The Efficiency of Algorithms

Chapter 3
Topics:
Attributes of Algorithms
A Choice of Algorithms
Measuring Efficiency
Analysis of Algorithms
When Things Get Out of Hand

Attributes of Algorithms
• Correctness
 – Give a correct solution to the problem!
• Efficiency
 – Time: How long does it take to solve the problem?
 – Space: How much memory is needed?
 – Benchmarking vs. Analysis
• Ease of understanding
 – Program maintenance
• Elegance

A Choice of Algorithms
• Possible to come up with several different algorithms to solve the same problem.
• Which one is the "best"?
 – Most efficient
 – Time vs. Space?
 – Easiest to maintain?
• How do we measure time efficiency?
 – Running time? Machine dependent!
 – Number of steps?

The Data Cleanup Problem
• We look at three algorithms for the same problem, and compare their time- and space-efficiency.
• Problem: Remove 0 entries from a list of numbers.

1. The Shuffle-Left Algorithm
• We scan the list from left to right, and whenever we encounter a 0 element we copy ("shuffle") the rest of the list one position left.
Chapter 3: The Efficiency of Algorithms

2. The Copy-Over Algorithm

- We scan the list from left to right, and whenever we encounter a nonzero element we copy it over to a new list.

3. The Converging-Pointers Algorithm

- We scan the list from both left (L) and right (R). Whenever L encounters a 0 element, the element at location R is copied to location L, then R reduced.

Data-Cleanup Algorithm Comparison

- Which one is the most space efficient?
 - Shuffle-left: no additional space
 - Copy-over: needs a new list
 - Converging-pointers: no additional space

- Which one is the most time efficient?
 - Shuffle-left: many comparisons
 - Copy-over: goes through list only once
 - Converging-pointers: goes through list only once

- How do we measure time efficiency?
Exercise

- Can you come up with a more efficient algorithm for the data-cleanup problem, that does:
 - not require any additional space
 - less copying than shuffle-left
 - maintain the order of the none-zero elements
- Hint:
 - Can the copy-over algorithm be modified to copy the element into the same list?

Measuring Efficiency

- Need a metric to measure time efficiency of algorithms:
 - How long does it take to solve the problem?
 - Depends on machine speed
 - How many steps does the algorithm execute?
 - Better metric, but a lot of work to count all steps
 - How many “fundamental steps” does the algorithm execute?
 - Depends on size and type of input, interested in knowing:
 - Best-case, Worst-case, Average-case behavior
 - Need to analyze the algorithm!

Sequential Search

1. Get values for \(N, N_1,..., N_n, T_1,..., T_n \)
2. Set the value \(i \) to 1 and set the value of \(\text{Found} \) to \(\text{NO} \)
3. Repeat steps 4 through 7 until \(\text{Found} = \text{YES} \) or \(i > n \)
4. If \(\text{Name} = N_i \) then
5. Print the value of \(T_i \)
6. Else
7. Set the value of \(\text{Found} \) to \(\text{YES} \)
8. Add 1 to the value of \(i \)
9. If \(\text{Found} = \text{NO} \) then print “Sorry, name not in directory”
10. Stop

Sequential Search - Analysis

- How many steps does the algorithm execute?
 - Steps 2, 5, 6, 8 and 9 are executed at most once.
 - Steps 3, 4, and 7 depend on input size.
- Worst case:
 - Step 3, 4, and 7 are executed at most \(n \)-times.
- Best case:
 - Step 3 and 4 are executed only once.
- Average case:
 - Step 3, 4 are executed approximately \((n/2) \)-times.
- Can use name comparisons as a fundamental unit of work!

Order of Magnitude

- We are:
 - Not interested in knowing the exact number of steps the algorithm performs.
 - Mainly interested in knowing how the number of steps grows with increased input size!
- Why?
 - Given large enough input, the algorithm with faster growth will execute more steps.
- Order of magnitude, \(O(...) \), measures how the number of steps grows with input size \(n \).
Linear Algorithms - $O(n)$

- If the number of steps grows in proportion, or linearly, with input size, it's a linear algorithm, $O(n)$.
 - Sequential search is linear, denoted $O(n)$.
- On a graph, will show as a straight line.

Non-linear Algorithm

- Think of an algorithm for filling out the n-times multiplication table.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>...</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>n</td>
</tr>
</tbody>
</table>

- As n increases the work the algorithm does will increase by n^2, the algorithm is $O(n^2)$.

Data Cleanup - Analysis

<table>
<thead>
<tr>
<th></th>
<th>Shuffle-Left</th>
<th>Copy-Over</th>
<th>Converging pointers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Space</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Best Case</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worst Case</td>
<td>O(n^2)</td>
<td>O(n)</td>
<td>2n</td>
</tr>
<tr>
<td>Average Case</td>
<td>O(n^2)</td>
<td>O(n)</td>
<td>$n \leq x \leq 2n$</td>
</tr>
<tr>
<td>Space</td>
<td>n</td>
<td>n</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

Sorting

- Sorting is a very common task, for example:
 - Sorting a list of names into alphabetical order
 - Numbers into numerical order
- Important to find efficient algorithms for sorting:
 - Selection sort
 - Bubble sort
 - Quick sort
 - Heap sort
- We will analyze the complexity of selection sort.

Selection Sort

- Divide the list into an unsorted and a sorted section, initially the sorted section is empty.
- Locate the largest element in the unsorted section and replace that with the last element of the unsorted section.
- Move the marker between the unsorted and sorted section one position to the left.
- Repeat until unsorted section of the list is empty.
Selection Sort - Animation
• Exchange the largest element of the unsorted section with the last element of the unsorted section
• Move marker separating the unsorted and sorted section one position to the left (forward in the list)
• Continue until unsorted section is empty.

Selection Sort - Analysis
• What order of magnitude is this algorithm?
 – Use number of comparisons as a fundamental unit of work.
• Total number of comparisons:
 \[(n-1) + (n-2) + \ldots + 2 + 1\]
 \[= \frac{(n-1)}{2} \cdot n\]
 \[= \frac{1}{2} n^2 - \frac{1}{2} n\]
• This is an \(O(n^2)\) algorithm.
• Worst, best, average case behavior the same (why?)

Binary Search
• How do we look up words in a list that is already sorted?
 – Dictionary
 – Phone book
• Method:
 – Open up the book roughly in the middle.
 – Check in which half the word is.
 – Split that half again in two.
 – Continue until we find the word.

Binary Search - Example
To find Nancy, we go through:
Garry (midpoint at 4)
Pat (midpoint of 5-7)
Nancy (midpoint of a single item)

Binary Search - Odd number of elements
Whom that can be found
in one step: Garry
in two steps: Bob, Pat
in three steps: all remaining persons

Binary Search - Even number of elements
Let’s choose the end of first half as midpoint.
Whom that can be found
in one step: Dave
in two steps: Ann, Nancy
in three steps: all remaining persons
Binary Search - Analysis

- Looking for a name is like walking branches in a tree

<table>
<thead>
<tr>
<th>Ann</th>
<th>Bob</th>
<th>Dave</th>
<th>Garry</th>
<th>Nancy</th>
<th>Pat</th>
<th>Sue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Binary Search - Analysis (cont.)

- We cut the number of remaining names in half.
- The number of times a number n can be cut in half and not get below 1 is called
 - Logarithm of n to the base 2
 - Notation: $\log_2 n$ or $\lg n$
- Max. number of name comparisons = depth of tree.
 - 3 in the previous example.
 - n names then approx. $\lg n$ comparisons needed
- Binary search is $O(\lg n)$

Logarithm vs. Linear

<table>
<thead>
<tr>
<th>n</th>
<th>$\lg n$</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>256</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>512</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td>1024</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>32768</td>
<td>15</td>
<td>...</td>
</tr>
<tr>
<td>1048576</td>
<td>20</td>
<td>...</td>
</tr>
</tbody>
</table>

When Things Get Out of Hand

- Polynomial algorithms (exponent is a constant)
 - For example: $\lg n$, n, n^2, ..., n^{3000}, ...
 - More generally: n^a
- Exponential algorithms (exponent function of n)
 - For example: 2^n
 - More generally: a^n
- An exponential algorithm:
 - Given large enough n will always perform more work than a polynomially bounded one.
- Problem for which there exist only exponential algorithms are called intractable
 - Solvable, but not within practical time limits
 - Most often it is infeasible to solve but the smallest problems!

Growth Rate

<table>
<thead>
<tr>
<th>N</th>
<th>$\lg(n)$</th>
<th>n</th>
<th>n^2</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>.0003 sec</td>
<td>.001 sec</td>
<td>.01 sec</td>
<td>.1024 sec</td>
</tr>
<tr>
<td>50</td>
<td>.0006 sec</td>
<td>.005 sec</td>
<td>.25 sec</td>
<td>3570 years</td>
</tr>
<tr>
<td>100</td>
<td>.0007 sec</td>
<td>.01 sec</td>
<td>1 sec</td>
<td>4*10^{16} centuries</td>
</tr>
<tr>
<td>1000</td>
<td>.001 sec</td>
<td>.1 sec</td>
<td>1.67 min</td>
<td>Too big</td>
</tr>
</tbody>
</table>
Summary

• We are concerned with the efficiency of algorithms
 – Time- and Space-efficiency
 – Need to analyze the algorithms
• Order of magnitude measures the efficiency
 – E.g. O(lg n), O(n), O(n^2), O(n^3), O(2^n), ...
 – Measures how fast the work grows as we increase the
 input size n.
 – Desirable to have slow growth rate.

Summary

• We looked at different algorithms
 – Data-Cleanup: Shuffle-left O(n^2), Copy-over O(n),
 Converging-pointers O(n)
 – Search: Sequential-search O(n), Binary-search O(lg n)
 – Sorting: Selection-sort O(n^2)
• Some algorithms are exponential
 – Not polynomially bounded
 – Problems for which there exists only exponential
 algorithms are called intractable
 – Only feasible to solve small instances of such problems