The Efficiency of Algorithms

Chapter 3

Topics:
Attributes of Algorithms
A Choice of Algorithms
Measuring Efficiency
Analysis of Algorithms
When Things Get Out of Hand

Attributes of Algorithms

- Correctness
- Give a correct solution to the problem!
- Efficiency
- Time: How long does it take to solve the problem?
- Space: How much memory is needed?
- Benchmarking vs. Analysis
- Ease of understanding
- Program maintenance
- Elegance

A Choice of Algorithms

- Possible to come up with several different algorithms to solve the same problem.
- Which one is the "best"?
- Most efficient
- Time vs. Space?
- Easiest to maintain?
- How do we measure time efficiency?
- Running time? Machine dependent!
- Number of steps?

1. The Shuffle-Left Algorithm

- We scan the list from left to right, and whenever we encounter a 0 element we copy ("shuffle") the rest of the list one position left.

The Data Cleanup Problem

- We look at three algorithms for the same problem, and compare their time- and space-efficiency.
- Problem: Remove 0 entries from a list of numbers.

CMPUT101 Introduction to Computing

12	32	71	34	0	36	92	0	13	13

12	32	71	34	0	36	92	0	13	13

12	32	71	34	36	92	0	13	13	13

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 12 & 32 & 71 & 34 & 36 & 92 & 13 & 13 & 13 & 13 \\
\hline
\end{array}
$$

CMPUT101 Introduction to Computing
(c) Yngvi Bjornsson \& Jia You

The Copy-Over Animation

CMPUT101 Introduction to Computing
(c) Yngvi Bjornsson \& Jia You

Converging Pointers Animation

Legit: 7

13	12	32	71	34	92	36	92	0	13	
						$\uparrow \uparrow$				
						LR				

2. The Copy-Over Algorithm

- We scan the list from left to right, and whenever we encounter a nonzero element we copy it over to a new list.

CMPUT101 Introduction to Computing \quad (c) Yngvi Bjornsson \& Jia You

3. The Converging-Pointers Algorithm

- We scan the list from both left (L) and right (R). Whenever L encounters a 0 element, the element at location R is copied to location L, then R reduced.

Data-Cleanup Algorithm Comparison

- Which one is the most space efficient?
- Shuffle-left no additional space
- Copy-over needs a new list
- Converging-pointers no additional space
- Which one is the most time efficient?
- Shuffle-left many comparisons
- Copy-over goes through list only once
- Converging-pointers goes through list only once
- How do we measure time efficiency?
$\begin{array}{ll}\text { CMPUT101 Introduction to Computing } & \text { (c) Yngvi Bjornsson \& Jia You }\end{array}$

Exercise

- Can you come up with a more efficient algorithm for the data-cleanup problem, that does:
- not require any additional space
- less copying than shuffle-left
- maintain the order of the none-zero elements
- Hint:
- Can the copy-over algorithm be modified to copy the element into the same list?

CMPUT101 Introduction to Computing

Sequential Search

1. Get values for Name, $N_{1}, \ldots, N_{n}, T_{1}, \ldots, T_{n}$
2. Set the value i to 1 and set the value of Found to NO
3. Repeat steps 4 through 7 until Found $=\mathrm{YES}$ or $i>n$

If Name $=N_{i}$ then
Print the value of T_{i}
Set the value of Found to YES
Else
7. Add 1 to the value of i
8. If Found $=$ NO then print "Sorry, name not in directory"
9. Stop

CMPUT101 Introduction to Computing
(c) Yngvi Bjornsson \& Jia You

15

Order of Magnitude

- We are:
- Not interested in knowing the exact number of steps the algorithm performs.
- Mainly interested in knowing how the number of steps grows with increased input size!
- Why?
- Given large enough input, the algorithm with faster growth will execute more steps.
- Order of magnitude, $\mathrm{O}(\ldots)$, measures how the number of steps grows with input size n.

CMPUT101 Introduction to Computing

Measuring Efficiency

- Need a metric to measure time efficiency of algorithms:
- How long does it take to solve the problem?
- Depends on machine speed
- How many steps does the algorithm execute?
- Better metric, but a lot of work to count all steps
- How many "fundamental steps" does the algorithm execute?
- Depends on size and type of input, interested in knowing:
- Best-case, Worst-case, Average-case behavior
- Need to analyze the algorithm!

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson \& Jia You

Sequential Search - Analysis

- How many steps does the algorithm execute?
- Steps 2, 5, 6, 8 and 9 are executed at most once.
- Steps 3, 4, and 7 depends on input size.
- Worst case:
- Step 3, 4, and 7 are executed at most n-times.
- Best case
- Step 3 and 4 are executed only once.
- Average case:
- Step 3, 4 are executed approximately (n/2)-times.
- Can use name comparisons as a fundamental unit of work!

Order of Magnitude

- Not interested in the exact number of steps, for example, algorithm where total steps are:
- n
$-5 n$
$-5 n+345$
- 4500n+1000
- are all of order $\mathrm{O}(\mathrm{n})$
- For all the above algorithms, the total number of steps grows approx. proportionally with input size (given large enough n).

CMPUT101 Introduction to Computing

Linear Algorithms - O[n]

- If the number of steps grows in proportion, or linearly, with input size, its a linear algorithm, $O(n)$.
- Sequential search is linear, denoted $O(n)$
- On a graph, will show as a straight line

Data Cleanup - Analysis						
	Shuffle-Left		Copy-Over		Converging pointers	
	Time	Space	Time	Space	Time	Space
Best Case	O(n)	n	O(n)	n	O(n)	n
Worst Case	$O\left(n^{2}\right)$	n	O(n)	2 n	O(n)	n
Average Case	$O\left(n^{2}\right)$	n	O(n)	$n \leq x \leq 2 n$	O(n)	n
CMPUTT101 Intotactioio to Computing			(c) Y Ygavi iomsson S Jia You			${ }^{21}$

Selection Sort

- Divide the list into a unsorted and a sorted section, initially the sorted section is empty.
- Locate the largest element in the unsorted section and replace that with the last element of the unsorted section.
- Move the marker between the unsorted and sorted section one position to the left.

Selection Sort - Animation

- Exchange the largest element of the unsorted section with the last element of the unsorted section
- Move marker separating the unsorted and sorted section one position to the left (forward in the list)
- Continue until unsorted section is empty.

Binary Search

- How do we look up words in a list that is already sorted?
- Dictionary
- Phone book
- Method:
- Open up the book roughly in the middle.
- Check in which half the word is.
- Split that half again in two.
- Continue until we find the word.
Ann Bob Dave Garry Nancy Pat Sue

Position: 1 | | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Whom that can be found
in one step: Garry
in two steps: Bob, Pat
in three steps: all remaining persons

[^0]Binary Search - Even number of elements

Ann Bob						Dave
Position:	1	2	3	4	5	6

Let's choose the end of first half as midpoint.
Whom that can be found
in one step: Dave
in two steps: Ann, Nancy
in three steps: all remaining persons
cMPUT101 Introduction to Computing \quad (c) Yngvi Bjornsson \& Jia You

	L01	II Vs. Linger	
n	$\lg \mathrm{n}$		
8	3		
16	4	\square	n
32	5	\square	
64	6		
128	7		
...			
32768	15		
...			
1048576	20	(c) Y Ygvi Bjornsson \& Jia You	
CMPUT101 Introduction to Computing			33

Binary Search - Analysis [cont.]

- We cut the number of remaining names in half.
- The number of times a number n can be cut if half and not get below 1 is called
- Logarithm of n to the base 2
- Notation: $\log _{2} \mathrm{n}$ or $\lg \mathrm{n}$
- Max. number of name comparisons = depth of tree.
-3 in the pervious example.
- n names then approx. $\lg \mathrm{n}$ comparisons needed
- Binary search is $\mathrm{O}(\lg \mathrm{n})$

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson \& Jia You 32

When Things Get Out of Hand

- Polynomial algorithms (exponent is a constant)
- For example: $\lg \mathrm{n}, \mathrm{n}, \mathrm{n}^{2}, \mathrm{n}^{3}, \ldots, \mathrm{n}^{3000}, \ldots$
- More generally: n^{2}
- Exponential algorithms (exponent function of n)
- For example: 2^{n}
- More generally: a^{n}
- An exponential algorithm:
- Given large enough n will always performs more work than a polynomially bounded one.
- Problem for which there exist only exponential algorithms are called intractable
- Solvable, but not within practical time limits
- Most often it is infeasible to solve but the smallest problems! CMPUT101 Introduction to Computing \quad (c) Yngvi Bjornsson \& Jia You

Summary

- We are concerned with the efficiency of algorithms
- Time- and Space-efficiency
- Need to analyze the algorithms
- Order of magnitude measures the efficiency
- E.g. O(lg n), O(n), O($\left.n^{2}\right), O\left(n^{3}\right), O\left(2^{n}\right), \ldots$
- Measures how fast the work grows as we increase the input size n .
- Desirable to have slow growth rate.

Summary

- We looked at different algorithms
- Data-Cleanup: Shuffle-left O(n^{2}), Copy-over O(n), Converging-pointers O(n)
- Search: Sequential-search O(n), Binary-search 0(lg n)
- Sorting: Selection-sort O(n²)
- Some algorithms are exponential
- Not polynomially bounded
- Problems for which there exists only exponential algorithms are called intractable
- Only feasible to solve small instances of such problems

[^0]: CMPUT101 Introduction to Computing
 (c) Yngvi Bjornsson \& Jia You 29

