Chapter 3: The Efficiency of Algorithms

Attributes of Algorithms

• Correctness
 – Give a correct solution to the problem!
• Efficiency
 – Time: How long does it take to solve the problem?
 – Space: How much memory is needed?
 – Benchmarking vs. Analysis
• Ease of understanding
 – Program maintenance
• Elegance

A Choice of Algorithms

• Possible to come up with several different algorithms to solve the same problem.
• Which one is the "best"?
 – Most efficient
 • Time vs. Space?
 • Easiest to maintain?
• How do we measure time efficiency?
 – Running time? Machine dependent!
 – Number of steps?
The Data Cleanup Problem

- We look at three algorithms for the same problem, and compare their time- and space-efficiency.
- Problem: Remove 0 entries from a list of numbers.

```
0 12 32 71 34 0 36 92 0 13
```

1. The Shuffle-Left Algorithm

- We scan the list from left to right, and whenever we encounter a 0 element we copy ("shuffle") the rest of the list one position left.

```
0 12 32 71 34 0 36 92 0 13
```

```
13 13 13 13 13 13 13 13 13 13
```

2. The Copy-Over Algorithm

- We scan the list from left to right, and whenever we encounter a nonzero element we copy it over to a new list.

```
0 12 32 71 34 0 36 92 0 13
```

```
12 32 71 34 36 92 13
```

The Copy-Over Animation
3. The Converging-Pointers Algorithm

- We scan the list from both left (L) and right (R). Whenever L encounters a 0 element, the element at location R is copied to location L, then R reduced.

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>12</th>
<th>32</th>
<th>71</th>
<th>34</th>
<th>0</th>
<th>36</th>
<th>92</th>
<th>0</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13</td>
<td>12</td>
<td>32</td>
<td>71</td>
<td>34</td>
<td>0</td>
<td>36</td>
<td>92</td>
<td>0</td>
<td>13</td>
</tr>
</tbody>
</table>
```

Converging Pointers Animation

Data-Cleanup Algorithm Comparison

- Which one is the most space efficient?
 - Shuffle-left no additional space
 - Copy-over needs a new list
 - Converging-pointers no additional space
- Which one is the most time efficient?
 - Shuffle-left many comparisons
 - Copy-over goes through list only once
 - Converging-pointers goes through list only once
- How do we measure time efficiency?
Exercise

- Can you come up with a more efficient algorithm for the data-cleanup problem, that does:
 - not require any additional space
 - less copying than shuffle-left
 - maintain the order of the none-zero elements
- Hint:
 - Can the copy-over algorithm be modified to copy the element into the same list?

Measuring Efficiency

- Need a metric to measure time efficiency of algorithms:
 - How long does it take to solve the problem?
 - Depends on machine speed
 - How many steps does the algorithm execute?
 - Better metric, but a lot of work to count all steps
 - How many "fundamental steps" does the algorithm execute?
 - Depends on size and type of input, interested in knowing:
 - Best-case, Worst-case, Average-case behavior
 - Need to analyze the algorithm!

Sequential Search

1. Get values for Name, N₁, ..., Nₙ, T₁, ..., Tₙ
2. Set the value i to 1 and set the value of Found to NO
3. Repeat steps 4 through 7 until Found = YES or i > n
4. If Name = Nᵢ then
5. Print the value of Tᵢ
6. Set the value of Found to YES
7. Else
8. Add 1 to the value of i
9. If Found = NO then print “Sorry, name not in directory”
10. Stop
Sequential Search - Analysis

- How many steps does the algorithm execute?
 - Steps 2, 5, 6, 8 and 9 are executed at most once.
 - Steps 3, 4, and 7 depend on input size.
- Worst case:
 - Step 3, 4, and 7 are executed at most n-times.
- Best case:
 - Step 3 and 4 are executed only once.
- Average case:
 - Step 3, 4 are executed approximately (n/2)-times.
- Can use name comparisons as a fundamental unit of work!

Order of Magnitude

- We are:
 - Not interested in knowing the exact number of steps the algorithm performs.
 - Mainly interested in knowing how the number of steps grows with increased input size!
- Why?
 - Given large enough input, the algorithm with faster growth will execute more steps.
- Order of magnitude, O(...), measures how the number of steps grows with input size n.

Order of Magnitude

- Not interested in the exact number of steps, for example, algorithm where total steps are:
 - n
 - 5n
 - 5n+345
 - 4500n+1000
- are all of order O(n)
 - For all the above algorithms, the total number of steps grows approx. proportionally with input size (given large enough n).
Linear Algorithms - $O(n)$

- If the number of steps grows in proportion, or linearly, with input size, it's a linear algorithm, $O(n)$.
 - Sequential search is linear, denoted $O(n)$
- On a graph, will show as a straight line

![Linear Algorithms Graph]

Non-linear Algorithm

- Think of an algorithm for filling out the n-times multiplication table.

```
1 ... n
1
... 
n
```

- As n increases, the work the algorithm does will increase by n^2, the algorithm is $O(n^2)$

Data Cleanup - Analysis

<table>
<thead>
<tr>
<th></th>
<th>Shuffle-Left</th>
<th>Copy-Over</th>
<th>Converging pointers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Space</td>
<td>Time</td>
</tr>
<tr>
<td>Best Case</td>
<td>$O(n)$</td>
<td>n</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Worst Case</td>
<td>$O(n^2)$</td>
<td>n</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Average Case</td>
<td>$O(n^2)$</td>
<td>n</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
Sorting

• Sorting is a very common task, for example:
 – sorting a list of names into alphabetical order
 – numbers into numerical order
• Important to find efficient algorithms for sorting
 – Selection sort
 – Bubble sort
 – Quick sort
 – Heap sort
• We will analyze the complexity of selection sort.

Selection Sort

• Divide the list into an unsorted and a sorted section, initially the sorted section is empty.
• Locate the largest element in the unsorted section and replace that with the last element of the unsorted section.
• Move the marker between the unsorted and sorted section one position to the left.
• Repeat until unsorted section of the list is empty.
Selection Sort - Animation

- Exchange the largest element of the unsorted section with the last element of the unsorted section
- Move marker separating the unsorted and sorted section one position to the left (forward in the list)
- Continue until unsorted section is empty.

```
  2  4  5  6  9
```

Selection Sort - Analysis

- What order of magnitude is this algorithm?
 - Use number of comparisons as a fundamental unit of work.
- Total number of comparisons:
 \[
 (n-1) + (n-2) + \ldots + 2 + 1 = \frac{(n-1)}{2} \cdot n = \frac{1}{2} n^2 - \frac{1}{2} n
 \]
- This is a $O(n^2)$ algorithm.
- Worst, best, average case behavior the same (why?)

Binary Search

- How do we look up words in a list that is already sorted?
 - Dictionary
 - Phone book
- Method:
 - Open up the book roughly in the middle.
 - Check in which half the word is.
 - Split that half again in two.
 - Continue until we find the word.
Binary Search - Example

- Ann Bob Dave Garry Nancy Pat Sue
- Position: 1 2 3 4 5 6 7

To find Nancy, we go through:
- Garry (mid point at 4)
- Pat (mid point of 5-7)
- Nancy (mid point of a single item)

Binary Search - Odd number of elements

- Ann Bob Dave Garry Nancy Pat Sue
- Position: 1 2 3 4 5 6 7

Whom that can be found:
- in one step: Garry
- in two steps: Bob, Pat
- in three steps: all remaining persons

Binary Search - Even number of elements

- Ann Bob Dave Garry Nancy Pat
- Position: 1 2 3 4 5 6

Let's choose the end of first half as midpoint.
Whom that can be found:
- in one step: Dave
- in two steps: Ann, Nancy
- in three steps: all remaining persons
Binary Search - Analysis

• Looking for a name is like walking branches in a tree

<table>
<thead>
<tr>
<th></th>
<th>Ann</th>
<th>Bob</th>
<th>Dave</th>
<th>Garry</th>
<th>Nancy</th>
<th>Pat</th>
<th>Sue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Binary Search - Analysis (cont.)

• We cut the number of remaining names in half.
• The number of times a number n can be cut if half and not get below 1 is called
 – Logarithm of n to the base 2
 – Notation: $\log_2 n$ or $\lg n$
• Max. number of name comparisons = depth of tree.
 – 3 in the previous example.
 – n names then approx. $\lg n$ comparisons needed
• Binary search is $O(\lg n)$

Logarithm vs. Linear

<table>
<thead>
<tr>
<th>n</th>
<th>$\lg n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>32768</td>
<td>15</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1048576</td>
<td>20</td>
</tr>
</tbody>
</table>

Chapter 3: The Efficiency of Algorithms
When Things Get Out of Hand

- Polynomial algorithms (exponent is a constant)
 - For example: \(\lg n, n, n^2, \ldots, n^{3000}, \ldots \)
 - More generally: \(n^a \)
- Exponential algorithms (exponent function of \(n \))
 - For example: \(2^n \)
 - More generally: \(a^n \)
- An exponential algorithm:
 - Given large enough \(n \) will always perform more work than a polynomially bounded one.
- Problem for which there exist only exponential algorithms are called intractable
 - Solvable, but not within practical time limits
 - Most often it is infeasible to solve but the smallest problems!

Growth Rate

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\lg n)</th>
<th>(n)</th>
<th>(n^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.0003 sec</td>
<td>0.001 sec</td>
<td>0.01 sec</td>
</tr>
<tr>
<td>50</td>
<td>0.0006 sec</td>
<td>0.005 sec</td>
<td>0.25 sec</td>
</tr>
<tr>
<td>100</td>
<td>0.0007 sec</td>
<td>0.01 sec</td>
<td>1 sec</td>
</tr>
<tr>
<td>1000</td>
<td>0.001 sec</td>
<td>0.1 sec</td>
<td>1.67 min</td>
</tr>
</tbody>
</table>

Example of growth

- \(\log(n) \) becomes very small for large \(n \).
- \(n \) and \(n^2 \) increase linearly with \(n \).
- \(2^n \) grows exponentially, becoming impractical for even small \(n \).
Summary

• We are concerned with the efficiency of algorithms
 – Time- and Space-efficiency
 – Need to analyze the algorithms

• Order of magnitude measures the efficiency
 – E.g. $O(\log n)$, $O(n)$, $O(n^2)$, $O(n^3)$, $O(2^n)$, ...
 – Measures how fast the work grows as we increase the input size n.
 – Desirable to have slow growth rate.

Summary

• We looked at different algorithms
 – Data-Cleanup: Shuffle-left $O(n^2)$, Copy-over $O(n)$, Converging-pointers $O(n)$
 – Search: Sequential-search $O(n)$, Binary-search $O(\log n)$
 – Sorting: Selection-sort $O(n^2)$

• Some algorithms are exponential
 – Not polynomially bounded
 – Problems for which there exists only exponential algorithms are called intractable
 – Only feasible to solve small instances of such problems