
CMPUT101 Introduction to Computing - Spring 2001

Chapter 3: The Efficiency of Algorithms 1

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 1

The Efficiency of Algorithms
Chapter 3

Topics:
Attributes of Algorithms
A Choice of Algorithms
Measuring Efficiency

Analysis of Algorithms
When Things Get Out of Hand

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 2

Attributes of Algorithms
� Correctness

� Give a correct solution to the problem!
� Efficiency

� Time: How long does it take to solve the problem?
� Space: How much memory is needed?
� Benchmarking vs. Analysis

� Ease of understanding
� Program maintenance

� Elegance

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 3

A Choice of Algorithms
� Possible to come up with several different

algorithms to solve the same problem.
� Which one is the "best"?

� Most efficient
� Time vs. Space?

� Easiest to maintain?
� How do we measure time efficiency?

� Running time? Machine dependent!
� Number of steps?

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 4

The Data Cleanup Problem
� We look at three algorithms for the same problem,

and compare their time- and space-efficiency.
� Problem: Remove 0 entries from a list of numbers.

13092360347132120

13923634713212

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 5

1. The Shuffle-Left Algorithm
� We scan the list from left to right, and whenever

we encounter a 0 element we copy ("shuffle") the
rest of the list one position left.

13092360347132120

13131313923634713212

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 6

13092360347132120

13 1309236034713212

13 1309236034713212

13 13130923634713212

13 13130923634713212

13 131313923634713212

CMPUT101 Introduction to Computing - Spring 2001

Chapter 3: The Efficiency of Algorithms 2

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 7

Shuffle-Left Animation

13

RL
↑↑

09236034713212 0 13

RL
↑↑

09236034713212 0

⇐

13

RL
↑↑

09236034713212 12 13

RL
↑↑

09236034713212 12

⇐

13

RL
↑↑

0923603471323212 13

RL
↑↑

09236034713232 12

⇐

13

RL
↑↑

09236034717132 12 13

RL
↑↑

09236034717132 12

⇐

13

RL
↑↑

09236034347132 12 13

RL
↑↑

09236034347132 12

⇐

13

RL
↑↑

0923600347132 12 13

RL
↑↑

0923600347132 12

⇐

13

RL
↑↑

09236360347132 12 13

RL
↑↑

09236360347132 12

⇐

13

RL
↑↑

09292360347132 12 13

RL
↑↑

09292360347132 12

⇐

13

RL
↑↑

0092360347132 12

R
↑

13

L
↑

0092360347132 12

⇐

R
↑

13

L
↑

13092360347132 12 13

RL
↑↑

13092360347132 12 13

RL
↑↑

13092360347132 12 13

RL
↑↑

13092360347132 12 13

RL
↑↑

13092360347132 12 13

RL
↑↑

13092360347132 12 13

RL
↑↑

13092360347132 12 13

RL
↑↑

13092360347132 12

⇐

13

RL
↑↑

130923636347132 12

⇐

13

RL
↑↑

130923636347132 12 13

RL
↑↑

130929236347132 12

 ⇐

13

RL
↑↑

13009236347132 12

13

RL
↑↑

13009236347132 12

⇐

13

RL
↑↑

131309236347132 12

R
↑

13

L
↑

131309236347132 12

⇐

R
↑

13

L
↑

131309236347132 12

13

RL
↑↑

131309236347132 12

13

RL
↑↑

131309236347132 12

13

RL
↑↑

131309236347132 12

13

RL
↑↑

131309236347132 12

 ⇐

13

RL
↑↑

1313139236347132 12

13

RL
↑↑

1313139236347132 12

⇐

13

RL
↑↑

1313139236347132 12

R
↑

13

L
↑

1313139236347132 12

⇐

R
↑

13

L
↑

1313139236347132 12

13

RL
↑↑

1313139236347132 12

13

RL
↑↑

1313139236347132 12

13

RL
↑↑

1313139236347132 12

Legit: 10987

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 8

2. The Copy-Over Algorithm
� We scan the list from left to right, and whenever

we encounter a nonzero element we copy it over
to a new list.

13092360347132120

13923634713212

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 9

The Copy-Over Animation

↑
N

L

13

↑

09236034713212 0

↑
N

L

13

↑

09236034713212 0

12
↑
N

L

13

↑

09236034713212 0

12
↑
N

L

13

↑

09236034713212 0

3212
↑
N

L

13

↑

09236034713212 0

32 12
↑
N

L

13

↑

09236034713212 0

7132 12
↑
N

L

13

↑

09236034713212 0

7132 12
↑
N

L

13

↑

09236034713212 0

347132 12
↑
N

L

13

↑

09236034713212 0

347132 12
↑
N

L

13

↑

09236034713212 0

347132 12
↑
N

L

13

↑

09236034713212 0

36347132 12
↑
N

L

13

↑

09236034713212 0

36347132 12
↑
N

L

13

↑

09236034713212 0

9236347132 12
↑
N

L

13

↑

09236034713212 0

9236347132 12
↑
N

L

13

↑

09236034713212 0

9236347132 12
↑
N

L
↑

1309236034713212 0

139236347132 12
↑
N

L
↑

1309236034713212 0

139236347132 12
↑
N

L

13

↑

09236034713212 0

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 10

3. The Converging-Pointers Algorithm
� We scan the list from both left (L) and right (R).

Whenever L encounters a 0 element, the
element at location R is copied to location L,
then R reduced.

13092360347132120

1309236923471321213

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 11

Converging Pointers Animation

R
↑

13

L
↑

09236034713212 0

R
↑

13

L
↑

09236034713212 13

13

RL
↑↑

09236034713212 13

13

RL
↑↑

09236034713212 13

13

RL
↑↑

09236034713212 13

13

RL
↑↑

09236034713212 13

13

RL
↑↑

09236034713212 13

13

RL
↑↑

09236034713212 13

13

RL
↑↑

09236034713212 13

13

RL
↑↑

09236034713212 13

13

RL
↑↑

092369234713212 13

13

RL
↑↑

092369234713212 13

13

L R
↑ ↑

092369234713212 13

Legit: 10987

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 12

Data-Cleanup Algorithm Comparison
� Which one is the most space efficient?

� Shuffle-left no additional space
� Copy-over needs a new list
� Converging-pointers no additional space

� Which one is the most time efficient?
� Shuffle-left many comparisons
� Copy-over goes through list only once
� Converging-pointers goes through list only once

� How do we measure time efficiency?

CMPUT101 Introduction to Computing - Spring 2001

Chapter 3: The Efficiency of Algorithms 3

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 13

Exercise
� Can you come up with a more efficient algorithm

for the data-cleanup problem, that does:
� not require any additional space
� less copying than shuffle-left
� maintain the order of the none-zero elements

� Hint:
� Can the copy-over algorithm be modified to copy the

element into the same list?

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 14

Measuring Efficiency
� Need a metric to measure time efficiency of algorithms:

� How long does it take to solve the problem?
� Depends on machine speed

� How many steps does the algorithm execute?
� Better metric, but a lot of work to count all steps

� How many "fundamental steps" does the algorithm
execute?

� Depends on size and type of input, interested in knowing:
� Best-case, Worst-case, Average-case behavior

� Need to analyze the algorithm!

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 15

Sequential Search
1. Get values for Name, N1,�, Nn, T1,�, Tn

2. Set the value i to 1and set the value of Found to NO
3. Repeat steps 4 through 7 until Found = YES or i > n
4. If Name = Ni then
5. Print the value of Ti
6. Set the value of Found to YES

Else
7. Add 1 to the value of i
8. If Found = NO then print "Sorry, name not in directory"
9. Stop

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 16

Sequential Search - Analysis
� How many steps does the algorithm execute?

� Steps 2, 5, 6, 8 and 9 are executed at most once.
� Steps 3, 4, and 7 depends on input size.

� Worst case:
� Step 3, 4, and 7 are executed at most n-times.

� Best case:
� Step 3 and 4 are executed only once.

� Average case:
� Step 3, 4 are executed approximately (n/2)-times.

� Can use name comparisons as a fundamental unit of work!

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 17

Order of Magnitude
� We are:

� Not interested in knowing the exact number of
steps the algorithm performs.

� Mainly interested in knowing how the number of
steps grows with increased input size!

� Why?
� Given large enough input, the algorithm with faster

growth will execute more steps.
� Order of magnitude, O(...), measures how the

number of steps grows with input size n.
CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 18

Order of Magnitude
� Not interested in the exact number of steps, for

example, algorithm where total steps are:
� n
� 5n
� 5n+345
� 4500n+1000

� are all of order O(n)
� For all the above algorithms, the total number of

steps grows approx. proportionally with input size
(given large enough n).

CMPUT101 Introduction to Computing - Spring 2001

Chapter 3: The Efficiency of Algorithms 4

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 19

Linear Algorithms - O(n)
� If the number of steps grows in proportion, or

linearly, with input size, its a linear algorithm, O(n).
� Sequential search is linear, denoted O(n)

� On a graph, will show as a straight line

n

steps

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 20

Non-linear Algorithm
� Think of an algorithm for filling out the n-times

multiplication table.

� As n increases the work the algorithm does will
increase by n*n or n2, the algorithm is O(n2)

n
...
1

n...1

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 21

Data Cleanup - Analysis

nO(n)n ≤ x ≤ 2nO(n)nO(n2)
Average
Case

nO(n)2nO(n)nO(n2)
Worst
Case

nO(n)nO(n)nO(n)Best
Case

SpaceTimeSpaceTimeSpaceTime

Converging
pointers

Copy-OverShuffle-Left

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 22

Sorting
� Sorting is a very common task, for example:

� sorting a list of names into alphabetical order
� numbers into numerical order

� Important to find efficient algorithms for sorting
� Selection sort
� Bubble sort
� Quick sort
� Heap sort

� We will analyze the complexity of selection sort.

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 23

↑

52964

Selection Sort
� Divide the list into a unsorted and a sorted section, initially

the sorted section is empty.
� Locate the largest element in the unsorted section and

replace that with the last element of the unsorted section.
� Move the marker between the unsorted and sorted section

one position to the left.
� Repeat until unsorted section of the list is empty.

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 24

52964

92564

96524

96524

96542

96542

CMPUT101 Introduction to Computing - Spring 2001

Chapter 3: The Efficiency of Algorithms 5

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 25

Selection Sort - Animation
� Exchange the largest element of the unsorted section

with the last element of the unsorted section
� Move marker separating the unsorted and sorted

section one position to the left (forward in the list)
� Continue until unsorted section is empty.

↑

52964
�

↑

52964
↑

92564
↑

92564
�

↑

92564
↑

96524
↑

96524
�

↑

96524
↑

96524
↑

96524
�

↑

96524
↑

96542
↑

96542
�

↑

96542
↑

96542
↑

96542

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 26

Selection Sort - Analysis
� What order of magnitude is this algorithm?

� Use number of comparisons as a fundamental unit of work.
� Total number of comparisons:

(n-1) + (n-2) + ... + 2 + 1
= (n-1) / 2 ∗ n

½ n2 - ½ n=

� This is a O(n2) algorithm.
� Worst, best, average case behavior the same (why?)

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 27

Binary Search
� How do we look up words in a list that is already

sorted?
� Dictionary
� Phone book

� Method:
� Open up the book roughly in the middle.
� Check in which half the word is.
� Split that half again in two.
� Continue until we find the word.

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 28

Binary Search - Example

To find Nancy, we go through
Garry (mid point at 4)
Pat (mid point of 5-7)
Nancy (mid point of a single item)

Ann Bob Dave Garry Nancy Pat Sue

Position: 1 2 3 4 5 6 7

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 29

Binary Search - Odd number of elements

Ann Bob Dave Garry Nancy Pat Sue

Position: 1 2 3 4 5 6 7

Whom that can be found
in one step: Garry
in two steps: Bob, Pat
in three steps: all remaining persons

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 30

Binary Search - Even number of elements

Ann Bob Dave Garry Nancy Pat

Position: 1 2 3 4 5 6

Let's choose the end of first half as midpoint.
Whom that can be found

in one step: Dave
in two steps: Ann, Nancy
in three steps: all remaining persons

CMPUT101 Introduction to Computing - Spring 2001

Chapter 3: The Efficiency of Algorithms 6

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 31

Binary Search - Analysis
� Looking for a name is like walking branches in a tree

4

2 6

1 3 5 7

Ann Bob Dave Garry Nancy Pat Sue

Position: 1 2 3 4 5 6 7

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 32

Binary Search - Analysis (cont.)
� We cut the number of remaining names in half.
� The number of times a number n can be cut if half

and not get below 1 is called
� Logarithm of n to the base 2
� Notation: log2 n or lg n

� Max. number of name comparisons = depth of tree.
� 3 in the pervious example.
� n names then approx. lg n comparisons needed

� Binary search is O(lg n)

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 33

Logarithm vs. Linear

201048576
...

1532768
...

7128
664
532
416
38

lg nn

n

steps

lg n

n

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 34

When Things Get Out of Hand
� Polynomial algorithms (exponent is a constant)

� For example: lg n, n, n2, n3, ... , n3000 , ...
� More generally: na

� Exponential algorithms (exponent function of n)
� For example: 2n

� More generally: an

� An exponential algorithm:
� Given large enough n will always performs more work than a

polynomially bounded one.
� Problem for which there exist only exponential

algorithms are called intractable
� Solvable, but not within practical time limits
� Most often it is infeasible to solve but the smallest problems!

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 35

Growth Rate

n

steps

lg n

n
n22n

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 36

Example of growth

 N 10 50 100 1000

lg(n) .0003 sec .0006 sec .0007 sec .001 sec

n .001 sec .005 sec .01 sec 0.1 sec

n2 .01 sec .25 sec 1 sec 1.67 min

2n .1024 sec 3570
years

4*1016
centuries Too big

CMPUT101 Introduction to Computing - Spring 2001

Chapter 3: The Efficiency of Algorithms 7

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 37

Summary
� We are concerned with the efficiency of algorithms

� Time- and Space-efficiency
� Need to analyze the algorithms

� Order of magnitude measures the efficiency
� E.g. O(lg n), O(n), O(n2), O(n3) , O(2n), ...
� Measures how fast the work grows as we increase the

input size n.
� Desirable to have slow growth rate.

CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Jia You 38

Summary
� We looked at different algorithms

� Data-Cleanup: Shuffle-left O(n2), Copy-over O(n),
Converging-pointers O(n)

� Search: Sequential-search O(n), Binary-search 0(lg n)
� Sorting: Selection-sort O(n2)

� Some algorithms are exponential
� Not polynomially bounded
� Problems for which there exists only exponential

algorithms are called intractable
� Only feasible to solve small instances of such problems

