The Building Blocks: Binary Numbers, Boolean Logic, and Gates

Chapter 4
$>$ Representing Information
$>$ The Binary Numbering System
$>$ Boolean Logic and Gates
>Building Computer Circuits
$>$ Control Circuits

CMPUT101 Introduction to Computing
(c) Yngvi Bjomsson

External Representation of Information

- When we communicate with each other, we need to represent the information in an understandable notation, e.g.
- We use digits to represent numbers.
- We use letters to represent text.
- Same applies when we communicate with a computer:
- We enter text and numbers on the keyboard,
- The computers displays text, images, and numbers on the screen.
- We refer to this as an external representation.
- But how do humans/computers store the information "internally"?

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson

Purpose of Chapter

- Learn how computers represent and store information.
- Learn why computers represent information that way.
- Learn what the basic building devices in a computer are, and how those devices are used to store information.
- Learn how to build more complex devices using the basic devices.

Numbering Systems

- We use the decimal numbering system
- 10 digits: $0,1,2,3,4,5,6,7,8,9$
- For example: 12
- Why use 10 digits (symbols)?
- Roman: I (=1) V (=5) X (=10) L(=50), C(=100)
- XII = 12, Pentium III
- What if we only had one symbol?
- ||III ||III || = 12
- What system do computers use?
cMPUT101 Introduction to Computing
(c) Yngvi Bjornsson

The Binary Numbering System

- All computers use the binary numbering system
- Only two digits: 0, 1
- For example: 10, 10001, 10110
- Similar to decimal, except uses a different base
- Binary (base-2): 0,
- Decimal (base-10): $\quad 0,1,2,3,4,5,6,7,8,9$
- Octal (base-8): $\quad 0,1,2,3,4,5,6,7$
- Hexadecimal (base-16):
- $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F \quad(A=10, \ldots, F=15)$
- What do we mean by a base?

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson 7

Binary-to-Decimal Conversion Table

Decimal	Binary	Decimal	Binary	Decimal	Binary	Decimal	Binary
0	0	8	1000	16	10000	24	11000
1	1	9	1001	17	10001	25	11001
2	10	10	1010	18	10010	26	11010
3	11	11	1011	19	10011	27	11011
4	100	12	1100	20	10100	28	11100
5	101	13	1101	21	10101	29	11101
6	110	14	1110	22	10110	30	11110
7	111	15	1111	23	10111	31	11111

CMPUT101 Introduction to Computing
(c) Yngvi Bjomsson

Bits

- The two binary digits 0 and 1 are frequently referred to as bits.
- How many bits does a computer use to store an integer?
- Intel Pentium PC = 32 bits
- Alpha $=64$ bits
-What if we try to compute a larger integer?
- If we try to compute a value larger than the computer can store, we get an arithmetic overflow error.

Converting from Binary to Deeimal

- What is the decimal value of the binary value 101 ?

- What is the decimal value of the binary value 1110 ?

1110

2^{3}	2^{2}	2^{1}	2^{0}
1	1	1	0
1×8	1x4	1x2	0x1
8	4	2	0

$\begin{array}{lll}\text { CMPUT101 Introduction to Computing } & \text { (c) Yngvi Bjornsson } & 10\end{array}$

Decimal vs. Binary Numbers

- What does the decimal value 163 stand for?

163

-What does the binary value 101 stand for?

101

CMPUT101 Introduction to Computing
(c) Yngvi Bjornsson

8
$2^{3} \quad 2^{2} \quad 2^{1} \quad 2^{20}$

Representing Unsigned Integers

- How does a 16-bit computer represent the value 14 ?

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array} 1
$$

-What is the largest 16 -bit integer?

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array}
$$

$$
=1 \times 2^{15}+1 \times 2^{14}+\ldots+1 \times 2^{1}+1 \times 2^{0}=65,535
$$

CMPUT101 Introduction to Computing

Representing Signed Intejers

- How does a 16 bit computer represent the value - 14 ? \rightarrow| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 1.100
- Sign bit. 0: + (positive), 1:- (negative)
- What is the largest 16 -bit signed integer?

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array}
$$

- Problem \rightarrow the value 0 is represented twice!
- Most computers use a different representation, called two's complement.
CMPUT101 Introduction to Computing (c) Yngvi Bjomsson 13

Representing Floating Point Numbers

- How do we represent floating point numbers like 5.75 and -143.50?
- Three step process:

1. Convert the decimal number to a binary number.
2. Write binary number in "normalized" scientific notation.
3. Store the normalized binary number.

- Look at an example:
- How do we store the number 5.75?

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson

2. Write using normalized scientificic notation

- Scientific notation : $\pm \mathrm{MxB} \pm \mathrm{E}$
- B is the base, M is the mantissa, E is the exponent.
- Example: (decimal, base=10)

- $3=3 \times 10^{0}$	(e.g. $3 * 1$)
- $2050=2.05 \times 10^{3}$	(e.g. $\left.2.05^{*} 1000\right)$

- Easy to convert to scientific notation:
- 101.11×2^{0}
- Normalize to get the "." in front of first (leftmost) 1 digit
- Increase exponent by one for each location "." moves left (decreases if we have to move left)
$-101.11 \times 2^{0}=.10111 \times 2^{3}$
CMPUT101 Introduction to Computing

Representing Text

- How can we represent text in a binary form?
- Assign to each character a positive integer value (for example, A is $65, B$ is $66, \ldots$)
- Then we can store the numbers in their binary form!
- The mapping of text to numbers \rightarrow Code mapping
- Need standard code mappings (why?):
- ASCII (American Standard Code for Information Interchange) => each letter 8-bits
- only 256 different characters can be represented $\left(2^{8}\right)$
- Unicode => each letter 16-bits

CMPUT101 Introduction to Computing
(c) Yngvi Bjornsson

18

ASCII Code mapping Table					
Char	Integer	Binary	Char	Integer	Binary
	32	00100000	A	65	01000001
!	33	00100001	B	66	01000010
"	34	00100010	C	67	01000011
\cdots	\ldots	...	\ldots
0	48	00110000	x	120	01111000
1	49	00110001	y	121	01111001
2	50	00110010	z	122	01111010
\ldots	\ldots
CMPUT101 Intoduction to Computing (c) Yngvi Bjomsson					

Representing Other Information

- We need to represent other information in a computer as well
- Pictures (BMP, JPEG, GIF, ...)
- Sound (MP3, WAVE, MIDI, AU, ...)
- Video (MPG, AVI, MP4, ...)

- Different formats, but all represent the data in binary form!

CMPUT101 Introduction to Computing
(c) Yngvi Bjomsson 21

Example of Representing Text

- Representing the word "Hello" in ASCII
- Look the value for each character up in the table
- (Convert decimal value to binary)

H	e	l	I	o
72	101	108	108	111
01001000	01100101	01101100	01101100	01101111

CMPUT101 Introduction to Computing
(c) Yngvi Bjornsson

20

Why do Computers Use Binary Numbers?

- Why not use the decimal systems, like humans?
- The main reason for using binary numbers is: \rightarrow Reliability
- Why is that?
- Electrical devices work best in a bistable environment, that is, there are only two separate states (e.g. on/off).
- When using binary numbers, the computers only need to represent two digits: 0 and 1

CMPUT101 Introduction to Computing
(c) Yngvi Bjornsson

22

Transistor

- The binary storage device computers use is called a transistor:
- Can be in a stable On/Off state (current flowing through or not)
- Can sense in which state it is in (measure electrical flow)
- Can switch between states (takes < 10 billionths of a s second!)
- Are extremely small (can fit > 10 million/cm², shrinking as we speak)
- Transistors are build from materials called semi-conductors
- e.g. silicon
- The transistor is the elementary building block of computers, much in the same way as cells are the elementary building blocks of the human body!

CMPUT101 Introduction to Computing
(c) Yngvi Bjornsson

24

Future Development? Why is this- Transistors	
- Technology improving, allowing us to ark the transistors more and more densely (VLSI, ULSI, ...)	
- Can we invent more efficient binary storage devices?	
Magnetic Cores, Vacuum Tubes	
Transistors	
- Future: ?	
- Quantum Computing? cwutrion hrotocuction 1 Componuling	

Boolean Logic

- Boolean logic is a branch of mathematics that deals with rules for manipulating the two logical truth values true and false.
- Named after George Boole (1815-1864)
- An English mathematician, who was first to develop and describe a formal system to work with truth values.
- Why is Boolean logic so relevant to computers?
- Direct mapping to binary digits!
- 1 = true, 0 = false

CMPUT101 Introduction to Computing
(c) Yngvi Bjomsson 29

- The control line (base) is used to open/close switch:
- If voltage applied then switch closes, otherwise is open
- Switch decides state of transistor:
- Open: no current flowing through (0 state)
- Closed: current flowing through (1 state)

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson

Boolean Expressions

- A Boolean expression is any expression that evaluates to either true or false.
- Is the expression $1+3$ a Boolean expressions?
- No, doesn't evaluate to either true or false.
- Examples of Boolean expressions:
- $x>100$
$-X<Y$
$-A=100$
$-2>3$
CMPUT101 Introduction to Computing
(c) Yngvi Bjornsson

30

True or False ???
"This sentence is false"

Iruth Table for AND

- Let a and b be any Boolean expressions, then

a	b	a AND b
False	False	False
False	True	False
True	False	False
True	True	True

Examples
X is 10 and Y is 15
$X>0$ AND $X<20$
True
$X=10$ AND $X>Y$
$\underset{\text { CMPUT101 Introduction to Computing }}{X=10}$
False
(c) Yngvi Bjomsson

Truth Table for OR

- Let a and b be any Boolean expressions, then

a	b	a OR b
False	False	False
False	True	True
True	False	True
True	True	True

Examples
X is 10 and Y is 15 $x>0$ OR $X<20 \quad$ True
$X=10$ OR $X>Y$
cMPUT101 Introduction to Computing (c) Yngvi Bjornsson

Truth Table for NOT

- Let a be any Boolean expression, then

a	NOT a
False	True
True	False

Examples	X is 10 and Y is 15
NOT $X>0$	False
NOT X>Y	True
EwPuT101 ntroduction to Compuing	(c) Yngiv Bionsson

False
(c) Yngvi Bjomsson

Boolean Operators [cont.]

- Assume X is 10 and Y is 15 .
-What is the value of the Boolean expression?
- $\mathrm{X}=10$ OR X=5 AND $Y<0$

$(X=10$ OR $X=5)$ AND $Y<0$	False
$X=10$ OR $(X=5$ AND $Y<0)$	True

We should use parenthesis to prevent confusion!

CMPUT101 Introduction to Computing
(c) Yngvi Bjornsson

36

Examples of Boolean Expressions

- Assuming $X=10, Y=15$, and $Z=20$.
- What do the following Boolean expressions evaluate to?
- ((X=10) OR (Y=10)) AND (Z>X)
- ($\mathrm{X}=\mathrm{Y}$) OR (NOT (X>Z))
- NOT (($X>Y$) AND ($Z>Y$) AND ($(X<Z)$)

Alternative Notation

- When we are referring to gates, we use a different notation than when using Boolean expressions:
- a AND b $\quad a \bullet b$
$-a$ ORB $\quad a+b$
- NOT a à
- The functionality of the operators is the same, just a different notation.

Summary

- Representing information
- External vs. Internal representation
- Computers represent information internally as
- Binary numbers
- We saw how to represent as binary data:
- Numbers (integers, negative numbers, floating point)
- Text (code mappings as ASCII and Unicode)
- (Graphics, sound, ...)

Gates vs. Transistors

- We can build the AND, OR, and NOT gates from transistors.
- Now we can think of gates, instead of transistors, as the basic building blocks:
- Higher level of abstraction, don't have to worry about as many details.
-Can use Boolean logic to help us build more complex circuits.

Summary [cont.]

-Why do computers use binary data?
\rightarrow Reliability

- Electronic devices work best in a bistable environment, that is, where there are only 2 states.
- Can build a computer using a binary storage device:
- Has two different stable states, able to sense in which state device is in, and easily switch between states.
- Fundamental binary storage device in computers:
- Transistor

CMPUT101 Introduction to Computing
(c) Yngvi Bjornsson

Summary [cont.]

- Boolean Logic
- Boolean expressions are expressions that evaluate to either true or false.
- Can use the operators AND, OR, and NOT
- Learned about gates
- Electronic devices that work with binary input/output.
- How to build them using transistors.
- Next we will talk about:
- How to build circuits using gates!

