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Abstract. The phenomenon of overcompensation is widespread in ecology, and non-monotonic discrete-time map may ad-
mit complex dynamics. This paper focuses on the impact of overcompensation on the propagation of a spatially moving
population with a birth pulse. We prove the upward convergence of the oscillating traveling wave when the birth function
is a unimodal function. We establish the existence of monotone and non-monotone traveling wave solutions for the second
iterative operator. Furthermore, we obtain the existence, uniqueness, and stability of the standing wave solutions for the
second iterative operator. Numerical simulations are performed to illustrate and complement the theoretical results.
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1. Introduction

The overcompensatory phenomenon is universal in ecology, that is, over a certain threshold the population
density at the next generation is described by a decreasing function with respect to the current density.
Mathematically, this important phenomenon is represented by unimodal functions:

g(N) = Ner(1−N/K) (Ricker function), (1.1)
g(N) = (1 + r)N − rN2/K (Logistic function). (1.2)

Their positive fixed points may lose stability due to period-doubling bifurcations, resulting in stable two-
point cycles. Many non-monotone discrete-time models exhibit complex dynamics [20]. If the reproduction
map exhibits stable two-point cycles or more complicated behaviors, what are the dynamics in the presence
of spatial movement?

Kot [12] studied the solutions of different waveforms appearing in some integral-difference equations.
With the appearance of overcompensation, the scalar integral-difference equation suddenly presents a
traveling wave that is much more complicated than the scalar reaction–diffusion equation. Li, Lewis,
and Weinberger [14] showed that even in the overcompensated model, the spreading speed can still be
represented as the slowest speed of a nonconstant traveling wave. They simulated a series of traveling
waves and observed that, depending on the characteristics of the birth function, the tails of the waves
may approach the carrying capacity monotonically, may approach the carrying capacity in an oscillatory
manner, or may oscillate continually about the carrying capacity. Recently, Bourgeois, Leblanc, and
Lutscher [2,3] conducted further studies on the integral-difference system with overcompensation, which
explains the phenomenon of multiple propagation speeds and multilayer traveling waves in the system. In
addition, they proved the existence of monostable and bistable traveling waves under the corresponding
quadratic iterator and related the results to the existence of stacked waves.

0123456789().: V,-vol  

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-023-02004-x&domain=pdf


  114 Page 2 of 17 Z. Wang, Q. An and H. Wang ZAMP

Many species give birth only at a particular time of each year. Such species have birth pulse, that
is, reproduction takes place in a fixed short time period each year. It is more appropriate to use im-
pulsive reaction–diffusion equations instead of reaction–diffusion equations to describe the propagation
dynamics of population with birth pulse. In recent years, impulsive partial differential equations have
been studied in [1,8,9,13,15,18,21,22,24–28,30–32]. Most efforts on the propagation dynamics of pulse
models have focused on monotone traveling wave solutions; however, few studies have been conducted
on non-monotone traveling wave solutions. Only some information can be obtained in [13,18]. Lewis and
Li showed that oscillating traveling waves in the integral-difference systems also appear in the following
impulsive reaction–diffusion equation (IRDE):

⎧
⎪⎨

⎪⎩

ut = duxx − αu − γu2, (x, t) ∈ R × (0, 1],

u(x, 0) = g(Nm(x)), x ∈ R,

Nm+1(x) = u(x, 1), x ∈ R.

(1.3)

Lewis and Li studied the spreading speed and the existence of traveling waves in the monostable case (i.e.,
the system has an unstable zero solution and a stable positive solution β). Lin and Wang [18] generalized
the conclusions about traveling wave solutions to the model with general response terms and provided
the results about the spreading speed and the existence of the traveling wave solution. Their results in
[13,18] showed that if g(N) is a non-monotone function, such as the Ricker function, the existence of
traveling wave solution is still valid. The numerical simulation in [13] showed that if g(N) is a Ricker
function, then system (1.3) can possess oscillatory traveling waves. However, the upward convergence of
the traveling wave solution (i.e., the asymptotic property of the wave profile at +∞) and the dynamics
of the system when the positive solution β loses stability have not been studied in previous work.

The purpose of this paper was to study the propagation phenomenon when the map N �→ g(N) is
unimodal. This paper is a further mathematical exploration beyond [13,18]. We rigorously study the prop-
agation of the impulsive reaction–diffusion equation with a non-monotone growth function. We present
the following impulsive reaction–diffusion system for any m ∈ Z

+:
⎧
⎪⎨

⎪⎩

ut = duxx + f(u), (x, t) ∈ R × (0, 1],

u(x, 0) = g(Nm(x)), x ∈ R,

Nm+1(x) = u(x, 1), x ∈ R.

(1.4)

Equation (1.4) defines a recurrence relation for Nm(x) as

Nm+1(x) = Q[Nm(x)] for x ∈ R, (1.5)

where m ≥ 0 and Q is an operator that depends on d, f, g.
The main work of this paper includes two aspects: One is to study the upward convergence of non-

monotone traveling wave solutions and the other is to study the properties of traveling wave solutions
of quadratic iterative operators. The rest of this paper is organized as follows. In Sect. 2, we introduce
some notations and assumptions that will be used later. In Sect. 3, we investigate the convergence of non-
monotone traveling wave solutions. In Sect. 4, we study the properties of second iterative operators by
the theory of monotone semiflows. In Sect. 5, we provide some numerical illustrations for our theoretical
results. In Sect. 6, we summarize the paper with some concluding remarks.

2. Notations and assumptions

We start by introducing some notations. Let C := BC(R,R) be all bounded and continuous functions
from R to R equipped with the compact open topology. We equip C with the norm with respect to this
topology ‖φ‖ =

∑
k≥1 2−k max|x|≤k |φ(x)|. For φ, ψ ∈ C, we write φ ≥ ψ if φ(x) − ψ(x) ≥ 0 for x ∈ R.

Denote C[a,b] := {φ ∈ C : b ≥ φ ≥ a}, C+ := {φ ∈ C : φ ≥ 0}, and Cr := C[0,r].
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Let Q1 be the time-one solution map of the evolution system ut = duxx + f(u), x ∈ R. Then, Nm(x)
satisfies the recursion system

Nm+1(x) = Q1 ◦ [g (Nm(·))] (x) = Q [Nm] (x), x ∈ R,∀m ≥ 0. (2.1)

Note that k(x, t) is Green’s function of ∂tu = duxx, k1∗g(u) =
∫

R

k(x−y, 1)g(u(y))dy, and k1∗∗f(u) =

1∫

0

∫

R

k(x − y, 1 − s)f(u(y, s))dyds, where k1(x) = k(x, 1) = 1√
4πd

exp(−x2

4d ). We are then able to derive an

explicit relation between the initial value g(Nm(x)) and the time-one solution map u(x, 1, g(Nm(x))). It
reads Q[·] = Q1[g(·)] = (k1 ∗g+k1 ∗∗f)(·). We say that Nm(x) is a traveling wave solution of (1.5) if there
exist a function W and a constant c such that Nm(x) = W (x−cm) and Q[W (·−cm)](x) = W (x−(m+1)c)
for all integers m.

Consider the following impulsive model without spatial dispersal:
⎧
⎪⎪⎨

⎪⎪⎩

du

dt
= f(u), 0 < t ≤ 1,

u(0) = g (Nm) ,

Nm+1 = u(1).

(2.2)

Let F denote the time-one solution map of the ordinary differential equation in model (2.2). It then
follows that model (2.2) can be reduced to a discrete-time system

Nm+1 = H[Nm] = F ◦ g (Nm) , ∀m ≥ 0. (2.3)

The properties of the mapping H depend on the properties of f and g. Then, we make the following
assumptions throughout the paper:
(A1) The function f(u) ∈ C1(R,R) satisfies the following assumptions:

• f(0) = 0.
• f(u)

u is non-increasing for u > 0.
(A2) The function g ∈ C1(R,R) satisfies the following assumptions:

• g(0) = 0, g′(0) > 0, g(N) > 0 for N > 0, g′(0)ef ′(0) > 1.
• There exists a N̄ > 0 such that g(N̄) ≤ N̄ , and g(N)

N is non-increasing for N > 0.
A commonly adopted function that satisfies assumption (A1) takes the following form:

f(u) = −au − bu2

where a > 0 indicates the mortality rate in the dispersion stage and b ≥ 0 indicates the competition

coefficient. One can obtain the solution of
du

dt
= f(u) with initial state U is F (U) =

aU

(ea − 1)bU + aea
.

Note that the map F is always strictly monotonically increasing and satisfies F (0) = 0, F (U) > 0 if
U > 0. In this paper, we focus on the propagation phenomenon when the map N �→ g(N) is unimodal.
For typical unimodal functions that satisfy the assumption (A2), see functions (1.1) and (1.2). Let Q̂ be
the restriction of Q to R, that is, Q̂ : R → R. Here, R is a subset of C and represents the set of constant
functions. If system (1.4) starts to evolve with a constant positive profile g(N0) ∈ R, then the solution
of (1.4) remains spatially constant and satisfies (2.2). Thus, Q1 reduces to F , and Q̂ : R → R reduces to
H : R → R.

Assume that H satisfies the following conditions:
(H1) H is a continuously differentiable function on some right neighborhood of 0.
(H2) H ′(0) > 1 and H(N) ≤ H ′(0)N for all N ∈ [0,∞).
(H3) H has a unique positive fixed point β.

In the following, we always assume that (H1)–(H3) hold. By (H1)–(H3), we easily see that H(N) > N
for all N ∈ (0, β) and H(N) < N for all N ∈ (β,∞).
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(H4) |H ′(β)| < 1.
Conditions (H1–H4) mean that the second-iterate operator H2 := H ◦ H has a unique stable positive

fixed point. By [33, Lemma 5.3], the operator H satisfies the following properties:
(UM) For any interval [a, b] ⊆ (0,∞) with a < b, there exist a′, b′ ∈ (0,∞) such that [a, b] ⊆ [a′, b′],

H([a′, b′]) ⊆ [a′, b′], and either a < min{H(N) : N ∈ [a′, b′]} or b > max{H(N) : N ∈ [a′, b′]}.
In a later section, we will give examples of situations in which the system meets the enumerated

assumptions.

3. Spreading speeds and traveling waves

We first provide a lemma to illustrate the relationship between two operators H and Q.

Lemma 3.1. Assume that H satisfies (H1)–(H4). Then, the following statements are true:
1. If H(a) = a for some a ∈ R, then Qm[a] = a for all m ≥ 1.
2. If H([a, b]) ⊆ [a, b] ⊆ R+, then Qm

[
C[a,b]

] ⊆ C[a,b] for all m ≥ 1.
3. If H is non-decreasing on R+ with H(0) = 0 and H(β) = β, where β is the only positive fixed point,

then Qm is non-decreasing on C+, and for any m ≥ 1, we have Qm[C[a,β]]  a for all a ∈ (0, β)
and Qm[Ca] � a for all a ∈ (β,∞).

4. If b > a > 0, then there are three numbers N(a, b) ∈ (0,∞), I(a, b) ∈ (a,∞), and S(a, b) ∈ (0, b) such
that either Qm

[
C[a,b]

] ≥ I(a, b) for all m ≥ N(a, b) or Qm
[
C[a,b]

] ≤ S(a, b) for all m ≥ N(a, b).

Proof. (1) Q[a] = Q1 ◦ g[a] = F ◦ g[a] = H[a] = a, then Qm[a] = a.
(2) Let gm := min{g(x) : x ∈ [a, b]} and gM := max{g(x) : x ∈ [a, b]}. If H([a, b]) ⊆ [a, b] ⊆ R+, then
F ◦ gm ≥ a, F ◦ gM ≤ b. Thus, for every ϕ ∈ C[a,b], by the comparison principle, we have a ≤ F ◦ gm =
Q1 ◦gm � Q1 ◦g(ϕ) � Q1 ◦gM = F ◦gM ≤ b, and hence, Qm

[
C[a,b]

] ⊆ C[a,b] for all m ≥ 1. (3) Since the
composite function H = F ◦g is non-decreasing on R+ and F is strictly monotonically increasing, g and H
have the same monotonicity and are non-decreasing on R+. By the monotonicity of g and the comparison
principle for reaction–diffusion equations, we have Q is monotone in the sense Q[u](x) ≥ Q[v](x) ≥ 0 if
u(x) ≥ v(x) ≥ 0. This result implies that Q is order preserving. Thus, Qm is monotone on C+. Next, we
only consider the case where a ∈ (0, β), and the case a ∈ (β,∞) can be proved similarly. For a ∈ (0, β),
H(a) > a since H ′(0) > 1 and β is the only positive fixed point. Note that H ([a, β]) ⊆ [a, β], by step
(2), Qm

[
C[a,β]

] ⊆ C[a,β] for all m ≥ 1. Thus, for every ϕ ∈ C[a,β], by the comparison principle, we have
Q[ϕ] = Q1 ◦ g[ϕ]  Q1 ◦ g(a) = F ◦ g(a) > a. Thus, we have Qm[C[a,β]]  a for all a ∈ (0, β),m ≥ 1.
(4) Suppose that b > a > 0. By above (1)-(3) in proof and (UM), there exist a′, b′ ∈ (0,∞) such that
[a, b] ∪ H ([a′, b′]) ⊆ [a′, b′] and either a < min{H(N) : N ∈ [a′, b′]} or b > max{H(N) : N ∈ [a′, b′]}.
Without loss of generality, we assume that I := min{H(N) : N ∈ [a′, b′]} > a. Since H([a′, b′]) ⊆ [a′, b′],
similar to step (2), one can obtain that Q[ϕ] ≥ I > a for every ϕ ∈ C[a′,b′], and Qm

[
C[a′,b′]

] ⊆ C[a′,b′] for
all m ≥ 1. Obviously, Qm[ϕ] ≥ I > a for every ϕ ∈ C[a,b] ⊆ C[a′,b′]. Thus, we have infx∈R Qm [Ca,b] (x) > a
or supx∈R

Qm [Ca,b] (x) < b for every m ≥ 1. �

Motivated by [13,18], we introduce two monotone functions g+ and g−. We define

g+(N) = max
0≤V ≤N

g(V ), ∀N ≥ 0.

It then follows that g+ is non-decreasing, locally Lipschitz continuous, and g+′(0) = g′(0). In the case
where ef ′(0)g′(0) > 1, system (1.4) with g replaced by g+ has a positive fixed point β+ ∈ (0, σ]. In such
a case, we define g− as

g−(N) = min
N≤V ≤β+

g(V ), ∀0 ≤ N ≤ β+.
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It is easy to see that g− is also non-decreasing, locally Lipschitz continuous, and system (1.4) with
g replaced by g− admits a positive equilibrium β−. Clearly, 0 < β− ≤ β ≤ β+. It is easy to see
g−(N) ≤ g(N) ≤ g+(N), g±′(0) = g′(0), g±(N) ≤ g′(0)N , and there exists σ0 such that g±(N) = g(N)
for all N ∈ (0, σ0]. With the above functions g+ and g−, we consider two auxiliary models:

⎧
⎪⎨

⎪⎩

ut = duxx + f(u), (x, t) ∈ R × (0, 1],

u(x, 0) = g+(Nm(x)), x ∈ R,

Nm+1(x) = u(x, 1), x ∈ R.

(3.1)

and
⎧
⎪⎨

⎪⎩

ut = duxx + f(u), (x, t) ∈ R × (0, 1],

u(x, 0) = g−(Nm(x)), x ∈ R,

Nm+1(x) = u(x, 1), x ∈ R.

(3.2)

Similarly, systems (3.1) and (3.2) can be reduced to the following iterative systems:

N+
m+1(x) = Q1 ◦ [

g+
(
N+

m(·))] (x) = Q+
[
N+

m

]
(x), x ∈ R,∀m ≥ 0, (3.3)

and

N−
m+1(x) = Q1 ◦ [

g− (
N−

m(·))] (x) = Q− [
N−

m

]
(x), x ∈ R,∀m ≥ 0. (3.4)

Let N+
m(x) and N−

m(x) be solutions of systems (3.3) and (3.4), respectively. The comparison argument
shows that if 0 < N−

0 (x) ≤ N0(x) ≤ N+
0 (x) ≤ β+, where N−

0 , N0, N
+
0 ∈ Cβ+ , then 0 ≤ N−

m(x) ≤
Nm(x) ≤ N+

m(x) ≤ β+ for all m ≥ 0.
The main objective in this section is to establish the upward convergence and the existence of traveling

waves when g is non-monotone. The following theorems are mostly from [13, Theorem 2.2] and [18,
Theorem 4.1]. For completeness, the previous conclusions are listed here. However, we focus on upward
convergence.

Theorem 3.2. Assume that f satisfies (A1), g satisfies (A2), and H satisfies (UM). Then,

c∗ := 2
√

d ln(g′(0)ef ′ (0))

is the spreading speed of system (1.4) such that the following statements are valid:

1. If N0(x) ∈ Cβ+ has compact support, then limm→+∞,|x|≥cm Nm(x) = 0 for any c > c∗.
2. If N0(x) ∈ Cβ+\{0}, then β− ≤ lim infm→+∞,|x|≤cm Nm(x) ≤ lim supm→+∞,|x|≤cm Nm(x) ≤ β+ for

any c ∈ (0, c∗).
3. If |H ′(β)| < 1 holds, then for any N0(x) ∈ Cβ+\{0}, then limm→∞,|x|≤cm Nm(x) = β for all

c ∈ (0, c∗).

Proof. Define Q[·] = Q1 ◦ g[·] and Q±[·] = Q1 ◦ g±[·]. Clearly, Q± is order preserving on Cβ+ and
Q−(φ) ≤ Q(φ) ≤ Q+(φ),∀φ ∈ C+. By [18, Theorem 3.1] and [18, Theorem 4.1], it follows that c∗ is the
spreading speed for the iterative systems Nm+1 = Q± (Nm) on Cβ± .

(1) For a given φ ∈ Cβ+ with compact support, let Nm = Qm(N0), N+
m = (Q+)m (N0),∀m ≥ 0. By

the comparison principle (see [26]), we have 0 ≤ Nm(x) ≤ N+
m(x) for all x ∈ R and m ≥ 0. For any

c > c∗, [18, Theorem 3.1] implies limm→∞,|x|≥cm N+
m(x) = 0, and hence limm→∞,|x|≥cm Nm(x) = 0.

(2) For a given φ ∈ Cβ+\{0}, define ψ(x) = min {φ(x), β−}, then ψ ∈ Cβ+\{0}. Let N−
m = (Q−)m (ψ),

∀m ≥ 0. Since ψ ≤ φ, it follows from the comparison principle that

0 ≤ N−
m(x) ≤ Nm(x) ≤ N+

m(x), ∀x ∈ R,m ≥ 0.
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For any c ∈ (0, c∗), Theorem 3.1 in [18] implies limm→∞,|x|≤cm N±
m(x) = β±. Thus, we have

β− ≤ lim inf
m→∞,|x|≤cm

Nm(x) ≤ lim sup
m→∞,|x|≤cm

Nm(x) ≤ β+. (3.5)

(3) For any c1 < c∗, by inequality (3.5), we have lim supm→∞ max{Qm[ϕ](x) : |x| ≤ mc1} ≤ β+. Take
a positive number c0 ∈ (c1, c∗), ϕ ∈ Cβ+ and let ε0 = c0 − c1. For any ε ≥ 0, define

V−(ε) = lim inf
m→∞ min {Qm[ϕ](x) : |x| ≤ m(c1 + ε)}

and

V+(ε) = lim sup
m→∞

max {Qm[ϕ](x) : |x| ≤ m(c1 + ε)} .

Clearly, V±(ε) ∈ [β−, β+] for any ε ∈ [0, ε0], V−(ε) is non-increasing and V+(ε) is non-decreasing in
ε ∈ [0, ε0]. Due to the monotonicity of V± and continuity of Q and ϕ, we see that V−(ε) and V+(ε) are
continuous in ε ∈ [0, ε0] except possibly at a countable number of points in [0, ε0].

Suppose that V−(ε) < V+(ε) for any ε ∈ [0, ε0]. By the continuity of V± and Lemma 3.1, we assume,
without loss of generality, that for some ε1 ∈ (0, ε0), V− is continuous at ε1 and

IV−(ε1),V+(ε1) := inf
{
QL0 [φ](x) : x ∈ R, φ ∈ C[V−(ε1),V+(ε1)]

}
> V−(ε1),

where L0 ≥ 1 is a positive integer greater. According to the definition of V−(·), for any τ ∈ (0, ε1), there
exist sequences mk → ∞ as k → ∞, xk ∈ [−mk(c1 + τ),mk(c1 + τ)] such that limk→∞ Nmk

(xk) = V−(τ).
By τ < ε1, we know that for any bounded subset B of R, xk + B ⊆ [−(mk − L0)(c + ε1), (mk −
L0)(c + ε1)] for all large k, which implies lim infk→∞ miny∈B Nmk−L0(xk + y) ∈ [V−(ε1), V+(ε1)] and
lim supk→∞ maxy∈B Nmk−L0(xk + y) ∈ [V−(ε1), V+(ε1)]. Combined with (H1), we have

V−(τ) = lim
k→∞

Nmk
(xk) = lim

k→∞
QL0 [Nmk−L0(xk)] ≥ IV−(ε1),V+(ε1) > V−(ε1).

By the continuity of V− at ε1 and letting τ → ε1, we have V−(ε1) ≥ IV−(ε1),V+(ε1) > V−(ε1), a contra-
diction. Then, V−(ε) = V+(ε) for some ε ∈ [0, ε0]. By definitions of V±(ε) and the continuity of Q, if
φ ∈ C[ε,β+] with 0 < ε � 1, then we have Qm[φ] → V+(ε) as m → ∞. Thus, Q [V+(ε)] = V+(ε) := β∗.
We claim that β = β∗; in fact, if β �= β∗, we set r = min {β, β∗} and s = max {β, β∗}, then s > r,
Q[r] = r, and Q[s] = s. In particular, r, s ∈ Q [Cr,s]. However, the assumption (UM) and Lemma 3.1 im-
ply r /∈ Q [Cr,s] or s /∈ Q [Cr,s], a contradiction. This shows V−(0) = V+(0) = β, and thus, the conclusion
follows. �

Remark 3.3. In case H ′(β) ∈ [0, 1) holds, we see that g′(N) ≥ 0 and g±(N) = g(N) for N < β, and
hence, β− = β = β+. Therefore, upward convergence can be obtained from step (2) in the proof of
Theorem 3.2.

The following theorem states the existence and nonexistence of traveling wave solutions and then
obtains the result that the asymptotic spreading speed coincides with the slowest wave speed of traveling
wave solutions for the corresponding linearized system (i.e., the spreading speed is linearly determined).

Theorem 3.4. Assume that f satisfies (A1), g satisfies (A2), and H satisfies (UM). Then, the following
statements are valid:

1. For any c ∈ (0, c∗), system (1.5) has no traveling wave W ∈ Cβ+\{0} with W (−∞) = 0.
2. For any c ≥ c∗, system (1.5) has a traveling wave W ∈ Cβ+\{0} satisfying W (−∞) = 0 and

W (+∞) = β. Moreover, if H ′(β) ∈ [0, 1), then for each c ≥ c∗, the traveling wave W is non-
decreasing and satisfies limξ→+∞ W (ξ) = β. If H ′(β) ∈ (−1, 0), the traveling wave W also satisfies
limξ→+∞ W (ξ) = β.
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Proof. 1. Assume that for some c0 ∈ (0, c∗) has a traveling wave Nm(x) = W (x + c0m) with W ∈
Cβ+\{0} and W (−∞) = 0. By Theorem 3.2, we have lim infm→∞,|x|≤cm Nm(x) ≥ β− > 0, ∀c ∈ (0, c∗) .
Choose c̃ ∈ (c0, c∗) and let x = −c̃m. Then,

lim inf
m→∞ Nm(−c̃m) = lim inf

m→∞ W ((c0 − c̃) m) > 0.

However, limm→∞ W ((c0 − c̃) m) = W (−∞) = 0, a contradiction. Therefore, we obtain the nonexistence
of traveling wave solutions when c ∈ (0, c∗).

2. For any c > c∗, the proof of the existence of traveling wave solutions can be accomplished by means
of the Schauder–Tychonoff fixed point theorem. More details can be found in [18, Theorem 4.1]. Here,
we only consider the asymptotic behavior of traveling wave solution W (ξ) as ξ → +∞.

Motivated by the proof of [11, Theorem 3.1], we set Nm(x) = W (x + cm) for all m ≥ 0 and fix a
number c̄0 ∈ (0, c∗) . By Theorem 3.2, it follows that

0 < β− ≤ lim inf
m→+∞,|x|≤c̄0m

Nm(x) ≤ lim sup
m→+∞,|x|≤c̄0m

Nm(x) ≤ β+.

Thus, β− ≤ lim infm→+∞ Nm(−γm) ≤ lim supm→+∞ Nm(−γm) ≤ β+ uniformly for γ ∈ [0, c̄0] . This
implies that β− ≤ lim infm→+∞ W (sm) ≤ lim supm→+∞ W (sm) ≤ β+ uniformly for s ∈ [c − c̄0, c]. Let
am = (c − c̄0)m, bm = cm for all m ≥ 1. Thus, there exists j0 > 0 such that am+1 − bm < 0 for all
m ≥ j0, and hence, ∪m≥j [am, bm] = [aj ,+∞) for all j ≥ j0. It follows that β− ≤ lim infξ→+∞ W (ξ) ≤
lim supξ→+∞ W (ξ) ≤ β+. If |H ′(β)| < 1 holds, then Theorem 3.2 implies that limm→∞,|x|≤c̃m Nm(x) = β
for all c̃ ∈ (0, c∗). It follows that limm→∞,|x|≤c̃m W (x + cm) = β, and thus, we have limm→∞ W (−c̃m +
cm) = limm→∞ W ((−c̃ + c)m) = W (+∞) = β.

Suppose that c = c∗. There exist two sequences {cm ∈ (c∗,∞) : m ∈ N} and {φm ∈ Cβ+ : φm(∞) =
β and φm(−∞) = 0}m∈N such that limm→∞ cm = c∗ and T−cm

[Q[φm]] = φm for all m ∈ N.
Let B = {φm : m ∈ N}, then B ⊆ Ec. By the compactness of T−c[Q[g(·)]], we can show that B is

precompact. Without loss of generality, we assume that the limiting of φm exists, and inf{x ∈ R : φm(x) =
β
2 } = 0 due to translation invariance of Q. Hence, φm(0) = β

2 and φm(x) ≥ β
2 for all x ∈ [0,∞). Let

φ = limm→∞ φm. Then φ(0) = β
2 , φ(x) ≥ β

2 for all x ∈ [0,∞) and T−c∗Q[φ] = φ. Similar to the previous
discussion, we can set Nm(x) := W (x + c∗m) for all m ≥ 0 and fix a number c̄0 ∈ (0, c∗) . If |H ′(β)| < 1
holds, then for any N0(x) ∈ Cβ+\{0, β}, then limm→∞,|x|≤c0m Nm(x) = β for c0 ∈ (0, c∗). It follows that
limm→∞,|x|≤c0m W (x + c∗m) = β, and hence, limm→∞ W (−c0m + c∗m) = limm→∞ W ((−c0 + c∗)m) =
W (+∞) = β, and thus W is a nonconstant function.

In particular, if H ′(β) ∈ [0, 1), then H(N) is a monotonically increasing function on the interval [0, β].
Combining Lemma 3.1, it can be seen that Q is order preserving on C[0,β]. According to the conclusion
of [13, Theorem 2.1], for each c ≥ c∗, the traveling wave W is non-decreasing. The proof is complete. �

4. Second-iterate operator

In Sect. 3, we always assume that (H4) is true, that is, |H ′(β)| < 1. It is worth noting that some nonlinear
difference equations can exhibit a remarkable spectrum of dynamical behaviors, from stable equilibrium
points, to stable cyclic oscillations between two points, to stable cycles with four points, then eight,
sixteen points,..., through to a chaotic regime. At H ′(β) = −1, the positive state N = β for H loses
stability through a flip bifurcation, and there is a stable two-cycle for H(N). We denote the values of the
two-cycle as β1 and β2. They satisfy the relationships

β1 = H(β2) = H(H(β1)), β2 = H(β1) = H(H(β2)),

where 0 < β1 < β < β2. It is well known that the two-point cycle is said to be stable if β1 and β2 are
stable fixed points of second-iterate map H2 and the two-point cycle is unstable if β1 and β2 are unstable
fixed points of the second-iterate map H2.
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As is common when studying two cycles, we introduce the second-iterate operator

P[N(x)] = Q ◦ Q[N(x)] = [Q1 ◦ g] ◦ [Q1 ◦ g][N(x)]. (4.1)

When studying the properties of P, it will be convenient to change indices and study Ñm+1(x) =
P[Ñm](x). We will drop the tilde when no confusion can arise. The continuity and compactness of P is a
direct result of the corresponding properties of Q. A traveling two-cycle for the operator Q corresponds
to a pair of traveling wave profiles for the operator P.

Let H be a function that satisfies the following condition:

(H5) β is the only positive fixed point of H, H
′
(β) < −1, and [H ′(β)]2 = max

N∈[β1,β2]
{[H2]′(N)}. H has

exactly one stable two-cycle, i.e., there exist β1 and β2 such that 0 < β1 < β < β2,H(β1) = β2

and H(β2) = β1, and all nonnegative initial conditions converge to this two-cycle under the map
Nm+1 = H[Nm].

Lemma 4.1. Assume that H satisfies (H1–H3) and (H5), and H is non-increasing on the interval [β1, β2].
Then the following statements are true:

1. P[β1] = β1, P[β2] = β2, and P[β] = β.
2. P[C[β,β2]] ⊆ C[β,β2] and P[C[β1,β]] ⊆ C[β1,β].
3. P[α]  α for all α ∈ (β, β2) and P[α] � α for all α ∈ (β1, β).
4. If β1 ≤ n1(x) ≤ n2(x) ≤ β2, then β1 ≤ P[n1(x)] ≤ P[n2(x)] ≤ β2.

Proof. Since H2(β) = β and H2(βi) = βi, i = 1, 2, we have P(β) = β and P(βi) = βi, i = 1, 2 in the
sense of constant functions. The function H maps the interval [β, β2] into [β1, β] and vice versa. Hence, if
N ∈ [β, β2] , then Q[N ] ∈ [β1, β] and P[N ] = Q(Q[N ]) ∈ [β, β2] . Therefore, C[β,β2] is invariant under P.
Similarly, we have P[C[β1,β]] ⊆ C[β1,β]. From (H5), we have (H2)

′
(β) > 1; thus, H2(α) > α for some α > β.

Since there is no fixed point between β and β2, we must have H2(α) > α for α ∈ (β, β2). The same relation
holds for constant functions under P. To show monotonicity, assume that β ≤ n1(x) ≤ n2(x) ≤ β2. Then,
we have β ≥ Q(n1(x)) ≥ Q(n2(x)) ≥ β1 and β ≤ Q(Q[n1(x)]) ≤ Q(Q[n2(x)]) ≤ β2. �

The translation invariance, continuity, and compactness of P : C[β,β2] �→ C[β,β2] follow from the
corresponding properties of Q. More mathematical details can be found in [26]. The monostability and
monotonicity of P : C[β,β2] �→ C[β,β2] can be obtained by Lemma 4.1. According to the conclusions in
[16,17,29], we can directly give the following theorem.

Theorem 4.2. There exists a spreading speed c∗
[β,β2]

for the operator P in the following sense:

1. For any N0 ∈ C[β,β2] such that N0 − β has compact support, the solution of (4.1) satisfies

lim
m→∞ sup

|x|≥cm

Nm(x) = β for all c > c∗
[β,β2]

.

2. For any N0 ∈ C[β,β2]\{β} :=
{
N ∈ C[β,β2] : N − β �= 0

}
, the solution of (4.1) satisfies

lim
m→∞ sup

|x|≤cm

(β2 − Nm)(x) = 0 for all c ∈
(
0, c∗

[β,β2]

)
.

Furthermore, for every c ≥ c∗
[β,β2]

, there exists a monotone traveling wave W (x + cm) with W (−∞) = β

and W (+∞) = β2.

Theorem 4.3. There exists a unique pair of stable standing waves W1(x),W2(x) ∈ C+ for P : C[β1,β2] �→
C[β1,β2] such that Pm[W1,2](x) = W1,2(x),∀x ∈ R, m ≥ 0, with W1(−∞) = β1,W1(+∞) = β2 and
W2(−∞) = β2,W2(+∞) = β1, where W1(x) is an increasing function and W2(x) is a decreasing function.
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Proof. The translation invariance, continuity, and compactness of P : C[β1,β2] �→ C[β1,β2] follow from
Theorem 4.2. According to Lemma 4.1, the bistability and monotonicity of P : C[β1,β2] �→ C[β1,β2] can be
obtained.

Let P̄ be the operator defined by P̄ [u] = P [u + β1] − β1. P̄ is an operator on Cβ2−β1 that defines
the recursion um+1 = P̄ [um] for u0 ∈ Cβ2−β1 . Translation invariance, monotonicity, continuity, and
compactness of P̄ : Cβ2−β1 → Cβ2−β1 follow from the corresponding properties of P. We then verify
that P̄ : Cβ2−β1 → Cβ2−β1 satisfies the bistability and counter-propagation. Let P̂ be the restriction of
P̄ to R, that is, P̂ : R → R. Here, R is a subset of C and represents the set of constant functions. For
any N ∈ [0, β2 − β1], P̂ [N ] = P [N + β1] − β1 = H2 [N + β1] − β1. P̂ admits exactly three fixed points
β2−β1 > β −β1 > 0, and P̂ [N ] is non-decreasing in N ∈ [0, β2−β1]. Moreover, fixed points 0 and β2−β1

are stable and β − β1 is unstable, that is, P̂ ′[0] ∈ [0, 1), P̂ ′[β2 − β1] ∈ [0, 1), and P̂ ′[β − β1] ∈ (1,+∞).
By the theory developed in [16,17], P̄ : C[β−β1,β2−β1] �→ C[β−β1,β2−β1] admits leftward and rightward

spreading speeds c∗
−(β − β1, β2 − β1) and c∗

+(β − β1, β2 − β1). Since P̄ is reflectively invariant, that
is, P̄ [φ(−x)] = P̄ [φ](−x), we have c∗(β − β1, β2 − β1) := c∗

−(β − β1, β2 − β1) = c∗
+(β − β1, β2 − β1),

which is called the spreading speed of this monostable subsystem. Similarly, this monostable subsystem
P̄ : C[0,β−β1] �→ C[0,β−β1] also admits a spreading speed c∗(0, β − β1).

From [13, Theorem 2.1] and [16, Theorem 3.10], one can obtain that if P̂ ′[β−β1] > 1, 0 ≤ P̂ ′[β2−β1] <
1 is satisfied (i.e., β − β1 is unstable, and β2 − β1 is stable), then P̄ : C[β−β1,β2−β1] → C[β−β1,β2−β1] has a
spreading speed c�(β − β1, β2 − β1) = ĉ ≥ infμ>0 ln[P̂ ′(β − β1)K(μ)]/μ > 0, where K(μ) is the moment

generating function of Gaussian Kernel k1(x) = 1√
4πd

exp
(
−x2

4d

)
. Similarly, we can obtain c∗

[0,β−β1]
> 0,

and hence, P̄ : Cβ2−β1 → Cβ2−β1 satisfies the following condition:

c∗
−(β − β1, β2 − β1) + c∗

+(0, β − β1) > 0,

where c∗
−(α, β) and c∗

+(0, α) represent the leftward and rightward spreading speeds of monostable subsys-
tem P̄ restricted on C[β−β1,β2−β1] and C[0,β−β1], respectively. By the theory developed in [7], there exists
c0 such that P̄ : C[0,β2−β1] admits a bistable traveling wave W̄ (x − c0m) connecting 0 to β2 − β1.

Let W̄ be a non-decreasing traveling wave. According to Proposition 1 and Lemma 5 in [19], we obtain
that W̄ (ξ) ∈ C1(R,R), W̄ (ξ), and W̄

′
(ξ) are uniformly continuous, and P̂

′
(N) is uniformly continuous.

Slightly modifying the proof in [26, Lemma 4.2], we can show that the function W̄ (ξ) is strictly increasing
on R and lim|ξ|→∞ W̄ ′(ξ) = 0. All the assumptions in [35, Theorem 2.7] are satisfied, which indicates
the uniqueness and stability of the bistable traveling wave solution. Since P has the same dynamics on
C[β1,β2] as P̄ on C[0,β2−β1], and two semiflows share the spreading speed, that is, P : C[β1,β2] → C[β1,β2]

admits a unique (up to translation) bistable traveling wave W1(x − c0m) connecting β1 to β2.
Let W1(x − c0m) be an increasing traveling wave of (4.1) with W1(−∞) = β1 and W2(+∞) = β2.

By the spatial symmetry of system (4.1), then W2(x + c0m) := W1(−x − c0m) = W1(−(x + c0m)) is
a decreasing traveling wave of (4.1) with W2(−∞) = β2 and W2(+∞) = β1. Applying the operator
Q to W1(x − c0m), we obtain a traveling wave W3(x − c0m) = Q[W1(x − c0m)] with speed c0 and
asymptotic behavior W3(−∞) = β2 and W3(+∞) = β1 for the operator P. By the uniqueness of the
bistable traveling wave, we have W3(x − c0m) = W2(x + c0m + s0) for some s0 ∈ R. If c0 > 0, then
W3(−∞) = β2 = W2(+∞) = β1, and this is a contradiction. Similarly, there is a contradiction when
c0 < 0, so c0 = 0, that is, W1 and W2 are standing waves. �

An overcompensatory growth function that has a stable two-cycle, given by β1, β2, is not necessarily
non-increasing on [β1, β2]. Assuming that H is non-monotonic on [β1, β2] and H is unimodal, then there
exists a unique l0 ∈ (β1, β) such that H(l0) = H(β1) = β2. In addition, there is a unique m ∈ (β1, l0)
such that H is increasing on [0,m) and decreasing on (m,H(m)), where H(m) := max{H(N)} for
all N ≥ 0. Obviously, we can obtain H2(m) < β1, and there exists a unique l∗ ∈ (m,β) such that
H(l∗) = H(H2(m)) = H3(m) > β. Since H2(m) < β1 < m < l∗ < β, one can obtain β = H(β) < H(l∗) =
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H3(m) < H(β1) = β2 < H(m). By assumption (H5), the fixed points of H ◦ H are exactly β1, β and β2.

Furthermore, we have (H ◦H)
′
(β) > 1, 0 ≤| (H ◦H)

′
(βi) |< 1, i = 1, 2. Thus, (H ◦H)(N) < N on (β1, β),

and (H ◦ H)(N) > N on (β, β2). Thus, we have H2(l∗) < l∗, and hence, H4(m) < l∗. Considering the
abovementioned factors, we can conclude that H2(m) < β1 < H4(m) < l∗ < β < H3(m) < β2 < H(m).

Inspired by [2], we construct the following two non-increasing functions:

H+(N) :=
{

H(m), 0 ≤ N ≤ m,
H(N), N > m,

and H−(N) :=
{

H3(m), 0 ≤ N ≤ l∗,
H(N), N > l∗.

It is easy to verify that the fixed points of [H+]2(N) are N = H2(m), N = β, and N = H(m), and
the fixed points of [H−]2(N) are N = H4(m), N = β, and N = H3(m). Then, Lemma 4.1 still holds
when H is replaced by H± and the interval [β1, β2] is replaced by [H2(m),H(m)] and[H4(m),H3(m)],
respectively.

Since the operator F is strictly increasing for N ≥ 0, we can define its inverse operator F−1 and set
g̃± = F−1[H±]. We then define the second-iterate operators P± as in (4.1) with g replaced by g̃±, that
is,

P+ = [Q1 ◦ g̃+] ◦ [Q1 ◦ g̃+], P− = [Q1 ◦ g̃−] ◦ [Q1 ◦ g̃−].

By construction of g̃+ and g̃−, we have the inequalities P−[N ](x) ≤ P[N ](x) ≤ P+[N ](x) for β ≤ N(x) ≤
β2. Since | (H ◦ H)′(β2) |∈ [0, 1), similar to the discussion in Theorems 3.2 and 3.4, we give the following
theorem and omit the proof.

Theorem 4.4. Assume that the spreading speeds of P± as above are linearly determined. There exists a
spreading speed c∗

[β,β2]
for the operator P in the following sense:

1. For any N0 ∈ C[β,H(m)] such that N0 − β has compact support, the solution of (4.1) satisfies

lim
m→∞ sup

|x|≥cm

Nm(x) = β for all c > c∗
[β,β2]

.

2. For any N0 ∈ C[β,H(m)]\{β} :=
{
N ∈ C[β,H(m)] : N − β �= 0

}
, the solution of (4.1) satisfies

lim
m→∞ sup

|x|≤cm

(β2 − Nm)(x) = 0 for all c ∈
(
0, c∗

[β,β2]

)
.

Furthermore, for every c ≥ c∗
[β,β2]

, there exists a traveling wave W (x + cm) with W (−∞) = β and
W (+∞) = β2.

Proof. By construction of g̃+ and g̃−, we have the inequalities P−[N ](x) ≤ P[N ](x) ≤ P+[N ](x) for
β ≤ N(x) ≤ β2.

By construction, we have H−(N) = H(N) = H+(N) near N = β, so that the derivatives of these
three functions at N = β agree. By the assumption that the spreading speeds c∗

± of P± are linearly
determined, we have c∗

+ = c∗
− = c∗

(β,β2)
.

Let N0 ∈ C[β,H(m)] such that N0 − β has compact support. If Nm = Pm (N0) and N+
m = (P+)m (N0),

by the comparison principle, we have β ≤ Nm(x) ≤ N+
m(x). For any c > c∗, Theorem 4.2 implies that

limm→∞,|x|≥cm N+
m(x) = 0, and hence, limm→∞,|x|≥cm Nm(x) = 0.

Let N0 ∈ C[β,H(m)], N �≡ β and M0 = min
{
N0,H

3(m)
}

. Then, M0 ≤ N0 and M0 ∈ C[β,H3(m)],M0 �≡
1. Since g̃− is non-increasing, (P−)m (M0) ≤ (P−)m (N0) . If M−

m = (P−)m (M0), Nm = Pm (N0), and
N+

m = (P+)m (N0), then by the comparison principle, β ≤ M−
m ≤ Nm ≤ N+

m. For any c ∈ (0, c∗), Theorem
4.2 implies that limm→∞,|x|≤cm N+

m(x) = H(m) and limm→∞,|x|≤cm N−
m(x) = H3(m). Thus, we have
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H3(m) ≤ lim inf
m→∞,|x|≤cm

Nm(x) ≤ lim sup
m→∞,|x|≤cm

Nm(x) ≤ H(m). (4.2)

Since | (H ◦ H)′(β2) |∈ [0, 1), similar to the discussion in Theorem 3.2 and Theorem 3.4, the conclusion
in the theorem can be obtained. �

5. Numerical examples

In this section, we illustrate our theoretical results from the previous section with numerical simulations.
Consider f(u) = −αu−γu2, and g(N) = Ner−N is the unimodal function. According to the conclusion of
Shang et al. in [23], we know that an important parameter affecting the dynamic behavior of the system
is r, and er is the growth rate. An elementary analysis shows that H(N) = F ◦ g(N) = N

cN+eN−r+α ,

where c = (eα−1)γ
α . It is easy to see that H(N) satisfies hypotheses (H1–H3) in Sect. 2, and H(N) =

N has a unique positive solution on [0,+∞), denoted as β. Clearly, cβ = 1 − eβ−r+α < 1. Then,
H ′(β) = (cβ − 1)(cβ − 1) < 1. For differential system Nm+1 = H(Nm), if H ′(β) ∈ (−1, 1), then the fixed
point β is asymptotically stable. However, if H ′(β) < −1, then the system undergoes period-doubling
bifurcation, β loses its stability, and a pair of stable period-two fixed points β1, β2 emerge with H(β1) = β2

and H(β2) = β1. For the composition function (H ◦ H)(N) = H(N)
cH(N)+eH(N)−r+α . It is easy to get that

0 < β1 < β < β2 are the roots of the equation (H ◦ H)(N) = N , and (H ◦ H)′(β1) = (H ◦ H)′(β2) =
H ′(β1)H ′(β2) = (cβ1 − 1)(β1 − 1)(cβ2 − 1)(β2 − 1).

We choose parameters α = 0.1 and γ = 0.01, which have been used in the [13]. It then follows that
H(N) satisfies (H4) in Sect. 2, H ′(β) ∈ (0, 1) if r ∈ (0.100, 1.111), and H ′(β) ∈ (−1, 0] if r ∈ [1.111, 2.143).
However, H(N) does not satisfy property (H4) if r > 2.143. Next, we further discuss the case where
H(N) satisfies (H5). By calculation, we can obtain that (H ◦ H)′(β2) ∈ [0, 1) if r ∈ (2.143, 2.413], and
(H ◦ H)′(β2) ∈ (−1, 0) if r ∈ (2.413, 2.701). Furthermore, if r ≥ 2.701, then (H ◦ H)′(β2) ≤ −1, and
H(N) no longer satisfies hypothesis (H5).

To describe the influence of parameter r on population propagation dynamics, four different parameter
values of r are selected: r1 = 0.8, r2 = 1.8, r3 = 2.4, r4 = 2.6. By calculating the four cases of r, we
obtain that if r = 0.8, then β = 0.693 and H ′(β) = 0.305 ∈ (0, 1); if r = 1.8, then β = 1.682 and
H ′(β) = −0.670 ∈ (−1, 0); if r = 2.4, then β = 2.276, β1 = 1.019, β2 = 3.532, and H ′(β) = −1.245 < −1,
(H ◦ H)′(β2) = 0.046 ∈ (0, 1); and if r = 2.6, then β = 2.474, β1 = 0.781, β2 = 4.166, and H ′(β) =
−1.435 < −1, (H ◦ H)′(β2) = −0.658 ∈ (−1, 0). Now, we truncate the infinite domain R to finite domain
[−L,L], where L is sufficiently large. We select parameters d = 4, L = 150, and the following front-like
function f0(x) as the initial function N0(x) to satisfy lim infx→+∞ N0(x) > 0 and N0(x) = 0 for x ≤ 0,

f0(x) =

⎧
⎨

⎩

0, −150 ≤ x ≤ 0,
0.12x, 0 < x < 10,
1.2, 10 ≤ x ≤ 150.

According to Fig. 1, we can observe that the original iterative operator Q and the second iterative
operator Q ◦ Q when r increases generate monotone traveling waves and non-monotone traveling waves.
There is an increasing platform in Fig. 1c, d to separate the initial propagation state with the final two
cyclic states. From an ecological perspective, the result means that a species that has been introduced in
a certain area a long time ago, and population densities may suddenly turn to periodic fluctuations from
long-term stable states.

As r further increases, the stability of the two-point cycle will be destroyed, and a four-point cycle will
appear according to the period-doubling bifurcation theorem. To verify this, we choose L = 200, N0(x) =
f0(x), and r = 2.8. Figure 2 shows that the system structure presents a higher degree of complexity with
the increase of parameter r. Our results demonstrate that the invasion process may occur in two or more
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Fig. 1. Panels a, b show that Q has monotone and non-monotone traveling wave solutions, respectively. Panels c, d show
that Q has non-monotone two-layer traveling wave solutions, but c depicts that the second-layer traveling wave for Q ◦ Q
is monotonic

stages for species with overcompensation. The distribution patterns of species may differ greatly between
adjacent reproduction cycles.

According to Theorem 4.3, system (4.1) has a pair of stable standing waves in the translation sense,
which means that the system state converges to a standing wave solution W (x) or its translation W (x+s),
where s depends on the initial function. Choose L = 150, g(N) = Ne2.4−N . To simulate this conclusion,
we select the following four front-like functions as the initial function N0(x) to satisfy infx∈R N0(x) > 0
and lim supx→−∞ N0(x) < β < lim infx→−∞ N0(x):
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Fig. 2. System (1.5) has a traveling four-point cycle

f1(x) =

⎧
⎨

⎩

1.9, −150 ≤ x ≤ 1;
0.12x + 1.78, 1 < x < 11;
3.1, 11 ≤ x ≤ 150.

(5.1)

f2(x) =

⎧
⎨

⎩

0.8, −150 ≤ x ≤ 1;
0.24x + 0.56, 1 < x < 11;
3.2, 11 ≤ x ≤ 150.

(5.2)

f3(x) =

⎧
⎨

⎩

0.5, −150 ≤ x ≤ 0;
0.15x + 0.5, 0 < x < 20;
3.5, 20 ≤ x ≤ 150.

(5.3)

f4(x) =

⎧
⎨

⎩

0.6, −150 ≤ x ≤ 0;
0.06x(sin(0.2πx) + 2) + 0.6, 0 < x < 20;
3, 20 ≤ x ≤ 150.

(5.4)

Figure 3 shows that the system starting from different initial states approaches the unique pair of
standing waves. In addition, compared with Fig. 1c, solutions converge to different waveforms when
infx∈R N0(x) > 0.

6. Concluding remarks

This paper studied the propagation dynamics of a hybrid system consisting of a partial differential
equation and a non-monotone discrete-time map. Few efforts have been made on the non-monotone
traveling wave solution of an impulsive PDE system. We proved the upward convergence of the oscillating
traveling wave when the birth function is a unimodal function. In the study of the propagation dynamics
of second iterators, the existence of monotonic and non-monotonic traveling wave solutions of second
iterators was obtained. Furthermore, we proved the existence, uniqueness, and stability of the standing
wave solution for second iterative operators. Numerical simulations are performed to complement the
theoretical results.
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(b)N0(x) = f2(x)
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(c) N0(x) = f3(x)
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(d)N0(x) = f4(x)

Fig. 3. The system begins to evolve from different initial values and finally converges to a unique pair of standing wave
solutions

A stable periodic state is beneficial to the sustainable development of the population. Bifurcation
and chaos can lead to large changes in population density and threaten the stability of ecosystems.
The conclusions in this work provide the direction and theoretical basis for the formulation of a control
strategy. In the simplest case, we can design a new function G(N) = g(N) − KN instead of g(N), where
−KN is a classic linear controller. Impulse control can induce switching between different coexistence
states. By means of such impulse control, the bifurcation phenomenon can be suppressed and chaos can
be limited, which has important practical significance for improving the stability of ecosystems.
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The supplementary explanation is that we cannot give a condition that explicitly includes f and g
without knowing the exact expression for f . We only give the properties of the composition operator
H and its derivatives, but these conditions are essential, which is in line with other conditions already
in [6,34], and we found more critical parameters that can cause the waveform to mutate. For a class of
multipulse reaction–diffusion equation model, Liang et al. [15] found that the density distributions of the
population are quite different for odd and even generations, the density distributions of the population
are quite different for odd and even generations, and the population density distributions of odd and even
generations have symmetry and opposite densities. Our results show that this phenomenon arises from
overcompensation dynamics. Note that the second-iterate operator may have four steady states, two of
which are stable steady states. In this case, the notion of a single front is not sufficient to understand the
dynamics of solutions, and we instead observe an appearance similar to so-called propagating terraces.
However, unlike the propagating terrace described in [4,5,10], the platform presented in our article is
connected by unstable steady states. Even though bistable traveling waves are stable, the expected prop-
agating terrace with a bistable upper layer and monostable lower layer does not occur. This phenomenon
of multilayer traveling waves deserves further exploration. How to rigorously obtain the spreading speed
for each layer is a challenging problem.
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