write arm moves:
back and forth to locate a track

Movable Arm
Readirite Heads

k
CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 8

Hard-Drive

Stepper Motor Individual sector

‘Read/write
head
Track.
U Track
Rron
CMPUT101 Introduction to Computing (c) Yngyi Bjornsson & Vadim Bulitko 9

Chapter 5: The Von Neumann Architecture

CMPUTI101 Introduction to Computing - Spring 2001

Disk Access Time

+ The time it takes to read/write data to a disk, consists of:

- Seek time

+ The time it takes to position the read/write head over correct track
(depends on arm movement speed).

- Latency

+ The time waiting for the beginning of the desired sector to get under the
read/write head (depends on rotation speed)

- Transfer time

+ The time needed for the sector to pass under the read/write head
(depends on rotation speed)

— Disk Access Time = Seek time + Latency + Transfer time
+ Measure worst, best, and average case. (Example: p. 189)

CMPUT101 Introduction to Computing (c) Yngyi Bjornsson & Vadim Bulitko 10

Structure of the ALU
* Registers: ST —

- Very fast local memory cells, that
store operands of operations and -’II'_’
intermediate results. "(R2 ’

— CCR (condition code register), a
special purpose register that stores

the result of <, =, > operations @—»

+ ALU circuitry: |
— Contains an array of circuits to do
mathematical/logic operations. ALU circuitry
* Bus:

— Data path interconnecting the
registers to the ALU circuitry.

CMPUT101 Introduction to Computing (c) Yngyi Bjornsson & Vadim Bulitko 11

Implementation of the ALU

AlU
line 0
Y ath r ‘|°01
line 1
. . o o-b ‘l’(‘lell Muiplexaor circuit |————2>Output
Every circuit
produces a
result but only
the desired one
is selected ot _
Selector lines
[BETES)

CMPUT101 Introductio

Chapter 5: The Von Neumann Architecture

CMPUTI101 Introduction to Computing - Spring 2001

Structure of the Control Unit

+ PC (Program Counter):

- stores the address of next instruction to fetch
* IR (Instruction Register):

— stores the instruction fetched from memory
Instruction Decoder:

- Decodes instruction and activates necessary circuitry
T T
¥ ¥
rc || IR \
.
Instruction

Decoder

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 13

Machine Language Instructions

+ A machine language instruction consists of:

- Operation code, telling which operation to perform

- Address field(s), telling the memory addresses of the
values on which the operation works.

« Example: ADD X, Y (Add content of memory locations

Xand 'Y, and store back in memory location Y).

+ Assume: opcode for ADD is 9, and addresses X=99, Y=100

Opcode (8 bits) Address 1 (16 bits)

CMPUT101 Introduction to Computing

Address 2 (16 bits)
[00001001 | 0000000001100011 | 0000000001100100 |

(c) Yngvi Bjornsson & Vadim Bulitko

14

Y 000 ADD
Y 001 LOAD
\‘ 010 Jume
\ 2 :
\ : :
Y m HALT
\
\ Op Code
\ e vl
\
. Lol
\\
\
\
\
\
\ Al E Enable the ADD operation
\ Al iy Enable the LOAD operafion
| Instruction decoder | ine QIO LUUMP) e \ic e JUMP operation
\ :
\
\ tine. 1L [HAL] Enable the HALT operation
CMPUT101 to Computity — NN =

Chapter 5: The Von Neumann Architecture

CMPUTI101 Introduction to Computing - Spring 2001

|
Memory unit | Avithmetic/logic unil it Input/output

von Neumann

GT|EQ| T
Random access memory
e regist

Condition cod

Control unit
Bus
Foll IR
MAR MDR 1/0 PC R
controller
o [
ks
signal
[1] Instruction
Memary Fetch/ = decoder [Seel
lecoder store signals
ccccc its controller - 1/O device e
R3

Al |;lwlm Architecture

2 3
&

fer

How does this all work together?

* Program Execution:
- PC s set to the address where the first program
instruction is stored in memory.
- Repeat until HALT instruction or fatal error
Fetch instruction
Decode instruction
Execute instruction
End of loop

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 17

Program Execution (cont.)

* Fetch phase
- PC-->MAR (putaddress in PC into MAR)
— Fetch signal (signal memory to fetch value into MDR)
- MDR-->IR (move value to Instruction Register)
- PC+1->PC (Increase address in program counter)
+ Decode Phase
- IR -> Instruction decoder (decode instruction in IR)

- Instruction decoder will then generate the signals to
activate the circuitry to carry out the instruction

CMPUT101 Introduction to Computing (c) Yngyi Bjornsson & Vadim Bulitko 18

Chapter 5: The Von Neumann Architecture

CMPUTI101 Introduction to Computing - Spring 2001

Program Execution (cont.)

+ Execute Phase
— Differs from one instruction to the next.

« Example:
— LOAD X (load value in addr. X into register)
+ IR _address -> MAR
+ Fetch signal
* MDR >R
- ADD X
+ left as an exercise

CMPUT101 Introduction to Computing (c) Yngyi Bjornsson & Vadim Bulitko 19

Instruction Set for Our Von Neumann Machine

Opcode | Operation Meaning
0000 [LOADX CON(X)-->R
0001 | STORE X R --> CON(X)
0010 |[CLEARX 0--> CON(X)
0011 |ADD X R+ CON(X) -->R

0100 |[INCREMENT X | CON(X) + 1 --> CON(X)

0101 | SUBTRACT X R-CON(X)-->R

0101 | DECREMENT X_| CON(X) - 1 > CON(X)

COMPARE X If CON(X) > R then GT =1 else 0

0111 If CON(X) =R then EQ =1 else 0
If CON(X) < Rthen LT =1 else 0
1000 | JUMP X Get next instruction from memory location X
1001 [JUMPGT X Get next instruction from memory loc. X if GT=1
JUMPxx X xx=LT/EQ/NEQ
1101 |INX Input an integer value and store in X
1110 |OUTX Output, in decimal notation, content of mem. loc. X
1“11‘1 HALT — Stop Prggrgrn e

Chapter 5: The Von Neumann Architecture

