
CMPUT101 Introduction to Computing - Spring 2001

Chapter 5 The Von Neumann Architecture 1

The Von Neumann Architecture

Chapter 5.1-5.2

Von Neumann
Architecture

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 2

Designing Computers

� All computers more or less based on the same
basic design, the Von Neumann Architecture!

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 3

The Von Neumann Architecture
� Model for designing and building computers,

based on the following three characteristics:
1) The computer consists of four main sub-systems:

� Memory
� ALU (Arithmetic/Logic Unit)
� Control Unit
� Input/Output System (I/O)

2) Program is stored in memory during execution.
3) Program instructions are executed sequentially.

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 4

The Von Neumann Architecture

Memory

Processor (CPU)

Input-Output
Control Unit

ALU
Store data and program

Execute program

Do arithmetic/logic operations
requested by program

Communicate with
"outside world", e.g.
� Screen
� Keyboard
� Storage devices
� ...

Bus

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 5

Memory Subsystem
� Memory, also called RAM (Random Access Memory),

� Consists of many memory cells (storage units) of a fixed size.
Each cell has an address associated with it: 0, 1, �

� All accesses to memory are to a specified address.
A cell is the minimum unit of access (fetch/store a complete cell).

� The time it takes to fetch/store a cell is the same for all cells.
� When the computer is running, both

� Program
� Data (variables)

are stored in the memory.
CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 6

RAM
� Need to distinguish between

� the address of a memory cell and
the content of a memory cell

� Memory width (W):
� How many bits is each memory

cell, typically one byte (=8 bits)
� Address width (N):

� How many bits used to represent
each address, determines the
maximum memory size = address
space

� If address width is N-bits, then
address space is 2N (0,1,...,2N-1)

...

0

1
2

2N-1

1 bit

W

0000000000000001

N

2N

CMPUT101 Introduction to Computing - Spring 2001

Chapter 5 The Von Neumann Architecture 2

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 7

Memory Size / Speed
� Typical memory in a personal computer (PC):

� 64MB - 256MB
� Memory sizes:

� Kilobyte (KB) = 210 = 1,024 bytes ~ 1 thousand
� Megabyte(MB) = 220 = 1,048,576 bytes ~ 1 million
� Gigabyte (GB) = 230 = 1,073,741,824 bytes ~ 1 billion

� Memory Access Time (read from/ write to memory)
� 50-75 nanoseconds (1 nsec. = 0.000000001 sec.)

� RAM is
� volatile (can only store when power is on)
� relatively expensive

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 8

Operations on Memory
� Fetch (address):

� Fetch a copy of the content of memory cell with the specified
address.

� Non-destructive, copies value in memory cell.
� Store (address, value):

� Store the specified value into the memory cell specified by address.
� Destructive, overwrites the previous value of the memory cell.

� The memory system is interfaced via:
� Memory Address Register (MAR)
� Memory Data Register (MDR)
� Fetch/Store signal

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 9

Structure of the Memory Subsystem
� Fetch(address)

� Load address into MAR.
� Decode the address in MAR.
� Copy the content of memory cell with

specified address into MDR.
� Store(address, value)

� Load the address into MAR.
� Load the value into MDR.
� Decode the address in MAR
� Copy the content of MDR into

memory cell with the specified
address.

MAR MDR

...

Memory
decoder
circuit

Fetch/Store
controller

F/S

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 10

Input/Output Subsystem
� Handles devices that allow the computer system to:

� Communicate and interact with the outside world
� Screen, keyboard, printer, ...

� Store information (mass-storage)
� Hard-drives, floppies, CD, tapes, �

� Mass-Storage Device Access Methods:
� Direct Access Storage Devices (DASDs)

� Hard-drives, floppy-disks, CD-ROMs, ...
� Sequential Access Storage Devices (SASDs)

� Tapes (for example, used as backup devices)

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 11

I/O Controllers
� Speed of I/O devices is slow compared to RAM

� RAM ~ 50 nsec.
� Hard-Drive ~ 10msec. = (10,000,000 nsec)

� Solution:
� I/O Controller, a special purpose processor:

� Has a small memory buffer, and a control logic to control I/O
device (e.g. move disk arm).

� Sends an interrupt signal to CPU when done read/write.
� Data transferred between RAM and memory buffer.
� Processor free to do something else while I/O controller

reads/writes data from/to device into I/O buffer.
CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 12

I/O controller

Structure of the I/O Subsystem

I/O Buffer

Control/Logic

I/O device

Data from/to memory
Interrupt signal (to processor)

CMPUT101 Introduction to Computing - Spring 2001

Chapter 5 The Von Neumann Architecture 3

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 13

The ALU Subsystem
� The ALU (Arithmetic/Logic Unit) performs

� mathematical operations (+, -, x, /, �)
� logic operations (=, <, >, and, or, not, ...)

� In today's computers integrated into the CPU
� Consists of:

� Circuits to do the arithmetic/logic operations.
� Registers (fast storage units) to store intermediate

computational results.
� Bus that connects the two.

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 14

Structure of the ALU
� Registers:

� Very fast local memory cells, that
store operands of operations and
intermediate results.

� CCR (condition code register), a
special purpose register that stores
the result of <, = , > operations

� ALU circuitry:
� Contains an array of circuits to do

mathematical/logic operations.
� Bus:

� Data path interconnecting the
registers to the ALU circuitry.

ALU circuitry

GT EQ LT

R0
R1
R2

Rn

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 15

The Control Unit
� Program is stored in memory

� as machine language instructions, in binary
� The task of the control unit is to execute programs

by repeatedly:
� Fetch from memory the next instruction to be executed.
� Decode it, that is, determine what is to be done.
� Execute it by issuing the appropriate signals to the

ALU, memory, and I/O subsystems.
� Continues until the HALT instruction

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 16

Machine Language Instructions
� A machine language instruction consists of:

� Operation code, telling which operation to perform
� Address field(s), telling the memory addresses of the

values on which the operation works.
� Example: ADD X, Y (Add content of memory locations

X and Y, and store back in memory location Y).
� Assume: opcode for ADD is 9, and addresses X=99, Y=100

00001001 0000000001100011 0000000001100100
Opcode (8 bits) Address 1 (16 bits) Address 2 (16 bits)

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 17

Instruction Set Design
� Two different approaches:

� Reduced Instruction Set Computers (RISC)
� Instruction set as small and simple as possible.
� Minimizes amount of circuitry --> faster computers

� Complex Instruction Set Computers (CISC)
� More instructions, many very complex
� Each instruction can do more work, but require more

circuitry.

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 18

Typical Machine Instructions
� Notation:

� We use X, Y, Z to denote RAM cells
� Assume only one register R (for simplicity)
� Use English-like descriptions (should be binary)

� Data Transfer Instructions
� LOAD X Load content of memory location X to R
� STORE X Load content of R to memory location X
� MOVE X, Y Copy content of memory location X to loc. Y

(not absolutely necessary)

CMPUT101 Introduction to Computing - Spring 2001

Chapter 5 The Von Neumann Architecture 4

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 19

Machine Instructions (cont.)
� Arithmetic

� ADD X, Y, Z CON(Z) = CON(X) + CON(Y)
� ADD X, Y CON(Y) = CON(X) + CON(Y)
� ADD X R = CON(X) + R
� similar instructions for other operators, e.g. SUBTR,OR, ...

� Compare
� COMPARE X, Y

Compare the content of memory cell X to the content of memory
cell Y and set the condition codes (CCR) accordingly.

� E.g. If CON(X) = R then set EQ=1, GT=0, LT=0

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 20

Machine Instructions (cont.)
� Branch

� JUMP X Load next instruction from memory loc. X
� JUMPGT X Load next instruction from memory loc. X

only if GT flag in CCR is set, otherwise load
statement from next sequence loc. as
usual.

� JUMPEQ, JUMPLT, JUMPGE, JUMPLE,JUMPNEQ

� Control
� HALT Stop program execution.

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 21

Example
� Pseudo-code: Set A to B + C
� Assuming variable:

� A stored in memory cell 100, B stored in memory cell
150, C stored in memory cell 151

� Machine language (really in binary)
� LOAD 150
� ADD 151
� STORE 100
� or
� (ADD 150, 151, 100)

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 22

Structure of the Control Unit
� PC (Program Counter):

� stores the address of next instruction to fetch
� IR (Instruction Register):

� stores the instruction fetched from memory
� Instruction Decoder:

� Decodes instruction and activates necessary circuitry

Instruction
Decoder

IR

+1

PC

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 23

von Neumann

Architecture

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 24

How does this all work together?

� Program Execution:
� PC is set to the address where the first program

instruction is stored in memory.
� Repeat until HALT instruction or fatal error

Fetch instruction
Decode instruction
Execute instruction

End of loop

CMPUT101 Introduction to Computing - Spring 2001

Chapter 5 The Von Neumann Architecture 5

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 25

Program Execution (cont.)
� Fetch phase

� PC --> MAR (put address in PC into MAR)
� Fetch signal (signal memory to fetch value into MDR)
� MDR --> IR (move value to Instruction Register)
� PC + 1 --> PC (Increase address in program counter)

� Decode Phase
� IR -> Instruction decoder (decode instruction in IR)
� Instruction decoder will then generate the signals to

activate the circuitry to carry out the instruction
CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 26

Program Execution (cont.)
� Execute Phase

� Differs from one instruction to the next.
� Example:

� LOAD X (load value in addr. X into register)
� IR_address -> MAR
� Fetch signal
� MDR --> R

� ADD X
� left as an exercise

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson 27

Instruction Set for Our Von Neumann Machine

R - CON(X) --> RSUBTRACT X0101

Stop program executionHALT1111
Output, in decimal notation, content of mem. loc. XOUT X1110
Input an integer value and store in XIN X1101
xx = LT / EQ / NEQJUMPxx X...
Get next instruction from memory loc. X if GT=1JUMPGT X1001
Get next instruction from memory location XJUMP X1000

If CON(X) > R then GT = 1 else 0
If CON(X) = R then EQ = 1 else 0
If CON(X) < R then LT = 1 else 0

COMPARE X
0111

CON(X) - 1 --> CON(X)DECREMENT X0101

CON(X) + 1 --> CON(X)INCREMENT X0100
R + CON(X) --> RADD X0011
0 --> CON(X)CLEAR X0010
R --> CON(X)STORE X0001
CON(X) --> RLOAD X0000
MeaningOperationOpcode

