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The Efficiency of Algorithms

Chapter 3
Topics:
Attributes of Algorithms
A Choice of Algorithms
Measuring Efficiency
Analysis of Algorithms
When Things Get Out of Hand
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Attributes of Algorithms

+ Correctness
— Give a correct solution to the problem!
+ Efficiency
— Time: How long does it take to solve the problem?
— Space: How much memory is needed?
— Benchmarking vs. Analysis
+ Ease of understanding
- Program maintenance
+ Elegance

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 2

A Choice of Algorithms

+ Possible to come up with several different
algorithms to solve the same problem.
+ Which one is the "best"?
— Most efficient
+ Time vs. Space?
- Easiest to maintain?
+ How do we measure time efficiency?
- Running time? Machine dependent!
— Number of steps?
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The Data Cleanup Problem

+ We look at three algorithms for the same problem,
and compare their time- and space-efficiency.

* Problem: Remove 0 entries from a list of numbers.

01123271340 (36(92|0 |13

11

|12‘32‘71‘34‘36‘92‘13|
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1. The Shuffie-Left Algorithm

+ We scan the list from left to right, and whenever
we encounter a 0 element we copy ("shuffle") the
rest of the list one position left.

0112]32|71|34]0(36(92|0 |13

11

12132713436 |92(13]13]13|13

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 5

Chapter 3: The Efficiency of Algorithms

F03|12\32\71\34\0\36\92\0 [13]

1232 71]34] 03602 ] 0 [13]13]

{1
[12]32]71]34] 0 {3692 0 [13]13]

(T
[12]32]71] 3436920 [13] 13] 13]

[12]3271]34 36| 02| 13

13]13]13]

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 6




CMPUT101 Introduction to Computing - Spring 2001

Shuffie-Left Animation 2. The Copy-Over Algorithm
Legit: + We scan the list from left to right, and whenever
we encounter a nonzero element we copy it over
to a new list.
1213271343692 1313|1313 0112(32|71|34|0|36(92|0 |13

T
- 11

|12‘32‘71‘34‘36‘92‘13|
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The Copy-Over Animation d. The Converging-Pointers Algorithm

+ We scan the list from both left (L) and right (R).
Whenever L encounters a 0 element, the
element at location R is copied to location L,

0 then R reduced.

01]12]32|71|34]0(36|92| 0 |13

121327134 (36|92 13
T 11

N 13112132 71]34|92(36(92| 0 |13
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Converging Pointers Animation Data-Cleanup Algorithm Comparison

+ Which one is the most space efficient?
Legit: — Shuffle-left no additional space
- Copy-over needs a new list
- Converging-pointers  no additional space
13112132 |71[34]9236|92| 0 |13 + Which one is the most time efficient?
— Shuffle-left many comparisons

™ .

- Copy-over goes through list only once

— Converging-pointers  goes through list only once
+ How do we measure time efficiency?

LR
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Exercise

+ Can you come up with a more efficient algorithm
for the data-cleanup problem, that does:
- not require any additional space
— less copying than shuffle-left
— maintain the order of the none-zero elements
¢ Hint:
— Can the copy-over algorithm be modified to copy the
element into the same list?
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Measuring Efficiency

+ Need a metric to measure time efficiency of algorithms:
- How long does it take to solve the problem?
+ Depends on machine speed
— How many steps does the algorithm execute?
+ Better metric, but a lot of work to count all steps

- How many "fundamental steps" does the algorithm
execute?
+ Depends on size and type of input, interested in knowing:
— Best-case, Worst-case, Average-case behavior
+ Need to analyze the algorithm!

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 14

Sequential Search

1. Get values for Name, Ny,..., Ny, Ty,..., Tp

2. Set the value i to 1and set the value of Found to NO
3. Repeat steps 4 through 7 until Found = YES ori>n
4. If Name = N; then

5. Print the value of T;

6. Set the value of Found to YES
Else

7. Add 1 to the value of i

8. If Found = NO then print "Sorry, name not in directory"
9. Stop
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Sequential Search - Analysis

+ How many steps does the algorithm execute?
- Steps 2,5,6,8and 9 are executed at most once.
- Steps 3, 4, and 7 depends on input size.
+ Worst case:
- Step 3, 4, and 7 are executed at most n-times.
+ Bestcase:
- Step 3 and 4 are executed only once.
+ Average case:
— Step 3, 4 are executed approximately (n/2)-times.
+ Can use name comparisons as a fundamental unit of work!
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Order of Magnitude

+ We are:

- Not interested in knowing the exact number of
steps the algorithm performs.

Mainly interested in knowing how the number of
steps grows with increased input size!

« Why?
— Given large enough input, the algorithm with faster
growth will execute more steps.

Order of magnitude, O(...), measures how the
number of steps grows with input size n.
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Order of Magnitude

+ Not interested in the exact number of steps, for
example, algorithm where total steps are:
-n
-5n
- 5n+345
- 4500n+1000
+ are all of order O(n)

— For all the above algorithms, the total number of
steps grows approx. proportionally with input size
(given large enough n).
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Linear Algorithms - 0(n) Non-linear Algorithm
* If the number of steps grows in proportion, or « Think of an algorithm for filling out the n-times
linearly, with input size, its a linear algorithm, O(n). multiplication table.
- Sequential search is linear, denoted O(n) Tl |n
+ On a graph, will show as a straight line 1
steps
n

+ As nincreases the work the algorithm does will
increase by n*n or n2, the algorithm is O(n?)
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Data Cleanup - Analysis Sorting
Convergin + Sorting is a very common task, for example:
Shuffle-Left Copy-Over . 9ng g . Y . . P
pointers - sorting a list of names into alphabetical order
Time | Space | Time| Space |Time| Space - numbers |nt‘o numt.erllcal order ) .
+ Important to find efficient algorithms for sorting
(B:eSt on | n |oM) n on| n — Selection sort
ase — Bubble sort
Worst :
om| n |0 n on| n — Quick sort
Case — Heap sort
Average . i i i
g om)| n |om|n<x<an|om| n We will analyze the complexity of selection sort.
Case
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i
Selection Sort 2 ¥

+ Divide the list into a unsorted and a sorted section, initially

the sorted section is empty. ¥ v
* Locate the largest element in the unsorted section and ’ 4 ‘ 6 ‘ 5 ‘ 2 | 9 ‘
replace that with the last element of the unsorted section. v v
« Move the marker between the unsorted and sorted section ’ 4 ‘ 2 ‘ 5 | 6 ’ 9 ‘
one position to the left. I
-Repatuntiunseﬂeﬁeeﬁewrthwsﬁsem«y.—‘ 4] 2]5]6]29]
\ 2K ]
416|925 (2 [4[5s]6 ][9]
T L2 ]4[5[6]09]
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Selection Sort - Animation

+ Exchange the largest element of the unsorted section
with the last element of the unsorted section

* Move marker separating the unsorted and sorted
section one position to the left (forward in the list)

+ Continue until unsorted section is empty.

214|569
t |

CMPUT101 Introduction to Computing (c) Yngvi Bjomsson & Jia You 25

Selection Sort - Analysis

+ What order of magnitude is this algorithm?
- Use number of comparisons as a fundamental unit of work.
+ Total number of comparisons:
(n-1)+ (n2)+ ... +2+1
(n-1)/2%n
- %Bn-Yn

+ This is a O(n?) algorithm.
+ Worst, best, average case behavior the same (why?)
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Binary Search

+ How do we look up words in a list that is already
sorted?

- Dictionary
— Phone book
* Method:
— Open up the book roughly in the middle.
— Check in which half the word is.
— Split that half again in two.
— Continue until we find the word.
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Binary Search - Example

Ann Bob Dave Garry Nancy Pat Sue
Positon: 1 2 3 4 5 6 7

To find Nancy, we go through
Garry  (mid point at 4)
Pat (mid point of 5-7)
Nancy  (mid point of a single item)
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Binary Search - Odd number of elements

Ann Bob Dave Garry Nancy Pat Sue
Positon: 1 2 3 4 5 6 7

Whom that can be found
in one step: Garry
intwo steps:  Bob, Pat
in three steps:  all remaining persons
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Binary Search - Even number of elements

Ann Bob Dave Garry Nancy Pat
Positon: 1 2 3 4 5 6

Let's choose the end of first half as midpoint.
Whom that can be found

in one step: Dave

intwo steps:  Ann, Nancy

in three steps:  all remaining persons
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Binary Search - Analysis Binary Search - Analysis (cont.)

« Looking for a name is like walking branches in a tree + We cut the number of remaining names in half.

Ann Bob Dave Garry Nancy Pat Sue + The number of times a number n can be cut if half
and not get below 1 is called

Poston: 1 2 3 4 S 6 7 - Logarithm of n to the base 2

a — Notation: logzn orlgn

e e + Max. number of name comparisons = depth of tree.
- 3 in the pervious example.

0 o e 0 - n names then approx. Ig N comparisons needed
+ Binary search is O(lg n)
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Logarithm vs. Linear When Things Get Out of Hand
+ Polynomial algorithms (exponent is a constant)
n Ign steps — Forexample: Ign,n, n2, n3, ..., n3o0
8 3 - More generally: na
16 4 n + Exponential algorithms (exponent function of n)
32 5 - For example: 2"
64 6 — More generally: a"
128 7 * An exponential algorithm:
lgn — Given large enough n will always performs more work than a
olynomially bounded one.
2768 | 15 poynomiaty . .
> N + Problem for which there exist only exponential
algorithms are called intractable
1048576 20 - Solvable, but not within practical time limits
- Most often it is infeasible to solve but the smallest problems!
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Growth Rate Example of growth

steps
ool \ 10 50 100 1000
n

lg(n)  .0003 sec .0006 sec .0007 sec .001 sec

n .001sec .005sec .01sec 0.1sec
lgn
n2 Ol1sec .25sec  1sec 1.67 min
n
v *10)16
o A024sec 10 40T o big
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Summary

+ We are concerned with the efficiency of algorithms
— Time- and Space-efficiency
— Need to analyze the algorithms
+ Order of magnitude measures the efficiency
- E.g. O(Ig n), O(n), O(n?), O(n3) , O(2"), ...
— Measures how fast the work grows as we increase the
input size n.

— Desirable to have slow growth rate.
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Summary

+ We looked at different algorithms
— Data-Cleanup: Shuffle-left O(n2), Copy-over O(n),
Converging-pointers O(n)
— Search: Sequential-search O(n), Binary-search 0(lg n)
- Sorting: Selection-sort O(n?)
+ Some algorithms are exponential
— Not polynomially bounded

— Problems for which there exists only exponential
algorithms are called intractable

— Only feasible to solve small instances of such problems
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