Wavelets/Framelets for Computer Graphics

The following is based on book manuscript: B. Han, Framelets and Wavelets: Algorithms, Analysis and Applications.

In this project, we only deal with computer generated curves (not surfaces). This is an easier project than the project on wavelets/framelets for signal/image processing.

To introduce a subdivision curve, we need some definitions and notation. By \(l(\mathbb{Z}) \) we denote the linear space of all sequences \(v = \{v(k)\}_{k \in \mathbb{Z}} : \mathbb{Z} \to \mathbb{C} \) of complex numbers on \(\mathbb{Z} \). One-dimensional discrete input data or signal is often treated as an element in \(l(\mathbb{Z}) \). Similarly, by \(l_0(\mathbb{Z}) \) we denote the linear space of all sequences \(u = \{u(k)\}_{k \in \mathbb{Z}} : \mathbb{Z} \to \mathbb{C} \) on \(\mathbb{Z} \) such that \(\{k \in \mathbb{Z} : u(k) \neq 0\} \) is a finite set. An element in \(l_0(\mathbb{Z}) \) is often regarded as a finite-impulse-response (FIR) filter (also called a finitely supported mask in the literature of wavelet analysis). In this book we often use \(u \) for a general filter and \(v \) for a general signal or data. It is often convenient to use the formal Fourier series (or symbol) \(\hat{v} \) of a sequence \(v = \{v(k)\}_{k \in \mathbb{Z}} \), which is defined as follows:

\[
\hat{v}(\xi) := \sum_{k \in \mathbb{Z}} v(k)e^{-ik\xi}, \quad \xi \in \mathbb{R}, \tag{1}
\]

where \(i \) in this book always denotes the imaginary unit. For \(v \in l_0(\mathbb{Z}) \), \(\hat{v} \) is a \(2\pi \)-periodic trigonometric polynomial.

Let \(M \) be a positive integer greater than one. For a filter \(a \in l_0(\mathbb{Z}) \) and \(v \in l(\mathbb{Z}) \), the subdivision operator \(S_{M,a} : l(\mathbb{Z}) \to l(\mathbb{Z}) \) is defined to be

\[
[S_{M,a}v](n) := 2\sum_{k \in \mathbb{Z}} v(k)a(n-Mk), \quad n \in \mathbb{Z}. \tag{2}
\]

Given an initial control polygonal shape \(\{v(k)\}_{k \in \mathbb{Z}} \). We can generate a smooth curve through subdivision schemes. For \(j \in \mathbb{N} \), define

\[
v_j := S_{M,a}^{j-1}v.
\]

That is, we apply the subdivision operator \(j \) times (see the other project about how to efficiently implement a subdivision operator). Now we define “a function” \(f_j \) on the lattice \(2^{-j}\mathbb{Z} \) as:

\[
f_j(2^{-j}k) := v_j(k), \quad k \in \mathbb{Z}.
\]

Then we connect these discrete points one-by-one to create a function \(f_j \). When \(j \to \infty \), then \(f_j \to f \), where \(f \) is the smooth subdivision curves. In practice, we only apply the subdivision scheme no more than 10 times.

To efficiently compute values \(S_{a,M}v \) on the refined reference mesh \(M^{-1}Z \) from \(v \) on the coarse mesh \(Z \), we often rewrite the subdivision operator using coset masks and convolution: For \(\beta, \gamma \in \mathbb{Z} \),

\[
[S_{a,M}v](\gamma + M\beta) = |M|\sum_{k \in \mathbb{Z}} v(k)a(\gamma + M\beta - Mk) = |M|\hat{v}[a^{[\gamma]}](\beta), \tag{3}
\]

where the coset mask \(a^{[\gamma]} \) of the mask \(a \) is defined to be

\[
a^{[\gamma]}(k) := a(\gamma + Mk), \quad k, \gamma \in \mathbb{Z}. \tag{4}
\]
If \(\sum_{k \in \mathbb{Z}} a(k) = 1 \), then \(|M| \sum_{k \in \mathbb{Z}} a(k) = 1\) for all \(\gamma \in \mathbb{Z} \). Hence, a subdivision scheme is a local averaging rule. Moreover,

\[
[S_\alpha M^\gamma](\gamma + M\beta) = |M||v \ast a(k)|(\beta) = \langle v(\beta + \cdot), |M|a(k) \rangle, \tag{5}
\]

which is attached to the point \(\beta + M^{-1} \gamma - M^{-1}c_\alpha \). Consequently, the filter

\[
\{ |M|a(k)|(-k) \}_{k \in \mathbb{Z}} = \{ |M|a(|\gamma - Mk|) \}_{k \in \mathbb{Z}}, \quad \gamma \in \{0, \ldots, M - 1\}
\]
is called the \(M^{-1}\gamma \)-stencil of the mask \(a \) for computing the cosets \([S_\alpha M^\gamma](\gamma + M \cdot) \) on the cosets in \(M^{-1}\gamma + \mathbb{Z} \) of the refined mesh \(M^{-1}Z \). It is more convenient to use stencils for subdivision schemes in computer graphics than a filter/mask \(a \).

To deal with curves in two or three dimensions, we simply apply the subdivision scheme componentwise (that is, entrywise). Quite often we also need \(a \) to have symmetry:

\[
a(c - k) = a(k), \quad k \in \mathbb{Z}
\]

for some integer \(c \). That is, we see that \(a \) has \(\{1, -1\} \)-symmetry. For a subdivision scheme, we often use subdivision triplets: \((a, M, \{-1, 1\}) \): \(a \) is the mask, \(M \) is the dilation factor, and \(\{-1, 1\} \) is the symmetry group. For dimension one and a dilation factor \(M \), the reference coarse mesh \(Z \) is refined into a finer mesh \(\frac{1}{M}Z \) by inserting new vertices at \(\frac{1}{M}Z + \gamma \) with \(\gamma = 1, \ldots, |M| - 1 \).

In the following, we provide a few examples of subdivision triplets.

Example 1 \((a, 2, \{-1, 1\}) \) is a primal subdivision triplet with

\[
a = \frac{1}{2}\{w_3, w_2, w_1, w_0, w_1, w_2, w_3\}[-3,3],
\]

where

\[
w_0 = \frac{3 + t}{4}, \quad w_1 = \frac{8 + t}{16}, \quad w_2 = \frac{1 - t}{8}, \quad w_3 = -\frac{t}{16} \quad \text{with} \quad t \in \mathbb{R}.
\]

For \(t = -\frac{1}{4} \), then \(a = a^4_0 \cdot (-3) \) and \(\text{sr}(a, 2) = 6 \), \(\text{lpm}(a) = 2 \) and \(\text{sm}(a, 2) = 5 + 1/p \) for all \(1 \leq p \leq \infty \). \(\text{sr}(a, 2) = 4 \) if \(t \neq -1/2 \). Since \(\tilde{a}(\xi) = e^{i \xi^2}(1 + e^{-i \xi^2})^{4} \tilde{b}(\xi) \) with \(\tilde{b}(\xi) := -\frac{t}{32} + \frac{1 + 16e^{-i \xi}}{16} - \frac{1}{32}e^{-i \xi} \), by item (5) of Corollary 1, we have \(\text{sm}(a, 2) = 3 - \log_2(1 + t) \) provided \(t > -1/2 \). We only have \(\text{sm}(a, 2) \geq 3 - \log_2 |t| \) for \(t \leq -1/2 \). When \(t = 0 \), \(a = a^4_0 \cdot (-2) \) is the centered B-spline filter of order 4 with \(\text{sr}(a, 2) = 4 \) and \(\text{lpm}(a) = 2 \). When \(t = 1 \), \(a \) is an interpolatory 2-wavelet filter with \(\text{sr}(a, 2) = 4 \) and \(\text{lpm}(a) = 4 \). See Figure 1 for its subdivision stencils.

Example 2 \((a, 2, \{-1, 1\}) \) is a dual subdivision triplet with

\[
a = \frac{1}{2}\{w_2, w_1, w_0, w_0, w_1, w_2\}[-2,3],
\]

where

\[
w_0 = \frac{12 + 3 t}{16}, \quad w_1 = \frac{8 - 3 t}{32}, \quad w_2 = -\frac{3 t}{32} \quad \text{with} \quad t \in \mathbb{R}.
\]

2
For $t = -\frac{2}{3}$, $a = a^9_1(-2)$ and $\text{sr}(a, 2) = 5$, $\text{lpm}(a) = 2$ and $\text{sm}_p(a, 2) = 4 + 1/p$ for all $1 \leq p \leq \infty$. Since $\hat{a}(\xi) = e^{2\xi}(1 + e^{-i\xi^2})^3 \hat{b}(\xi)$ with $\hat{b}(\xi) := -\frac{3t}{8} + \frac{3}{32} e^{-i\xi} - \frac{3}{8} e^{-2i\xi}$, by item (5) of Corollary ??, we have $\text{sr}(a, 2) = 3$ and $\text{sm}_\infty(a, 2) = 4 - \log_2(3tR)$ provided $t > -2/3$. We only have $\text{sm}_\infty(a, 2) \geq 1 - \log_2(3tR)$ for $t \leq -2/3$. When $t = 0$, $a = a^9_1(-1)$ is the shifted B-spline of order 3 with $\text{sr}(a, 2) = 3$ and $\text{lpm}(a) = 2$. When $t = 1$, $\text{sr}(a, 2) = 3$ and $\text{lpm}(a) = 4$. See Figure 2 for its subdivision stencils.

Example 3 $(a, 3, \{-1, 1\})$ is a primal subdivision triplet with

$$a = \frac{1}{3} \{w_5, w_4, w_3, w_2, w_1, w_0, w_1, w_2, w_3, w_4, w_5\}_{[-5, 5]},$$

where

$$w_0 = \frac{7 - 2t_1 - 8t_2}{9}, \quad w_1 = \frac{6 - 2t_1 - 5t_2}{9}, \quad w_2 = \frac{3 + t_1 + t_2}{9}, \quad w_3 = \frac{1 + t_1 + 4t_2}{9}, \quad w_4 = \frac{t_1 + 3t_2}{9}, \quad w_5 = \frac{t_2}{9},$$

with $t_1, t_2 \in \mathbb{R}$.

For $t_1 = 2/9$ and $t_2 = 1/9$, $\text{sr}(a, 3) = 5$ and $\text{sm}_p(a, 3) = 4 + 1/p$ for all $1 \leq p \leq \infty$ whose 3-refinable function is the B-spline of order 5. Since $\hat{a}(\xi) = (e^{i\xi} + 1 + e^{-i\xi})^3 \hat{b}(\xi)$ with

$$\hat{b}(\xi) := \frac{i}{4} e^{i2\xi} + \frac{i}{4} e^{i\xi} + \frac{1 - 2t_1 - 2t_2}{2} + \frac{1}{4} e^{-i\xi} + \frac{t_1}{4} e^{-2i\xi},$$

by a similar result to item (5) of Corollary ??, we have

$$\text{sm}_\infty(a, 2) \geq 2 - \log_3 \max(\{1 - 2|t_1 - 2t_2|, 2|t_1|, 2|t_2|\}).$$

For $t_1 = 7/9$ and $t_2 = -4/9$, a is an interpolatory 3-wavelet filter with $\text{sr}(a, 3) = 4 = \text{lpm}(a)$ and $\text{sm}_\infty(a, 3) \geq 4 - 1 = 3.978$. For $t_1 = 5/11$ and $t_2 = -4/11$, a is an interpolatory 3-wavelet filter with $\text{sr}(a, 3) = 3 = \text{lpm}(a)$ and $\text{sm}_\infty(a, 3) \geq 2 + 1 = 3.0867$ (Using joint spectral radius, we in fact have $\text{sm}_2(a, 3) = \log_3 11 \approx 2.18266$). See Figure 3 for its subdivision stencils.

We now provide some subdivision curves in Figure 4 using the above subdivision triplets.
Figure 3: The 0-stencil (left), the $\frac{1}{3}$-stencil (middle), and $\frac{2}{3}$-stencil of the subdivision scheme in Example 3, where w_0, \ldots, w_5 are given in (8). Due to symmetry, the $\frac{2}{3}$-stencil is the same as the $\frac{1}{3}$-stencil. It is an interpolatory 3-wavelet filter if $w_3 = \frac{1 + r_1 + 4r_2}{9} = 0$. Since $M = 3$, each line segment (with endpoints \circ) is equally split into three line segments with two new inserted vertices (●) at $\frac{1}{3} + \mathbb{Z}$ and $\frac{2}{3} + \mathbb{Z}$.
Figure 4: Subdivision curves at levels 1, 2, 3 with the initial control polygons at the first row. The subdivision triplet \((a, 2, \{-1, 1\})\) in Example 1 is used with \(t = -\frac{1}{2}\) \((aB_2(-2))\) for the 2nd row and with \(t = 1\) (interpolatory) for the 3rd row. \((a, 2, \{-1, 1\})\) in Example 2 is used with \(t = 0\) \((aB_3(-1))\), the corner cutting scheme) for the 4th row and with \(t = 1\) and \(\text{lpm}(a) = 4\) for the 5th row. \((a, 3, \{-1, 1\})\) is used with \(t_1 = \frac{5}{9}, t_2 = \frac{1}{9}\) for the 6th row and with \(t_1 = \frac{5}{11}, t_2 = -\frac{4}{11}\) (interpolatory, \(\text{sm}_m(a, 3) = \log_3 11\)) for the 7th row.