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Abstract

This paper is concerned with a reaction-diffusion-advection model for vector-borne disease with general 
boundary conditions and general incidences. Due to the boundary conditions, we first apply the eigen-
value theory of elliptic system to prove the existence and uniqueness of steady state for the model. The 
well-posedness of the model is established using an induction argument. By overcoming the difficulty of 
the associated elliptic eigenvalue problem, we originally derive the variational expression of the basic re-
production ratio R0. The asymptotic profiles and monotonicity of R0 with respect to the mobility and 
advection rates are investigated following the variational characterization of R0. Furthermore, the spatial 
dynamics of the model with Robin type boundary condition are categorized via classifying the level set 
of R0. This work provides new clues for further research on the spread of epidemics in open advective 
environments.
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1. Introduction

Vector-borne diseases (VBDs) are illnesses caused by parasites, viruses or bacteria, and spread 
between people and people, people and animals, animals and animals [20]. Considering the ran-
dom mobility of the host and vector, numerous reaction-diffusion compartment models were 
applied to probe the spread of VBDs (see, e.g., [2,29,30,33,38] and references therein). Besides 
random movement, in some cases, individuals can move directionally to more favorable habitats 
based on their own needs [3,27], or they also have biased movement in a specific direction due to 
the impact of external environments such as water flow and wind [28]. This process can usually 
be characterized by incorporating chemotactic or advection term(s) into the model. Recently, 
Wang et al. [28] studied a reaction-diffusion-advection vector-borne disease model with spatial 
heterogeneity as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sht = D1Shxx − qhShx + H(x) − β1(x)Shf1(x,Iv)
Sh+Ih+Rh

− dh(x)Sh, 0 < x <L, t > 0,

Iht = D2Ihxx − qhIhx + β1(x)Shf1(x,Iv)
Sh+Ih+Rh

− (dh(x) + γh(x))Ih, 0 < x <L, t > 0,

Rht = D3Rhxx − qhRhx + γh(x)Ih − dh(x)Rh, 0 < x <L, t > 0,

Svt = D4Svxx − qvSvx + V (x) − β2(x)Svf2(x,Ih)
Sv+Iv

− dv(x)Sv, 0 < x <L, t > 0,

Ivt = D5Ivxx − qvIvx + β2(x)Svf2(x,Ih)
Sv+Iv

− dv(x)Iv, 0 < x <L, t > 0,

D1Shx − qhSh = D2Ihx − qhIh = D3Rhx − qhRh = 0, x = 0,L, t > 0,

D4Svx − qvSv = D5Ivx − qvIv = 0, x = 0,L, t > 0,

(1.1)

where Sh(x, t) and Ih(x, t) (Sv(x, t) and Iv(x, t)), respectively, stand for the spatial density of 
susceptible and infected hosts (vectors) at position x and time t in the bounded interval [0, L]; 
Rh(x, t) is the spatial density of recovered hosts at x and t ; L accounts for the size of habitat, 
and x = 0 and x = L denote the upstream and downstream end, respectively; The diffusion 
rates of hosts and vectors are denoted by D1, D2, D3, D4 and D5 respectively, and are positive; 
The advection rates qh and qv are nonnegative; The recruitment of hosts and vectors at x are 
represented by H(x) and V (x) respectively; The terms β1(x)Shf1(x,Iv)

Sh+Ih+Rh
and β2(x)Svf2(x,Ih)

Sv+Iv
are the 

infection forces; dh(x) and dv(x) are the death rates of hosts and vectors at x, respectively; 
The recovery rate of infected hosts is represented by γh(x) at x. Other parameters of (1.1) are 
Hölder continuous functions in Cϑ(�̄), ϑ ∈ (0, 1). The authors in [28] explored the asymptotic 
profiles of basic reproduction ratio R0 of (1.1) with respect to (w.r.t) diffusion rates (D2, D5)

and advection rates (qh, qv), and found that there are unique critical surfaces in the spaces qh −
(D2, D5) and qv − (D2, D5) to completely separate the dynamics of (1.1) via classifying the 
level set of R0. Moreover, the aggregation phenomena of endemic equilibrium (EE) were also 
discussed. Nevertheless, the variational characterization of R0 for (1.1) has not been derived 
theoretically. In addition, the monotonicity of R0 on qh and qv remained unclear in [28], which 
is speculated that it is affected by the downstream habitat environment.

Note that model (1.1) at the upstream end x = 0 and downstream end x = L is imposed by 
the no-flux type boundary condition, which means that there are no hosts and vectors across 
the boundaries x = 0, L, namely, both hosts and vectors live in a closed environment. However, 
the environment may be open so that individuals do not return to the habitat after leaving the 
downstream end due to diffusive or biased movements, resulting in loss of population [15,18]. On 
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the other hand, susceptible and infected individuals may have distinct advection rates because of 
physical effects. One naturally wonders, therefore, how this open advective environment affects 
the extinction and persistence of VBDs. It is believed that exploring this issue not only have 
practical implications but also produce intriguing phenomena.

Accordingly, the above considerations lead us to propose the following model with more 
general boundary conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sht = D1Shxx − ahShx + H(x) − g1(x, Sh, Iv) − dh(x)Sh, 0 < x <L, t > 0,

Iht = D2Ihxx − qhIhx + g1(x, Sh, Iv) − δh(x)Ih, 0 < x <L, t > 0,

Svt = D4Svxx − avSvx + V (x) − g2(x, Sv, Ih) − dv(x)Sv, 0 < x <L, t > 0,

Ivt = D5Ivxx − qvIvx + g2(x, Sv, Ih) − dv(x)Iv, 0 < x <L, t > 0,

D1Shx(0, t) − ahSh(0, t) = D2Ihx(0, t) − qhIh(0, t) = 0, t > 0,

D4Svx(0, t) − avSv(0, t) = D5Ivx(0, t) − qvIv(0, t) = 0, t > 0,

D1Shx(L, t) − ahSh(L, t) = −ν1ahSh(L, t), t > 0,

D2Ihx(L, t) − qhIh(L, t) = −ν1qhIh(L, t), t > 0,

D4Svx(L, t) − avSv(L, t) = −ν2avSv(L, t), t > 0,

D5Ivx(L, t) − qvIv(L, t) = −ν2qvIv(L, t), t > 0,

(1.2)

wherein δh(·) := dh(·) +γh(·), and g1(·, Sh, Iv) and g2(·, Sv, Ih) signify the disease transmission 
functions, aj and qj (j = h, v) stand for the advection rates of hosts and vectors, respectively, and 
other parameters of model (1.2) share the same meaning as model (1.1). Since the recovered term 
Rh in (1.2) is decoupled from other equations, we omit it for simplicity. Inspired by the literature 
[18], ν1 ≥ 0 and ν2 ≥ 0, respectively, determine the magnitude of hosts and vectors loss at the 
downstream end caused by wind or water flow. The downstream biological environment can be 
characterized by different values of ν1 and ν2, which correspond mathematically to different 
boundary conditions at x = L. More specifically, for i ∈ {1, 2},

(i) νi = 0 indicates that hosts or vectors will not lose at the downstream end, which has the 
same boundary conditions as the upstream end. In this case, the environment is closed (see, 
e.g., [28]);

(ii) 0 < νi < 1 reveals that some of hosts or vectors will be lost due to wind or water flow (see, 
e.g., [34,42]);

(iii) νi = 1 implies that the wind or water flow will cause the complete loss of hosts or vectors 
at the downstream end. In biology, this is called the “free-flow” boundary condition, which 
corresponds mathematically to the homogeneous Neumann type boundary condition (see, 
e.g., [15]);

(iv) 1 < νi < ∞ shows that both diffusive and biased movements (advection) of hosts or vectors 
lead to loss at the downstream end, which in fact reflects that the downstream environment 
is unfavorable for individual survival, and mathematically corresponds to the Robin type 
boundary condition (see, e.g., [36]);

(v) νi = ∞ means that the downstream environment is extremely harsh, which mathematically 
can regard it as the Dirichlet type boundary condition (see, e.g., [34,42]), i.e., Sh(L, t) =
Ih(L, t) = Sv(L, t) = Iv(L, t) = 0, t > 0.
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Lately, there are many investigations on various boundaries in the open or closed advective 
environments, and readers can refer to [5–7,12,14,16,17,23,24,35] and references therein. Never-
theless, so far, very few studies focused on spatial dynamics of VBDs in advective environments. 
Since case (i) has been explored in [28], this work will continue to probe the remaining cases (ii)-
(v). In other words, we intend to consider the system (1.2) with ν1, ν2 ∈ (0, ∞) and the following 
Dirichlet type problem (i.e., ν1 = ν2 = ∞):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sht = D1Shxx − ahShx + H(x) − g1(x, Sh, Iv) − dh(x)Sh, 0 < x <L, t > 0,

Iht = D2Ihxx − qhIhx + g1(x, Sh, Iv) − δh(x)Ih, 0 < x <L, t > 0,

Svt = D4Svxx − avSvx + V (x) − g2(x, Sv, Ih) − dv(x)Sv, 0 < x <L, t > 0,

Ivt = D5Ivxx − qvIvx + g2(x, Sv, Ih) − dv(x)Iv, 0 < x <L, t > 0,

D1Shx(0, t) − ahSh(0, t) = D2Ihx(0, t) − qhIh(0, t) = 0, t > 0,

D4Svx(0, t) − avSv(0, t) = D5Ivx(0, t) − qvIv(0, t) = 0, t > 0,

Sh(L, t) = Ih(L, t) = Sv(L, t) = Iv(L, t) = 0, t > 0.

(1.3)

To facilitate the analysis and presentation, we suppose the initial values of systems (1.2) and (1.3)
satisfy ⎧⎨⎩ Sh(x,0) := S0

h(x) ≥ 0, Ih(x,0) := I 0
h (x) ≥ 0, �≡ 0, 0 < x <L,

Sv(x,0) := S0
v (x) ≥ 0, Iv(x,0) := I 0

v (x) ≥ 0, �≡ 0, 0 < x <L,
(1.4)

and impose the following basic hypotheses:

(F1) The H(x), V (x), dh(x), dv(x) and γh(x) are positive in [0, L]; The gi(x, S, I ) is posi-
tive in C2((0, L) × R+ × R+); gi(x, S, I ) = 0 if and only if SI = 0; ∂Sgi(x, S, I ) > 0, 
∂I gi(x, S, I ) > 0, ∂2

Sgi(x, S, I ) ≤ 0 and ∂2
I gi(x, S, I ) ≤ 0 for all x ∈ (0, L), S, I > 0, 

i = 1, 2.
(F2) The diffusion rates (D2, D5) and advection rates (qh, qv) fulfill α := qh/D2 = qv/D5.
(F3) The death rates (dh(x), dv(x)) of (1.2) satisfy dh(x), dv(x) ∈ C1+ϑ([0, L]) and d ′

h(x) ≥ 0
and d ′

v(x) ≥ 0 in [0, L], where ′ = d/dx.

Remark 1.1. Biologically, the assumption (F3) suggests that the closer the host and vector are to 
the downstream, the higher the mortality rate, which also indicates that the downstream environ-
ment is not conducive to individual survival.

In what follows, we state the main contributions of this paper. Due to the general incidence, 
general boundary condition and different diffusion coefficients, it is nontrivial to study the well-
posedness of models (1.2) and (1.3). To be more specific, we first discuss the existence and 
uniqueness of positive steady state for an elliptic system (2.1), and then apply a well-known 
induction argument (see, e.g., [13,39]) to gain the well-posedness results. The previous studies 
on basic reproduction ratio R0 of vector-borne disease models with spatial heterogeneity mostly 
concentrated on qualitative analysis (see, e.g., [4,19]). Fortunately, the variational expressions 
of R0 for models (1.2) and (1.3) are derived with the help of the variational method [32] under 
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suitable conditions (see Lemma 3.1). The variational formula is useful for discussing the relevant 
properties of R0, which to our knowledge seems to be the first attempt to obtain the principal 
eigenvalue formula of the elliptic eigenvalue problem containing two equations. More precisely, 
the asymptotic profiles of R0 in respect of diffusion rates (D2, D5) and advection rates (qh, qv)
are investigated by employing the variational formula (see Proposition 4.2). Moreover, we prove 
the monotonicity of R0 w.r.t qh and qv in the case of ν1, ν2 ∈ [1/2, ∞] (see Proposition 4.1). 
This is in sharp contrast to the results in [28], which suggests that the downstream environment 
has a significant impact on disease transmission. In particular, we probe the classification of 
dynamics of (1.2) in high- and low-risk areas, respectively. Specifically, in spaces qh − (D2, D5)

and qv − (D2, D5), there are unique critical surfaces to completely separate the dynamics, that is, 
the disease-free equilibrium (DFE) is stable on one side of the surface and unstable on the other 
side, which means that the disease will disappear on one side, but break out on the other side 
(see Theorems 5.1 and 5.2). It should be pointed out that (i) when the habitat is a high-risk area, 
even if the downstream end is also located in a high-risk site (see [28, Fig. 1 (b)]), the disease 
will eventually be eliminated as long as the advection rates are sufficiently large relative to the 
diffusion rates, which is in sharp contrast to [28, Theorem 4.1]; (ii) when the habitat is a low-risk 
area, although the downstream end belongs to a high-risk site, there are two critical surfaces, so 
that the stability of DFE changes at least twice when the advection rates are within the critical 
surfaces, which is different from [28, Theorem 4.2 (I)].

The rest of this paper is organized as follows. Sections 2 and 3 analyze the well-posedness 
and threshold dynamics of systems (1.2) and (1.3). The asymptotic profiles and monotonicity of 
basic reproduction ratio are examined in Section 4. The spatial dynamics of (1.2) are classified 
in Section 5. Section 6 gives a brief discussion to conclude the article.

2. Well-posedness

Before stating the well-posedness results, we first study the DFE of (1.2) (resp. (1.3)). A 
solution (S̄h(x), Īh(x), S̄v(x), Īv(x)) of (1.2) (resp. (1.3)) is called the DFE if S̄h(x), S̄v(x) > 0
and Īh(x) ≡ Īv(x) ≡ 0 for x ∈ (0, L), and the EE if S̄h(x), S̄v(x), Īh(x), Īv(x) > 0 for x ∈ (0, L).

Consider two elliptic type boundary value problems as follows

⎧⎪⎪⎨⎪⎪⎩
DSxx − qSx + a(x) − μ(x)S = 0, 0 < x <L,

DSx(0) − qS(0) = 0,

DSx(L) − qS(L) = −νqS(L),

(2.1)

and

{
DSxx − qSx + a(x) − μ(x)S = 0, 0 < x <L,

DSx(0) − qS(0) = 0, S(L) = 0,
(2.2)

where D, q > 0, a(x) ∈ L∞([0, L]), μ(x) ∈ C1+ϑ([0, L]) and ν ∈ (0, ∞). Hence, there are the 
following conclusions.

Proposition 2.1. Assume a(x), μ(x) > 0, x ∈ [0, L]. Then
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(i) If μ′(x) ≥ 0, x ∈ [0, L], then system (2.1) admits a unique positive steady state S∗(x), x ∈
(0, L);

(ii) System (2.2) admits a unique positive steady state S∗(x), x ∈ (0, L).

Proof. Consider two elliptic eigenvalue problems⎧⎪⎪⎨⎪⎪⎩
Dψxx − qψx − μ(x)ψ + λψ = 0, 0 < x <L,

Dψx(0) − qψ(0) = 0,

Dψx(L) − qψ(L) = −νqψ(L),

(2.3)

for ν ∈ (0, ∞), and {
Dφxx − qφx − μ(x)φ + κφ = 0, 0 < x <L,

Dφx(0) − qφ(0) = 0, φ(L) = 0.
(2.4)

Following the Krein-Rutman theorem [11] that systems (2.3) and (2.4) have principal eigenvalues 
λ1 and κ1, respectively, and the corresponding positive eigenfunctions are denoted as ψ1 and φ1, 
respectively. To describe more clearly, we let λ1 := λ1(D, q, μ) and κ1 := κ1(D, q, μ) to indicate 
the eigenvalues depend the parameters D, q and μ. Set ψ1 = eqx/D�1 and φ1 = eqx/D�1. By a 
simple calculation, systems (2.3) and (2.4) are transformed into{

D�1xx + q�1x − μ(x)�1 + λ1�1 = 0, 0 < x <L,

�1x(0) = 0, D�1x(L) + νq�1(L) = 0,
(2.5)

and {
D�1xx + q�1x − μ(x)�1 + κ1�1 = 0, 0 < x <L,

�1x(0) = 0, �1(L) = 0.
(2.6)

According to the proof of Proposition 2.1 in [42], λ1(D, q, μ) is strictly monotonically increasing 
function of q provided that μ′(x) ≥ 0. By [34, Proposition 2.1], κ1(D, q, μ) is strictly monoton-
ically increasing function of q . It is easy to see that λ1(D, 0, μ) > 0 owing to μ(·) > 0 for any 
D > 0. Moreover, one has κ1(D, 0, μ) > 0 for any D > 0 in light of Theorem 3.1 in [41]. Thus, 
λ1(D, q, μ) and κ1(D, q, μ) are positive for any D > 0 and q > 0.

Let S = eqx/DŜ in systems (2.1) and (2.2). Then⎧⎨⎩DŜxx + qŜx + a(x)e− q
D
x − μ(x)Ŝ = 0, 0 < x <L,

Ŝx(0) = 0, DŜx(L) + νqŜ(L) = 0,
(2.7)

for ν ∈ (0,∞), and ⎧⎨⎩DŜxx + qŜx + a(x)e− q
D
x − μ(x)Ŝ = 0, 0 < x <L,

Ŝx(0) = 0, Ŝ(L) = 0.
(2.8)
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Choose

Ŝ1 := max{a(x)e− q
D
x : 0 ≤ x ≤ L}

min{μ(x) : 0 ≤ x ≤ L} , Ŝ2 := δ�1�1,

and

Ŝ3 := Ŝ1, Ŝ4 := δ�1�1,

wherein 0 < δ�1 < λ−1
1 min{a(x)e− q

D
x�−1

1 : 0 ≤ x≤ L} and 0 < δ�1 < κ−1
1 min{a(x)e− q

D
x�−1

1 :
0 ≤ x < L}. Through the definition of sub- and super-solutions for elliptic systems, it is not dif-
ficult to verify that Ŝ1, Ŝ2 and Ŝ3, Ŝ4 are a pair of super- and sub-solution of (2.7) and (2.8), 
respectively. Hence, systems (2.7) and (2.8) admit at least one positive solution, respectively.

Furthermore, assume Ŝ∗ and Ŝ∗∗ are two positive solutions of (2.7). Then U := Ŝ∗ − Ŝ∗∗
fulfills {

DUxx + qUx − μ(x)U = 0, 0 < x <L,

Ux(0) = 0, DUx(L) + νqU(L) = 0.

Therefore, by Theorem 6.31 in [8], the above system admits a unique solution and so U ≡ 0 in 
[0, L]. We can similarly deal with the case of ν = ∞. This completes the proof. �
Remark 2.1. Thanks to Proposition 2.1, system (1.2) if (F3) holds and system (1.3) have a unique 
DFE, denoted by E0 := (P (x), 0, A(x), 0), respectively. Here, P(·) is the unique positive solu-
tion of (2.1) and (2.2) in (0, L) where D = D1, q = ah, μ(·) = dh(·) and ν = ν1 > 0, respectively, 
and A(·) is the unique positive solution of (2.1) and (2.2) in (0, L) where D = D4, q = av , 
μ(·) = dv(·) and ν = ν2 > 0, respectively. Moreover, similar to the arguments of [37, Lemma 
2.1], one obtains that P(·) and A(·) are global attractive in C([0, L], R).

For simplicity, let

u0(·) := (S0
h(·), I 0

h (·), S0
v (·), I 0

v (·)), u(·, ·;u0) := (Sh(·, ·), Ih(·, ·), Sv(·, ·), Iv(·, ·)),
and ‖ · ‖ := ‖ · ‖L∞((0,L)), k+ := max{k(x) : 0 ≤ x ≤ L}, k− := min{k(x) : 0 ≤ x ≤ L}, here 
k(x) denotes the coefficients of (1.2) (resp. (1.3)). Applying the standard parabolic system the-
ory yields that if u0(·) ∈ C([0, L], R4+), then system (1.2) (resp. (1.3)) has a unique nonnegative 
classical solution u(·, t; u0) ∈ C2,1([0, L] × (0, Ta)) where 0 < Ta ≤ ∞ is the maximum exis-
tence time of the solution. Moreover, u(·, t; u0) is positive in (0, L) × (0, Ta) by (1.4). In what 
follows, we explore the global existence and ultimate boundedness.

Theorem 2.1. For any u0 ∈ C([0, L], R4+) satisfying (1.4), system (1.2) (resp. (1.3)) possesses a 
unique nonnegative solution u(·, t; u0) on (0, L) × (0, ∞). Furthermore, if νi ≥ 1, i = 1, 2, then 
u(·, t; u0) is ultimately bounded, i.e., there exists a constant C1 > 0 independent of initial data 
such that

lim sup[‖Sh(·, t)‖ + ‖Ih(·, t)‖ + ‖Sv(·, t)‖ + ‖Iv(·, t)‖] ≤ C1. (2.9)

t→∞
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Moreover, the solution semiflow �(t)u0 := u(·, t; u0) has a global compact attractor.

Proof. By adding the first two equations of (1.2) and integrating it over (0, L), we obtain

d

dt

L∫
0

(Sh + Ih)dx ≤ −ν1ahSh(L, t) − ν1qhIh(L, t) + H̄ − d−
h

L∫
0

(Sh + Ih)dx

≤ H̄ − d−
h

L∫
0

(Sh + Ih)dx, H̄ :=
L∫

0

H(x)dx.

Utilizing the Gronwall’s inequality yields

L∫
0

(Sh + Ih)dx ≤ e−d−
h t

L∫
0

[S0
h(x) + I 0

h (x)]dx + H̄

d−
h

(1 − e−d−
h t ).

In a similar fashion,

L∫
0

(Sv + Iv)dx ≤ e−d−
v t

L∫
0

[S0
v (x) + I 0

v (x)]dx + V̄

d−
v

(1 − e−d−
v t ), V̄ :=

L∫
0

V (x)dx.

In view of [13, Theorem 1], there is a constant C2 > 0, depending on I 0
h (·) and I 0

v (·), such 
that ‖Ih(·, t)‖ +‖Iv(·, t)‖ ≤ C2, t ∈ [0, Ta). Note that there exist two constants C3 = ‖P(·)‖ and 
C4 = ‖A(·)‖ such that ‖Sh(·, t)‖ ≤ C3 and ‖Sv(·, t)‖ ≤ C4, t ∈ [0, Ta), from Remark 2.1. Hence, 
the solution of (1.2) exists globally on [0, L] × [0, ∞).

To achieve (2.9), we use the well-known induction method to show the following Claim.

Claim. For any positive integer m, there exists a constant C5 := C5(m) > 0, such that

lim sup
t→∞

[‖Sh(·, t)‖Lm((0,L)) + ‖Ih(·, t)‖Lm((0,L)) + ‖Sv(·, t)‖Lm((0,L)) + ‖Iv(·, t)‖Lm((0,L))] ≤ C5.

(2.10)

From the above arguments, (2.10) is true for m = 1. Suppose (2.10) holds for m − 1, i.e.,

lim sup
t→∞

[‖Sh(·, t)‖Lm−1((0,L)) + ‖Ih(·, t)‖Lm−1((0,L))

+ ‖Sv(·, t)‖Lm−1((0,L)) + ‖Iv(·, t)‖Lm−1((0,L))] ≤ C6,

for some C6 := C6(m) > 0.
Through multiplying the first equation of (1.2) by Sm−1

h and then performing an integral in 
(0, L), one has
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1

m

d

dt

L∫
0

Sm
h dx =D1

L∫
0

Sm−1
h Shxxdx − ah

L∫
0

Sm−1
h Shxdx

+
L∫

0

Sm−1
h [H(x) − dh(x)Sh]dx −

L∫
0

Sm−1
h g1(x, Sh, Iv)dx.

Since

L∫
0

Sm−1
h Shxxdx =Sm−1

h (L, t)Shx(L, t) − Sm−1
h (0, t)Shx(0, t) − (m − 1)

L∫
0

Sm−2
h S2

hxdx,

and

L∫
0

Sm−1
h Shxdx =Sm

h (L, t) − Sm
h (0, t) − (m − 1)

L∫
0

Sm−1
h Shxdx,

it follows that

1

m

d

dt

L∫
0

Sm
h dx + (m − 1)D1

L∫
0

Sm−2
h S2

hxdx + ah

(
1 − 1

m

)
Sm
h (0, t)

=ah

(
1 − ν1 − 1

m

)
Sm
h (L, t) +

L∫
0

Sm−1
h [H(x) − dh(x)Sh]dx −

L∫
0

Sm−1
h g1(x, Sh, Iv)dx.

Recalling that ν1 ≥ 1 and m > 1, we have

1

m

d

dt

L∫
0

Sm
h dx ≤

L∫
0

Sm−1
h [H(x) − dh(x)Sh]dx ≤ H+

L∫
0

Sm−1
h dx − d−

h

L∫
0

Sm
h dx. (2.11)

Similarly, multiplying the second, third and fourth equations of (1.2) by Im−1
h , Sm−1

v and 
Im−1
v , respectively, and then integrating it over (0, L) to give

1

m

d

dt

L∫
0

Im
h dx ≤

L∫
0

Im−1
h g1(x, Sh, Iv)dx − d−

h

L∫
0

Im
h dx, (2.12)

1

m

d

dt

L∫
0

Sm
v dx ≤

L∫
0

Sm−1
v [V (x) − dv(x)Sh]dx ≤ V +

L∫
0

Sm−1
v dx − d−

v

L∫
0

Sm
v dx, (2.13)

and
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1

m

d

dt

L∫
0

Im
v dx ≤

L∫
0

Im−1
v g2(x, Sv, Ih)dx − d−

v

L∫
0

Im
v dx. (2.14)

Denote M := Sm
h + Im

h + Sm
v + Im

v . By adding the inequalities (2.11)-(2.14), one obtains

1

m

d

dt

L∫
0

Mdx ≤H+
L∫

0

Sm−1
h dx − d−

h

L∫
0

Sm
h dx +

L∫
0

Im−1
h g1(x, Sh, Iv)dx − d−

h

L∫
0

Im
h dx

+ V +
L∫

0

Sm−1
v dx − d−

v

L∫
0

Sm
v dx +

L∫
0

Im−1
v g2(x, Sv, Ih)dx − d−

v

L∫
0

Im
v dx.

Thus, by the hypothesis (F1) and above discussions, we have

g1(x, Sh, Iv) ≤ max{∂Ivg1(x,C3,0) : 0 ≤ x ≤ L}Iv := g+
1Iv

Iv,

and

g2(x, Sv, Ih) ≤ max{∂Ihg2(x,C4,0) : 0 ≤ x ≤ L}Iv := g+
2Ih

Ih.

Accordingly, it follows from the Young’s inequality that

L∫
0

Im−1
h Ivdx ≤ ε1

L∫
0

Im
h dx + Cε1(m)

L∫
0

Im
v dx and

L∫
0

IhI
m−1
v dx ≤ ε2

L∫
0

Im
h dx + Cε2(m)

L∫
0

Im
v dx,

for any εi > 0 and some positive constant Cεi (m), i = 1, 2. Then

1

m

d

dt

L∫
0

Mdx ≤H+
L∫

0

Sm−1
h dx + V +

L∫
0

Sm−1
v dx − d−

h

L∫
0

(Sm
h + Im

h )dx − d−
v

L∫
0

(Sm
v + Im

v )dx

+ g+
1Iv

L∫
0

Im−1
h Ivdx + g+

2Ih

L∫
0

Im−1
v Ihdx

≤H+
L∫

0

Sm−1
h dx + V +

L∫
0

Sm−1
v dx − d−

h

L∫
0

Sm
h dx − d−

v

L∫
0

Sm
v dx

+(g+
1Iv

ε1 + g+
2Ih

ε2 − d−
h )

L∫
Im
h dx + [g+

1Iv
Cε1(m) + g+

2Ih
Cε2(m) − d−

v ]
L∫
Im
v dx.
0 0
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Choosing suitable εi , i = 1, 2, such that g+
1Iv

ε1 + g+
2Ih

ε2 − d−
h ≤ − d−

h

2 and g+
1Iv

Cε1(m) +
g+

2Ih
Cε2(m) − d−

v ≤ − d−
v

2 . Therefore,

1

m

d

dt

L∫
0

Mdx ≤H+
L∫

0

Sm−1
h dx + V +

L∫
0

Sm−1
v dx − d−

h

L∫
0

Sm
h dx − d−

v

L∫
0

Sm
v dx

− d−
h

2

L∫
0

Im
h dx − d−

v

2

L∫
0

Im
v dx

≤H+
L∫

0

Sm−1
h dx + V +

L∫
0

Sm−1
v dx − η

2

L∫
0

Mdx,

where η := min{d−
h , d−

v }. Combining the assumption for m − 1 and utilizing the Gronwall’s 
inequality imply that (2.10) is valid for any positive integer m.

Consequently, by using the assertions in [13, Theorem 1], (2.9) holds which indicates that 
the solution of (1.2) with νi ∈ [1, ∞) is ultimately bounded. In a similar fashion, we can prove 
the global existence and ultimate boundedness of (1.3). Since system (1.2) (resp. (1.3)) is point 
dissipative and the semiflow �(t) is compact, it follows that �(t) admits a compact global 
attractor with the help of [9, Theorem 3.4.8]. This ends the proof. �
Remark 2.2. In fact, for some specific incidence functions, such as gi(·, S, I ) = ki (·)SI

1+ρi (·)I , ki(·), 
ρi(·) > 0, i = 1, 2, the ultimate boundedness of solutions when νi ∈ (0, ∞] can be directly ob-
tained based on the classical comparison principle.

3. Threshold dynamics

In this section, we investigate the global dynamics of models (1.2) and (1.3).

3.1. Basic reproduction ratio

Linearizing systems (1.2) and (1.3) at E0, respectively, to get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĩht = D2Ĩhxx − qhĨhx + k1(x,P )Ĩv − δh(x)Ĩh, 0 < x <L, t > 0,

Ĩvt = D5Ĩvxx − qvĨvx + k2(x,A)Ĩh − dv(x)Ĩv, 0 < x <L, t > 0,

D2Ĩhx(0, t) − qhĨh(0, t) = D5Ĩvx(0, t) − qvĨv(0, t) = 0, t > 0,

D2Ĩhx(L, t) − qhĨh(L, t) = −ν1qhĨh(L, t), t > 0,

D5Ĩvx(L, t) − qvĨv(L, t) = −ν2qvĨv(L, t), t > 0,

(3.1)

and
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ĩht = D2Ĩhxx − qhĨhx + k1(x,P )Ĩv − δh(x)Ĩh, 0 < x <L, t > 0,

Ĩvt = D5Ĩvxx − qvĨvx + k2(x,A)Ĩh − dv(x)Ĩv, 0 < x <L, t > 0,

D2Ĩhx(0, t) − qhĨh(0, t) = D5Ĩvx(0, t) − qvĨv(0, t) = 0, t > 0,

Ĩh(L, t) = Ĩv(L, t) = 0, t > 0,

(3.2)

wherein k1(·, P) := ∂Ivg1(·, P, 0) and k2(·, A) := ∂Ihg2(·, A, 0). Define the two operators F , B :
C([0, L], R2) → C([0, L], R2) by

F(·) =
(

0 k1(·,P )

k2(·,A) 0

)
, −B(·) =

(
D2∂

2
x − qh∂x − δh(·) 0

0 D5∂
2
x − qv∂x − dv(·)

)
,

where ∂x and ∂2
x are the first and second partial derivatives w.r.t x, respectively. Let

L[υ](x) :=
∞∫

0

F(x)T̃ (t)υ(x)dt,

here υ(x) is assumed to be the initial density distribution of infected hosts and vectors at location 
x, and T̃ (t) be the semigroup generated by du/dt = −Bu subject to the boundary conditions of 
(3.1) (resp. (3.2)). In light of [28], the basic reproduction ratio for system (1.2) (resp. (1.3)) is 
defined by the spectral radius of L, i.e.,

R0(D2,D5, qh, qv) = r(L) = sup{|�|, � ∈ σ(L)},
where σ(L) represents the spectral set of L. For convenience, denote R0 := R0(D2, D5, qh, qv).

Consider two elliptic eigenvalue problems⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−D2�2xx + qh�2x + δh(x)�2 = �k1(x,P )�5, 0 < x <L,

−D5�5xx + qv�5x + dv(x)�5 = �k2(x,A)�2, 0 < x <L,

−D2�2x(0) + qh�2(0) = −D5�5x(0) + qv�5(0) = 0,

−D2�2x(L) + qh�2(L) = ν1qh�2(L),

−D5�5x(L) + qv�5(L) = ν2qv�5(L),

(3.3)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−D2�2xx + qh�2x + δh(x)�2 = �k1(x,P )�5, 0 < x <L,

−D5�5xx + qv�5x + dv(x)�5 = �k2(x,A)�2, 0 < x <L,

−D2�2x(0) + qh�2(0) = −D5�5x(0) + qv�5(0) = 0,

�2(L) = �5(L) = 0.

(3.4)

Lemma 3.1. Suppose (F1)-(F3) hold. Let �0 := �0(D2, D5, qh, qv) be the positive eigenvalue of 
(3.3) (resp. (3.4)) with positive eigenfunction. Then �0 is unique and R0 = 1/�0. Furthermore, 
if k1(·, P) ≡ k2(·, A) in (0, L), then R0 of (1.2) is given by
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R0 = sup
ϕ2,ϕ5∈H 1((0,L))

ϕ2 �=0, ϕ5 �=0

{√
�1(ϕ2, ϕ5)�2(ϕ2, ϕ5)

}
, (3.5)

and R0 of (1.3) is given by

R0 = sup
ϕ2,ϕ5∈H 1((0,L))

ϕ2 �=0, ϕ5 �=0

{√
�3(ϕ2, ϕ5)�4(ϕ2, ϕ5)

}
, (3.6)

where

�1(ϕ2, ϕ5) :=

L∫
0
k1(x,P )e

qh
D2

x
ϕ2ϕ5dx

ν1qhe
qh
D2

L
ϕ2

2(L) + D2

L∫
0
e

qh
D2

x
ϕ2

2xdx +
L∫
0
δh(x)e

qh
D2

x
ϕ2

2dx

,

�2(ϕ2, ϕ5) :=

L∫
0
k2(x,A)e

qv
D5

x
ϕ2ϕ5dx

ν2qve
qv
D5

L
ϕ2

5(L) + D5

L∫
0
e

qv
D5

x
ϕ2

5xdx +
L∫
0
dv(x)e

qv
D5

x
ϕ2

5dx

,

and

�3(ϕ2, ϕ5) :=

L∫
0
k1(x,P )e

qh
D2

x
ϕ2ϕ5dx

D2

L∫
0
e

qh
D2

x
ϕ2

2xdx +
L∫
0
δh(x)e

qh
D2

x
ϕ2

2dx

,

�4(ϕ2, ϕ5) :=

L∫
0
k2(x,A)e

qv
D5

x
ϕ2ϕ5dx

D5

L∫
0
e

qv
D5

x
ϕ2

5xdx +
L∫
0
dv(x)e

qv
D5

x
ϕ2

5dx

.

Proof. Similar to the arguments of [28, Lemma 2.1], [39, Lemma 2] and [31, Theorem 3.2 and 
Remark 3.1], one obtains that �0 is unique and R0 = 1/�0.

Let (�2, �5) be the positive eigenfunction corresponding to �0, and set (�2, �5) =
eαx(ϕ2, ϕ5) in (3.3). Through a simple calculation, one gets⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−D2ϕ2xx − qhϕ2x + δh(x)ϕ2 = �0k1(x,P )ϕ5, 0 < x <L,

−D5ϕ5xx − qvϕ5x + dv(x)ϕ5 = �0k2(x,A)ϕ2, 0 < x <L,

ϕ2x(0) = ϕ5x(0) = 0,

D2ϕ2x(L) + ν1qhϕ2(L) = D5ϕ5x(L) + ν2qvϕ5(L) = 0.

(3.7)

Multiplying the two equations of (3.7) by eqhx/D2 and eqvx/D5 , respectively, we have
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−D2(e
qh
D2

x
ϕ2x)x + δh(x)e

qh
D2

x
ϕ2 = 1

R0
k1(x,P )e

qh
D2

x
ϕ5, 0 < x <L,

−D5(e
qv
D5

x
ϕ5x)x + dv(x)e

qv
D5

x
ϕ5 = 1

R0
k2(x,A)e

qv
D5

x
ϕ2, 0 < x <L,

ϕ2x(0) = ϕ5x(0) = 0,

D2ϕ2x(L) + ν1qhϕ2(L) = D5ϕ5x(L) + ν2qvϕ5(L) = 0.

Next, multiplying the two equations of above system by ϕ2 and ϕ5 respectively and then inte-
grating by parts over (0, L) to give

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν1qhe
qh
D2

L
ϕ2

2(L) + D2

L∫
0

e
qh
D2

x
ϕ2

2xdx +
L∫

0

δh(x)e
qh
D2

x
ϕ2

2dx = 1

R0

L∫
0

k1(x,P )e
qh
D2

x
ϕ2ϕ5dx,

ν2qve
qv
D5

L
ϕ2

5(L) + D5

L∫
0

e
qv
D5

x
ϕ2

5xdx +
L∫

0

dv(x)e
qv
D5

x
ϕ2

5dx = 1

R0

L∫
0

k2(x,A)e
qv
D5

x
ϕ2ϕ5dx.

As a result, by the variational methods of [32, Corollary of Theorem 2.3], the formula (3.5) is 
derived by multiplying the above two equalities and the definition of R0. Similarly, we can prove 
the formula (3.6). This completes the proof. �

Furthermore, we consider two elliptic eigenvalue problems as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

D2u2xx − qhu2x + k1(x,P )u5 − δh(x)u2 + �u2 = 0, 0 < x <L,

D5u5xx − qvu5x + k2(x,A)u2 − dv(x)u5 + �u5 = 0, 0 < x <L,

D2u2x(0) − qhu2(0) = D5u5x(0) − qvu5(0) = 0, 0 < x <L,

D2u2x(L) − qhu2(L) = −ν1qhu2(L),

D5u5x(L) − qvu5(L) = −ν2qvu5(L),

(3.8)

and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D2u2xx − qhu2x + k1(x,P )u5 − δh(x)u2 + �u2 = 0, 0 < x <L,

D5u5xx − qvu5x + k2(x,A)u2 − dv(x)u5 + �u5 = 0, 0 < x <L,

D2u2x(0) − qhu2(0) = D5u5x(0) − qvu5(0) = 0, 0 < x <L,

u2(L) = u5(L) = 0.

(3.9)

Thanks to the transformation (u2, u5) = eαx(w2, w5), systems (3.8) and (3.9) are rewritten as
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D2w2xx + qhw2x + k1(x,P )w5 − δh(x)w2 + �w2 = 0, 0 < x <L,

D5w5xx + qvw5x + k2(x,A)w2 − dv(x)w5 + �w5 = 0, 0 < x <L,

w2x(0) = w5x(0) = 0,

D2w2x(L) + ν1qhw2(L) = D5w5x(L) + ν2qvw5(L) = 0,

(3.10)

and ⎧⎪⎪⎨⎪⎪⎩
D2w2xx + qhw2x + k1(x,P )w5 − δh(x)w2 + �w2 = 0, 0 < x <L,

D5w5xx + qvw5x + k2(x,A)w2 − dv(x)w5 + �w5 = 0, 0 < x <L,

w2x(0) = w5x(0) = 0, w2(L) = w5(L) = 0.

(3.11)

The Krein-Rutman theorem [11] illustrates that system (3.10) (resp. (3.11)) possesses a unique 
principal eigenvalue �1 := �1(D2, D5, qh, qv). There are the following results with regard to the 
relationship between R0 and �1, and the proof resembles the Theorem 3.1 in [31], so is omitted.

Lemma 3.2. Suppose (F1)-(F3) hold and Dj > 0, qb > 0, j = 2, 5, b ∈ {h, v}. Then 1 − R0
share the same sign as �1, i.e., sign(1 −R0) = sign(�1).

3.2. Stability of disease-free equilibrium

This subsection is devoted to discuss the global stability of DFE for (1.2) (resp. (1.3)), and fix 
νi ≥ 1, i = 1, 2.

Lemma 3.3. Let u = (Sh, Ih, Sv, Iv) be the solution of (1.2) (resp. (1.3)) satisfying u0 ∈
C([0, L], R4+).

(i) If there exist some t̃0 ≥ 0, such that Ih(·, ̃t0) �= 0 and Iv(·, ̃t0) �= 0 in (0, L), then Ih(x, t) > 0
and Iv(x, t) > 0, for any x ∈ (0, L) and t > t̃0;

(ii) For any u0 ∈ C([0, L], R4+), then Sh(x, t) > 0, Sv(x, t) > 0 and

lim inf
t→∞ Sh(x, t) ≥ H−

B1 + d+
h

, lim inf
t→∞ Sv(x, t) ≥ V −

B2 + d+
v

, uniformly for x ∈ (0,L),

where B1 := max{∂Shg1(x, Sh, C1) : 0 ≤ x ≤ L, 0 ≤ Sh ≤ C1} and B2 := max{∂Svg2(x, Sv , 
C1) : 0 ≤ x ≤ L, 0 ≤ Sv ≤ C1}, here C1 is given by Theorem 2.1.

Proof. From [39, Lemma 4], one can easily prove (i). According to Theorem 2.1, there exists a 
point t∗ large enough, such that |Ih(x, t)| + |Iv(x, t)| ≤ C1 for any x ∈ [0, L] and t > t∗. By the 
first equation of (1.2), we have⎧⎪⎪⎨⎪⎪⎩

Sht ≥ D1Shxx − ahShx + H− − (B1 + d+
h )Sh, 0 < x <L, t > t∗,

D1Shx(0, t) − ahSh(0, t) = 0, t > t∗,
D1Shx(L, t) − ahSh(L, t) = −ν1ahSh(L, t), t > t∗.
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Then the comparison principle yields that

lim inf
t→∞ Sh(x, t) ≥ H−

B1 + d+
h

uniformly for x ∈ (0,L).

In a similar fashion, one can deduce the estimate of Sv in system (1.2) and deal with the system 
(1.3). This ends the proof. �
Lemma 3.4. Suppose (F1)-(F3) hold. If R0 ≤ 1, then E0 of (1.2) (resp. (1.3)) is globally attrac-
tive, namely,

lim
t→∞(Sh(x, t), Ih(x, t), Sv(x, t), Iv(x, t)) = (P (x),0,A(x),0)

uniformly for x ∈ [0, L].

Proof. We first cope with the model (1.2). By Theorem 2.1, there is a constant C7 > 0 such that 
�(t)u0 ⊂ �, where � := {u ∈ C([0, L] × [0, ∞), R4+)|0 < Sh, Ih, Sv, Iv ≤ C7}. To show that 
(Ih(·, t), Iv(·, t)) → (0, 0) as t → ∞ uniformly in [0, L] when R0 ≤ 1 via applying the methods 
of [25, Theorem 5.1].

Define

c(t;u) := max

{
max

x∈[0,L]
Ih(x, t)

e−�1t u2(x)
, max
x∈[0,L]

Iv(x, t)

e−�1t u5(x)

}
, t > 0,

where u = (Sh, Ih, Sv, Iv) and �1 is the principal eigenvalue of (3.8) with positive eigen-
function (u2, u5). Note that (u2, u5) = eαx(w2, w5), here (w2, w5) is the solution of (3.10). 
Then �1 ≥ 0 owing to Lemma 3.2. From Lemma 3.3, if there exists a t̃0 ≥ 0, such that 
Ih(·, ̃t0) �= 0 and Iv(·, ̃t0) �= 0, then Ih(x, t) > 0 and Iv(x, t) > 0, for any t > t̃0, x ∈ [0, L]. 
Since Sh(x, t) ≤ P(x) and Sv(x, t) ≤ A(x), t > 0, x ∈ [0, L], it follows from the hypothesis (F1) 
that {

Iht ≤ D2Ihxx − qhIhx + k1(x,P )Iv − δh(x)Ih, 0 < x <L, t > 0,

Ivt ≤ D5Ivxx − qvIvx + k2(x,A)Ih − dv(x)Iv, 0 < x <L, t > 0.

Moreover, we can verify that (c(t̃1; u)e−�1t u2(x), c(t̃1; u)e−�1t u5(x)) is a positive solution 
of the linearized system (3.1) for any t̃1 ≥ t̃0. Then, the strong maximum principle implies 
that

Ih(x, t) < c(t̃1;u)e−�1t u2(x), Iv(x, t) < c(t̃1;u)e−�1t u5(x),

for any t > t̃1 ≥ t̃0, x ∈ (0,L),

which indicates that

Ih(x, t)

−�1t
< c(t̃1;u),

Iv(x, t)

−�1t
< c(t̃1;u), for any t > t̃1 ≥ t̃0, x ∈ (0,L).
e u2(x) e u5(x)
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Then c(t; u) < c(t̃1; u) for t > t̃1, which gives that c(t; u) is strictly decreasing in t . For �1 > 0
(i.e., R0 < 1), it is obvious that (Ih(x, t), Iv(x, t)) → (0, 0) as t → ∞.

To prove (Ih(·, t), Iv(·, t)) → (0, 0) as t → ∞ as �1 = 0 (i.e., R0 = 1). Combining c(t; u) ≥ 0
and the monotonicity of c(t; u) w.r.t t , we get limt→∞ c(t; u) = c∗ for some constant c∗ ≥
0. Suppose c∗ > 0. Then, there is a subsequence tk meeting tk → ∞ when k → ∞ such 
that

u(·, t + tk) = (Sh(·, t + tk), Ih(·, t + tk), Sv(·, t + tk), Iv(·, t + tk)) → u∗(·, t) as k → ∞,

wherein u∗(·, t) := (S̃∗
h(·, t), Ĩ ∗

h (·, t), S̃∗
v (·, t), Ĩ ∗

v (·, t)), and Ĩ ∗
h (·, t) or Ĩ ∗

v (·, t) is not identi-
cally zero, and S̃∗

h(·, t) ≤ P(·) and S̃∗
v (·, t) ≤ A(·) in [0, L], for all t > 0. Through simi-

lar arguments, we can show that c(t; u∗) is strictly decreasing for all sufficiently large t . 
On the other side, c(t; u∗) = limk→∞ c(t + tk; u) = c∗ which contradicts the monotonicity 
of c(t; u∗) and so c∗ = 0. Hence, Ih(·, t) → 0 and Iv(·, t) → 0 as t → ∞ in (0, L) when 
R0 = 1.

In addition, resembling the proof in [39, Theorem 2], one has (Sh(·, t), Sv(·, t)) → (P (·), A(·))
as t → ∞ uniformly in [0, L] with the aid of the internally chain transitive set theory [40] and 
Lemma 3.3. Thus, E0 is globally attractive. Similar arguments can be used to substantiate the 
global attractivity of E0 for (1.3). This completes the proof. �

As a result, the main conclusions of this part are as follows:

Theorem 3.1. Suppose (F1)-(F3) hold. If R0 < 1, then E0 of (1.2) (resp. (1.3)) is globally asymp-
totically stable (GAS).

Proof. In view of [31, Theorem 3.1], E0 is asymptotically stable if R0 < 1. The global stability 
follows Lemma 3.4. �
3.3. Uniform persistence

In this subsection, we discuss the uniform persistence of (1.2) (resp. (1.3)) when R0 > 1, and 
fix νi ≥ 1, i = 1, 2.

Lemma 3.5. Suppose (F1)-(F3) hold. If R0 > 1, there exists a constant ε0 > 0, such that the 
solution of (1.2) (resp. (1.3)) fulfills

lim inf
t→∞ Sh(x, t) ≥ ε0, lim inf

t→∞ Ih(x, t) ≥ ε0, lim inf
t→∞ Sv(x, t) ≥ ε0, lim inf

t→∞ Iv(x, t) ≥ ε0 (3.12)

uniformly for x ∈ (0, L).

Proof. For system (1.2), let

(Sh(x, ·), Ih(x, ·), Sv(x, ·), Iv(x, ·))
=
(
e

ah
D1

x
S̃h(x, ·), e

qh
D2

x
Ĩh(x, ·), e

av
D4

x
S̃v(x, ·), e

qv
D5

x
Ĩv(x, ·)

)
.
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Then (S̃h(x, ·), Ĩh(x, ·), S̃v(x, ·), Ĩv(x, ·)) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S̃ht = D1S̃hxx + ahS̃hx + H1(x) − g11(x, S̃h, Ĩv) − dh(x)S̃h, 0 < x <L, t > 0,

Ĩht = D2Ĩhxx + qhĨhx + g12(x, S̃h, Ĩv) − δh(x)Ĩh, 0 < x <L, t > 0,

S̃vt = D4S̃vxx + avS̃vx + V1(x) − g21(x, S̃v, Ĩh) − dv(x)S̃v, 0 < x <L, t > 0,

Ĩvt = D5Ĩvxx + qvĨvx + g22(x, S̃v, Ĩh) − dv(x)Ĩv, 0 < x <L, t > 0,

S̃hx(0, t) = Ĩhx(0, t) = S̃vx(0, t) = Ĩvx(0, t) = 0, t > 0,

D1S̃hx(L, t) + ν1ahS̃h(L, t) = D2Ĩhx(L, t) + ν1qhĨh(L, t) = 0, t > 0,

D4S̃vx(L, t) + ν2avS̃v(L, t) = D5Ĩvx(L, t) + ν2qvĨv(L, t) = 0, t > 0,

(3.13)
where H1(x) := e−ahx/D1H(x), V1(x) := e−avx/D4V (x) and

g11(x, S̃h, Ĩv) := e
− ah

D1
x
g1(x, e

ah
D1

x
S̃h, e

qv
D5

x
Ĩv), g12(x, S̃h, Ĩv) := e

− qh
D2

x
g1(x, e

ah
D1

x
S̃h, e

qv
D5

x
Ĩv),

and

g21(x, S̃v, Ĩh) := e
− av

D4
x
g2(x, e

av
D4

x
S̃v, e

qh
D2

x
Ĩh), g22(x, S̃v, Ĩh) := e

− qv
D5

x
g2(x, e

av
D4

x
S̃v, e

qh
D2

x
Ĩh).

From Remark 2.1, it follows that system (3.13) has a unique DEF Ẽ0 := (P̃ (x), 0, Ã(x), 0), 
where P̃ (x) = e−ahx/D1P(x) and Ã(x) = e−avx/D4A(x). We first show there is a constant ε̃0 > 0
such that

lim inf
t→∞ S̃h(·, t) ≥ ε̃0, lim inf

t→∞ Ĩh(·, t) ≥ ε̃0, lim inf
t→∞ S̃v(·, t) ≥ ε̃0, lim inf

t→∞ Ĩv(·, t) ≥ ε̃0 (3.14)

uniformly in [0, L]. Denote ũ := (S̃h, Ĩh, S̃v, Ĩv) and ũ0 := (S̃0
h, Ĩ

0
h , S̃

0
v , Ĩ

0
v ). Then (S̃0

h, Ĩ
0
h , S̃

0
v , Ĩ

0
v )

= (e−ahx/D1S0
h, e

−qhx/D2I 0
h , e

−avx/D4S0
v , e

−qvx/D5I 0
v ). By Theorem 2.1, the solution of (3.13)

lies in set E, where E := {ũ ∈ C([0, L] × [0, ∞), R4+)|0 ≤ S̃h, Ĩh, S̃v, Ĩv ≤ C8} for some C8 > 0. 
Let

�0 :=
{

ũ0 ∈ E | Ĩ 0
h �≡ 0 and Ĩ 0

v �≡ 0
}
, ∂�0 :=

{
ũ0 ∈ E | Ĩ 0

h ≡ 0 or Ĩ 0
v ≡ 0

}
.

It is not difficult to see that E = �0 ∪∂�0, where �0 and ∂�0 are open convex and closed sets of 
E, respectively. Let �̃(t)ũ0 = ũ be the unique solution of (3.13) satisfying ũ0 ∈ E, t > 0. Thus, 
by using Theorem 2.1 and the strong maximum principle, �̃(t) has the global compact attractor 
and �̃(t)�0 ⊂ �0. Denote Z∂ represent the maximum positively invariant set of �̃(t) in ∂�0, 
that is, Z∂ = {ũ0 ∈ E | �̃(t)ũ0 ∈ ∂�0}. Then Z∂ = {ũ0 ∈ E | Ĩ 0

h = Ĩ 0
v ≡ 0}. We let ω(ũ0) be the 

omega limit set of ũ0 in E and Z̄∂ :=⋃
ũ0∈Z∂

ω(ũ0). To end the proof, we prove the following 
claims.

Claim 1. Z̄∂ = {Ẽ0}.
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In fact, for any ũ0 ∈ Z∂ , by the definition of Z∂ , one has Ĩh(x, t) = Ĩv(x, t) = 0 for any 
x ∈ [0, L] and t ≥ 0. Substituting it into (3.13) yields

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S̃ht = D1S̃hxx + ahS̃hx + H1(x) − dh(x)S̃h, 0 < x <L, t > 0,

S̃vt = D4S̃vxx + avS̃vx + V1(x) − dv(x)S̃v, 0 < x <L, t > 0,

S̃hx(0, t) = S̃vx(0, t) = 0, t > 0,

D1S̃hx(L, t) + ν1ahS̃h(L, t) = D4S̃vx(L, t) + ν2avS̃v(L, t) = 0, t > 0.

By employing Remark 2.1, P̃ (·) and Ã(·) are global attractive, i.e., S̃h(·, t) → P̃ (·) and 
S̃v(·, t) → Ã(·) as t → ∞ uniformly in (0, L) which implies Claim 1 holds and {Ẽ0} is an 
isolated and compact invariant set for �̃(t) restricted in Z̄∂ .

Claim 2. There is a constant ε1 > 0, which does not depend on initial values, such that

lim inf
t→∞ ‖�̃(t)ũ0 − (P̃ (·),0, Ã(·),0)‖ > ε1 uniformly in [0,L].

Arguing by contradiction, for any ε̂1 > 0, there is û0 = (Ŝ0
h, Î

0
h , Ŝ

0
v , Î

0
v ) such that

lim inf
t→∞ ‖�̂(t)û0 − (P̃ (·),0, Ã(·),0)‖ ≤ ε̂1, (3.15)

where �̂(t)û0 = (Ŝh(·, t), Îh(·, t), Ŝv(·, t), Îv(·, t)). For any fixed ε2 > 0 small enough, let �ε2
1 =

�1(D2, D5, qh, qv, ε2) be the principal eigenvalue of problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D2w2xx + qhw2x + k̂1(x, P̃ − ε2)w5 − δh(x)w2 + �
ε2
1 w2 = 0, 0 < x <L,

D5w5xx + qvw5x + k̂2(x, Ã − ε2)w2 − dv(x)w5 + �
ε2
1 w5 = 0, 0 < x <L,

w2x(0) = w5x(0) = 0,

D2w2x(L) + ν1qhw2(L) = D5w5x(L) + ν2qvw5(L) = 0,

with positive eigenfunction (w2, w5), wherein

k̂1(x, P̃ − ε2) = ∂
Ĩv
g1(x, e

ah
D1

x
(P̃ − ε2), ε2) and k̂2(x, Ã − ε2) = ∂

Ĩh
g2(x, e

av
D4

x
(Ã − ε2), ε2).

Recalling that R0 > 1, we have �1 < 0. Since �ε2
1 → �1 as ε2 → 0, it follows that there is a 

sufficiently small ε2 such that �ε2
1 < 0. Without loss of generality, choose ε̂1 = ε2. From (3.15), 

there is a t̂0 ≥ 0 such that Ŝh(·, t) ≥ P̃ (·) − ε2, Ŝv(·, t) ≥ Ã(·) − ε2, Îh(·, t) ≤ ε2 and Îv(·, t) ≤ ε2, 
for any x ∈ [0, L] and t ≥ t̂0. Therefore,

g12(x, Ŝh, Îv) ≥ ∂
Ĩv
g1(x, e

ah
D1

x
(P̃ − ε2), ε2)Îv = k̂1(x, P̃ − ε2)Îv,

and
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g22(x, Ŝv, Îh) ≥ ∂
Ĩh
g2(x, e

av
D4

x
(Ã − ε2), ε2)Îh = k̂2(x, Ã − ε2)Îh.

By appealing to Theorem 2.1 and strong maximum principle, there is constant ζ0 > 0 such that 
Îh(x, ̂t0) ≥ ζ0w2(x) and Îv(x, ̂t0) ≥ ζ0w5(x) for any x ∈ [0, L]. It is straightforward that (Îh, Îv)
is a super-solution of the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Īht = D2Īhxx + qhĪhx + k̂1(x, P̃ − ε2)Īv − δh(x)Īh, 0 < x <L, t > t̂0,

Īvt = D5Īvxx + qvĪvx + k̂2(x, Ã − ε2)Īh − dv(x)Īv, 0 < x <L, t > t̂0,

Īhx(0, t) = Īvx(0, t) = 0, t > t̂0,

D2Īhx(L, t) + ν1qhĪh(L, t) = D5Īvx(L, t) + ν2qvĪv(L, t) = 0, t > t̂0,

Īh(x, t̂0) = ζ0w2(x), Īv(x, t̂0) = ζ0w5(x), 0 < x <L.

(3.16)
Noting that (ζ0e

−�
ε2
1 (t−t̂0)w2, ζ0e

−�
ε2
1 (t−t̂0)w5) is a solution of (3.16), so the comparison principle 

implies that

Îh(x, t) ≥ ζ0e
−�

ε2
1 (t−t̂0)w2(x), Îv(x, t) ≥ ζ0e

−�
ε2
1 (t−t̂0)w5(x), t ≥ t̂0, x ∈ [0,L].

Then Îh(x, t) → ∞ and Îv(x, t) → ∞, t → ∞, because of �ε2
1 < 0, which contradicts (3.15)

and thereby deduces Claim 2. Hence, {Ẽ0} is an isolated invariant set for �̃(t) restricted 
in E, and WS({Ẽ0}) ∩ �0 = ∅, where WS({Ẽ0}) represents the stable set of {Ẽ0} w.r.t 
�̃(t).

By Claims 1-2 and Theorem 1.3.1 in [40], �̃(t) is uniformly persistent for (E, ∂�0). There-
fore, we complete the proof of (3.14), and so (3.12) is valid. Similarly, the conclusions of 
Lemma 3.5 hold for system (1.3). This finishes the proof. �
Theorem 3.2. Suppose (F1)-(F3) hold. If R0 > 1, there exists a constant ε3 > 0, such that the 
solution of (1.2) (resp. (1.3)) fulfills

lim inf
t→∞ Sh(x, t) ≥ ε3, lim inf

t→∞ Sv(x, t) ≥ ε3, (3.17)

and

lim inf
t→∞ Ih(x, t) ≥ g−

1 (ε3, ε0)

δ+
h

, lim inf
t→∞ Iv(x, t) ≥ g−

2 (ε3, ε0)

d+
v

(3.18)

uniformly for x ∈ (0, L), where g−
i (ε3, ε0) := min{gi(x, ε3, ε0) : 0 ≤ x ≤ L}, i = 1, 2. Further-

more, system (1.2) (resp. (1.3)) has at least one EE.
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Proof. For system (1.2), by Lemma 3.5, the inequality (3.17) is obvious and there exists a point 
t2 ≥ 0, such that |Ih(x, t)| ≥ ε0 and |Iv(x, t)| ≥ ε0 for any x ∈ [0, L] and t > t2. Thus, from the 
second and fourth equations of (1.2) and (F1), one gets

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Iht ≥ D2Ihxx − qhIhx + g1(x, ε3, ε0) − δh(x)Ih, 0 < x <L, t > t2,

Ivt ≥ D5Ivxx − qvIvx + g2(x, ε3, ε0) − dv(x)Iv, 0 < x <L, t > t2,

D2Ihx(0, t) − qhIh(0, t) = D5Ivx(0, t) − qvIv(0, t) = 0, t > t2,

D2Ihx(L, t) − qhIh(L, t) = −ν1qhIh(L, t), t > t2,

D5Ivx(L, t) − qvIv(L, t) = −ν2qvIv(L, t), t > t2.

Then utilizing the comparison principle yields that (3.18) holds. Moreover, system (1.2) admits 
at least one endemic steady state when R0 > 1 thanks to [40, Theorem 1.3.7]. One can similarly 
deal with system (1.3). This completes the proof. �
4. Monotonicity and asymptotic profiles of basic reproduction ratio

The monotonicity of R0 for systems (1.2) and (1.3) w.r.t the advection rates qh and qv is as 
follows:

Proposition 4.1. Suppose the conditions of Lemma 3.1 hold and νi ≥ 1/2, i = 1, 2. For any fixed 
D2 > 0 and D5 > 0, R0 is strictly monotonically decreasing w.r.t qh and qv , respectively.

Proof. Similar to the arguments of [1, Proposition 2.20] and [10, Lemma 15.1], R0 and the 
eigenfunction (�2, �5) of (3.3) are differentiable w.r.t qh and qv , respectively. Since (�2, �5) =
eαx(ϕ2, ϕ5), it follows that (ϕ2, ϕ5) is differentiable w.r.t qh and qv , respectively. Differentiating 
system (3.7) w.r.t qh to yield

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−D2ϕ̇2xx − ϕ2x − qhϕ̇2x + δh(x)ϕ̇2 = −Ṙ0

R2
0

k1(x,P )ϕ5 + 1

R0
k1(x,P )ϕ̇5, 0 < x <L,

−D5ϕ̇5xx − qvϕ̇5x + dv(x)ϕ̇5 = −Ṙ0

R2
0

k2(x,A)ϕ2 + 1

R0
k2(x,A)ϕ̇2, 0 < x <L,

ϕ̇2x(0) = ϕ̇5x(0) = 0,

D2ϕ̇2x(L) + ν1ϕ2(L) + ν1qhϕ̇2(L) = D5ϕ̇5x(L) + ν2qvϕ̇5(L) = 0,

(4.1)
where ̇ denotes the derivative w.r.t qh. By multiplying the first and second equations of (4.1) by 
eqhx/D2ϕ2 and eqvx/D5ϕ5, and integrating the resulting equation in (0, L), we obtain
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D2

L∫
0

e
qh
D2

x
ϕ2xϕ̇2xdx +

L∫
0

e
qh
D2

x
δh(x)ϕ2ϕ̇2dx + qh

2D2

L∫
0

e
qh
D2

x
ϕ2

2dx

+
(
ν1 − 1

2

)
e

qh
D2

L
ϕ2

2(L) + ν1qhe
qh
D2

L
ϕ2(L)ϕ̇2(L) + 1

2
ϕ2

2(0)

= −Ṙ0

R2
0

L∫
0

e
qh
D2

x
k1(x,P )ϕ2ϕ5dx + 1

R0

L∫
0

e
qh
D2

x
k1(x,P )ϕ2ϕ̇5dx,

D5

L∫
0

e
qv
D5

x
ϕ5xϕ̇5xdx +

L∫
0

e
qv
D5

x
dv(x)ϕ5ϕ̇5dx + ν2qve

qv
D5

L
ϕ5(L)ϕ̇5(L)

= −Ṙ0

R2
0

L∫
0

e
qv
D5

x
k2(x,A)ϕ2ϕ5dx + 1

R0

L∫
0

e
qv
D5

x
k2(x,A)ϕ̇2ϕ5dx.

(4.2)

Similarly, multiplying the first and second equations of (3.7) by eqhx/D2 ϕ̇2 and eqvx/D5 ϕ̇5, and 
then integrating the resulting equation over (0, L) to give

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D2

L∫
0
e

qh
D2

x
ϕ2xϕ̇2xdx +

L∫
0
e

qh
D2

x
δh(x)ϕ2ϕ̇2dx + ν1qhe

qh
D2

L
ϕ2(L)ϕ̇2(L)

= 1

R0

L∫
0

e
qh
D2

x
k1(x,P )ϕ̇2ϕ5dx,

D5

L∫
0
e

qv
D5

x
ϕ5xϕ̇5xdx +

L∫
0
e

qv
D5

x
dv(x)ϕ5ϕ̇5dx + ν2qve

qv
D5

L
ϕ5(L)ϕ̇5(L)

= 1

R0

L∫
0

e
qv
D5

x
k2(x,A)ϕ̇2ϕ5dx.

(4.3)

Subtracting (4.2) from (4.3) to get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṙ0

R2
0

L∫
0

e
qh
D2

x
k1(x,P )ϕ2ϕ5dx = −

(
ν1 − 1

2

)
e

qh
D2

L
ϕ2

2(L) − 1

2
ϕ2

2(0) − qh

2D2

L∫
0

e
qh
D2

x
ϕ2

2dx

+ 1

R0

L∫
0

e
qh
D2

x
k1(x,P )(ϕ2ϕ̇5 − ϕ̇2ϕ5)dx,

Ṙ0

R2
0

L∫
0

e
qv
D5

x
k2(x,A)ϕ5ϕ2dx = 1

R0

L∫
0

e
qv
D5

x
k2(x,A)(ϕ̇2ϕ5 − ϕ2ϕ̇5)dx.

By adding the above two equalities, one has
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Ṙ0 = −R2
0

(
ν1 − 1

2

)
e

qh
D2

L
ϕ2

2(L) + 1
2ϕ

2
2(0) + qh

2D2

L∫
0
e

qh
D2

x
ϕ2

2dx

L∫
0
e

qh
D2

x[k1(x,P ) + k2(x,A)]ϕ2ϕ5dx

< 0

which is owing to the assumption (F2) and k1(·, P) ≡ k2(·, A) in (0, L), ν1 ≥ 1/2. Therefore, R0
is a strictly monotone decreasing function of qh. Through the similar arguments, R0 is a strictly 
monotone decreasing function of qv . In a similar fashion, we can show the monotonicity of R0
for system (1.3). This ends the proof. �
Remark 4.1. In biology, the condition νi ≥ 1/2 indicates that only when the infected loss of 
the host or vector at the downstream end has to be at least half of the advective effect, so as to 
guarantee the monotonicity of R0 w.r.t qh or qv .

In what follows, we study the asymptotic profiles of R0 of systems (1.2) and (1.3).

Proposition 4.2. Suppose the conditions of Lemma 3.1 hold. Then, for i = 1, 2,

(i) For each D2 > 0, D5 > 0 and νi ∈ [1/2, ∞], R0 → 0 as qh → ∞ or qv → ∞;
(ii) For each qh > 0, qv > 0 and νi ∈ [1/2, ∞], R0 → 0 as D2 → 0 or D5 → 0;

(iii) For each qh > 0, qv > 0 and νi ∈ (0, ∞), R0 →√
Ra

1Ra
2 as D2 → ∞ and D5 → ∞, where

Ra
1 :=

L∫
0
k1(x,P )dx

ν1qh +
L∫
0
δh(x)dx

, Ra
2 :=

L∫
0
k2(x,A)dx

ν2qv +
L∫
0
dv(x)dx

;

(iv) For each D2 > 0, D5 > 0 and νi ∈ (0, ∞], R0 → R̃0 as qh → 0 and qv → 0, where R̃0
denotes the basic reproduction ratio of (1.2) for qh = qv = 0 which is given by

R̃0 = sup
ϕ2,ϕ5∈H 1((0,L))

ϕ2 �=0, ϕ5 �=0

{√
�̃0

1(ϕ2, ϕ5)�̃
0
2(ϕ2, ϕ5)

}
, (4.4)

where

�̃0
1(ϕ2, ϕ5) :=

L∫
0
k1(x,P0)ϕ2ϕ5dx

D2

L∫
0
ϕ2

2xdx +
L∫
0
δh(x)ϕ

2
2dx

, �̃0
2(ϕ2, ϕ5) :=

L∫
0
k2(x,A0)ϕ2ϕ5dx

D5

L∫
0
ϕ2

5xdx +
L∫
0
dv(x)ϕ

2
5dx

,

and P0 (resp. A0) is the unique positive steady state of (2.1) for D = D1, μ(x) = dh(x)

(resp. D = D4, μ(x) = dv(x)) and q = 0.
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Proof. For νi ∈ (0, ∞), i = 1, 2. By (3.5), one has

R2
0 = sup

ϕ2,ϕ5∈H 1((0,L))
ϕ2 �=0, ϕ5 �=0

{�1(ϕ2, ϕ5)�2(ϕ2, ϕ5)}

≥

L∫
0
k1(x,P )e

qh
D2

x
dx

L∫
0
k2(x,A)e

qv
D5

x
dx(

ν1qhe
qh
D2

L +
L∫
0
δh(x)e

qh
D2

x
dx

)(
ν2qve

qv
D5

L +
L∫
0
dv(x)e

qv
D5

x
dx

)

≥

L∫
0
k1(x,P )dx

L∫
0
k2(x,A)dx

e
(
qh
D2

+ qv
D5

)L

(
ν1qh +

L∫
0
δh(x)dx

)(
ν2qv +

L∫
0
dv(x)dx

)

(4.5)

which is owing to the fact that eqhx/D2 ≥ 1 and eqvx/D5 ≥ 1, x ∈ [0, L]. Then R0 is bounded 
below for sufficiently large qh or qv or sufficiently small D2 or D5. Inspired by the arguments 
in [15, Lemma 4.9], letting (ϕ2(x), ϕ5(x)) = e−αx/2(φ2(x), φ5(x)) in (3.5), where α = qh/D2 =
qv/D5, and with the aid of the hypothesis νi ≥ 1/2, i = 1, 2, one gets

ν1qhe
qh
D2

L
ϕ2

2(L) + D2

L∫
0

e
qh
D2

x
ϕ2

2xdx +
L∫

0

δh(x)e
qh
D2

x
ϕ2

2dx

=ν1qhφ
2
2(L) + D2

L∫
0

(
−α

2
φ2 + φ2x

)2
dx +

L∫
0

δh(x)φ
2
2dx

=ν1qhφ
2
2(L) + q2

h

4D2

L∫
0

φ2
2dx − qh

L∫
0

φ2φ2xdx + D2

L∫
0

φ2
2xdx +

L∫
0

δh(x)φ
2
2dx

=
(
ν1 − 1

2

)
qhφ

2
2(L) + qh

2
φ2

2(0) + q2
h

4D2

L∫
0

φ2
2dx + D2

L∫
0

φ2
2xdx +

L∫
0

δh(x)φ
2
2dx,

≥
(

q2
h

4D2
+ δ−

h

) L∫
0

φ2
2dx,

and

ν2qve
qv
D5

L
ϕ2

5(L) + D5

L∫
e

qv
D5

x
ϕ2

5xdx +
L∫
dv(x)e

qv
D5

x
ϕ2

5dx
0 0
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=
(
ν2 − 1

2

)
qvφ

2
5(L) + qv

2
φ2

5(0) + q2
v

4D5

L∫
0

φ2
5dx + D5

L∫
0

φ2
5xdx +

L∫
0

dv(x)φ
2
5dx

≥
(

q2
v

4D5
+ d−

v

) L∫
0

φ2
5dx.

In addition, by means of the Cauchy-Schwarz inequality, we have

L∫
0

k1(x,P )e
qh
D2

x
ϕ2ϕ5dx =

L∫
0

k1(x,P )φ2φ5dx ≤ k+
1

⎛⎝ L∫
0

φ2
2dx

⎞⎠
1
2
⎛⎝ L∫

0

φ2
5dx

⎞⎠
1
2

,

and

L∫
0

k2(x,A)e
qv
D5

x
ϕ2ϕ5dx ≤ k+

2

⎛⎝ L∫
0

φ2
2dx

⎞⎠
1
2
⎛⎝ L∫

0

φ2
5dx

⎞⎠
1
2

.

As a consequence,

1

R2
0

= inf
ϕ2,ϕ5∈H 1((0,L))

ϕ2 �=0,ϕ5 �=0

{
1

�1(ϕ2, ϕ5)�2(ϕ2, ϕ5)

}

≥ inf
φ2,φ5∈H 1((0,L))

φ2 �=0,φ5 �=0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

q2
h

4D2
+ δ−

h

)(
q2
v

4D5
+ d−

v

) L∫
0
φ2

2dx
L∫
0
φ2

5dx

k+
1 k+

2

L∫
0
φ2

2dx
L∫
0
φ2

5dx

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

(
q2
h

4D2
+ δ−

h

)(
q2
v

4D5
+ d−

v

)
k+

1 k+
2

.

(4.6)

In light of (4.5)-(4.6), we see that (i) and (ii) hold when νi < ∞, i = 1, 2. Similarly, one can 
show (i) and (ii) when νi = ∞, i = 1, 2.

Since

1

R2
0

= inf
ϕ2,ϕ5∈H 1((0,L))

ϕ2 �=0,ϕ5 �=0

{
1

�1(ϕ2, ϕ5)�2(ϕ2, ϕ5)

}

≤

[
ν1qhe

qh
D2

L +
L∫
0
δh(x)e

qh
D2

x
dx

][
ν2qve

qv
D5

L +
L∫
0
dv(x)e

qv
D5

x
dx

]
L∫
k1(x,P )e

qh
D2

x
dx

L∫
k2(x,A)e

qv
D5

x
dx

,

0 0
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it follows that 1/R0 is uniformly bounded in terms of D2 and D5 large enough. Thus, passing 
to a sequence if necessary, there is a finite constant R∗

0 > 0 such that R0 → R∗
0 when D2 → ∞

and D5 → ∞. Let (�2, �5) be a positive eigenfunction corresponding to 1/R0 of (3.3). As-
sume ‖�2‖ + ‖�5‖ = 1. Together with Lp estimate and the discussion of [26], ‖�2‖W 2,p((0,L))

and ‖�4‖W 2,p((0,L)) are uniformly bounded for any p > 1. And, thereby ‖�2‖C1,ς ((0,L)) and 
‖�5‖C1,ς ((0,L)) are uniformly bounded for any 0 ≤ ς ≤ 1, by inspection of the Sobolev embed-
ding theorem (see [8]). Then �j(·) → � ∗

j in C1([0, L]) for some � ∗
j > 0, j = 2, 5, as D2 → ∞

and D5 → ∞. The elliptic regularity estimate deduces that � ∗
j is a constant, j = 2, 5. Therefore, 

through integrating (3.3) over (0, L) and letting D2 → ∞ and D5 → ∞, one obtains⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν1qh�
∗
2 + � ∗

2

L∫
0

δh(x)dx = � ∗
5

R∗
0

L∫
0

k1(x,P )dx,

ν2qv�
∗
5 + � ∗

5

L∫
0

dv(x)dx = � ∗
2

R∗
0

L∫
0

k2(x,A)dx.

Then (iii) holds. For (iv), it is obvious and so we omit the details. This ends the proof. �
Remark 4.2. From Proposition 4.2 (i)-(ii), we can see that when the advection rate of infected 
hosts or vectors is dominant relative to their diffusion rates, the basic reproduction ratio of (1.2)
(resp. (1.3)) tends to zero. Biologically, since the downstream environment is unfavorable for 
individual survival when νi ≥ 1/2, i = 1, 2, the infected hosts or vectors will be lost at the 
downstream end x = L as qh or qh is large relative to D2 or D5. In this circumstance, the vector-
borne disease will fade.

5. Classification on the dynamics of model (1.2)

Define

Ra
01 :=

√
Rvh

01Rhv
01 , Ra

02 :=
√
Rvh

02Rhv
02 ,

where

Rvh
01 :=

L∫
0
k1(x,P0)dx

L∫
0
δh(x)dx

, Rhv
01 :=

L∫
0
k2(x,A0)dx

L∫
0
dv(x)dx

, Rvh
02 :=

L∫
0
k1(x,P )dx

L∫
0
δh(x)dx

, Rhv
02 :=

L∫
0
k2(x,A)dx

L∫
0
dv(x)dx

.

We adopt the terminology analogous to that in [28]. The habitat is said to be a high-risk area if 
Ra

01 > 1, and be a low-risk area if Ra
01 < 1. In the following, we always fix νi ≥ 1/2, i = 1, 2.

5.1. Classification on the dynamics in high-risk domain

In this subsection, we explore the level set classification of R0 for (1.2) w.r.t the diffusion 
rates (D2, D5) and advection rates (qh, qv) in high-risk area.
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Lemma 5.1. Suppose the conditions of Lemma 3.1 hold, and R0 is defined by (3.5). If Ra
01 > 1, 

then for each D2 > 0 and D5 > 0, there exist unique points q∗
h = q∗

h(D2, D5) and q∗
v =

q∗
v (D2, D5) such that

(i) If 0 < qh < q∗
h or 0 < qv < q∗

v , then R0(D2, D5) > 1;
(ii) If qh > q∗

h or qv > q∗
v , then R0(D2, D5) < 1.

Proof. By appealing to Proposition 4.2, for any D2 > 0 and D5 > 0, we have

lim
qh→0, qv→0

R0(D2,D5, qh, qv) = R̃0(D2,D5),

and

lim
qh→∞R0(D2,D5, qh, qv) = 0, lim

qv→∞R0(D2,D5, qh, qv) = 0.

Thanks to Ra
01 > 1 and [28, Lemma 3.1], one has R̃0(D2, D5) > 1. It then follows that there are 

at least two points q∗
h = q∗

h(D2, D5) and q∗
v = q∗

v (D2, D5) such that R0(q
∗
h, q

∗
v ) = 1. Moreover, 

noting that R0 is strictly monotonically decreasing w.r.t qh and qv , respectively, in Proposi-
tion 4.1, hence (q∗

h, q
∗
v ) is unique. This completes the proof. �

Remark 5.1. By inspection of Lemma 5.1, it is straightforward to see that there are unique func-
tions qh = χ1(D2, D5) and qv = χ2(D2, D5) such that R0(D2, D5, χ1(D2, D5), χ2(D2, D5)) =
1. In the sequel, we analyze the properties of χi , i = 1, 2.

Lemma 5.2. Suppose the conditions of Lemma 3.1 hold. If min{Ra
01, Ra

02} > 1, then for each 
D2 > 0 and D5 > 0, there exist unique functions χ1(D2, D5) and χ2(D2, D5): (0, ∞)2 →
(0, ∞) such that

lim
D2→0+,D5→0+ χi(D2,D5) = 0, lim

D2→∞,D5→∞χi(D2,D5) = θ∗
i , i = 1,2,

where θ∗
1 and θ∗

2 satisfy θ∗
1 /D2 = θ∗

2 /D5, and θ∗
1 is the unique positive solution of the equation

⎡⎣ν1θ +
L∫

0

δh(x)dx

⎤⎦⎡⎣ν2D5D
−1
2 θ +

L∫
0

dv(x)dx

⎤⎦−
L∫

0

k1(x,P )dx

L∫
0

k2(x,A)dx = 0.

Proof. Passing to a subsequence if necessary, we assume that there exist two constants pi ∈
[0, ∞] such that χi(D2, D5) → pi , i = 1, 2, as D2 → 0+ and D5 → 0+. If p1 = p2 = ∞, 
then there is a sufficiently small constant as > 0 and a sufficiently large constant al > 0 such 
that max{χ1(D2, D5), χ2(D2, D5)} > al when min{D2, D5} < as . Hence, according to Proposi-
tion 4.2 (i), for fixed min{D2, D5} < as , we have

lim R0(D2,D5, χ1(D2,D5),χ2(D2,D5)) = 0,

χ1(D2,D5)→∞,χ2(D2,D5)→∞

71



K. Wang, H. Wang and H. Zhao Journal of Differential Equations 386 (2024) 45–79
which contradicts R0(D2, D5, χ1(D2, D5), χ2(D2, D5)) = 1 and thus pi ∈ [0, ∞), i = 1, 2. If 
p1, p2 > 0, then Proposition 4.2 (ii) yields that

lim
D2→0+,D5→0+,χ1(D2,D5)→p1,χ2(D2,D5)→p2

R0(D2,D5, χ1(D2,D5),χ2(D2,D5)) = 0,

which contradicts R0(D2, D5, χ1(D2, D5), χ2(D2, D5)) = 1 and so p1 = p2 = 0.
Similarly, supposing that there are two constants θ∗

i ∈ [0, ∞] such that χi(D2, D5) → θ∗
i , 

i = 1, 2, as D2 → ∞ and D5 → ∞. If θ∗
1 = θ∗

2 = ∞, then there are sufficiently large positive 
constants al1 and al2 such that max{χ1(D2, D5), χ2(D2, D5)} > al2 when max{D2, D5} > al1. 
Hence, by Proposition 4.2 (i), for fixed max{D2, D5} > al1, one gets

lim
χ1(D2,D5)→∞,χ2(D2,D5)→∞R0(D2,D5, χ1(D2,D5),χ2(D2,D5)) = 0,

which also contradicts R0(D2, D5, χ1(D2, D5), χ2(D2, D5)) = 1 and then θ∗
i ∈ [0, ∞), i = 1, 2.

To illustrate θ∗
i > 0, i = 1, 2. Let (ϕ∗

2 , ϕ
∗
5 ) be the positive eigenfunction corresponding to 

R0(D2, D5, χ1(D2, D5), χ2(D2, D5)) = 1 (i.e., �0 = 1) of problem (3.7) satisfying ‖ϕ∗
2‖ +

‖ϕ∗
5‖ = 1. Multiplying the two equations of (3.7) by eχ1(D2,D5)x/D2 and eχ2(D2,D5)x/D5 to give⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−D2

[
e

χ1(D2,D5)
D2

x
ϕ∗

2x

]
x

= e
χ1(D2,D5)

D2
x[−δh(x)ϕ

∗
2 + k1(x,P )ϕ∗

5 ], 0 < x <L,

−D5

[
e

χ2(D2,D5)
D5

x
ϕ∗

5x

]
x

= e
χ2(D2,D5)

D5
x[−dv(x)ϕ

∗
5 + k2(x,A)ϕ∗

2 ], 0 < x <L,

ϕ∗
2x(0) = ϕ∗

5x(0) = 0,

D2ϕ
∗
2x(L) + ν1qhϕ

∗
2 (L) = D5ϕ

∗
5x(L) + ν2qvϕ

∗
5 (L) = 0.

By integrating the above equality on (0, L), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν1χ1(D2,D5)e
χ1(D2,D5)

D2
L
ϕ∗

2 (L) +
L∫

0

e
χ1(D2,D5)

D2
x
δh(x)ϕ

∗
2 dx −

L∫
0

e
χ1(D2,D5)

D2
x
k1(x,P )ϕ∗

5 dx = 0,

ν2χ2(D2,D5)e
χ2(D2,D5)

D5
L
ϕ∗

5 (L) +
L∫

0

e
χ2(D2,D5)

D5
x
dv(x)ϕ

∗
5 dx −

L∫
0

e
χ2(D2,D5)

D5
x
k2(x,A)ϕ∗

2 dx = 0.

(5.1)
With the aid of the standard elliptic regularity estimate, there exist positive constants ϕ̄∗

2 and ϕ̄∗
5

satisfying ‖ϕ̄∗
2‖ + ‖ϕ̄∗

5‖ = 1 such that (ϕ∗
2 , ϕ

∗
5 ) → (ϕ̄∗

2 , ϕ̄
∗
5 ) as D2 → ∞ and D5 → ∞. Taking a 

limit by letting D2 → ∞ and D5 → ∞ in (5.1), it follows that⎛⎜⎜⎜⎝
ν1θ

∗
1 +

L∫
0
δh(x)dx −

L∫
0
k1(x,P )dx

−
L∫
k2(x,A)dx ν2θ

∗
2 +

L∫
δh(x)dx

⎞⎟⎟⎟⎠
(
ϕ̄∗

2
ϕ̄∗

5

)
:= K

(
ϕ̄∗

2
ϕ̄∗

5

)
= 0.
0 0
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Since ϕ̄∗
2 and ϕ̄∗

5 are constants, the determinant of matrix K vanishes, that is,

⎡⎣ν1θ
∗
1 +

L∫
0

δh(x)dx

⎤⎦⎡⎣ν2θ
∗
2 +

L∫
0

δh(x)dx

⎤⎦−
L∫

0

k1(x,P )dx

L∫
0

k2(x,A)dx = 0.

From the assumption (F2), we get θ∗
1 /D2 = θ∗

2 /D5 and thus

⎡⎣ν1θ
∗
1 +

L∫
0

δh(x)dx

⎤⎦⎡⎣ν2D5D
−1
2 θ∗

1 +
L∫

0

dv(x)dx

⎤⎦−
L∫

0

k1(x,P )dx

L∫
0

k2(x,A)dx = 0. (5.2)

By Ra
02 > 1, it is easy to verify that (5.2) admits a unique root θ∗

1 > 0. This ends the proof. �
Then we have the following main conclusions.

Theorem 5.1. Suppose the conditions of Lemma 3.1 hold. If min{Ra
01, Ra

02} > 1, then for each 
D2 > 0 and D5 > 0, then there are unique surfaces

�1 = {(qh,χ1(D2,D5)) :R0(D2,D5, χ1(D2,D5)) = 1, (D2,D5) ∈ (0,∞)2},

and

�2 = {(qv,χ2(D2,D5)) : R0(D2,D5, χ2(D2,D5)) = 1, (D2,D5) ∈ (0,∞)2},

in spaces qh − (D2, D5) and qv − (D2, D5), respectively, such that system (1.2) is uniformly 
persistent and admits at least one EE for any 0 < qh < χ1(D2, D5) or 0 < qv < χ2(D2, D5), 
and E0 is GAS for any qh > χ1(D2, D5) or qv > χ2(D2, D5). Furthermore, χ1(D2, D5) and 
χ2(D2, D5): (0, ∞)2 → (0, ∞) fulfill

lim
D2→0+,D5→0+ χi(D2,D5) = 0, lim

D2→∞,D5→∞χi(D2,D5) = θ∗
i , i = 1,2,

where θ∗
1 and θ∗

2 satisfy θ∗
1 /D2 = θ∗

2 /D5, and θ∗
1 is the unique positive solution of the equation

⎡⎣ν1θ +
L∫

0

δh(x)dx

⎤⎦⎡⎣ν2D5D
−1
2 θ +

L∫
0

dv(x)dx

⎤⎦−
L∫

0

k1(x,P )dx

L∫
0

k2(x,A)dx = 0.

Remark 5.2. Define

�S
qj

= {(D2,D5, qj ) : R0(D2,D5, qj ) < 1, Ra
01 > 1, Ra

02 > 1},

and

�U
q = {(D2,D5, qj ) :R0(D2,D5, qj ) > 1, Ra > 1, Ra > 1}, j ∈ {h,v}.

j 01 02
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Fig. 1. Dynamic classification of model (1.2) in Theorem 5.1. The direction of red and blue arrows denotes the 
areas �S

qj
and �U

qj
, respectively. Namely, �S

qj
= {(D2, D5, qj ) : qj > χi(D2, D5), D2 > 0, D5 > 0} and �U

qj
=

{(D2, D5, qj ) : 0 < qj < χi(D2, D5), D2 > 0, D5 > 0}, i = 1, 2, j ∈ {h, v}. (a) In space qh − (D2, D5), E0 is GAS 
when (D2, D5, qh) ∈ �S

qh
which means that the disease extinction happens, while system (1.2) is uniformly persistent 

when (D2, D5, qh) ∈ �U
qh

which implies that the disease will surge; (b) In space qv − (D2, D5), E0 is GAS when 
(D2, D5, qv) ∈ �S

qv
, while system (1.2) is uniformly persistent when (D2, D5, qv) ∈ �U

qv
. (For interpretation of the 

colors in the figure(s), the reader is referred to the web version of this article.)

The illustrations of Theorem 5.1 are given by Fig. 1.
The conclusions of Theorem 5.1 show that when min{Ra

01, Ra
02} > 1, there are two thresholds 

w.r.t advection rates, such that when the advection rate of infected hosts or vectors exceeds the 
threshold, the disease will go extinct, but when it falls below the threshold, the disease will break 
out. Biologically, in open advective environments, when the advection rate of hosts or vectors is 
large enough, the hosts or vectors will be washed out from the habitat, resulting in the extinction 
of the disease.

5.2. Classification on the dynamics in low-risk domain

In the following, we discuss the level set classification of R0 in low-risk areas.

Lemma 5.3. Suppose the conditions of Lemma 3.1 hold, and R0 is defined by (3.5). If Ra
01 < 1, 

and k1(x, P0)k2(x, A0) − δh(x)dv(x) changes sign in (0, L), then there exist two positive con-
stants D∗

2 and D∗
5 , which is the unique root of the equation R̃0(D2, D5) = 1, such the following 

assertions hold:

(i) For D2 ∈ (0, D∗
2) and D5 ∈ (0, D∗

5), there exist unique points q∗∗
h = q∗∗

h (D2, D5) and 
q∗∗
v = q∗∗

v (D2, D5), such that R0(D2, D5) > 1 for any 0 < qh < q∗∗
h or 0 < qv < q∗∗

v , and 
R0(D2, D5) < 1 for any qh > q∗∗

h or qv > q∗∗
v ;

(ii) For D2 ∈ [D∗
2 , ∞) and D5 ∈ [D∗

5 , ∞), R0(D2, D5) < 1 for any qh > 0 and qv > 0.

Proof. It follows from Proposition 4.2 that

lim R0(D2,D5, qh, qv) = 0, lim R0(D2,D5, qh, qv) = 0.

qh→∞ qv→∞
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Since Ra
01 < 1 and k1(x, P0)k2(x, A0) − δh(x)dv(x) changes sign in (0, L), the Lemma 3.1 in 

[28] implies that the equation R̃0(D2, D5) = 1 possesses a unique positive root pair (D∗
2, D

∗
5)

such that R̃0(D2, D5) > 1 for D2 ∈ (0, D∗
2) and D5 ∈ (0, D∗

5), and R̃0(D2, D5) ≤ 1 for D2 ∈
[D∗

2 , ∞) and D5 ∈ [D∗
5 , ∞). Thus, in light of the monotonicity of R0 w.r.t qh and qv , and the 

fact

lim
qh→0, qv→0

R0(D2,D5, qh, qv) = R̃0(D2,D5),

we obtain that when D2 ∈ (0, D∗
2) and D5 ∈ (0, D∗

5), there exist the unique points q∗∗
h and q∗∗

v

such that R0(D2, D5, qh, qv) > 1 for qh ∈ (0, q∗∗
h ) or qv ∈ (0, q∗∗

v ) and R0(D2, D5, qh, qv) < 1
for qh ∈ (q∗∗

h , ∞) or qv ∈ (q∗∗
v , ∞); when D2 ∈ [D∗

2 , ∞) and D5 ∈ [D∗
5 , ∞), R0(D2, D5, qh, qv) <

1 for any qh > 0 and qv > 0. �
Remark 5.3. In view of Lemma 5.3, there exist unique functions qh = χ3(D2, D5) and qv =
χ4(D2, D5) such that R0(D2, D5, χ3(D2, D5), χ4(D2, D5)) = 1 when D2 ∈ (0, D∗

2) and D5 ∈
(0, D∗

5). Furthermore, χi has the following properties, i = 3, 4.

Lemma 5.4. Suppose the conditions of Lemma 3.1 hold. If Ra
01 < 1, and k1(x, P0)k2(x, A0) −

δh(x)dv(x) changes sign on (0, L), then there exist unique functions χ3(D2, D5) and χ4(D2, D5): 
(0, D∗

2) × (0, D∗
5) → (0, ∞) such that

lim
D2→0+,D5→0+ χi(D2,D5) = 0, lim

D2→D∗−
2 ,D5→D∗−

5

χi(D2,D5) = 0, i = 3,4.

Proof. Similar to arguments of Lemma 5.2, one has χi(D2, D5) → 0 as D2 → 0+ and D5 → 0+, 
i = 3, 4. To show χi(D2, D5) → 0 as D2 → D∗−

2 and D5 → D∗−
5 , i = 3, 4. Assume that there are 

some positive constants c0 ≤ ∞ and c1 ≤ ∞ such that χ3(D2, D5) → c0 and χ4(D2, D5) → c1
as D2 → D∗−

2 and D5 → D∗−
5 . To substantiate that c0 and c1 are finite. Suppose not. Then 

R0(D2, D5, χ3(D2, D5), χ4(D2, D5)) → 0 as D2 → D∗−
2 and D5 → D∗−

5 due to Proposi-
tion 4.2 which contradicts R0(D2, D5, χ3(D2, D5), χ4(D2, D5)) = 1. By the monotonicity of 
R0 w.r.t qh and qv , 1 = R0(D

∗
2 , D

∗
5 , c0, c1) < R0(D

∗
2 , D

∗
5 , 0, 0) = 1 which is a contradiction. 

Hence, c0 = 0 and c1 = 0. This completes the proof. �
Consequently, we obtain the main results.

Theorem 5.2. Suppose the conditions of Lemma 3.1 hold. If Ra
01 < 1 and k1(x, P0)k2(x, A0) −

δh(x)dv(x) changes sign in (0, L), then there exist two positive constants D∗
2 and D∗

5 , which is 
the unique root of the equation R̃0(D2, D5) = 1, such the following properties hold:

(i) For D2 ∈ (0, D∗
2) and D5 ∈ (0, D∗

5), there exist unique surfaces

�3 = {(qh,χ3(D2,D5)) :R0(D2,D5, χ3(D2,D5)) = 1, (D2,D5) ∈ (0,D∗
2) × (0,D∗

5)},
and

�4 = {(qv,χ4(D2,D5)) : R0(D2,D5, χ4(D2,D5)) = 1, (D2,D5) ∈ (0,D∗) × (0,D∗)},
2 5
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Fig. 2. Dynamic classification of model (1.2) in Theorem 5.2. The direction of red and blue arrows represents the 
regions �S

qj
and �U

qj
, respectively. In other words, �S

qj
= �S−1

qj
∪ �S−2

qj
where !S−1

qj
= {(D2, D5, qj ) : qj >

χj (D2, D5), (D2, D5) ∈ (0, D∗
2 ) × (0, D∗

5 )} and �S−2
qj

= {(D2, D5, qj ) : qj > 0, (D2, D5) ∈ [D∗
2 , ∞) × [D∗

5 , ∞)}, 
and �U

qj
= {(D2, D5, qj ) : 0 < qj < χi(D2, D5), (D2, D5) ∈ (0, D∗

2 ) × (0, D∗
5 )}, i = 3, 4, j ∈ {h, v}. (a) In space 

qh − (D2, D5), E0 is GAS when (D2, D5, qh) ∈ �S
qh

which implies that the disease will disappear, while system (1.2)

is uniformly persistent when (D2, D5, qh) ∈ �U
qh

which means that the disease will surge; (b) In space qv − (D2, D5), 
E0 is GAS when (D2, D5, qv) ∈ �S

qv
, while system (1.2) is uniformly persistent when (D2, D5, qv) ∈ �U

qv
.

in spaces qh − (D2, D5) and qv − (D2, D5), respectively, such that system (1.2) is uniformly 
persistent and admits at least one EE for any 0 < qh < χ3(D2, D5) or 0 < qv < χ4(D2, D5), 
and E0 is GAS for any qh > χ3(D2, D5) or qv > χ4(D2, D5). Furthermore, χi(DI , dI ) :
(0, D∗

2) × (0, D∗
5) → (0, ∞) fulfills

lim
D2→0+,D5→0+ χi(D2,D5) = 0, lim

D2→D∗−
2 ,D5→D∗−

5

χi(D2,D5) = 0, i = 3,4.

(ii) For D2 ∈ [D∗
2 , ∞) and D5 ∈ [D∗

5 , ∞), E0 is GAS for any qh > 0 and qv > 0.

Remark 5.4. Define

�S
qj

= {(D2,D5, qj ) :R0(D2,D5, qj ) < 1, Ra
01 < 1},

and

�U
qj

= {(D2,D5, qj ) : R0(D2,D5, qj ) > 1, Ra
01 < 1}, j ∈ {h,v}.

The descriptions of Theorem 5.2 are illustrated as in Fig. 2.
Let χi := max{χi(D2, D5) : (D2, D5) ∈ [0, D∗

2 ] × [0, D∗
5 ]}, i = 3, 4. Theorem 5.2 (i) implies 

that: As long as the advection rate is large enough to make qh > χ3 (or qv > χ4), no matter what 
the dispersal rate is, the disease will fade. Note that the stability of E0 will change at least twice 
with the increase of D2 and D5 if 0 < qh < χ3 (or 0 < qv < χ4) is fixed. That is to say, E0 is 
GAS when D2 and D5 are small or large enough, but system (1.2) is uniformly persistent when 
D2 and D5 are between some intermediate values. In biology, for sufficiently small diffusion, 
advection effects convey hosts or vectors to a disadvantageous place since the hosts or vectors 
will be washed out from the habitat at the downstream end. For sufficiently large diffusion, 
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recalling that the habit is a low-risk site, the disease will also be eliminated. It can be observed 
from Theorems 5.1 and 5.2 that the use of open advective environment in vector-borne disease 
modeling will produce novel and interesting disease dynamics.

6. Conclusion and discussion

As a continuation of reference [28], this paper further studied a spatial vector-borne disease 
model with general incidences and general boundary conditions. Owing to the boundary condi-
tions, we first applied the eigenvalue theory of elliptic system to investigate the existence of DFE 
(Proposition 2.1), which allows us to discuss the global existence and ultimate boundedness with 
the help of the classical induction method (Theorem 2.1). Moreover, the threshold dynamics were 
also investigated, i.e., DFE is GAS when R0 < 1 and the systems (1.2) and (1.3) are uniformly 
persistent and admit at least one EE provided that R0 > 1, respectively.

One of the highlights of this work is that, under certain conditions, we seem to derive for 
the first time the variational expression of R0 for vector-borne disease models by means of the 
variational method [32]. With the aid of the variational formula, we examined the asymptotic 
behaviors of R0 w.r.t the diffusion and advection rates (Proposition 4.2). In particular, we found 
that when the diffusion rates (D2, D5) go arbitrarily small or the advection rates (qh, qv) go 
arbitrarily large, even if the downstream end is a high-risk site, the disease will eventually be 
eradicated. Biologically, this is mainly due to the fact that the downstream environment is not 
conducive to the survival of hosts and vectors, which is in contrast to Theorem 3.1 in [28]. 
Furthermore, we discussed the monotonicity of R0 w.r.t qh and qv . When νi ∈ [1/2, ∞], i = 1, 2, 
R0 is a monotone decreasing function of qh and qv , respectively. However, the monotonicity is 
not necessarily valid (see [28, Remark 4.3]) when the boundary conditions are selected as no-
flux type (i.e., ν1 = ν2 = 0). Then, we classified the dynamics of (1.2), and obtained interesting 
and important phenomena (Theorems 5.1 and 5.2). When the habitat locates in a high-risk area 
and Ra

02 > 1, there are unique surfaces χ1(D2, D5) and χ2(D2, D5), such that DFE is GAS as 
qh > χ1(D2, D5) or qv > χ2(D2, D5), and system (1.2) is uniformly persistent and has at least 
one EE as 0 < qh < χ1(D2, D5) or 0 < qv < χ2(D2, D5). When the habitat locates in a low-risk 
area and k1(x, P0)k2(x, A0) − δh(x)dv(x) changes sign in (0, L), there are unique critical points 
D∗

2 and D∗
5 , such that when (D2, D5) ∈ (0, D∗

2) × (0, D∗
5), there are unique surfaces χ3(D2, D5)

and χ4(D2, D5) such that DFE is GAS as qh > χ3(D2, D5) or qv > χ4(D2, D5), and system (1.2)
is uniformly persistent and has at least one EE as 0 < qh < χ3(D2, D5) or 0 < qv < χ4(D2, D5); 
When (D2, D5) ∈ (D∗

2 , ∞) × (D∗
5 , ∞), DFE is always GAS for any qh, qv > 0. It should be 

pointed out that k1(·, P) = k2(·, A) is mathematically a technical condition that makes F(·) a 
symmetric matrix. In addition, since the asymptotic profile of R0 for system (1.3) with Dirichlet 
type boundary conditions remains unclear in Proposition 4.2 (iii), the dynamic classification of 
(1.3) is not conclusive, which is reserved for future investigation.

This paper supplements and promotes the relevant results in [28]. In some circumstances, the 
downstream environment has different effects on the survival of hosts and vectors (mathemat-
ically, the downstream corresponds to hybrid boundary conditions). Therefore, it is interesting 
and necessary to study the influence of advection effect on vector-borne disease transmission un-
der hybrid boundary conditions. On the other hand, one simplification of our model is constant 
diffusion and advection coefficients. Nevertheless, the movement strategies of hosts and vectors 
depend on the spatial heterogeneity of the habitat and should follow the general model deriva-
tions in [21,22]. We will also explore the spatial dynamics of models (1.2) and (1.3) under the 
heterogeneous diffusion and advection.
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