CMPUT101 Introduction to Computing - Spring 2001

The Efficiency of Algorithms

Chapter 3
Topics:
Attributes of Algorithms
A Choice of Algorithms
Measuring Efficiency
Analysis of Algorithms
When Things Get Out of Hand

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You

Attributes of Algorithms

+ Correctness
— Give a correct solution to the problem!
+ Efficiency
— Time: How long does it take to solve the problem?
— Space: How much memory is needed?
— Benchmarking vs. Analysis
+ Ease of understanding
- Program maintenance
+ Elegance

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 2

A Choice of Algorithms

+ Possible to come up with several different
algorithms to solve the same problem.
+ Which one is the "best"?
— Most efficient
+ Time vs. Space?
- Easiest to maintain?
+ How do we measure time efficiency?
- Running time? Machine dependent!
— Number of steps?

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 3

The Data Cleanup Problem

+ We look at three algorithms for the same problem,
and compare their time- and space-efficiency.

* Problem: Remove 0 entries from a list of numbers.

01123271340 (36(92|0 |13

11

|12‘32‘71‘34‘36‘92‘13|

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 4

1. The Shuffie-Left Algorithm

+ We scan the list from left to right, and whenever
we encounter a 0 element we copy ("shuffle") the
rest of the list one position left.

0112]32|71|34]0(36(92|0 |13

11

12132713436 |92(13]13]13|13

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 5

Chapter 3: The Efficiency of Algorithms

F03|12\32\71\34\0\36\92\0 [13]

1232 71]34] 03602] 0 [13]13]

{1
[12]32]71]34] 0 {3692 0 [13]13]

(T
[12]32]71] 3436920 [13] 13] 13]

[12]3271]34 36| 02| 13

13]13]13]

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 6

CMPUT101 Introduction to Computing - Spring 2001

Shuffie-Left Animation 2. The Copy-Over Algorithm
Legit: + We scan the list from left to right, and whenever
we encounter a nonzero element we copy it over
to a new list.
1213271343692 1313|1313 0112(32|71|34|0|36(92|0 |13

T
- 11

|12‘32‘71‘34‘36‘92‘13|

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 7 CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 8

The Copy-Over Animation d. The Converging-Pointers Algorithm

+ We scan the list from both left (L) and right (R).
Whenever L encounters a 0 element, the
element at location R is copied to location L,

0 then R reduced.

01]12]32|71|34]0(36|92| 0 |13

121327134 (36|92 13
T 11

N 13112132 71]34|92(36(92| 0 |13

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 9 CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 10

Converging Pointers Animation Data-Cleanup Algorithm Comparison

+ Which one is the most space efficient?
Legit: — Shuffle-left no additional space
- Copy-over needs a new list
- Converging-pointers no additional space
13112132 |71[34]9236|92| 0 |13 + Which one is the most time efficient?
— Shuffle-left many comparisons

™ .

- Copy-over goes through list only once

— Converging-pointers goes through list only once
+ How do we measure time efficiency?

LR

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 1 CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 12

Chapter 3: The Efficiency of Algorithms

CMPUT101 Introduction to Computing - Spring 2001

Exercise

+ Can you come up with a more efficient algorithm
for the data-cleanup problem, that does:
- not require any additional space
— less copying than shuffle-left
— maintain the order of the none-zero elements
¢ Hint:
— Can the copy-over algorithm be modified to copy the
element into the same list?

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 13

Measuring Efficiency

+ Need a metric to measure time efficiency of algorithms:
- How long does it take to solve the problem?
+ Depends on machine speed
— How many steps does the algorithm execute?
+ Better metric, but a lot of work to count all steps

- How many "fundamental steps" does the algorithm
execute?
+ Depends on size and type of input, interested in knowing:
— Best-case, Worst-case, Average-case behavior
+ Need to analyze the algorithm!

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 14

Sequential Search

1. Get values for Name, Ny,..., Ny, Ty,..., Tp

2. Set the value i to 1and set the value of Found to NO
3. Repeat steps 4 through 7 until Found = YES ori>n
4. If Name = N; then

5. Print the value of T;

6. Set the value of Found to YES
Else

7. Add 1 to the value of i

8. If Found = NO then print "Sorry, name not in directory"
9. Stop

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 15

Sequential Search - Analysis

+ How many steps does the algorithm execute?
- Steps 2,5,6,8and 9 are executed at most once.
- Steps 3, 4, and 7 depends on input size.
+ Worst case:
- Step 3, 4, and 7 are executed at most n-times.
+ Bestcase:
- Step 3 and 4 are executed only once.
+ Average case:
— Step 3, 4 are executed approximately (n/2)-times.
+ Can use name comparisons as a fundamental unit of work!

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 16

Order of Magnitude

+ We are:

- Not interested in knowing the exact number of
steps the algorithm performs.

Mainly interested in knowing how the number of
steps grows with increased input size!

« Why?
— Given large enough input, the algorithm with faster
growth will execute more steps.

Order of magnitude, O(...), measures how the
number of steps grows with input size n.

CMPUT101 Introduction to Computing

(c) Yngvi Bjomsson & Jia You 17

Chapter 3:

The Efficiency of Algorithms

Order of Magnitude

+ Not interested in the exact number of steps, for
example, algorithm where total steps are:
-n
-5n
- 5n+345
- 4500n+1000
+ are all of order O(n)

— For all the above algorithms, the total number of
steps grows approx. proportionally with input size
(given large enough n).

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 18

CMPUT101 Introduction to Computing - Spring 2001

Linear Algorithms - 0(n) Non-linear Algorithm
* If the number of steps grows in proportion, or « Think of an algorithm for filling out the n-times
linearly, with input size, its a linear algorithm, O(n). multiplication table.
- Sequential search is linear, denoted O(n) Tl |n
+ On a graph, will show as a straight line 1
steps
n

+ As nincreases the work the algorithm does will
increase by n*n or n2, the algorithm is O(n?)

CMPUT101 Introduction to Computing {c) Yngvi Bjomsson & Jia You 19 CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 20
Data Cleanup - Analysis Sorting
Convergin + Sorting is a very common task, for example:
Shuffle-Left Copy-Over . 9ng g . Y . . P
pointers - sorting a list of names into alphabetical order
Time | Space | Time| Space |Time| Space - numbers |nt‘o numt.erllcal order) .
+ Important to find efficient algorithms for sorting
(B:eSt on | n |oM) n on| n — Selection sort
ase — Bubble sort
Worst :
om| n |0 n on| n — Quick sort
Case — Heap sort
Average . i i i
g om)| n |om|n<x<an|om| n We will analyze the complexity of selection sort.
Case
CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 21 CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 22
i
Selection Sort 2 ¥

+ Divide the list into a unsorted and a sorted section, initially

the sorted section is empty. ¥ v
* Locate the largest element in the unsorted section and ’ 4 ‘ 6 ‘ 5 ‘ 2 | 9 ‘
replace that with the last element of the unsorted section. v v
« Move the marker between the unsorted and sorted section ’ 4 ‘ 2 ‘ 5 | 6 ’ 9 ‘
one position to the left. I
-Repatuntiunseﬂeﬁeeﬁewrthwsﬁsem«y.—‘ 4] 2]5]6]29]
\ 2K]
416|925 (2 [4[5s]6][9]
T L2]4[5[6]09]

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 23 CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 24

Chapter 3: The Efficiency of Algorithms

CMPUT101 Introduction to Computing - Spring 2001

Selection Sort - Animation

+ Exchange the largest element of the unsorted section
with the last element of the unsorted section

* Move marker separating the unsorted and sorted
section one position to the left (forward in the list)

+ Continue until unsorted section is empty.

214|569
t |

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 25

Selection Sort - Analysis

+ What order of magnitude is this algorithm?
- Use number of comparisons as a fundamental unit of work.
+ Total number of comparisons:
(n-1)+ (n2)+ ... +2+1
(n-1)/2%n
- %Bn-Yn

+ This is a O(n?) algorithm.
+ Worst, best, average case behavior the same (why?)

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 2

Binary Search

+ How do we look up words in a list that is already
sorted?

- Dictionary
— Phone book
* Method:
— Open up the book roughly in the middle.
— Check in which half the word is.
— Split that half again in two.
— Continue until we find the word.

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 27

Binary Search - Example

Ann Bob Dave Garry Nancy Pat Sue
Positon: 1 2 3 4 5 6 7

To find Nancy, we go through
Garry (mid point at 4)
Pat (mid point of 5-7)
Nancy (mid point of a single item)

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 28

Binary Search - Odd number of elements

Ann Bob Dave Garry Nancy Pat Sue
Positon: 1 2 3 4 5 6 7

Whom that can be found
in one step: Garry
intwo steps: Bob, Pat
in three steps: all remaining persons

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 29

Chapter 3: The Efficiency of Algorithms

Binary Search - Even number of elements

Ann Bob Dave Garry Nancy Pat
Positon: 1 2 3 4 5 6

Let's choose the end of first half as midpoint.
Whom that can be found

in one step: Dave

intwo steps: Ann, Nancy

in three steps: all remaining persons

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 30

CMPUT101 Introduction to Computing - Spring 2001

Binary Search - Analysis Binary Search - Analysis (cont.)

« Looking for a name is like walking branches in a tree + We cut the number of remaining names in half.

Ann Bob Dave Garry Nancy Pat Sue + The number of times a number n can be cut if half
and not get below 1 is called

Poston: 1 2 3 4 S 6 7 - Logarithm of n to the base 2

a — Notation: logzn orlgn

e e + Max. number of name comparisons = depth of tree.
- 3 in the pervious example.

0 o e 0 - n names then approx. Ig N comparisons needed
+ Binary search is O(lg n)

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 31 CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 32
Logarithm vs. Linear When Things Get Out of Hand
+ Polynomial algorithms (exponent is a constant)
n Ign steps — Forexample: Ign,n, n2, n3, ..., n3o0
8 3 - More generally: na
16 4 n + Exponential algorithms (exponent function of n)
32 5 - For example: 2"
64 6 — More generally: a"
128 7 * An exponential algorithm:
lgn — Given large enough n will always performs more work than a
olynomially bounded one.
2768 | 15 poynomiaty . .
> N + Problem for which there exist only exponential
algorithms are called intractable
1048576 20 - Solvable, but not within practical time limits
- Most often it is infeasible to solve but the smallest problems!
CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 33 CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 34
Growth Rate Example of growth

steps
ool \ 10 50 100 1000
n

lg(n) .0003 sec .0006 sec .0007 sec .001 sec

n .001sec .005sec .01sec 0.1sec
lgn
n2 Ol1sec .25sec 1sec 1.67 min
n
v *10)16
o A024sec 10 40T o big
CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 35 Chic w1 o iismssiion sy yea[§ g _W...w?eurltl‘{l:les o

Chapter 3: The Efficiency of Algorithms

CMPUT101 Introduction to Computing - Spring 2001

Summary

+ We are concerned with the efficiency of algorithms
— Time- and Space-efficiency
— Need to analyze the algorithms
+ Order of magnitude measures the efficiency
- E.g. O(Ig n), O(n), O(n?), O(n3) , O(2"), ...
— Measures how fast the work grows as we increase the
input size n.

— Desirable to have slow growth rate.

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 37

Chapter 3: The Efficiency of Algorithms

Summary

+ We looked at different algorithms
— Data-Cleanup: Shuffle-left O(n2), Copy-over O(n),
Converging-pointers O(n)
— Search: Sequential-search O(n), Binary-search 0(lg n)
- Sorting: Selection-sort O(n?)
+ Some algorithms are exponential
— Not polynomially bounded

— Problems for which there exists only exponential
algorithms are called intractable

— Only feasible to solve small instances of such problems

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 38

