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Abstract
The inclusion of cognitive processes, such as perception, learning and memory, are
inevitable in mechanistic animal movement modelling. Cognition is the unique fea-
ture that distinguishes animal movement from mere particle movement in chemistry
or physics. Hence, it is essential to incorporate such knowledge-based processes into
animal movement models. Here, we summarize popular deterministic mathematical
models derived from first principles that begin to incorporate such influences onmove-
ment behaviour mechanisms. Most generally, these models take the form of nonlocal
reaction-diffusion-advection equations, where the nonlocality may appear in the spa-
tial domain, the temporal domain, or both. Mathematical rules of thumb are provided
to judge the model rationality, to aid in model development or interpretation, and to
streamline an understanding of the range of difficulty in possible model conceptions.
To emphasize the importance of biological conclusions drawn from these models, we
briefly present available mathematical techniques and introduce some existing “mea-
sures of success” to compare and contrast the possible predictions and outcomes.
Throughout the review, we propose a large number of open problems relevant to this
relatively new area, ranging from precise technical mathematical challenges, to more
broad conceptual challenges at the cross-section between mathematics and ecology.
This review paper is expected to act as a synthesis of existing efforts while also pushing
the boundaries of current modelling perspectives to better understand the influence of
cognitive movement mechanisms on movement behaviours and space use outcomes.
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1 Introduction

The impact that the cognitive processes of organisms have on their movement is
undeniable and ecologically important (Fagan et al. 2013). Cognitive processes, such
as perception and memory, are unique features which distinguish the movement of
animals from that of non-living particles, such as atoms, molecules or projectiles;
similarly, the process of learning is a particularly unique feature which distinguishes
merely directed movement, such as in anisotropic media (Patlak 1953) or aggrega-
tion of slime mold (Keller and Segel 1970), from truly novel changes in behaviour
and space use, a standard hallmark of learning (Thrun and Pratt 1998). Without col-
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lecting and encoding information about the landscapes in which organisms live, many
quintessential movement patterns, such as site fidelity and optimal foraging, would not
manifest (Fronhofer et al. 2013; VanMoorter et al. 2009). The apparent importance of
cognition in animal movement processes warrants the development of mathematical
models that incorporate these mechanisms (Smouse et al. 2010). There already exist
a number of reviews discussing the biological importance (Fagan et al. 2013; Lewis
et al. 2021), the validity of such inclusions, as well as possible mechanisms behind
the acquisition and use of available information (Spiegel and Crofoot 2016). Further-
more, with the dramatic increase in types and quantities of animal movement data, and
the significant decrease and increase in cost and computational power, respectively,
various statistical methods and stochastic modelling efforts (such as individual based
models (DeAngelis and Mooij 2005)) have grown in their use and application in this
field (Wilmers et al. 2015; Williams et al. 2020). Such models will not be considered
here, but not for their lack of importance or validity. Reviews of stochastic models
with some focus on cognitive processes already exist (Smouse et al. 2010; Tang and
Bennet 2010), as well as at least one proposed “standard protocol" to be used when
considering such models in lieu of rigorous analytical techniques (Grimm et al. 2006).
Recent works such as (Potts et al. 2022) provide some interesting insights into the
connections between individual-based models and partial differential equations, but
we do not elaborate further in this work. To the best of our knowledge, this review
is the first effort to comprehensively explore mathematical challenges in the study of
cognitive animal movement via partial differential equations (PDEs).

Here, we aim to focus on deterministic models which incorporate some forms of
cognition. We seek to address both how to include certain processes from a mathemat-
ical standpoint, but also why these formulations might correspond to their respective
cognitive process. In doing so, we hope to encourage a balance between mathematical
rigour and maintenance of realism. Using the framework of PDEs, we can incorporate
and investigate the influence of explicit spatial structure on animal space use without
appealing to a simpler ordinary differential equation structure, for example. On the
other hand, a PDE setting is more analytically tractable than a stochastic or simulated
setting, as they offer little means of analysis and therefore do not lend themselves to
the discovery of ecological laws governing animal space use outcomes. This poten-
tial to perform analysis provides an additional layer of rigour through concrete and
precise mathematical predictions, allowing one to answer some of the most important
questions concerning animal movement and space use patterns. Indeed, explaining the
spatial distribution of species using environmental factors has been named one of the
top five ranked research fronts in ecology (Renner and Warton 2013).

While a deterministic, continuous-in-time-and-space framework may be very dif-
ficult to validate and compare with empirical data, it is sometimes possible, see
(Moorcroft and Lewis 2006; Ranc et al. 2021, 2022; Ellison et al. 2020). Never-
theless, even when these models cannot be fully integrated with empirical data, they
still offer meaningful qualitative insights, as well as predictive power in the mecha-
nisms considered. This is of particular importance in the area of cognitive movement
ecology as we cannot (easily) directly observe what is happening in the brain of an
organism. Even in cases where we can observe certain brain functions or some other
proxy (Teitelbaum et al. 2016; Toledo et al. 2020; Fenton 2020), it is a more difficult
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challenge still to make the connection between these observations and the explicit
behaviours of the organism. At least one notable exception is the discovery of place
and grid cells (Moser et al. 2015), which are types of neurons that have been shown to
be directly connected to external stimuli, such as landmarks or olfactory stimuli. This
provides a viable mechanism by which cognitive mapping can occur (see Sect. 2.2). In
most cases, though, we can only make inferences on particular mechanisms of deci-
sion making based on the observed outcomes of the movements themselves. Hence,
the validity of a proposed model or mechanism may at best correspond to its ability
to accurately predict more general, qualitative trends in animal space use as observed
in the available empirical data. While such comparisons may be lacking in precision,
they can still provide meaningful insights and yield substantial motivation for future
directions of research.

Consequently, our goals are the following. First, we will introduce some of the
existing models within the framework of reaction-diffusion-advection equations. This
will provide valuable context for less familiar readers, andmotivation formore familiar
researchers looking to extend these models in a meaningful way. We hope to provide
a reasonable amount of detail into the motivation behind the inclusion of certain
modelling aspects, and how they connect with natural phenomena in ecosystems in an
intuitiveway. Second,wewill discuss someof the predictionsmade and insights gained
(in a biological sense) from eachmodel throughmathematical analysis. This closes the
figurative loop through a connection between the mathematical constructions and the
biological implications of each. Throughout, we will include generalizations and new
formulations along the way. We compare and contrast these new and existing models
so as to motivate and provide scaffolding to future researchers for further exploration
of this exciting and still growing area of research, biologically and mathematically.

The remainder of this paper is organized as follows. In Sect. 2 we introduce some
of the existing prototypical movement models featuring forms of perception, memory
and learning. In Sect. 3, we provide some useful mechanistic derivations for a general
diffusion-advection equation along with the corresponding space-use coefficients. In
Sect. 4, we discuss some important rules of thumb any modeller should consider, as
well as the biological insights we can gain through study of the models introduced in
Sect. 2. This includes a discussion of possible measures one may use to explore paral-
lels and discrepancies in predicted space use outcomes. We compliment the possible
biological insights with more technical mathematical perspectives in Sect. 5. To guide
researchers moving forward, we provide many open problems throughout the review.
We finish with a broad summary of the key ideas presented and some concluding
remarks in Sect. 6.

2 Cognition in animal movementmodels

Before we investigate the precisemathematical formulation of cognitive animal move-
ment models, we first conceptualize some of the key components and terminologies
most useful in this context. There are three main categories of cognitive components
commonly included in existing models: perception, memory, and learning. We appeal
to the following definitions of each.
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Definition 2.1 (Perception) The ability to see, hear, or otherwise become aware of
something through the senses.

Definition 2.2 (Memory) The storage, retention and retrieval of information (Fagan
et al. 2013; Lewis et al. 2021).

Definition 2.3 (Learning (psychology-based version)) The cause-effect process lead-
ing to information acquisition that occurs as a result of an individual’s experience
(Lewis et al. 2021).

Definition 2.4 (Learning (task-based version)) The improved performance for a spe-
cific task as a result of prior experience (Lewis et al. 2021).

The first definition is certainly the least controversial; The note of caution, perhaps,
is in the wide range of forms of perception: visual and auditory cues are intuitively
understandable for many, but numerous species have less familiar forms of percep-
tion, such as the ability to detect electromagnetic fields, chemical signals, different
wavelengths of light, or polarized light. Such considerations are important from the
modelling perspective, which we explore further in Sect. 2.1.

The definition of memory is also widely agreed upon, though this may be a con-
sequence of its broad scope; it does not make explicit the numerous subcategories of
memory we know or suspect to exist. For this reason, we introduce two additional
typologies, namely spatial memory and attribute memory.

Definition 2.5 (Spatial memory) The memory for where objects/resources/places are
in space (Lewis et al. 2021). Encodes spatial relationships or configurations (Fagan
et al. 2013; Lewis et al. 2021).

Definition 2.6 (Attribute memory) Encodes attributes of local features (Fagan et al.
2013).

Due to the complexity of memory and the various typologies that exist (Schacter
1992), we focus our attention on these two forms of memory that are particularly
pertinent to influencing animal movement. The distinction between these two forms
of memory can be made clearer through a simple example: spatial memory encodes
where food is located, whereas attribute memory encodes the quality and quantity
of the food. Of course, these two types often interact with each other, such as the
storage of attribute information within a spatial structure. We expand on this idea in
Sect. 2.2.

The concept of learning is much less well defined, with definitions appearing to be
discipline-dependent; hence, we adhere to the most useful definitions in the context of
informed animal movement From Definition 2.3, many of the models to be introduced
here feature learning implicitly. From Definition 2.4, we are more restricted in what
may be considered learning: the learning process must be more explicit in some way,
with measurable differences in outcomes a prerequisite. We expand more on these
ideas in Sect. 2.5.

Due to the importance of understanding the interplay between each of these com-
ponents, we appeal to a conceptual diagram to reinforce these ideas. Figure1 depicts
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Fig. 1 Cognition in animal movement conceptual diagram

an interplay between perception, spatial & attribute memory, and learning in a home-
range bound herbivore, and their influence on the animals’ movement behaviours. The
physical location of the animal in space at a given time step is denoted by the grey
coloured box. Animals incorporate information about their environment by explor-
ing and moving within their home range. These stimuli may come in the form of
(a) food, (b) predators, (c) conspecifics, or even (d) the center of its home range.
The animal’s attraction to (or repulsion from) these stimuli is dictated by its attribute
memory, which assigns a quality to each landmark or stimulus the animal remem-
bers. In this example the classification is binary, denoted by either a green arrow
(attraction) or a red arrow (repulsion). All of this information is stored within the
animals cognitive map (see Sect. 2.2), which is stored within the animal’s brain and
biases future movement decisions. From the psychology-based definition of learn-
ing, the animal is going through a learning process as it updates its cognitive map
(e.g., from t0 to t1, the animal has learned the location of a predator); from the task-
based definition of learning, the animal is going through a learning process as it
changes an attribute quality from repulsion to attraction (e.g., the change in attribute
memory from t2 to t3). It is this dynamic interaction between animal movement and
experience, environment, and its own cognitive abilities that we seek to model mech-
anistically.

We now introduce some of the popular modelling efforts which include at least
one form of cognition. The order in which these results are presented is intended to,
as best we are able, start with a more simplistic viewpoint before moving towards
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more complex formulations. This increase in complexity is primarily mathematical,
but as we will soon see, the complexity of the cognitive function(s) included naturally
escalates contemporaneously.

To provide a strong foundation, we consider the following prototypical scalar
advection–diffusion equation under a symmetric dispersal kernel

∂u

∂t
(x, t) = d�u(x, t) − ∇ · (u(x, t)∇a(x, t)) (2.1)

with a more general form derived in Sect. 3.1. The diffusion rate d corresponds to
transition probabilities due to randommovement, while the advective potential a(x, t)
corresponds to the bias inmovement based on information at a spatial location x at time
t . In our setting, this advective potential is the most important quantity we consider as
it is where virtually all cognitive processes are currently incorporated. Heuristically,
a(x, t) can be thought of as the attractivity of a point at a given time, and so we may
incorporate varying forms of cognition by adjusting this bias in movement through
reasonable biological considerations. From a mechanistic point of view, this can be
seen most clearly through the derivation of (2.1) where the quantity a(x, t) is obtained
through an exponential distribution of pertinent environmental covariates (see the
derivation of space use coefficients found in Sect. 3.2 and (Lele and Keim 2006) for
further discussion of resource selection functions). This should include perception,
memory, learning, combinations of each, and their relation to other (external) envi-
ronmental factors. From a mathematical point of view, a negative sign corresponds
to attraction (moving up the gradient of a(x, t)), while a positive sign corresponds
to repulsion (moving down the gradient of a(x, t)). Notice that this naturally allows
for both attraction towards favorable regions and repulsion away from unfavorable
regions. In what follows, we essentially derive the mechanisms by which these factors
can be included through modification of the weighting function as derived in Sect. 3.2.

2.1 Perception

We start our exploration with a scalar equation model which includes an animal’s
ability to gather information about its landscape via nonlocal perception, motivating
subsequent models. In many scenarios, an ability to perceive is assumed to be based
on purely local information, which may be an appropriate assumption for describing
the movement of cells, for example. These local advection models, such as the well-
known Keller-Segel models (Hillen and Painter 2009; Painter 2018), provide some
initialmotivation for howknowledge-basedmovementmodelsmay be constructed; for
larger organisms, however, perception should not be so limited as it is well known that
nonlocal cues, such as visual, auditory, olfactory or chemosensory cues, play a vital role
in informing animal movement (Fagan et al. 2017, 2013; Painter 2018). Furthermore,
the clarity by which animals can detect these cues may not be uniform across varying
distances, let alone across species, within species, or even within individuals (Zollner
2000). Consequently, there is substantial motivation to include nonlocal perceptual
capabilities, and this should incorporate both distance and quality of detection.
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In our first example, the “something" being detected is an assumed “true" resource
density function m(x, t). It is assumed that the organism has a finite perceptual range
or detection scale (the maximum distance at which landscape elements can be iden-
tified), as well as some description of how their perception changes with distance.
Mathematically, this can be described by integration over space (a spatial convolu-
tion)

h(x, t) :=
∫

�

m(y, t)g(x − y)dy, (2.2)

which is sometimes referred to as a resource perception function (Fagan et al. 2017).
We will refer to it more generally as a perception function. The kernel g(x − y)

describes the modifications in the forager’s perception with distance, which we refer
to as the perceptual kernel or detection function. To clarify this distinction, we note
that the perception function relates towhat the animal perceives, whereas the detection
function relates to how the animal perceives. In Fagan et al. (2017), the authors consider
an unbounded, one dimensional spatial domain � = R with the following possible
perceptual kernels:

g(x − y) :=
{

1
2R , −R ≤ x − y ≤ R,

0, otherwise,

g(x − y) := 1√
2π R

e−(x−y)2/2R2
,

g(x − y) := 1

2R
e−|x−y|/R . (2.3)

The quantity R ≥ 0 is the perceptual range, which is proportional to the standard
deviation of the forager’s detection function. These particular forms were chosen
since the authors were interested in the transition between platykurtic (no tails) and
leptokurtic (fat tailed) detection functions, each of which can be obtained from the
exponential power distribution (Smith and Bain 1975). In the first case, the so-called
top-hat detection function, an agent can perceive resources equally a fixed distance
away from its current location and cannot detect beyond that fixed distance. The
subsequent functions, the Gaussian and exponential detection functions, respectively,
allow the agent to perceive nearby resources most clearly and decays monotonically
as the distance from the observation location increases. In practice, a perceptual kernel
could be any function satisfying the following hypotheses:

i) g(x) is symmetric about the origin;
ii)

∫
�

gdx = 1;
iii) limR→0+ g(x) = δ(x);
iv) g(x) is non-increasing from the origin.

Condition i) assumes that the animalwill perceive features equally across all directions.
Condition ii) ensures that, given a perceptual range R, the mean perceptual range is the
same for each detection function. Condition iii) assumes that as the perceptual range
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R becomes arbitrarily small, the only information collected is purely local (here, δ(x)

denotes Dirac’s delta function; for example, h(x, t) converges to m(x, t) as R → 0+).
Finally, condition iv) assumes that an animals perception does not improve as distance
from the stimulus increases. This condition is mathematically convenient while also
biologically reasonable, but it may be worth noting that some scenarios do not satisfy
condition iv), such as hyperopia, commonly referred to as farsightedness. All kernels
introduced in (2.3) satisfy these conditions. Each kernel can be generalized to any
spatial dimension by turning |x − y| into its corresponding norm in higher dimensional
Euclidean space.

Starting from the prototypical model (2.1), we may use the heuristic of a(x, t)
being the attractivity of a point so that a(x, t) = γ h(x, t) itself becomes the attrac-
tive potential. We reserve γ ∈ R to denote the strength of attraction to the potential
a(x, t). In this case, we fix γ positive since we are assuming that foragers will want
to move to areas of higher resource density; in principle, γ can certainly be nega-
tive, in which case foragers would be directed away from high density areas. The
model with nonlocal information gathering and exploratory movement is then given
by

∂u

∂t
= d

∂2u

∂x2
− γ

∂

∂x

(
u

∂h

∂x
(x, t)

)
, (2.4)

subject to the condition that
∫
�

u(x, t) = 1. This ensures the total population remains
fixed, which is reasonable as the model describes only movement. In fact, this conser-
vation is a consequence of the correct choice in boundary condition. A more general
treatment of common boundary conditions and their implications are discussed in
further detail in Sect. 4.1.2.

In Johnston and Painter (2019), a similar model is obtained via a moment closure
method to obtain a drift-anisotropic diffusion equationwith focus on the 2-dimensional
spatial case. This is done from the perspective of a velocity-jump random walk (Oth-
mer et al. 1988), sometimes called a “run-and-tumble" model, where an individual’s
movement is determined via a sequence of “run" phases and “turning" phases. The
authors compare local and nonlocal gradient sampling with exclusive focus given to
a uniform sampling over a circular region of radius R, which is exactly the top-hat
detection function found in line (2.3). Their equation describing the motion of agents
is identical to the general form found in Sect. 3.1. Similar to Fagan et al. (2017), the
authors then investigate the impact of local vs. nonlocal sampling under certain model
types.

These works motivate a more general consideration of nonlocal detection and its
influence on animalmovement.Given an arbitrary potential a(x, t) defined in a domain
�, the perception function is given by

ag,R(x, t) :=
∫

�

a(y, t)g(x − y)dy, (2.5)

where g(·) is any perceptual kernel satisfying the four hypotheses introduced pre-
viously. We use the subscripts g and R to denote the dependence on the choice
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of perceptual kernel and perceptual radius, respectively. Notice that to remain well
defined in a bounded domain, further modification may be required. We address such
technicalities in more detail in Sect. 4.1.

2.2 Implicit memory

We now explore how one may incorporate a rudimentary form of memory. Memory
plays a crucial role in the study of animal movement, yet remains a challenging prob-
lem for both biologists andmathematicians, as memory itself is a complicated process.
Memories can be obtained via genetics (e.g. genetic triggers for migration, or inher-
ited avoidance of predators Fagan et al. 2017), or through direct experience. In this
sense, memory is a higher level brain function than perception, as memory involves a
secondary process of storing this observed information. We refer interested readers to
Fagan et al. (2013) for an extensive review of the connections between memory and
animal movement. Here, we seek to provide only key details most applicable to our
modelling efforts.

As previously noted, we focus on spatial and attribute memory. Of course, these
two types often interact with each other, such as the storage of attribute information
within a spatial structure. This process is sometimes referred to as cognitive mapping.
Originally, there was debate on whether or not cognitive maps exist; presently, the
debate has shifted to what form these maps actually take, (e.g. Euclidean vs topolog-
ical, see Fagan et al. 2013) and the references therein. Because we cannot (easily)
directly observe these processes within the brain, models that include memory offer
an alternative avenue to study these complicated agent-environment interactions. The
challenge then becomes how to best model a cognitive map. Most of the models to be
introduced include spatial memory only; attribute memory is more difficult to include
explicitly. Indeed, it is more difficult to incorporate the quantity of food in absolute
terms since shifting amap by a large positive constant yields no difference in themodel
(i.e. the constant term vanishes since it appears underneath the gradient). In this sense,
attribute memory is included implicitly apriori since we make an initial assumption
on whether a quantity is attractive or repulsive. On the other hand, satisfaction mea-
sures discussed in Sect. 2.5 may provide a useful avenue to study the effects of explicit
attribute memory and its interplay with spatial memory. In the following sections,
we discuss two differing perspectives that include a cognitive map, with Sect. 2.2.1
featuring static cognitive maps, and Sect. 2.2.2 featuring dynamic cognitive maps.

2.2.1 Static memory

The most obvious way to include memory is through a simple change of perspective
in model (2.1): define the quantity a(x, t) to be the cognitive map of the animal.
This could define desirable regions as well as regions to avoid, e.g. good resource
locations or regions known to have predators. In this sense, model (2.4) could directly
be interpreted as a memory model if the function m(x, t) is assumed to be the quantity
being recalled. However, this approach may be viewed as naive as it requires the
modeller to assume what the cognitive map actually looks like. In some cases, this
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may be more or less reasonable. For example, in order to study home range behaviour
one may simply take a(x, t) = a(x) to be the distance from a known home range site,
such as a den, i.e. a(x) = γ ‖x − x0‖, where x0 is the fixed den site location, γ > 0
is the strength of attraction and ‖ · ‖ is the Euclidean norm. In this way, ∂a

∂x becomes
a unit vector pointing towards the den site. This is precisely the formulation proposed
in Moorcroft et al. (1999), which features an alternative derivation from a run-and-
tumble perspective and an assumed Von-Mises distribution of turning directions; see
also Johnston and Painter (2019). With a constant rate of diffusion, the model takes
the form

∂u

∂t
= d�u − γ∇ ·

(
(x − x0)

‖x − x0‖u

)
. (2.6)

In this form thememorymechanism being included is rather rudimentary as it does not
consider other factors that influence movement. However, since our general derivation
in Sect. 3.2 includes the possibility of incorporating several covariates, a central den
site may be considered one of many.

A static cognitive map need not remain fixed in time; instead, it is static in the
sense that it does not change based on the movement of the animal. Given a resource
density m(x, t), it may be reasonable to assume that agents have some knowledge of
the landscape relative to some other measure. Two such examples are the following:
agents that are aware of the average resource density, and agents that are aware of
the per-capita resource density, thereby assuming that agents have knowledge beyond
resource density alone. The first scenario has a(x, t) = m(x, t)/m with movement
modelled by

∂u

∂t
= d�u − γ∇ ·

(
u

(∫
�

m(y, t)

m
g(x − y)dy

))
= d�u − γ

m
∇ · (

u∇mg,R
)
,

(2.7)

where m(t) = 1
|�|

∫
�

m(y, t)dy is the average resource density at time t . The second
scenario has a(x, t) = m(x, t)/u(x, t) and can be modelled by

∂u

∂t
= d�u − γ∇ ·

(
u∇

(∫
�

m(y, t)

u(y, t)
g(x − y)dy

))
. (2.8)

In (2.7), we have a nonlocal equation that remains linear; (2.8) is more complicated
as it is nonlocal and nonlinear.

Figure 2 depicts a static, continuous-in-space cognitivemap. The left panel is a sam-
ple static cognitive map with smaller peaks and troughs for high and low resources
patches, in addition to a single tall peak denoting a den site. The middle panel pro-
vides the direction of movement based on the cognitive map, coming from the vector
field generated by the advective potential. The right panel features the cognitive map
with perception from the perspective of the forager at (x, y) = (2, 2) with a top-hat
detection function and perceptual radius R = 1.5.
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Fig. 2 A sample cognitive map with associated vector field and perception

A static cognitive map alone may not of significant interest; instead, it is more
interesting to consider the combination of a static cognitive map with a dynamic
cognitive map. We consider other interacting cognitive maps through short and long
term memory in Sect. 2.4.

2.2.2 Dynamic memory

In contrast to a static cognitive map, one may consider a map to be a dynamically
changing quantity, continuously updating as an agent moves throughout its environ-
ment. This offers more realism than the static cognitive map, as it is understood that
memories are continuously formed and reformed as time passes. On the other hand,
a dynamic cognitive map increases the mathematical complexity significantly as the
description of movement for a single population may require a second equation.

Existing models without population dynamics
The first form of a dynamic cognitive map we introduce is similar to the well-known
group ofKeller-Segel models, which describe cell aggregation in response to chemical
deposits left behind by the cells. Rather than following chemical deposits, it is instead
assumed that the animals follow or avoid areas of high population density, assumed to
be part of their cognitive mapping process. In general, we also include perception so
that the potential a(x, t) includes perception of the population density. The cognitive
map is then a(x, t) = γ ug,R for γ ∈ R. The equation describing motion of a single
population becomes

∂u

∂t
= d�u − γ∇ · (u∇ug,R

)
, (2.9)

where γ > 0 (< 0) corresponds to attraction towards high-density (low-density)
areas. Depending on the context, either could be valid: the first case may correspond
to phenomena such as group defence strategies (Shi et al. 2019), while the second
may correspond to avoiding high-density areas where resources are expected to be
less abundant.

More interestingly, perhaps, are scenarios which include interactions between mul-
tiple populations. To this end, one may generalize model (2.9) to include n interacting
populations ui , with the perception function for each group based on the varying
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population densities of all other groups:

∂ui

∂t
= di�ui − ∇ ·

⎛
⎝ui∇

⎛
⎝ n∑

j=1

γi j u
j
g,R

⎞
⎠

⎞
⎠ . (2.10)

When the detection function g(·) is chosen to be the top-hat function, (2.10) is pre-
cisely the form proposed in scenario 1 of Potts and Lewis (2019) in a bounded,
one-dimensional spatial domain. Similar to the single species model, the sign of γi j

determineswhether species ui is attracted to or repelled from high population densities
of population u j .

Underlying such models is an implicit assumption that each population ui shares
the same information, and so there must be some biological mechanism which allows
agents to share this information between themselves. Therefore, this may be most
applicable to very small organisms so that the density function ui is an appropriate
description of howmany individuals are found at a certain location in space. Recently,
Potts and Schlägel (2020) discussed this formulation in relation to step-selection anal-
ysis, as well as models’ applicability and the potential for pattern formation to emerge.
Wemay nowbegin to formulatemore precisely some open problems concerningmodel
(2.10).

Open Problem 1 In what context do solutions exist solving the time-dependent prob-
lem (2.10) subject to periodic boundary conditions in a bounded domain? In Giunta
et al. (2022), a partial answer is established when the detection function g(·) is twice
continuously differentiable (e.g. the Gaussian detection function), but few results exist
for the top-hat detection function. The recent work (Jüngel et al. 2022) considers the
existence of weak solutions to a nonlocal system of the form (2.10) and includes the
case of the top-hat detection under the restriction that the nonlocal kernel components
are in detailed balance (see (Jüngel et al. 2022, (H3)). In the present context such a
condition poses significant restriction, as this demands self-interaction (i.e., γi i 	= 0))
for every population, reducing potential for biological application.

Open Problem 2 It is clear that spatially constant steady state solutions exist solving
problem (2.10). In what context do spatially non-constant steady state solutions exist
solving problem (2.10) when subject to zero-flux, homogeneous Neumann, or periodic
boundary conditions?

Open Problem 3 What are the qualitative properties of these non-constant steady
states, whenever they exist? The recent work (Giunta et al. 2022) provides some inter-
esting insights and techniques in this direction.

Open Problem 4 Do these solutions (either time-dependent or steady state) remain
well-defined in the limit as R → 0+? In other words, can we meaningfully connect
the nonlocal problem with its corresponding local problem in this limit? (Jüngel et al.
2022, Theorem 5) gives reason for optimism in the time-dependent case; on the other
hand, the stability analysis of Potts and Lewis (2019) leaves less hope for the steady
state problem due to the ill-posedness of the problem in this limit.
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Open Problem 5 In what sense do solutions exist solving the time-dependent problem
(2.10) subject to different boundary conditions? The challenge here is in appropriately
defining the detection function near the boundary of the domain. See Sect. 4.1.2 for a
more detailed discussion of boundary conditions.

In models (2.9)–(2.10), we have a dynamic cognitive map with perception with-
out an additional equation. In this sense, these aggregation/segregation models are
self-contained. In the following, the cognitive map is now described explicitly by an
additional equation. This may be more appropriate to describe the cognitive map of
larger organisms that have less dense populations, for example. The first example,
explored in Lewis and Murray (1993); Potts and Lewis (2019), describes the move-
ment of two or more populations in response to marks on the landscape (e.g. urine,
faeces, footprints) left by the other population(s). To this end, denote by pi = pi (x, t)
the density of the presence of marks that are foreign to population ui . It is assumed
that marks grow linearly with respect to the presence of population u j , and decay at
a constant rate μ > 0. The evolution of marks foreign to population ui is given by

∂ pi

∂t
=

n∑
j=1

αi j u
j − μpi .

Similar to previous examples, αi j > 0 indicates that population ui is attracted to
population j , while αi j < 0 denotes repulsion (note that Lewis and Murray 1993;
Potts and Lewis 2019 do not consider self-interaction, i.e., αi i = 0 is assumed). Notice
also that this form of “memory" is somewhat different than our proposed definition,
as their map is not stored within the brain, but rather within the environment itself.
Despite this, it provides significant motivation for future models.

With this description of each pi , we then take the attractive potential for population
ui to be a(x, t) = γi pi (x, t) for some advection rate γi ∈ R. The full model is given
by

⎧⎨
⎩

∂ui

∂t = di�ui − γi∇ ·
(

ui∇ pi
g,R

)
,

∂ pi

∂t = ∑n
j=1 αi j u j − μpi ,

(2.11)

for i = 1, . . . , n, where n is the number of interacting populations. When the detec-
tion function g(·) is chosen to be the top-hat detection function, (2.11) is scenario 2
proposed in Potts and Lewis (2019). Familiar readers may notice that if n = 1, (2.11)
is very similar to a Keller-Segel system in the limit as R → 0+. The key difference is
the lack of diffusion appearing in the equation for pi : diffusion, in this setting, has a
regularizing effect, and so an absence of diffusion increases the difficulty of analysis
(see Sect. 5.1 for further discussion).

Open Problem 6 In what sense do solutions exist solving the time-dependent problem
(2.11) subject to periodic boundary conditions and a top-hat detection function in a
bounded domain? Do solutions remain well defined in the limit as R → 0+?
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Open Problem 7 It is clear that spatially constant solutions exist as steady states of
problem (2.11). In what sense do spatially non-constant solutions exist solving the
steady state problem associated to (2.11) subject to periodic boundary conditions and
a top-hat detection function in a bounded domain? Do solutions remain well defined
in the limit as R → 0+?

Open Problem 8 What are the qualitative characteristics of the spatially non-constant
steady state solutions obtained for problem (2.11), whenever they exist? How do these
qualitative properties compare to steady state solutions of model (2.10)? Of particular
interest is the following general question: are the dynamics of model (2.11) included
in the dynamics of model (2.10)? In other words, are new dynamics observed when
the complexity is increased through explicit description of the cognitive map?

Open Problem 9 In what sense do solutions exist solving problem (2.11) subject to
zero-flux, homogeneous Neumann, or homogeneous Dirichlet boundary conditions
with a top-hat detection function in a bounded domain?

Different from marks on a landscape, in the following model the cognitive map is
recorded within the foragers mind. To achieve this, the main idea is to track direct
encounters between agents from different populations, the areas at which these occur
referred to as conflict zones. It is assumed that each population remembers an area
where a conflict has occurred, and will be more likely to avoid this area in the future.
Should they return to a location and experience no conflict, the cognitive map is
updated accordingly. It is also assumed that memory decays at some rate proportional
to the time since an event has occurred. This can be viewed as a combination of
attribute memory and spatial memory, where the conflict is the attribute recorded at
some spatial location where the conflict occurs.

Denote by ki (x, t) the spatial memory of conflict zones for population ui (x, t).
For simplicity, we first consider the case of two interacting populations. From our
preliminary assumptions, ki should grow with respect to interactions between u1 and
u2, while it should decay proportionally to ui and linearly some rate μ > 0. The
equation describing the evolution of the spatial cognitive map then takes the form

∂ki

∂t
= ρu1u2 − (μ + βui )ki .

The quantity ρ ≥ 0 is the rate at which encounters occur; μ ≥ 0 is the rate at which
memory decay with time; β ≥ 0 is the rate at which the conflict zone decays due to
agents revisiting the site and experiencing no conflict.

We now take a moment to note an important distinction between this model intro-
duced above and the similar form introduced in Potts and Lewis (2016a). In the cases
introduced in this review, we focus on describing the cognitive map as a magnitude,
describing important areas versus less important areas in relative terms. On the other
hand, some works formulate the cognitive map as a probability density, and so the spe-
cific form on the dynamic cognitive map is slightly different. In this case, the equation
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for ki above is instead derived to be

∂ki

∂t
= ρu1u2(1 − ki ) − (μ + βui )ki . (2.12)

In this way, outcomes are treated similar to a coin flip: a location is either part of a
conflict zone, (1−ki ), or it is not, ki . While this is a subtle difference in interpretation,
it is not clear whether the overall dynamics should appear roughly the same. Since the
more popular method is to describe the cognitive map as a magnitude, we focus on
these cases instead.

This can readily be generalized to n interacting populations as follows:

∂ki

∂t
= ui

∑
j 	=i

ρi j u
j − (μ + βui )ki ,

where ρi j now denotes the rate at which encounters occur between populations ui and
u j . Then, for each ui , the attractive potential is the cognitive map ki combined with

perception, i.e. ai (x, t) = γi k
i
g,R(x, t), where γi ≥ 0 denotes the rate at which species

i moves away from all other populations (notice the sign change of the advective term
below, recalling that positive advection denotes repulsion). The full model describing
the evolution of n interacting populations remembering conflict zones with perception
is then given as

{
∂ui

∂t = di�ui + γi∇ ·
(

ui∇k
i
g,R

)
,

∂ki

∂t = ui ∑n
j=1 ρi j u j − (μ + βui )ki .

(2.13)

When the kernel g(·) is taken to be the top-hat detection function, this is scenario 3
proposed in Potts and Lewis (2019) in a bounded, one-dimensional spatial domain.

Open Problem 10 In what sense do solutions exist solving the time-dependent problem
(2.13) subject to periodic boundary conditions and top-hat function in a bounded
domain? In what sense do spatially non-constant steady state solutions exist? What
are the qualitative properties of these solutions? Do solutions remain well defined in
the limit as R → 0+?

Open Problem 11 In what sense do solutions exist solving the time-dependent prob-
lem (2.13) subject to zero-flux, homogeneous Neumann, or homogeneous Dirichlet
boundary conditions with a top-hat detection in a bounded domain?

Open Problem 12 What are the key differences, if any, between solutions obtained for
model (2.13) and solutions obtained for the same problem when the cognitive map is
instead of the form described in (2.12)?

In the models presented so far, we have discussed the cognitive processes in
movement population models that consider only movement (no birth or death of
the population) between interacting populations. Sometimes, this is justifiable if one
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assumes that the movement process occur at a timescale that is much faster than that of
a birth/death process. Readers should take caution, however, since such an assumption
may invalidate the use of a quasi-steady state approximation. We discuss this point in
more detail in Sect. 4.1. This observation motivates the following open problem.

Open Problem 13 How do the dynamics of any model introduced in Sect.2.2.2 change
when birth/death processes are also included? Do solutions exist solving the time-
dependent or steady state problems? How do solution profiles change for spatially
non-constant steady state solutions?

Existing models with population dynamics
Next, we consider a classical consumer-resourcemodelwith an additional termbiasing
the movement of the consumer. A slightly more general formulation is considered in
Song et al. (2022) which is currently under review. Denote by u(x, t), v(x, t) the
consumer and resource, respectively. The case considered is the most straightforward:
we assume that the consumers have knowledge of where the resources are. We then
take the perception function a(x, t) = γ vg,R(x, t) for γ > 0. The consumer-resource
model with knowledge and perception of resources is then described by

{
∂u
∂t = D1�u − γ∇ · (u∇vg,R

) + cβuv
α+v

− du,
∂v
∂t = D2�v + rv(1 − v/K ) − βuv

α+v
.

(2.14)

This perspective is comparable to model (2.10): instead of knowledge of the (current)
density of other populations, the consumers have knowledge of the current resource
density. Here, r > 0 denotes the maximum reproduction rate for the resource, while
K > 0 is the carrying capacity for the resource. The consumer is assumed to grow
according to a Holling type II functional response with the growth rate β > 0 and the
half-saturation constant α > 0, and decay linearly at rate d > 0. The quantity c > 0
is a conversion efficiency by the consumer from the resource. Notice that if one takes
γ = 0, the system is reduced to a classical consumer-resource model. On the other
hand, in the limit as R → 0+ the model reduces to a standard predator–prey model
with prey-taxis, see (Wang et al. 2021) and the references therein.

Open Problem 14 In what sense do solutions exist solving the time-dependent problem
(2.14) subject to periodic boundary conditions in a bounded domain? Some insights
can be found in Song et al. (2022), however the authors considered a no-flux boundary
condition in a bounded, one-dimensional spatial domain for mathematical analysis,
and considered periodic boundary conditions in simulations.

New models and extensions
In what follows, we discuss some new models that have not yet been investigated
in the presented format. Some may require further development, but we still include
them to motivate future research with the advancements currently being made. The
first, moderately simple generalization is applied to model (2.13). Some authors argue
that a memory process should carry a similar derivation to the movement process
itself (Gourley and So 2002), which in this case suggests that the cognitive map
should also feature some rate of diffusion. This leads to the idea of memory smearing,
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which introduces random errors in memory recall. In this way, the diffusion smears
the memory component ki so that memory is roughly accurate, but not remembered
exactly, and the imprecision increases over time until reinforced further. This simple
modification results in the new model

{
∂ui

∂t = di�ui − γi∇ ·
(

ui∇k
i
g,R

)
,

∂ki

∂t = εi�ki + ui ∑n
j=1 ρi j u j − (μ + βui )ki ,

(2.15)

where 0 < εi 
 di . The parameter εi is meant to include this mechanism of memory
smearing, or how memories may be altered with respect to distance (Bracis et al.
2015).

Open Problem 15 In what sense do solutions exist solving the time-dependent problem
(2.15) subject to periodic boundary conditions and top-hat function in a bounded
domain? Note that since the cognitive map equation features a diffusive term, solutions
are expected to be more regular than cases without diffusion.

Open Problem 16 In what sense do solutions of the problem (2.15) converge to solu-
tions of problem (2.13) in the limit as εi → 0+?

In model (2.13), it is assumed that conflicts occur at exactly one point. However,
the inclusion of perception may also be relevant in this term, since agents may be able
to experience a conflict at a distance. This could result in a conflict (through a “stand-
off") that should also be remembered. Hence, the growth term for k1 should feature
the form ρu1

g,Ru2 in the case of two interacting species. For n interacting species, this
map takes the form

∂ki

∂t
= ui

g,R

n∑
j=1

ρi j u
j − (μ + βui )ki . (2.16)

Naturally, these models assume the same perceptual kernel and perceptual radius for
each population. This could be a reasonable assumption for studying more uniform
populations, such as animals within the same species (e.g. wolf packs), but this may
not be an accurate description if the interacting populations are significantly different.

Open Problem 17 In what sense do solutions exist solving the time-dependent problem
(2.16) subject to periodic boundary conditions and a top-hat detection function in a
bounded domain?

Open Problem 18 In what sense do spatially non-constant steady state solutions exist
associated to problem (2.16) subject to periodic boundary conditions and a top-hat
detection function in a bounded domain? What qualitative properties do these solutions
hold?

Open Problem 19 How does nonlocal information gathering effect space use out-
comes? More precisely, how do the qualitative features of spatially non-constant steady
state solutions found for problem (2.16) differ from those found for problem (2.13)?
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Open Problem 20 In what sense do solutions exist solving the time-dependent prob-
lem (2.16) subject to zero-flux, homogeneous Neumann, or homogeneous Dirichlet
boundary conditions with a top-hat detection function in a bounded domain?

Next, we discuss some extensions of the consumer-resource model prototype intro-
duced in (2.14). In general, model (2.14) can be written as

{
∂u
∂t = D1�u − γ∇ · (u∇a(x, t)) + cβuv

α+v
− du,

∂v
∂t = D2�v + rv(1 − v/K ) − βuv

α+v
,

(2.17)

for some attractive potential a(x, t). We can then formulate two additional models
based on different cognitive mapping mechanisms which are similar to those intro-
duced in models (2.10), (2.11) and (2.13).

The first extension considers a more realistic scenario where the attractive potential
a(x, t) is now dynamic, and will be described as a cognitive map denoted by q(x, t).
The map q(x, t) is assumed to grow constantly at rate b > 0 with respect to resource
density, while it decays linearly at a rate μ ≥ 0 due to finite memory capacity. The
equation describing the evolution of the cognitive map is then

∂q

∂t
= bv − μq,

and in (2.17) we take a(x, t) = qg,R . Model (2.17) then becomes

⎧⎪⎨
⎪⎩

∂u
∂t = D1�u − γ∇ · (

u∇qg,R
) + cβuv

α+v
− du,

∂v
∂t = D2�v + rv(1 − v/K ) − βuv

α+v
,

∂q
∂t = bv − μq.

(2.18)

This perspective is comparable to that found in model (2.11): instead of observing
marks left on the landscape, consumers are assumed to detect the local resource density
and are able to maintain a record of where they have previously found resources.

We also consider versions of dynamic memory including additional mechanisms:
q(x, t) is now assumed to grow proportional to the resource density and the density
of the consumers at rate b > 0. This may be more reasonable than the previous model,
as one of the implicit assumptions in these memory-based movement models is that
foragers are able to share knowledge between individuals. Hence, a location with
high resource density is more likely to be remembered if a larger number of foragers
perceive it as such. Similar to the previous model, it is assumed that the map decays
linearly due to finite memory capacity at rate μ ≥ 0, however it is also assumed that
the map can decay further at rate ξ ≥ 0 should the consumer return to an area and find
a low resource density. The evolution of q(x, t) is then given by

∂q

∂t
= buv − (μ + ξu)q.
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Taking again a(x, t) = qg,R , model (2.17) becomes

⎧⎪⎨
⎪⎩

∂u
∂t = D1�u − γ∇ · (

u∇qg,R
) + cβuv

α+v
− du,

∂v
∂t = D2�v + rv(1 − v/K ) − βuv

α+v
,

∂q
∂t = buv − (μ + ξu)q.

(2.19)

This perspective is comparable to that found in model (2.16), and features similar
mechanisms found in model (2.18). In this way, it is similar to the memory of direct
animal interactions, but the direction of bias is opposite: consumers remember areas
they are attracted to, not areas that they seek to avoid.

Open Problem 21 In what sense do solutions exist solving the time-dependent prob-
lems (2.18) or (2.19) subject to periodic boundary conditions with a top-hat detection
function in a bounded domain? In what sense do spatially non-constant steady state
solutions exist? What qualitative properties do these non-constant steady state solu-
tions hold?

Open Problem 22 How do the non-constant steady state solutions differ qualitatively
among formulations (2.14), (2.18), and (2.19)?

We conclude this section with a brief but important note concerning attracting and
repelling quantities in relation to dynamically changing cognitive maps. Since each
of the equations introduced to describe the cognitive map should satisfy a positivity
lemma (i.e. they are all linear differential equations with respect to the cognitive map
variable), a single equation is insufficient to include both attracting and repelling
quantities. Instead, they can only describe relative amounts of attraction or repulsion
with respect to the variable being remembered, but not simultaneously. We explore
this point further in Sect. 2.4.

2.3 Explicit memory

Thus far, we have seen perception and some forms of memory, yet these forms are all
implicit in that they do not feature an explicit reference to past experiences. A more
recent consideration, strongly motivated by the influence of memory on animal move-
ment, is the inclusion of time delays in the advective potential. In this way, foragers
make explicit reference to their previous experiences. This sometimes complicates
the mathematical analysis, which we discuss in Sect. 4. This increase in complexity
is not entirely unexpected and these models often yield rather interesting results, both
mathematically and ecologically. Nevertheless, in comparison to the models intro-
duced in Sects. 2.2.1-2.2.2, the overarching theme remains the same: agents have a
bias in their movement, and this bias is included within the advection term. The key
difference is that the bias is now driven by information from the past. This is per-
haps the most explicit inclusion of memory within deterministic population models,
as there is a continual, explicit reference to previous experiences or information. Most
of the existing models consider the discrete delay case, which features reference to
information exactly τ > 0 earlier, but some also consider the more complicated case
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of a distributed delay, which includes a reference to all previous times under some
weighting function. While the latter case is more logical, the former is often valued
for its simplicity. It is worth noting that, unlike the previous sections, many models
featuring time delays are purely local, at least in the advection term. For this rea-
son, the well-posedness of these problems is generally easier to obtain by existing
techniques. Instead, the focus is on bifurcation analysis and an attempt to more fully
describe the potential for spontaneous pattern formation and the qualitative features
of non-constant steady states.

2.3.1 Discrete time delays

Scalar equations
We continue with our motivation from the prototypical diffusion-advection model

(2.1). Perhaps the most obvious way to include the memory of past occurrences is to
consider the case where the advective potential a(x, t) is given by the solution itself,
τ units in the past, i.e. a(x, t) = u(x, t − τ), which we denote by uτ := u(x, t − τ).
This is the form derived and investigated in Shi et al. (2019) in addition to a birth/death
process. The equation describing the evolution of the population u(x, t) is given by

∂u

∂t
= d1�u − γ∇ · (u∇uτ ) + f (u), (2.20)

where d1 > 0, γ ∈ R, and the growth term f (u) ∈ C1(R+) is roughly of logistic
type, i.e. f (0) = f (1) = 0 and f (u) < 0 for u > 1. We again emphasize the
relation between the standard diffusion-advection equation (2.1) and the form found
in equation (2.20): the bias in movement is given explicitly by uτ (x, t), where τ > 0
canbe thought of as theaveraged spatialmemoryperiod. Intuitively, it is not reasonable
to assume that organisms make a constant reference to information obtained exactly τ

time units ago. Indeed, higher forms of memory are expected to be more complicated
than this in reality; still, it is a useful starting point to consider the effects of an explicit
reference to the past. Similar to model (2.9), the advection rate γ may have a different
sign depending on the situation: γ < 0 represents a movement away from areas of
high population density τ time units ago, which is a natural phenomenon; on the other
hand, γ > 0 represents a movement towards high population densities τ time units
ago, which may be the case for animals that aggregate for group defence (see the
discussion of Shi et al. 2019).

Open Problem 23 In Shi et al. (2019), a homogeneous Neumann boundary condition
is chosen for model (2.20). How does the analysis performed in Shi et al. (2019) change
with respect to changes in boundary data, such as a periodic boundary condition or
homogeneous Dirichlet boundary condition?

Open Problem 24 How does the inclusion of nonlocal perception change the analysis
performed in Shi et al. (2019)? In particular, how does the combination of a single,
discrete time delay paired with a top-hat detection function change the dynamical
outcomes? By the same reasoning used in Sect.2.2.2, it may be easiest to study this in
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a one-dimensional spatial domain subject to periodic boundary conditions so that no
further modification of the detection function near the boundary is necessary.

This model has since been extended in three ways, with focus given to modification
of the growth term: first, a nonlocal spatial effect is considered in the growth term; sec-
ond, a nonlocal temporal effect is considered in the growth term; third, a combination
of both of these effects is considered in the growth term.

The first case, explored in Song et al. (2019), considers the equation

∂u

∂t
= D1

∂2u

∂x2
+ D2

∂

∂x

(
u

∂uτ

∂x

)
+ f (u, u), (2.21)

where u(t) = |�|−1 ∫
�

u(y, t)dy is the average population density over the entire
domain. Notice that, in comparison to the averagingwith respect to a perceptual kernel,
this average may change with respect to time but remains constant in space. This
form is due to a recognition that birth/growth/death rates almost certainly depend on
population densities at other spatial locations, not purely on the single point where the
organism is located. This particular form of nonlocal (in space) interaction is inspired
by Furter and Grinfeld (1989), which considers this to be the most straightforward
way to include a nonlocal (spatial) interaction effect. Since the referenced work does
not prove the existence of solutions to this problem, we highlight the following open
problem.

Open Problem 25 Under what conditions does there exist a unique solution solving
problem (2.21) subject to a homogeneous Neumann boundary condition? What about
in higher spatial dimensions or other boundary conditions?

The second case, considered in Shi et al. (2019), has a comparable form:

∂u

∂t
= D1�u + D2∇ · (u∇uτ ) + f (u, uσ ), (2.22)

where uσ = u(x, t−σ). Biologically speaking, this accounts for a delay in the renewal
of resources or the time necessary for animals to reach maturity. Readers should note
that while the reaction terms may look similar between models (2.21) and (2.22), their
interpretation is distinct and may take significantly different forms.

In the discussion of Shi et al. (2019), it is noted that the effects of diffusion and
time delays are not independent of each other; individuals located at x at a previous
time may move to a new location at the present time. As a reasonable revision, the
third case considers a combination of the previous two scenarios, as done in An et al.
(2020). Their evolution equation takes the form

∂u

∂t
= �u + d∇ · (u∇uτ ) + λuF(u, uσ ), (2.23)

where d ∈ R and uσ (x, t) = ∫
�

K (x, y)u(y, t − σ)dy for some reasonably smooth
spatial kernel K (x, y) (see H2 in An et al. 2020). The spatial scaling is chosen such
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that d represents the ratio of the memory-based advection coefficient to the regular
diffusion coefficient, and λ > 0 is a scaled constant. The kernel K (x, y) accounts
for the nonlocal intraspecific competition of the species for either resources or space.
Readers should note that this kernel is distinct from the perceptual kernels introduced
previously, and so we denote it by K instead of g. The specific choice in function F
depends greatly on the purpose of application, and so interested readers are directed
to An et al. (2020); Britton (1990); Chen and Yu (2016) for further details. Lastly,
notice that (2.23) is somewhat a generalization of the simpler form introduced for
model (2.21), where one recovers (2.21) by taking K (x, y) = |�|−1 in (2.23). In
the referenced work, the authors explore the existence of steady state solutions only,
which gives the following open problem.

Open Problem 26 Under what conditions does a unique solution exist solving the time-
dependent problem (2.23) subject to homogeneous Dirichlet boundary conditions?

Systems of equations
The recent paper (Song et al. 2022) considers a consumer-resource model, similar to
model (2.17), with time-delay in the advective potential. The resources are assumed to
be plants or “no brainer" animals, so that the prey have no memory-based movement.
So far, this is the onlymodel to include an explicit memorymechanismwithin a system
of PDEs. For τ > 0, the system in one spatial dimension is given as

{
∂u
∂t = d22

∂2u
∂x2

− d21
∂
∂x

(
u ∂vτ

∂x

)
+ f (u, v),

∂v
∂t = d11

∂2v
∂x2

+ g(u, v),
(2.24)

v(x, t) is the density of the resource, diffusing at rate d11 > 0, and grows/decays
according to g(u, v). u(x, t) is the density of the consumer, diffusing at rate d22 > 0,
and grows/decay according to f (u, v).1 The consumer u(x, t) then moves up the gra-
dient of the resource v(x, t), τ units of time ago, at rate d21 ≥ 0. Note that d21 is taken
to be non-negative since it is assumed that the consumer is attracted to the resource.
This form is comparable to the resource-consumer model found in (2.17), with the
key difference being the cognitive map. Existence of solutions is not established, and
so the following is an open problem.

Open Problem 27 Under what conditions does a unique solution exist solving problem
(2.24) subject to homogeneous Neumann boundary data? What about in higher spatial
dimensions?

Finally, the competition-diffusionmodel in Shi et al. (2021) featuresmemory-based
self-diffusion and cross-diffusion. Similar to previous models, for τ > 0 the system
takes the form:

{
∂u
∂t = D1�u + D11∇ · (u∇uτ ) + D12∇ · (u∇vτ ) + f (u, v),
∂v
∂t = D2�v + D21∇ · (v∇uτ ) + D22∇ · (v∇vτ ) + g(u, v),

(2.25)

1 To save confusion, readers should note that the role of u and v found here are opposite to that found in
the original reference to keep the current work as consistent as possible.
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The authors investigate the impact of memory-based self- and cross-diffusion by car-
rying out a stability and bifurcation analysis. In this general form, it includes each form
of attraction/repulsion to/from their same group or their competitor, depending on the
sign of Di j . Due to the complexity of the analysis involved, some simplifications and
specific cases are considered for clarity: a Lotka-Volterra competition is investigated,
i.e.

f (u, v) = u(1 − u − αv), g(u, v) = γ v(1 − βu − v),

for α, β, γ > 0. The local stability of steady states is then explored in relation to the
kinetics system (i.e. no diffusion or advection) with a focus on the cases a) D12 =
D21 = D22 = 0, D11 	= 0, or b) D11 = D22 = D21 = 0, D12 	= 0. Case a)
has self-aggregation for species u, τ units in the past, while case b) has attraction or
repulsion of species u to/from species v, τ units in the past. When they consider the
weak competition case, i.e. αβ < 1, some interesting insights are obtained. First, if u
is a timid competitor who moves away from the previous locations of its competitor
(D12 > 0), then the constant coexistence steady state will be destabilized as the
rate D12 increases. On the other hand, if u is an aggressive competitor who moves
towards the previous locations of its competitor, then a Hopf bifurcation occurs as the
memory period τ increases. This indicates that memory-based cross-diffusion alters
the monotone dynamics of classical 2-species competition-diffusion systems where
no such Hopf bifurcation can occur.

Extensions of discrete delay models
As a logical extension of each of the models above, one may incorporate both memory
and perception through a modification of the advective potential uτ (x, t). Instead, one
may consider uτ g,R(x, t) for some detection function g and perceptual radius R. We
highlight some interesting open problems in this regard now.

Open Problem 28 In what sense do solutions exist to solve problems of form (2.20) or
(2.24) when a nonlocal perception through a top-hat detection function is included in
addition to an explicit time delay? Similar to problems without time delays, it is likely
easier to study these problems under a periodic boundary condition.

Open Problem 29 In what sense may these problems converge in the limit as R → 0+?
What are the qualitative differences between solutions to local and nonlocal problems
featuring time delays?

2.3.2 Distributed time delays

As previously suggested, rather than a discrete delay, it is more realistic to consider
a distribution over all previous times, though it becomes significantly more technical
than each of the previous models (Shi et al. 2021). Models with distributed delays
following Gamma distributions are equivalent to a system of PDEs with the simplest
case equivalent to chemotaxis models (see the Appendix), and thus efforts are perhaps
best directed to exploring the properties of these equivalent PDE systems without
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delay. Before introducing the model itself, it is instructive to first explore the following
spatiotemporal convolution kernel:

vu(x, t) = G ∗ ∗u(x, t) :=
∫ t

−∞

∫
�

G(d3, x, y, t − s)G(t − s)u(y, s)dyds. (2.26)

We first describe the motivation for this form. It is assumed that there is some
biological reason for the inclusion of a time delay, which in our case is motivated
by an explicit memory-driven movement mechanism and a reference to previous
experiences. More precisely, we assume that the cognitive map (in this case, the
population density u(x, t)) at a time t has contribution from itself at all previous
times s < t , but not all previous times are equally important. The choice in tem-
poral kernel G(·) then describes the weighting given to previous times, similar to
how the perceptual kernel g(·) describes the weighting given to different locations.
One may even choose G = δ(t − τ), τ > 0, if one assumes that the population
density exactly τ time units ago is most important. In order to determine the con-
tribution from all previous times, we then multiply the density u(x, ·) at time s by
the weight function at this time, which is G(t − s) since it is t − s time units ago.
Then, the integration over space is meant to capture perceptual influences. Different
from previous examples, the perception kernel depends on space as well as time,
and G(d3, x, y, t) is chosen to be the fundamental solution to the heat equation
with boundary conditions identical to those prescribed in the proposed movement
model. Mathematically, the parameter d3 is the diffusion rate of this fundamen-
tal solution, which can theoretically be different than the diffusion rate d1 of the
species considered. Biologically, the parameter d3 can be thought of as a smear-
ing of the cognitive map as a result of imperfect recollection of spatial information.
Such a choice is due to mathematical convenience at the cost of biological real-
ism.

In Shi et al. (2021), the waning of memory due to the passage of time is considered
through a Gamma distribution, with two specific cases referred to as a weak or strong
kernel, respectively:

Gw(t; τ) = τ−1e−t/τ , Gs(t; τ) = tτ−2e−t/τ , τ > 0. (2.27)

In applications, these two temporal kernels have different interpretations. In our con-
text, the weak kernel represents knowledge loss only due to waning memory, whereas
the strong kernel describes both knowledge gain due to learning and loss due to wan-
ing memory. As t increases, the weak kernel Gw is monotonically decreasing, while
the strong kernel Gs is increasing first and then decreasing. The cognitive map is then
a(x, t) = γ vu(x, t), and evolution ofmotionwith a birth/death process is described by

∂u

∂t
= d1�u − γ∇ · (u∇vu) + f (u). (2.28)

Here, the advective potential is vu(x, t) given by (2.26) with either the weak or strong
kernel defined in (2.27). Although the mathematical complexity is increased, the
primary motivation remains the same: agents in population u have a bias in their
movement, and this bias is explicitly driven by an attraction (or repulsion) to (from)
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all previous locations at rate γ , with favor given to experiences closer in space and
more recent in time. Model (2.28) can be thought of as the prototypical animal move-
ment model which explicitly includes a distributed memory, in the same way that
model (2.20) can be thought of as the prototypical animal movement model which
explicitly includes memory through a discrete delay.

This prototypical model can be extended in a number of ways. As model (2.22)
was a generalization of (2.20) in the discrete delay case, Song et al. (2021) generalizes
(2.28) to include a distributed delay in thematuration process. To this end, for i = 1, 2,
define

vi (x, t) := Gi ∗ ∗u(x, t) :=
∫ t

−∞

∫
�

G(d3, x, y, t − s)Gi (t − s; τi )u(y, s)dyds.

(2.29)

In this construction, there are two different delay values τi , where τ1 is related to
the delay for inclusion of memory and learning, and τ2 is related to the delay due
to the maturation process. G(d3, x, y) is a spatial kernel which is again taken to be
Green’s function for the heat equation subject to homogeneous Neumann boundary
conditions. Similar to model (2.28), the diffusion coefficient for this spatial kernel
G(d3, x, y) is taken to be identical to d1, the diffusion rate for the random movement
of the population. The kernels Gi (t; τ) are then taken to be either the weak or strong
kernel defined previously. This leads to four possible combinations for each kernel
type. The evolution equation is then given as

∂u

∂t
= d1�u + d2∇ · (u∇v1) + f (u, v2), (2.30)

where d1 > 0 and d2 ∈ R. The referenced work explores a bifurcation analysis, but
the existence of solutions is not established.

Open Problem 30 Under what conditions does a unique solution exist solving problem
(2.30) subject to homogeneous Neumann boundary data? In particular, can a result be
proven for a general spatiotemporal kernel that includes Green’s function as a special
case?

Finally, the double convolution kernel introduced in (2.26) can be more generally
thought of as

va(x, t) = G ∗ ∗a(x, t) :=
∫ t

−∞

∫
�

G(d3, x, y, t − s)G(t − s)a(y, s)dyds, (2.31)

where a(x, t) is any potential related to environmental covariates. For example, one
could replace a(x, t) = u(x, t) as in the prototypical model (2.28) with any of the
cognitive maps described previously. The kernel (2.31) then describes modifications
to the cognitive map a(x, t) with respect to both space and time. A general evolution
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equation which includes modifications in both space and time is given as

∂u

∂t
= d1�u + d2∇ · (u∇va) + f (u). (2.32)

s Note that the inclusion of distributed temporal delays is a rather recent development
as applied to knowledge-based movement models. The scalar model (2.28) includes
the well-known Keller-Segel chemotaxis model as a special case (see (Shi et al. 2021,
Sect. 2); the lemma statement is found in the Appendix for completeness). It would
be an interesting direction of study to consider cases where a(x, t) is a more general
cognitive map, similar to those introduced in Sect. 2.2, and to compare the results with
and without the inclusion of a distributed temporal delay. This could provide insights
into the effect of learning on animal movement models, motivating the following
group of open problems. These problems are somewhat less well-defined compared
to previous open problems since even the construction of such a model would be new.

Open Problem 31 How might a dynamic cognitive map interact with distributed or
discrete time delays? That is, how might the effects of a dynamic map as found in
Sect.2.2 combined with discrete or distributed delays as in the models introduced
above influence the space use outcomes? Is it possible to use a standard boot-strapping
method (see, e.g., the proof of (Shi et al. 2021, Proposition 2.1)) to prove the existence
and uniqueness of solutions to problems with both nonlocal perception and discrete
or distributed delays in a bounded domain?

2.4 Short and long termmemory

In the derivation of the space use coefficients for model (2.1) (see Sect. 3.2), it is
suggested that there should be multiple layers or channels which together comprise
the cognitive map. These layers may include a number of important environmental
covariates influential to animal movement, such as food acquisition, territory defence,
or mate finding (Fagan et al. 2017). So far, only one layer is incorporated into the
cognitive map. Motivating the inclusion of at least two layers that work together to
informmovement is through distinct short and long termmemory components (some-
times referred to as a “bi-component" mechanism (Bracis et al. 2015; Riotte-Lambert
et al. 2015; Van Moorter et al. 2009)). From a biological standpoint, several species
are believed to rely on short and long-term memory for seasonal or long-distance
migration (Kitchin and Blades 2002). Recently, it has been shown in a stochastic set-
ting that both short and long-term memory layers are necessary to produce periodic
movement in a periodic environment (Lin et al. 2021). However, such a result may be
less insightful in a PDE setting as a periodic environment guarantees the existence of
a nontrivial periodic solution depending on the sign of the principal eigenvalue to a
linearized problem (Hess 1991, Chap. 2 and 3).

To explore the effects of short and long-term memory, one makes the following
set of assumptions: short-term memory has larger decay and uptake rates, while long-
term memory has smaller decay and uptake rates. This way, long-term memory takes
more time to form but decays less rapidly, while short-term memory responds to
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changes quickly and fades easily. If we denote by ms and ml the short and long-term
memory, respectively, the evolution of the short and long-term memory layers could
be described by

{
∂ms
∂t = αsas(x, t) − βsms,

∂ml
∂t = αlal(x, t) − βlml ,

(2.33)

withmotivation taken frommodels (2.13) and (2.11). The parameters should be chosen
so thatαl < αs andβl < βs to capture the effect of short versus long-termmemory. The
functions as, al should, in general, depend on time and space, and will be associated
with whichever environmental covariate is being tracked. For example, one could take
as(x, t) = al(x, t) = u(x, t)m(x, t), where m(x, t) is a resource density, giving

a(x, t) = c1ms(x, t) + c2ml(x, t).

The evolution equation describing movement with perception and short and long-term
memory is given by

∂u

∂t
= d�u − ∇ · (u∇ag,R

)
, (2.34)

for an appropriate detection function g(·) and perceptual radius R. The coefficients ci ,
i = 1, 2, could be either positive or negative depending on application; in Lin et al.
(2021) both coefficients are taken positive so that foragers are attracted to both short
and long-term memories, while (Bracis et al. 2015) suggests that long-term memory
could be an attractive force while short-term memory is repulsive, i.e. c1 < 0 < c2.
Bracis et al. (2015) incorporates an attraction to high-resource areas through long-
term memory, while being repelled from areas it has recently been through short-term
memory in order to allow resources to replenish. This formulation may be useful to
explore the effects of how the time since last visiting a location influences movement
decisions, such as in relation to resource density (Bracis et al. 2015; Schlägel and
Lewis 2014; Ranc et al. 2022) or territory surveillance and preymanagement (Schlagel
et al. 2017). Readers should note that in these references, the models are stochastic
or statistical. To our knowledge, (2.33)–(2.34) is the first incorporation of short and
long-termmemory in a diffusion-advection equation setting. This opens an interesting
avenue of study, as this combination of effects allows one to include a prioritization
of information through an ordering of advection rates. Logically, it makes sense to
prioritize avoiding predators over obtained sustenance, for example. Variable rates
of advection depending on other external factors (e.g. hunger or other satisfactions
measures, see Sect. 2.5) provide a more complex mechanism which includes the effect
of prioritization.We highlight two broad open problems regarding short and long-term
memory. Similar to Open Problem 31, even a reasonable model formulation from this
perspective would be new. As such, more precise research questions similar to those
found in Sect. 2.2.2 can be formulated once such a model has been constructed.
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Open Problem 32 What role does short vs. long-term memory play in differing mod-
elling scenarios, e.g. the well-posedness of problems or influences on steady state
profiles? Are both short and long-term memory components necessary and/or suffi-
cient to predict certain space use phenomena, if ever? That is, does the inclusion of
both short and long-term memory produce novel effects not found when only, say,
short-term memory is included?

Open Problem 33 Can this idea of short and long-term memory be meaningfully
connected to the concept of time since last visit (TSLV) as explored in Schlagel
et al. (2017)? More precisely, does a model featuring both short- and long-term
memory components provide better predictive power than models with only one mem-
ory compartment? Such insights would provide an interesting connection between
discrete-time probabilistic models, as used in Schlagel et al. (2017), and continuous-
time deterministic models of the sort explored here.

Open Problem 34 How does the prioritization of information affect space-use patterns
or persistence/extinction outcomes? For example, is a given model able to predict or
explain mechanistically the importance of avoiding predation before seeking food?
What does a model predict if the prioritization is reversed?

2.5 Learning

The phenomenon of learning is more difficult to quantify in the current setting. This is
exacerbated by the fact that there are many different forms of learning, ranging from
simple habituation (a change in behaviour through repeated exposure to stimulus) all
the way to observational learning (learning through mere observation). If we take the
psychologists’ definition of learning given in (2.3), one may argue that any model
featuring a dynamic cognitive map constitutes learning. For example, if a cognitive
map a(x, t) is described by an ordinary differential equation

∂a

∂t
(x, t) = α(x, t) − β(x, t)a(x, t),

then the growth term α(x, t) is the implicit learning mechanism. Therefore, one
can argue that all models presented in Sect. 2.2.2 that feature an additional equation
describing the evolution of a cognitive map include learning. On the other hand, mod-
els featuring time delays (Sect. 2.3) may ormay not include a learning process.Models
that feature discrete time delays, for example, do not have a learning mechanism. On
the other hand, distributed delays with a strong kernel include an implicit learning
process. This definition of learning may be too broad for further study, though, since it
does not allow one to distinguish a genuine “learning process" from other phenomena.
This can be problematic in at least two ways. First, some models feature a cognitive
map that lies “outside" the mind of the foragers, as in model (2.11) using marks on
the landscape. One can conceptually distinguish between a learning process and an
external process, but they are described in an equivalent way and so relative influ-
ences cannot be easily distinguished mathematically. Second, this broad definition
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of learning may create difficulties when comparing with empirical data: If one tries
to compare a model to data to identify whether a learning process has influenced an
observed movement pattern, it is impossible to distinguish if the movement pattern is
instead a consequence of some simpler mechanism.

Alternatively, some consider learning to be markedly different than memory when
defined as “modifications to a forager’s behaviour through experience/knowledge
acquisition” Thrun and Pratt (1998), which is closer to the task-based definition given
in (2.4), providing an avenue to determine whether or not a learning process has
occurred. From this perspective, none of the models introduced thus far feature learn-
ing since their movement mechanism remains the same for all time. That is, the
movement mechanism is an attraction (or repulsion) from the gradient of the cogni-
tive map, however constructed. This means that a population can never learn to change
their meta-level behaviour in relation to environmental changes. This motivates one to
consider the effect of variable rates of attraction or diffusion, that is, given an advective
potential a(x, t)with rate of attraction γ , γ should be allowed to change in sign and/or
magnitude as new information is obtained. Indeed, it has been empirically shown that
certain factors can increase locomotion activity in some species, inspiring the concept
of starvation driven diffusion (Cho and Kim 2013), which incorporates a mechanism
for the rate of diffusion to decrease when an organism is satisfied with its current envi-
ronment, and will increase when the organism is unsatisfied. To this end, a measure
of “satisfaction" must be introduced, and this quantity can be phenomenologically
viewed as a learning mechanism. To this end, a satisfaction measure was defined in
Cho and Kim (2013) as

s = s(x, t) := food supply

food demand
, (2.35)

and so it is assumed that the animals have knowledge of the current food supply and
demand. If the resource distribution is given as a function m(x, t), one then has

s(x, t) = m(x, t)

u(x, t)
, (2.36)

where u is the population density of foragers, and so it is assumed that food demand
is related directly to the population density. Notice that s(x, t) is similar to the static
cognitivemap suggested inmodel (2.8), but is nowused tomeasure satisfaction instead
of acting as a cognitive map. If s > 1, the food supply is larger than the food demand,
and so motility decreases. If s < 1, the food supply is smaller than the food demand
and motility increases. Thus, the changes to the rate of diffusion should be a compos-
ite function ω(s), where ω(·) is small for arguments greater than one and large for
arguments less than one, such as

ω(s) =
{

d+, 0 ≤ s < 1,

d−, 1 < s < ∞,
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for 0 < d− < d+ < ∞. In general, it is suggested that a satisfaction measure should
satisfy

ω(s) ↗ d+ as s ↘ 0+, ω(s) ↘ d− as s ↗ ∞,

where d+, d− are the maximum and minimum rates of diffusion.
This alternative viewof learning can be incorporated into the advection term aswell:

instead of modifications to the rate of diffusion, one could introduce modifications to
the advection speed, or even the sign of the advection speed. This may introduce
mathematical difficulties, however, as one cannot include the advection speed outside
of the gradient. Instead, the rate must appear within the gradient as is found in the
derivation of space use coefficients, see Sect. 3.2. More precisely, if the cognitive map
is given by a(x, t) and the advection rate is given by γ = γ (x, t, u), no longer con-
stant and may depend on the population density u and other environmental factors,
the correct form with perception would be −∇ · (u∇(γ (x, t, u)ag,R)), rather than
−γ (x, t, u)∇ · (u∇ag,R)). Furthermore, while ω(·) must remain positive when mod-
ifying rates of diffusion (in order to maintain parabolicity of the equation), γ (x, t, u)

can change signwhenmodifying advection speeds. In such a case, a sign changewould
indicate a change from attraction to repulsion (or vice versa), which may be a stronger
indication of learning as it indicates a change in kind rather than a change in amount.
Such forms may also allow one to overcome an issue discussed in Sect. 2.2.2: a single
equation could, in principle, be sufficient to describe a cognitive map if the rate of
advection is allowed to change sign. This point is raised briefly in the discussion of
Shi et al. (2019), where it is suggested that the sign of the advection speed may change
from attraction to repulsion depending on environmental conditions.

To demonstrate this point, we construct a simple model combining the effects of
starvation-driven advection and a den site. First, we assume that there is some constant
rate of attraction to a central den site located at x0 ∈ �. We then assume that foragers
are attracted to the local resource density, but the rate at which they move up the
gradient of the resource profile will now depend on the satisfaction measure s(x, t)
defined in line (2.36). We then define a modified advection rate ω̃(s) to be

ω̃(s) =
{

γ +, 0 ≤ s < 1,

0, 1 ≤ s < ∞,
(2.37)

so that the advection rate depends on the starvation level. Should the forager be hungry,
the advection rate “turns on"; if the forager is not hungry, the advection rate “turns
off" and the default mode tending toward the den site will dominate. With these effects
included, the one-dimensional model takes the form

∂u

∂t
= ∂

∂x

(
d

∂u

∂x
− u

∂

∂x

[
ω̃(s)m+γ ‖x − x0‖

])
, (2.38)

where 0 < γ < γ + so that the movement towards resources becomes a priority when
hunger is high.

123



   71 Page 32 of 69 H. Wang, Y. Salmaniw

Open Problem 35 In what sense do solutions exist to solve problem (2.38)? Due to
the possibility of the equation remaining linear (in the variable u), this should not be
as difficult a task as other well-posedness problems discussed thus far in principle.
On the other hand, the form described here features irregular coefficients at higher
order, which introduces other difficulties.

Open Problem 36 How can one meaningfully incorporate nonlocal perception in
addition to the mechanism of learning outlined in model (2.38) and the preceding
discussion? What differences in solution behaviour does one observe with only one
mechanism (e.g., learning or perception) vs. both mechanisms simultaneously?

Motivated by the formulations above, one may incorporate the idea of a satisfaction
measure with those introduced in Ranta et al. (1999) so that foragers may update their
advection rates based on (possibly incomplete) knowledge of the local resource density
and an expected resource density. Recall the form of the cognitive map m(x, t)/m(t)
introduced in model (2.7), where m(t) denotes the average resource density at time t .
The advection rate can then be taken as a composite function with the new satisfaction
measure s(x, t) = m(x, t)/m(t), where s > 1 in above average resource areas and s <

1 in below average resource areas. Depending on the expected behaviour of the forager,
ω(s) can be formulated so that the advection speed either increases or decreases,
or even changes sign, depending on this satisfaction ratio. This begins to address a
key difference between spatial memory and attribute memory: the formulations above
provide at least one direction to distinguish between the quality ofmovement decisions
and behaviour, rather than the mere locations that are desirable or undesirable.

Open Problem 37 For the new model (2.38), can the starvation-driven switch between
two cognitive mechanisms, foraging and home attraction, generate nontrivial spa-
tiotemporal dynamics and patterns? Biologically, would such realistic switches benefit
or impair the species? What other satisfaction measures can be introduced to act as a
behaviour modification mechanism? Due to the potential complexity of the model, even
a detailed exploration of simulated solutions for this problem may provide meaningful
insights into potential space-use outcomes.

3 Samplemodel derivations

3.1 Derivation of Fokker–Planck equation

In this section, we derive a continuous-time, continuous-space model via the master
equation

u(x, t + τ) =
∫

�

f (x, y, t; τ)u(y, t)dy (3.1)

in an unbounded domain � = R
2. Higher dimensional derivations can be considered

in a similar fashion. The master equation above keeps track of the density function for
the location of animals over time and space via a conservation law. The function f is
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a probability density function which describes the movement from a point y to x over
the time interval [t, t + τ) (see Sect. 3.2 for a concrete example).

First, consider the case where an individual is released with its location given by
the probability density function u0(x) at time t = 0. For example, one may consider
the case when an individual is released at a point x0 ∈ � so that u0(x) = δ(x − x0).
If we do not know the exact location of release, we use a general probability density
function (PDF) u0(x) which integrates to 1. We then use a Taylor series approach
while taking the limit as τ → 0+, see Bharucha-Reid (1960). Starting from (3.1),
we define the new vector z = x − y. Then we write f (x, y, t; τ) =: fz(z, y, t; τ).
Through this change of variables we obtain from (3.1)

u(x, t + τ) =
∫

�

fz(z, x − z, t; τ)u(x − z, t)dz. (3.2)

Expanding the right hand side in space about 0, we find

u(x, t + τ) =
∫

�

fz(z, x, t; τ)u(x, t)dz

−
∫

�

(
z1

∂

∂x1
(u(x, t) fz(z, x, t; τ)) + z2

∂

∂x2
(u(x, t) fz(z, x, t; τ))

)
dz

+
∫

�

(
z21
2

∂2

∂x21
(u(x, t) fz(z, x, t; τ)) + z22

2

∂2

∂x22
(u(x, t) fz(z, x, t; τ))

)
dz

+
∫

�

(
z1z2

∂2

∂x1∂x2
(u(x, t) fz(z, x, t; τ))

)
dz + O(z3), (3.3)

where we have assumed that the mixed partial derivatives of fzu agree. Using the fact
that

∫
�

fz(z, x, t; τ)u(x, t)dz = u(x, t), we may move this term to the left hand side
of (3.3) and divide by τ > 0 to obtain

u(x, t + τ) − u(x, t)

τ

= −1

τ

∫
�

(
z1

∂

∂x1
(u(x, t) fz(z, x, t; τ)) + z2

∂

∂x2
(u(x, t) fz(z, x, t; τ))

)
dz

+ 1

τ

∫
�

(
z21
2

∂2

∂x21
(u(x, t) fz(z, x, t; τ)) + z22

2

∂2

∂x22
(u(x, t) fz(z, x, t; τ))

)
dz

+ 1

τ

∫
�

(
z1z2

∂2

∂x1∂x2
(u(x, t) fz(z, x, t; τ))

)
dz

+ O(τ−1z3). (3.4)

Taking the limit as τ → 0+, we find that

∂u

∂t
= −∇ · (c(x, t)u) +

2∑
i, j=1

∂2

∂xi∂x j
(di j (x, t)u), (3.5)
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where

c(x, t) := lim
τ→0+

1

τ

∫
�

z fz(z, x, t; τ)dz, (3.6)

di j (x, t) := lim
τ→0+

1

2τ

∫
�

zi z j fz(z, x, t; τ)dz. (3.7)

Note that we tacitly assume that all higher order terms vanish as τ → 0+. Inter-
ested readers are directed to Bharucha-Reid (1960) and (Marley 2020, Chap. 2.3) for
comparable derivations and further discussion.

3.2 Derivation of space use coefficients from utilization distribution function

Next, we derive a general form of the space use coefficients c, d from the utilization
distribution function

f (x, y, t; τ) = K (x − y; τ)w(A(x, t))∫
�

K (z − y; τ)w(A(z, t))dz
, (3.8)

with further considerations found in Marley (2020); see also (Potts and Börger 2023).
The kernel K (x − y; τ) is the spatial dispersal found in the absence of external fac-
tors (e.g., in a spatially uniform environment), where we assume K is symmetric for
simplicity. The function A(x, t) is a description of relevant environmental covari-
ates, which in our context will seek to include cognitive mechanisms. In general,
A(x, t) = ∑

j β j a j (x, t) for some list of covariates ai (x, t) and their associated
selection coefficients β j . The weighting function w(·) then describes how such fac-
tors influence themovement behaviour towards the point x at time t . This is perhaps the
most important term here, as this is where we are able to explicitly include cognitive
factors from first principles.

Under the same change of variables as in Sect. 3.1, the utilization distribution
function is given by

fz(z, x, t; τ) = K (z; τ)w(A(z + x, t))∫
�

K (z̃; τ)w(A(z̃ + x, t))dz̃
, (3.9)

and so if one performs another Taylor expansion of w appearing in the numerator of
(3.9), we find

K (z; τ)w(A(z + x, t)) ∼ w(A(x, t))K (z; τ) + z∇w(A(x, t)) + O(z2). (3.10)

Hence, under the assumption that the kernel K is symmetric, it is readily seen that

∫
�

z1z2 fz(z, x; τ)dz ∼ w(A(x, t))
∫

�

z1z2K (z; τ)dz + O(z3) = 0 + O(z3).

(3.11)
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Hence, referring to (3.7) one finds that in fact di j ≡ 0 for i 	= j . When i = j , we
further expand the denominator of (3.9) to obtain

∫
�

K (z̃; τ)w(A(z̃ + x, t))dz̃ ∼ w(A(x, t)) + �w(A(x, t))

2! M2(τ ) + . . . , (3.12)

where

Mp(τ ) =
∫

�

|y|p K (y; τ)dy (3.13)

is the pth moment of the dispersal kernel.
Notice that the first order term in (3.12) vanishes in the same way as di j for i 	= j

since K is symmetric, i.e. M1(τ ) = 0. Similarly, the mixed terms also vanish. Putting
expansions (3.10) and (3.12) into (3.7), we find in the limit that

dii (x, t) = lim
τ→0+

1

2τ

w(A(x, t)) M2(τ )
2 + . . .

w(A(x, t)) + �w(A(x, t)) M2(τ )
2 + . . .

= lim
τ→0+

M2(τ )

4τ
+ O(τ )

= d (= const). (3.14)

Using a similar procedure, one may insert expansions (3.10) and (3.12) into (3.6)
to find

c(x, t) = lim
τ→0+

1

τ

∇w(A(x, t)) M2(τ )
2 + . . .

w(A(x, t)) + �w(A(x, t)) M2(τ )
2 + . . .

= lim
τ→0+

(
M2(τ )

2τ

∇w(A(x, t))

w(A(x, t))

)
+ O(τ )

= 2d∇ log(w(A(x, t))). (3.15)

Finally, we discuss the choice of weighting function w as it applies to knowledge-
based animal movement. Indeed, the final form of the equation describing animal
movement is, roughly, a diffusion equation with bias in movement given by advection
up the gradient of the log of the weighting function w. We now consider the end result
under the assumption of exponential weighting of covariates, which is the most com-
mon choice of selection function appearing in the literature (Fieberg et al. 2021; Potts
and Schlägel 2020), including both environmental and cognitive factors influencing
movement behaviours. In such a case,

w(A(x, t)) ∝ exp

(∑
i

βi ai (x, t)

)
,

123



   71 Page 36 of 69 H. Wang, Y. Salmaniw

where βi > 0 (< 0) indicates attraction (repulsion) towards (away from) the environ-
mental covariate ai (x, t). Thus, from the derivation of c(x, t) appearing in line (3.15),
we see that

c(x, t) = 2d∇ log(w) = 2d
∑

i

βi∇ai (x, t). (3.16)

Thus, the final description of motion in two spatial dimensions is given by

∂u

∂t
(x, t) = d�u(x, t) − 2d∇ ·

(
u(x, t)

(∑
i

βi∇ai (x, t)

))
. (3.17)

4 Biological insights throughmathematical exploration

In this section, we discuss some of the biological insights we have gained, and continue
to gain, through the analysis of the models proposed so far. First we bring attention
to some useful “Rules of Thumb” that should be considered once a model has been
formulated. Then, we discuss possible “Measures of Success” in animal movement
models and their importance to the field. In some cases, we are able to discuss existing
insights gained through such measures. In other cases, we propose modifications or
suggestions for further study.We concludewith a discussion of other common avenues
of analysis, including pattern formation, travelling wave solutions, critical domain
sizes, and useful numerical techniques.

4.1 Rules of thumb

We first introduce some rules of thumb that should be considered for virtually any
model. We divide these rules into “prerequisites” and “considerations”. Prerequisites
are properties that the model should necessarily possess to remain logically valid.
Considerations, on the other hand, are helpful suggestions that may be more or less
relevant depending on the situation.

4.1.1 Prerequisites

We first discuss an essential property that any reasonable model should possess: exis-
tence of a solution. Without this, any analytical or numerical insights gained may be
misleading at best, or entirely incorrect at worst.
Existence: Existence simply refers to the existence of a solution to a given problem
in some suitable context. It is well known that there are problems for which solutions
exist, problems for which no solutions exist, and problems for which we do not know
whether a solution exists or not. Furthermore, when the solution depends on a temporal
variable, it may exist for all time t ∈ (0,∞), or it may only exist on some finite interval
(0, T ) with solution blowup as t → T − (Cantrell and Cosner 2004, Chap. 1.6).
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While it is not inappropriate to investigate ecological models without knowing the
existence of solutions apriori (consider the famous Navier–Stokes equations), it is
often possible to show the existence of solutions under relatively weak assumptions.
Depending on the context, one may obtain classical solutions (Wu et al. 2006, Chap.
8) (sufficiently differentiable in both space and time), but other contexts may require
a more general form of solutions, such as weak or strong solutions (Wu et al. 2006,
Chap. 2, 3 and 9) or mild solutions (Pazy 1983; Amann 2021). These are solutions
that may not be differentiable in the classical sense, but can be made well-defined
through notions of weak differentiability or semi-group theory. The technical details
are beyond the scope of this review; we appeal to the references provided above for
further details. It is also worth noting that many of themodels proposed here do not fall
within the standard theory. This leaves many open problems regarding the existence of
solutions. We have made an effort to highlight explicitly some of these open problems
in this regard.

4.1.2 Considerations

Next,we briefly highlight some of the features anyone should considerwhen proposing
a newmodel. These properties are by no means absolutely necessary for a model to be
valid, but they offer insights into the question under what conditions or assumptions
is the model most valid?
Uniqueness: The property of uniqueness ensures that there is exactly one non-trivial
solution which solves the problem. For time-dependent problems, this implies that
there exists exactly one non-trivial solution corresponding to a given initial condition.
In terms of ecological (and other) modelling efforts, it is a desirable property to hold
to draw concrete conclusions from the model. Indeed, should a model have two or
more solutions corresponding to the same set of initial data, it is no longer possible
to determine which outcome could be realized in the natural world. Furthermore,
should a proposed model suffer from a lack of uniqueness, this may indicate that an
important biological mechanism has been neglected or ignored, which may motivate
alternativemodel constructions.This gives a broadopenproblem tovirtually allmodels
introduced in this manuscript.

Open Problem 38 The following question can be proposed for any previously intro-
duced model with existence as an open problem: Do there exist necessary and/or
sufficient conditions that guarantee the uniqueness of the solution obtained? The
results in Giunta et al. (2022); Jüngel et al. (2022), for example, prove a unique-
ness result, each in a slightly different context.

Continuity with respect to initial data: This property roughly says that small changes in
the initial data result in comparably small changes in the solution. This is important for
modelling purposes particularly when efforts are made towards fitting empirical data:
small errors in data measurements may produce unreasonable results if this continuity
property does not hold. On the other hand, there are examples where small changes do
result in large changes after a long time period (such as climate and weather models);
hence this property is dependent on context.
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Uniqueness and continuity with respect to initial data, together with the existence of
a solution, yield the well-posedness of a problem in the sense of Hadamard (Evans and
Society 1998, Chap. 1.3.1), which gives a reasonable expectation that the solution can
be solved for using standard numerical methods. On the other hand, if the problem is
ill-posed in someway, alternative numericalmethodsmaybe necessary in order to fully
justify the result(s) one obtains. For example, there are problems forwhich no solutions
exist while a numerical solver will produce a “solution" that is, essentially, a numerical
artifact (see Sect. 4.5 for a precise reference). Another example is in model (2.13) for
2 interacting populations: through a linearization about constant steady states, the
problem becomes ill-posed as the perceptual radius R tends to zero. Solutions can
be found at arbitrarily high wavenumbers as a consequence (Potts and Lewis 2016a).
This suggests that 1. the solution profile at steady-state fails to be unique, and 2. the
problem almost certainly does not enjoy continuous dependence with respect to initial
data.

Initial conditions: We briefly reflect on the nature of the initial data chosen. First, we
note that the choice of initial data can be chosen almost arbitrarily in theory (continuity
of the initial data is often sufficient to ensure well-posedness of the problem, for
example); the importance, perhaps, is on determining the impact that differing initial
data may have on the dynamics predicted by the model. In many classical models,
initial conditions have little impact on the overall dynamics (e.g., the standard Fisher-
KPP equation (Perthame 2015, Chap. 4.1)); on the other hand, some models have
significantly different outcomes depending on the initial data chosen (e.g., the Allen-
Cahn equation (Perthame 2015, Chap. 4.1)). It is not clear how the choice in initial
data affects space use outcomes in a general sense, especially in relation to the models
introduced here. However, there is strong numerical evidence to suggest that patterns
may only form if the initial condition is sufficiently close to a segregation pattern,
see (Potts and Lewis 2016a). Pattern formation should therefore not be considered
“spontaneous" in the usual sense. Instead, such outcomes may be better thought of as
“pattern stimulating". One exception to an arbitrary choice in initial data is in relation
to empirical data: should a model be constructed to fit empirical data, the initial data
should match that of the emperical data itself in absence of further justification.
Boundary conditions: Modellers spend a significant amount of time describing what
happens within the domain (e.g., the habitat), but we must also specify what occurs
when an agent reaches the boundary of the domain (e.g., the edge of the habitat in a
bounded domain). Often this is presented from a mathematical perspective with three
main types (Dirichlet, Neumann, Robin) introduced. For application purposes, we also
discuss zero-flux and periodic boundary data. Here, we will approach this first from
the biological perspective, and then make some brief comments on the connection to
prospects of mathematical analysis.

To motivate the reader, we consider some of the models introduced thus far. Many
feature no birth or death processes (see Sects. 2.1–2.2.2, for example), and so it is
reasonable to assume that the total population remains fixed for all time; the models
proposed describe animal movement only. Hence, the most appropriate boundary con-
dition is referred to as the zero-flux or reflecting boundary condition, which conserves
the total population through construction. To determine the appropriate zero-flux
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boundary condition, one simply integrates the equation over the domain and applies
the divergence theorem to show that d

dt

∫
�

u(x, t)dx = 0, which naturally implies a
conserved population, and is identical to the initial population size. As a simple but
instructive example, consider (2.1) in� = (0, L). Integrating over (0, L) and applying
the divergence theorem yields

0 = d

dt

∫ L

0
u(x, t)dx =

∫ L

0

∂

∂x

(
d

∂u

∂x
− ∂a

∂x
u

)
dx = d

∂u

∂x
− ∂a

∂x
u
∣∣L
0 .

Hence, the total population is conserved if we prescribe at the endpoints

d
∂u

∂x
(0, t) − ∂a

∂x
(0, t)u(0, t) = d

∂u

∂x
(L, t) − ∂a

∂x
(L, t)u(L, t) = 0. (4.1)

We connect this idea to another common boundary condition, referred to as a homo-
geneous Neumann boundary condition, which prescribes the outer normal derivative
of the solution at the boundary:

∂u

∂n
(x, t) = 0, on ∂�.

Here, ∂
∂n denotes the outer unit normal vector to the boundary of the domain ∂�.

Sometimes, a homogeneous Neumann boundary condition is also referred to as a
zero-flux boundary condition. This raises an interesting point that may contribute to
confusion. In some cases, a homogeneous Neumann boundary condition is sufficient
to ensure a conserved population, and so is equivalent to a zero-flux condition. This
would be the case in any model where the potential a(x, t) depends linearly on the
solution u(x, t) itself (e.g., the local version of model (2.9)). In this way, ∂a

∂n = ∂u
∂n = 0

along ∂�, and so (4.1) is automatically satisfied. On the other hand, a homogeneous
Neumann boundary condition may not conserve the population if a(x, t) is given
apriori and does not itself satisfy a homogeneous Neumann boundary condition. In
such cases, a Neumann condition is not equivalent to a zero-flux condition.

The third boundary condition we discuss is the homogeneous Dirichlet boundary
condition:

u(x, t) = 0, on ∂�.

This is sometimes referred to as a hostile boundary condition. As this name suggests,
this condition assumes that the boundary is completely lethal and any agent that reaches
the edge is removed immediately and never returns (e.g. the animal dies). Such a
condition is most appropriate for species on an island, surrounded by a cliff edge, or
in a particular necessary ecological niche, for example. In general, a homogeneous
Dirichlet condition will not conserve the population since a hostile boundary is a
mechanism by which there is a loss of the population without an explicit birth or death
process included in the model equation.
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The fourth condition, easily viewed as a generalization of the Neumann and Dirich-
let condition, is often referred to as a Robin or mixed boundary condition. This is
usually written as

α(x)
∂u

∂n
+ β(x)u = 0, on ∂�, (4.2)

but can be generalized to include cases where the coefficients are time dependent (Pao
1992, Chap. 2). When α = 0 < β, it is a Dirichlet condition; if β = 0 < α, it is
a Neumann condition. If α, β > 0, this boundary condition can be interpreted as a
partial loss of the population at the boundary. Choosing α(x, t) = d, β(x, t) = − ∂a

∂x ,
the Robin condition (4.2) is equivalent to the zero-flux condition (4.1).

Thefinal boundary conditionwediscuss in detail is the periodic boundary condition.
As the name suggests, this condition produces a level of continuity from one boundary
portion to another, giving an implicitly defined “periodic extension" of a solution from
a finite to an infinite domain. In one spatial dimension (0, L) this takes the form

u(0, t) = u(L, t),
∂u

∂x
(0, t) = ∂u

∂x
(L, t).

In higher dimensions, this is equivalent to studying a given problem on a torus. Inter-
estingly, periodic boundary conditions often preserve the total population in absence
of birth/death processes for many models introduced here. An unfortunate reality, per-
haps, is that while a periodic boundary condition may not be the most biologically
reasonable choice, it is much easier to study analytically. The reason is easy enough
to understand conceptually: the periodic boundary condition case is the no boundary
case. For nonlocal problems, this is of particular interest as it allows one to avoid
addressing what happens to the perceptual kernel near the boundary of the domain.
Instead, the kernel is able to “spill over" and remains a well-defined quantity through-
out the entire domain. To observe this visually, consider the third panel of Fig. 2: what
happenswhen the centre of the ball is chosen to be, say, (1, 1)? For periodic conditions,
the portion that spills over in the bottom left corner appears in the top right corner. This
is in contrast to the strategy found in Potts and Lewis (2016a), for example, where the
perceptual kernel is explicitly defined as

a(x, t) :=

⎧⎪⎨
⎪⎩

1
R+x

∫ R
−x a(x + z, t)dz if 0 < x < R,

1
2R

∫ R
−R a(x + z, t)dz, if R < x < L − R,

1
R+L−x

∫ L−x
−R a(x + z, t)dz, if L − R < x < L,

(4.3)

where a(x, t) is the cognitive map and 0 < R < L is the perceptual radius. Instead of
spilling outside of the domain, the kernel is now defined in such a way that this issue
is removed by explicitly cutting off the kernel near the boundary. This definition is
perhaps the most biologically reasonable and is compatible with a no-flux boundary
condition; yet, models with such a boundary condition and nonlocal component(s) are
difficult to study, both analytically and through simulation (see Sect. 4.7 for relevant
numerical techniques and challenges). As such, existing tools need to be modified, or
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new tools need to be developed, to fully explore such problems. Even questions of the
existence of solutions can be highly non-trivial based on seemingly minor changes
to prescribed boundary data. Because of this trade-off, most open questions proposed
so far focus on cases subject to a periodic boundary condition in a bounded domain.
These cases allow researchers tomost easily focus on the influence of varying cognitive
influences. Hence, we introduce the following open problem that essentiallymultiplies
the number of open problems by the number of potential boundary conditions different
from the periodic case.

Open Problem 39 Under what conditions do solutions exist to problems introduced in
Sect.2.2.2 when subject to a homogeneous Neumann or Dirichlet boundary condition
and the perceptual kernel defined in the style of (4.3)? How do these results compare
to the periodic boundary case?

Moreover, we propose the following general open problem to expand upon the
existing definitions of perceptual kernels (one appropriate for a periodic boundary
condition or an unbounded domain, another which explicitly cuts off the kernel near
the boundary). There have been strides in this direction for nonlocal models different
from those proposed here, such as cell adhesion models (see Buttenschön and Hillen
2021 and Hillen and Painter 2009 and the references therein). While non-trivial in
general, a clever shift in perspective may alleviate technical difficulties in ways that
are unexpected.

Open Problem 40 What are some possible alternative definitions or constructions of
perceptual kernels that are both biologically reasonable while lending themselves to
rigorous mathematical analysis? In particular, how can one reasonably deal with such
nonlocal components near the boundary of the domain?

While classical forms of boundary data feature many existing tools well-developed
for rigorous analysis, a variety of novel boundary conditions should also be considered
for biological purposes and application. One example not explored here are moving
boundary conditions, see e.g. Feng et al. (2021), where a non-Stefan free boundary
condition was proposed via a trade-off between shorter and longer spatial scales.

In some sense, there are no correct or incorrect choices in boundary data should
sufficient justification be provided. As onemay observe from the preceding discussion,
though, some boundary data may lend themselves to a more rigorous analysis than
others; some boundary data may be more biologically reasonable than others. Care
should be taken on either front.
Domains: Related to the choice of boundary conditions is the domain in which the
model is studied. In most models introduced here, a one-dimensional spatial domain
is chosen for ease of analysis and model conception (exceptions include some of
the time-delay models introduced in Sect. 2.3 where increasing the spatial dimension
essentially leaves the analysis unchanged). For such one-dimensional problems, this
can be in a bounded or an unbounded interval. As discussed above, appropriately
defining a nonlocal component near a fixed boundary point is not a simple task. How-
ever, studying a nonlocal problem in an unbounded domain removes the necessity to
modify the definition of a perceptual kernel. In this sense, an unbounded interval is
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comparable to studying the problem in a finite interval with periodic boundary condi-
tions. Furthermore, an unbounded interval lends itself to perceptual kernels that do not
have a finite domain of definition. This is the case for the exponential and Gaussian
kernels defined in (2.3).
Timescales: A significant portion of movement models described here do not include
a birth/death process. In practice, this may be reasonable if one assumes that animal
movement occurs at a timescale much faster than the birth/death processes (Potts and
Lewis 2019). However, this may result in other difficulties. For example, a common
technique is to take advantage of the so-called quasi-steady state approximation in
the equation for the cognitive map. That is, if a map a(x, t) is described by a dynamic
equation, one sets ∂a

∂t = 0 and can then (in principle) solve for a(x, t) explicitly (in
terms of the population density variable u). This reduces the number of equations, but
it may not be appropriate to make such a simplification if the growth of a cognitive
map occurs at a timescale that is the same as that of the actual movement. This may
not be the case for model (2.11), where the “cognitive map" is given by marks on the
landscape, which necessarily occur at the same timescale as the animal movement.
Subsequent biological insights may not be accurate as a consequence. On the other
hand, since perception occurs very quickly and influences movement for a longer
period of time, it may be reasonable to use a quasi-steady state approximation for
models which describe the cognitive map itself, such as model (2.13). An alternative
is to include a birth/death process in the model at the start so that the timescale over
which these models are valid becomes less of an issue. Even still, one should take
care in including birth/death processes in a model when drawing connections to data
collected over a timescale that does not capture significant changes in the population.

Wewish to emphasize that none of these rules are alwayswrong or right. Instead, we
hope to encourage care in using some of the assumptions commonlymade, recognizing
when they are most valid, or when they may need to be reconsidered/reformulated.

4.2 Measures of success in movementmodels

In the development of movement models with cognitive mechanisms, it is of great
interest to be able to evaluate and compare the outcomes of different formulations.
Indeed, it is possible to describe, either quantitatively or qualitatively, the asymp-
totic dynamics or the possible forms of steady states for a given problem; however,
such insights occasionally remain a mere mathematical description rather than a more
explicit biological one. Having a clearer, unified framework to measure the utility of
certain cognitive mechanisms in a given biological context will be invaluable to the
assessment of model validation and prediction(s). In this sense, a unified framework
may be interpreted more accurately as unified within groups of comparable models.
To clarify this point, we briefly describe some of the existing measures used in animal
movement models, which suggests in what sense models may be “comparable".

One of the most common measures of success used in population dynamics gener-
ally is the concept of fitness. Classically, fitness corresponds directly with the ability
of an organism or population to successfully reproduce. For the majority of cases
considered here, we study a population density or a population’s probability density
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function, and so we must study the fitness of the population. In Sect. 4.2.1, we discuss
measures of success with respect to this sense of fitness. In practice, it is mathemat-
ically and conceptually most simple to define a measure of fitness for models that
include explicit population dynamics. It is in this sense that such a group of models
can be referred to as comparable.

Even still, there is much debate over the universality of such a perspective. While
this form of fitness is intuitive in the sense of evolutionary terms (“survival of the fit"),
there are cases where fitness must arguably be measured in some other way (Peacock
2011), particularly when the model proposed does not explicitly consider population
dynamics (model (2.4), for example). Alternative measures exist, focusing instead on
success or efficiency through some intermediate measure that many ecologists agree
will correlate with fitness. These are the measures we discuss in Sect. 4.2.2.

Finally, there are cases where population dynamics nor explicit resources are
included (e.g., models (2.9)–(2.13)). How, then, can we evaluate the utility of dif-
ferent cognitive mechanisms? This is not an easy question to answer, but (Lewis and
Moorcroft 2001) provides an interesting framework to measure fitness in such cases.
We explore this framework in more detail in Sect. 4.2.3.

Ultimately, a measure of success is highly dependent on context and should be
treated as such. For the remainder of Sect. 4.2, we hope to clearly describe some
existing measures of success in each of the contexts outlined above. It is through
differences in these measures that we can begin to determine the utility of different
cognitive mechanisms.

4.2.1 Measures with population dynamics

In some formulations, as in the models appearing at the end of Sect. 2.2 and all found
in Sect. 2.3, population dynamics are included. Then, we may propose a number of
measures of success, where success is measured with respect to growth rates and/or
survival of the population. In this sense, the following measures are most closely
related to an evaluation of the (relative) fitness of a population in terms of its ability
to propagate or persist.

The first measure, motivated by net growth rates in cell growth (Karowe andMartin
1989), considers the rate of change of the total population over a prescribed time
interval:

Net Growth :=
∫ tmax

t ′
(Change in total population density) dt . (4.4)

Thus, if u(x, t) measures the population density, the change in the total population is
d
dt

∫
�

u(x, t)dx , and so

Net growth :=
∫ tmax

t ′
d

dt

∫
�

u(x, t)dxdt =
∫ tmax

t ′

∫
�

∂u

∂t
(x, t)dxdt .

From the discussion found in Sect. 4.1, the population should be conserved in the
absence of growth/death dynamics. Thus, all movement terms vanish after integration
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and the Net Growth is simply

Net Growth :=
∫ tmax

t ′

∫
�

f (x, t, u)dxdt, (4.5)

where f describes population growth/death. A numerical exploration of this quantity
seems to be the most fruitful direction, as the formulation above leaves the depen-
dence of Net Growth on potential knowledge-based parameters implicit. On the other
hand, if the interval is chosen such that the solution u(x, t) is close to some tem-
porally constant steady state u∗(x), it may then be possible to investigate changes
with respect to parameters analytically. We then propose the following open problem
which can provide useful insights into the actual utility of different cognitive move-
ment mechanisms, especially in comparison to models with no cognitive mechanisms
included.

Open Problem 41 What are the consequences and predictions of knowledge-based
movement models in the presence of reaction terms made by the measure (4.5) intro-
duced above? Are there optimal ranges for key cognition-based parameters, such as
perceptual radius or rate of advection towards/away from covariates, that increase
fitness in this sense? How does this measure of fitness compare to a null hypothesis
model with no cognitive-based mechanisms?

We carefully note that measure (4.5) is not absolute. Instead, this measure is best
understood as comparing fitness between differing model formulations; the higher the
net growth, the more fit the population. Note also that such a measure is influenced
only by the explicit population dynamics of themodel, and so the influence of different
cognitive mechanisms may be lost when a zero-flux boundary condition is used.

Alternatively, we may use a comparison of competitive outcomes, assuming that
both survival and extinction are possibilities within the framework considered. In
this sense, success is obtained when the population persists as t → ∞. A foraging
strategy is unsuccessful if the population goes extinct. This is considered in Cho
and Kim (2013), where it was shown that starvation-driven diffusion may reverse
outcomes predicted by constant diffusion alone. Hence, starvation-driven diffusion
may be a more successful foraging strategy. Readers should carefully note that this
does not mean that starvation-driven diffusion is the more correct mechanism, but
rather that it is an alternative explanation should we find results in nature inconsistent
with predictions made by simpler models. Such outcomes can be studied analytically
through changes in a principal eigenvalue or basic reproduction number, which often
determines the local or global stability of a steady state (Hess 1991). This is a rather
binary view of success, however. There are also ways to modify this perspective to
determine success (or, relative success) in relation to the size or changes in the size of
this key value. To be concrete, consider the following

∂u

∂t
= D�u + ru(1 − u)

in a one dimensional domain (0, L) subject to homogeneous Neumann boundary data.
It is well known that the stability of the constant steady state u∗ = 1 is given by the
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sign of the principal eigenvalue, which in this case is μ1 = r > 0, and so u → 1 as
t → ∞ for any r > 0 from the theory of monotone flows (Hess 1991; Zhao 2011).
From a biological perspective, this principal eigenvalue is exactly the net growth rate
of the population, and hence can be viewed as directly connected to the fitness of
the population. Taking the derivative of μ1 with respect to the parameter r yields
μ′(r) = 1 > 0, and so increasing r is a quantity which contributes to the success
of the species in terms of survival. In contrast, the stability does not depend on the
domain size L or the diffusion rate D, which can be observed directly since μ1 does
not depend on either of these variables. On the other hand, if one considers the same
problem subject to homogeneous Dirichlet boundary conditions, it is well known that
the principal eigenvalue μ1 = r

D − (
π
L

)2 depends on D, r , and the domain size L
(Cantrell and Cosner 2004, Chap. 1.6.2). Taking the derivative of μ1 with respect to
these variables yields

dμ1

d D
= − r

D2 < 0,
dμ1

dr
= 1

D
> 0,

dμ1

d L
= 2

π2

L3 > 0,

and so we see that increasing r and L are beneficial strategies, while increasing D is
not.

An analysis of this sort could be applied to awide range ofmodels,with the difficulty
dependent on the difficulty of the stability properties of the problem at hand, providing
phenomenological insights into the impacts certain factors have on population dynam-
ics. In the example above, the relation was found to be monotone (either decreasing or
increasing). More interesting examples may find non-monotone behaviour, providing
an optimal window in which certain strategies are most successful.

Open Problem 42 How might we formulate useful eigenvalue problems related to
memory and nonlocal perception when population dynamics are also included? This
will necessarily include a careful treatment of the nonlocal effect of the perceptual
kernel, with attention directed toward the top-hat detection function. Is it possible to
determine the dependence on quantities such as perceptual radius, advection speed,
rates of diffusion, or memory uptake and decay rates?

In contrast to measure (4.5), an analysis of eigenvalues will implicitly incorpo-
rate different cognitive mechanisms considered, and so may be a better (if not more
mathematically challenging) way to assess a populations’ fitness. In particular, a lin-
earization about the trivial steady state provides explicit insight into a population’s
fitness in terms of reproductive success.

4.2.2 Measures with explicit resources

Different frommodels with explicit population growth/decay, many models discussed
here do not feature such processes (e.g., model (2.4)). When the total population is
conserved, it does not make sense to use measures of the sort described in the previous
section. Indeed, the Net Growth measure (4.5) would be zero!

Instead, an alternative quantitative measure of success comes from the perspective
of optimal foraging theory. This quantity is referred to as the foraging success and has
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been used as a measure to determine optimal diffusion and advection rates for model
(2.4). In Fagan et al. (2017), foraging success is defined as

Foraging Success :=
∫ tmax

t ′

∫
�

u(x, t)m(x, t)dxdt, (4.6)

where the interval (t ′, tmax ) is chosen so that the transient dynamics of the solution
u(x, t) have settled down. In this context, transient refers to the solution behaviour for
smaller time intervals; this is in contrast to asymptotic dynamics, where the solution
is near an equilibrium state of some form. The purpose of this measure is to quan-
tify the effectiveness of consumer-resource tracking, in this case, based on nonlocal
information. An important distinction to make here is that this measure considers only
the ability to track the resources only, as opposed to the tracking and the utilization
of resources. As noted in Fagan et al. (2017), however, model (2.4) does not con-
sider mutual interference or resource depletion, and so this measure may only be valid
under the assumption of sparsely populated regions and that the resources degrade
more quickly than they are depleted by foragers. This may then introduce further
issues, as one of the common assumptions for a knowledge-based animal movement
model framework is that there is a high enough population density so that the PDE
model derived is an appropriate mean-field approximation of the population density
(Potts and Lewis 2019).

More recently, the foraging success as given in (4.6) has beenmodified as a foraging
efficiency (FE) measure using the so-called Bhattacharyya coefficient (Bhattacharyya
1943), which quantifies the overlap between two distributions. In Gurarie et al. (2021),
it is given by

Foraging Efficiency := 1

tmax

∫ tmax

0

∫
�

√
u(x, t)m(x, t)dxdt . (4.7)

When scaled such that |�|−1 ∫
�

udx = 1 and tmax
−1

∫ tmax
0

∫
�

m(x, t)dxdt = 1,
the foraging efficiency coefficient lies between 0 and 1 (to see this, apply Hölder’s
inequality). The restriction on the resource so that this scaling holds assumes that the
average total amount of resource through, say, a year is 1. In this sense, the Foraging
Efficiency measure is normalized between 0 and 1, whereas the Foraging Success
measure is not.

In the forms described above, it may be of use to note that these measures are best
interpreted as a predictor of successful foraging rather than as a result of successful
foraging, and the level of success is directly proportional to the correlation between the
population density and the resource density. In other words, if a population distribution
overlaps closely with the resource distribution (i.e., (4.6) or (4.7) is large), then the
population is expected to forage successfully by virtue of being in the right place at
the right time. In contrast, some authors consider the process of foraging to be “all the
methods by which an organism acquires and utilizes sources of energy and nutrients"
Koy and Plotnick (2007). This includes key components of location, consumption,
retrieval, and storage. Furthermore, some authors consider a foraging efficiency to
be “metabolizable energy gained while foraging divided by total energy spent while
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foraging" Whitford and Duval (2020). This motivates a push for alternative measures
of foraging success as a result of successful foraging to compliment the existing
correlational measures. This is not a trivial task, as such a measure would require
additional mechanisms in the model to determine how much energy is used while
foraging. In particular, models proposed here do not (explicitly) incorporate such
mechanisms, and hence we use these different perspectives to propose a few open
problems.

Open Problem 43 How does the analysis and predictions made in Fagan et al. (2017)
for model (2.4) using the foraging success measure (4.6) compare with predictions
made by the foraging efficiency measure (4.7)? Are they consistent in their assess-
ment of optimal foraging strategies? For knowledge-based movement models more
generally, what are the predictions made by each measure?

Open Problem 44 How can we formulate different measures of foraging success that
incorporate mechanisms beyond mere correlation with a resource density? More pre-
cisely, how can we meaningfully quantify costs (metabolic or otherwise) associated
with foraging as a means to measure a species’ fitness as a result of successful forag-
ing?

4.2.3 Measures with no population dynamics or explicit resources

In many of the models introduced in Sect. 2.2, there are no population dynamics or
explicit resources! Consequently, previous measures may be inappropriate, at least
without further modification or justification.

Despite this apparent challenge, there are existingworkswhichprovide some insight
into the construction of a biologically relevant fitness function in relation to adopting
a particular movement strategy. In Lewis and Moorcroft (2001), the authors study a
movement model with dynamic scent marking similar to the form ofmodel (2.11) with
two wolf packs, u and v. While only movement is considered, they define a geometric
growth rate Ru for the wolf pack u as

Ru = S · Nu,

where S is the probability that the alpha female survives the year to breed in the spring,
and Nu is the number of offspring that survive assuming the alpha female breeds. The
quantity Ru gives an expected number of offspring produced in a single year.

Then, the authors construct a prey density h(x, t) (see (Lewis and Moorcroft 2001,
Appendix A) for details) depending on the density of each wolf pack. It is worth noting
that while the equation for h(x, t) depends on the dynamics of each wolf pack, the
movement equations do not, and so u, v are decoupled from h(x, t). This prey density
h(x, t) essentially acts as a resource density as in Sect. 4.2.2, which yields an explicit
form for the expected number of yearly offspring produced:

Nu = σψ

∫
�

u(x)H(u(x), v(x))dx .
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Here, σ is a conversion rate of prey into offspring,ψ is the encounter rate, and H(u, v)

is the average prey density during the year given space use patterns u(x) and v(x).
Finally, the authors assume that there is some probability of a wolf being killed

through inter-pack aggression, and that this is proportional to an encounter rate between
individuals αu(x)v(x). Given a natural mortality rate μ0 > 0, the overall death rate
μ is given by

μ = μ0 + α

∫
�

u(x)v(x)dx,

The survivorship S is then e−μ, and the fitness function for pack u is given by

ru = −μ0 + ln(σψ) − α

∫
�

uvdx + ln

(∫
�

u H(u, v)dx

)
. (4.8)

The authors then explore optimal strategies depending on different movement mech-
anisms, which in their case is in differing rates of advection towards or away from
covariates.

This procedure provides a route to explore a population level fitness, and in partic-
ular to compare the relative fitness between two (or more) populations within a single
model. Of course, there is no reason in principle why this could not be further adapted
to assess the relative fitness between two populations described by different models,
assuming that the underlying features of each perspective remain roughly comparable
(e.g., two separate models featuring different perceptual kernels or perceptual radii).
The challenge, it seems, is instead in constructing a biologically reasonable fitness
function in the style of (4.8), which requires some additional argumentation to justify
what, exactly, the “prey" or “resource" is. For the case of wolf packs, some knowl-
edge of the deer population is required; for a different species, an entirely different
construction of Nu , or even the death rate μ, would be required.

Open Problem 45 Can one perform a similar analysis of optimal movement strategies
with a fitness function of form (4.8) when other cognitive movement mechanisms are
included? In particular, how does this measure of pack fitness change with respect to
different perceptual kernels or perceptual radii? This may be done for model (2.11)
without modification; to perform a comparable analysis for other movement models
without growth dynamics or explicit resources, one must first modify (4.8) appropri-
ately for the setting or species under consideration.

4.2.4 Measures with both population dynamics and explicit resources

Finally, we briefly discuss scenarios in which both population dynamics and explicit
resources are included. One could potentially choose any of the measures proposed in
Sect. 4.2.1 or Sect. 4.2.2; one could also follow the framework outlined in Sect. 4.2.3
without the need to define a resource distribution since it is already available. In fact,
it could be quite interesting to explore comparisons of each of the measures proposed
here for a model that includes all components necessary to make such comparisons.
We highlight this as the following open problem.

123



Open problems in PDE models for knowledge-based animal... Page 49 of 69    71 

Open Problem 46 For a movement model which includes cognitive movement mech-
anisms, explicit resources, and birth/death processes, how do various measures of
success proposed here compare? Are they consistent with each other, or do they have
a fundamental disagreement in which strategies are optimal in each sense of “suc-
cess"?

4.3 Comparisons throughmeasures of success

We begin with model (2.4). In Fagan et al. (2017), the objective is to use the foraging
success (4.6) as ameasure to compare different diffusion and advection rates, aswell as
differing forms of perception kernels and perceptual radii. Interestingly, the foraging
success is found to be non-monotone with respect to perceptual radius R in certain
environments, see (Fagan et al. 2017, Fig. 3). On the other hand, the foraging success
is monotonically increasing with respect to the advection rate α under the special case
when R → 0+, see (Fagan et al. 2017, Fig. 2). This provides insights into: What is
the optimal detection scale for nonlocal information gathering?; For what kinds of
movement and detection does nonlocal information provide a benefit?; or For what
kind of landscapes is nonlocal information most useful? One important aspect to note
here is that these questions are possible to answer due to an available measure to infer
comparatively better or worse scenarios within the context of this single model.

Model (2.4) is most closely related to the new models (2.7) and (2.8) in that the
resource density is given apriori. There are no existing results concerning thesemodels,
and so this opens an interesting avenue for investigation.

Open Problem 47 Which knowledge-based strategies are optimal in terms of the for-
aging success (2.4) for models (2.7) and (2.8)? How do these insights compare to
results obtained in Fagan et al. (2017)? It may be the case that one strategy is not
always optimal, and so it becomes interesting to consider under which conditions
or under which model formulation a given strategy is advantageous. This can also
provide insight into how much optimal strategy predictions depend on the underlying
model itself.

For mathematical analysis, investigation of changes in a principal eigenvalue as
described in Sect. (4.2.1) may be the most fruitful direction. Ultimately, this will
require the development of techniques to deal with nonlocal components which may
be highly non-trivial in itself. For example, is it possible to formulate a nonlocal
eigenvalue problem in a variational setting? Such developments would have high
potential for interesting biological insights beyond a numerical analysis alone.

4.4 Emergence of patterns

One of the core topics of investigation in the field of movement ecology is the con-
nection between animal movement behaviour and the generation of patterns in space,
time or both (Nathan et al. 2008), particularly in the absence of environmental hetero-
geneity (Sayama et al. 2006; Potts et al. 2022). Indeed, countless models with explicit
environmental heterogeneity have been developed, but in these cases it is much less of
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a surprise for non-constant steady states to emerge. Instead, it is interesting to study
the emergence of non-constant steady states in problems where there is no environ-
mental heterogeneity. This includes the formation of home ranges (Moorcroft et al.
1999; Moorcroft and Lewis 2006; Van Moorter et al. 2009) and territories (Potts and
Lewis 2016a, b, 2019) and the potential mechanisms required for each. Classically,
this is discussed through linearization techniques which gives rise to so-called Turing
instability (Murray 2003, Chap. 2), where a constant steady state can be destabilized
by the presence of diffusion. There are now a significant number of resources explor-
ing in great detail the possible outcomes for classical reaction-diffusion equations,
including not only when patterns will form, but also which types of patterns one might
expect to find. While the original motivation of advection equations such as (2.1) was
to describe cell growth phenomena, some of these same ideas and motivations transfer
to the study of movement ecology.

As it currently stands, we have little understanding ofwhen patternsmay emerge, let
alone which types of patterns wemight expect to appear for non-standard PDEmodels
explored here. For the implicit memory models discussed in Sect. 2.2, the same lin-
earization techniques used in classical setting yield somepreliminary insights: foragers
must have sufficient uptake of memory, and cannot forget experiences too quickly in
order for patterns to emerge; furthermore, the advection rate must be sufficiently large
compared to the diffusion rate in order for patterns to form (Potts and Lewis 2016a,
Sect. 3.1) (see also (Potts and Lewis 2019, Sect. 4)). However, we still do not have
a robust understanding of necessary and sufficient conditions for patterns to emerge,
hence the appeal to a numerical exploration of local stability properties. A similar
trend holds for the explicit memory models discussed in Sect. 2.3: the advection rate
must be sufficiently large in relation to the diffusion rate for constant steady states
to become destabilized (see, e.g., Shi et al. 2019, Corollary 3.9, Song et al. 2021,
Theorem 2.3, Shi et al. 2021, Theorem 3.3). Of course, the techniques used in these
two settings are quite different.

From a mathematical perspective, this yields a rich area of analysis which can be
roughly understood across all models introduced thus far: when do patterns form, and
what kinds of patterns are possible? It is not clear what kinds of patterns are possible
for implicit memory models; most existing works consider only the possibility of
patterns emerging in relation to parameters appearing in the model, e.g. (Potts and
Lewis 2016a, b, 2019); in some cases, effort has been made to describe possible
non-constant steady states using energy methods in the local case, see (Potts and
Lewis 2016a, Sect. 3.4). We conjecture that some models may in fact have infinitely
many piece-wise constant steady states in this local limit. Recent progress has been
made in Giunta et al. (2022), where the authors rule out certain pattern forms (see
Proposition 2 and Remark 2) and verify the existence of patterns that are either roughly
piecewise constant or spikey solutions. In the case of explicit memorymodels, we have
a better understanding of what types of patterns may form, at least from a simulation
perspective: spatially constant temporally periodic steady states, temporally constant
spatially varying steady states (stripe patterns), and spatiotemporally varying steady
states (checkerboard patterns) have all been observed, see (Song et al. 2019; Shi et al.
2019; Song et al. 2021; Shi et al. 2021). However, it is still not clear exactly when
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these patterns are expected to form, and whether these are all of the possibilities (we
believe not).

Ultimately, linearization techniques alone are not enough to obtain the deepest
insights. While they provide insights into when patterns may form, these techniques
do not tell us which patterns will emerge, and more importantly do not tell us the
mechanisms behind specific patterns that emerge. This leads to another broad open
problem applicable to virtually any model introduced here.

Open Problem 48 How do new modelling components introduced in this review affect
the stability of constant steady states? Can we identify and classify the possible pat-
terns? What are the mechanism behind the generation of certain patterns? Can we
connect existing simulations with analytical insights? Can these be connected to pat-
terns found in nature, where data is available? (Potts and Schlägel 2020) provides some
insight in regards to connections with data. Finally, how should we interpret these pat-
terns, both biologically and mathematically? All patterns are ultimately mysterious:
are they typical? Are these strange cases or normal for these models?

4.5 Travelling wave solutions

For problems in an unbounded domain, a popular area of application in biology and
other sciences is the idea of travelling wave solutions. In the setting of mathematical
ecology, these solutions are often interpreted as the front of a population density curve,
indicating expansion or retraction of the population. To fully explore the wide range
of works studying such solutions is far beyond the scope of this review. Instead, we
make reference to the rather comprehensive review paper by Volpert and Petrovskii
(2009) which covers many biological applications of travelling waves. Readers are
also directed to (Murray 2003, Chap. 13) or (Perthame (2015), Chap. 4) for a more
elementary introduction and additional references.

The main idea is to seek solutions of the form u(x, t) = w(x − ct), where c is a
constant wave speed which, in general, depends on the form of the equation consid-
ered.Many problems are formulated for a scalar reaction-diffusion equation in domain
� = R. In the current setting, we are interested in the properties of travelling wave
solutions as they relate to cognitivemechanisms. Based on the discussion in Sect. 4.1.2
concerning the definition of perceptual kernels near the boundary and how to appro-
priately choose boundary conditions, the travelling wave setting offers a potentially
fruitful area of investigation since no further modification of the kernel is required.

Once a model has been formulated in a framework appropriate for analysis, there
are a handful of key questions of particular interest for biological and ecological
application: existence of travelling waves, stability of travelling waves, and the speed
of propagation. Other questions include the effect of the initial condition and rates
of convergence to a travelling wave solution. Existence of a travelling wave solu-
tion, in a rigorous mathematical sense, is of interest for the same reasoning described
in Sect. 4.1.2: there are cases where numerical simulation will produce something
resembling a travelling wave solution while it is known that no such solution exists
(Petrovskii and Li 2005, Chap. 1)! Stability properties are also of interest, which is
generally determined in a similar fashion to reaction-diffusion equations in a bounded
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domain: linearization about the constant steady state and its spectrum. However, trav-
elling wave solutions generate a family of solutions once one is obtained, and so some
care must be taken. Calculation or estimation of the wave speed is also of particular
interest since this describes the rate at which an invasion wave will move. Depending
on the context, it may be of interest to slow down or speed up this wavefront, and so
an explicit calculation of the wave speed as it depends on model parameters is ideal.
In many cases, though, an explicit formula is not possible and estimation may be the
only option.

As far as we are aware, there are no existing works which consider such questions in
models that feature cognitive mechanisms. This is almost certainly due to the recency
of models described here, but also because of the technical difficulties due to nonlocal
terms appearing at a higher order. As such, we formulate a handful of open problems
in this direction.

Open Problem 49 Do travelling wave solutions exist solving the nonlocal problem
(2.9) when the detection function is chosen to be any of the forms defined in 2.3? In
cases where the answer is affirmative, is it possible to then compute or estimate the
wave speed depending on the form of detection function or perceptual radius? What
role do the rates of advection and/or diffusion play?

Open Problem 50 Do travelling wave solutions exist solving the discrete delay prob-
lem (2.20) for fixed delay τ > 0? This can be explored for either f (u) ≡ 0 or with a
general birth/death process f (u). In cases where the answer is affirmative, is it possi-
ble to calculate or estimate the wave speed? How does the wave speed depend on the
delay parameter τ or the rates of advection and/or diffusion? We remark that while
travelling wave solutions have been shown to exist for models with delay at the lowest
order, the challenge here is the fact that the delay parameter appears underneath the
gradient.

Open Problem 51 Do travelling wave solutions exist solving the distributed delay
problem (2.28) for temporal kernels of the form defined in (2.27)? In cases where the
answer is affirmative, is it possible to compute or estimate the wave speed? How does
the wave speed depend on the delay parameter τ in the temporal kernel or the rates
of advection/diffusion?

In each of the open problems described above, only scalar models are chosen as
they are almost certainly easier to solve compared to systems. This may introduce
further challenges for Open Problem 51, since the most promising technique seems
to be converting the distributed delay problem into a system of two or more equations
depending on the temporal kernel chosen. On the other hand, there also exist many
works exploring the existence of travelling wave solutions to systems. This motivates
the following open questions.

Open Problem 52 Do travelling wave solutions exist solving the nonlocal system
(2.10) when the detection function is chosen to be any of the forms defined in 2.3? In
cases where the answer is affirmative, is it possible to then compute or estimate the
wave speed depending on the form of detection function or perceptual radius? What

123



Open problems in PDE models for knowledge-based animal... Page 53 of 69    71 

role do the rates of advection and/or diffusion play? Resolving such a question would
be a direct extension of Open Problem 49.

Open Problem 53 Do travelling wave solutions exist solving the nonlocal system
(2.11) for a single species (i.e. a single species with a dynamic cognitive map) when the
detection function is chosen to be any of the forms defined in 2.3? In cases where the
answer is affirmative, is it possible to compute or estimate the wave speed? How does
the wave speed depend on detection function, perceptual radius, or other parameters
appearing in the equation? Can these results be extended to n interacting species with
cognitive map?

We conclude by again emphasizing that the mathematical challenge here is the
presence of nonlocality at a higher order. Of interest may be the work ofWang (2013),
which explores the mathematical features of travelling waves for a class of chemotaxis
models. While these forms do not incorporate nonlocal terms, it may at least provide
insight into possible techniques to apply, particularly for Open Problem 53.

4.6 Critical domain sizes

An important area of theoretical spatial ecology is the concept of critical domain size
or critical patch size. In one spatial dimension, this is a phenomenon where, under
certain conditions, a problem may have a critical domain length L∗ such that the
population goes extinct (persists) when L < L∗ (L > L∗) This is of particular interest
as it gives insight into the relationship between a population’s persistence and the size
of its habitat. This can be generalized to higher dimensions, though it can become
much more complicated due to regularity or other special geometric properties of the
domain. Readers are directed to Cantrell and Cosner (2004) or Murray (2003) for an
introduction to these problems in several contexts.

We must first consider which mechanisms introduce such a threshold. For mod-
els with a conserved population, it is relatively trivial to note that a critical domain
size cannot exist. Instead, such a critical threshold depends heavily on the boundary
conditions chosen, and in particular on conditions that result in a loss of population
across the boundary. This can be observed in the brief analysis done near the end of
Sect. 4.2.1: in the case of a Neumann boundary condition, no population is lost across
the boundary, and the positive steady state is always stable; this is in contrast to the
homogeneous Dirichlet boundary condition, where the stability of the positive steady
state now depends on the domain size L .

In the context of cognitive mechanisms, a potentially substantial difficulty is intro-
duced:wemust consider boundary conditions that requiremodification of the detection
function near the boundary. Since this has not been done before, there is the auxil-
iary step of understanding a given equation with nonlocal components in a bounded
domain. Hence, we introduce the following open problem.

Open Problem 54 Consider problem (2.9) in a bounded, one dimensional spatial
domain (0, L) subject to homogeneous Dirichlet boundary conditions and a top-hat
detection function defined in the style of (4.3). Does there exist a critical threshold L∗
such that the only steady-state solution is the trivial one for L < L∗, and a positive
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solution exists for L > L∗? If this is proven to be the case, how does the critical value
L∗ depend on the perceptual radius, or advection and/or diffusion rates? Can this be
generalized to the n-species model (2.10)?

4.7 Numerical analysis

We conclude this section with a brief discussion of numerical techniques as they apply
to models introduced in Sect. 2.2.2. In general, it is challenging to deal with nonlocal
terms in a numerical setting in a bounded domain due to the nonlocality of the equation.
As such, in-built PDE solvers (such as MATLAB’s “pdepe” function) cannot solve
these problems even in one spatial dimension, and so new solvers must be built. There
is at least one exception to this rule, and it happens to be the same exception as in the
analytical discussion: a periodic boundary condition does not require further modifi-
cation of the detection function. For this reason, so-called pseudo-spectral methods
offer a very promising route to efficiently and quickly simulate such solutions.

The main idea behind pseudo-spectral methods is to solve the problem in space
using Fourier series, while solving the problem in time using some other standard
scheme (e.g., forward Euler or Runge-Kutta methods). The biggest advantage here
is the convolution theorem: the Fourier transform of a convolution of two functions
is equal to the product of the Fourier transform of each function. In mathematical
terms, F( f �g) = F( f )F(g), where F denotes the Fourier transform and � denotes
convolution. In many cases it is possible to compute the Fourier coefficients for a
given detection function. As such, a pseudo-spectral method essentially removes the
difficulty that the spatial convolution can bring in finite-difference schemes. We direct
readers to Giunta et al. (2022) which discusses this technique in more detail. We leave
this section with the following general open problem.

Open Problem 55 Is there a general technique to efficiently solve nonlocal problems
of the form appearing in Sect.2.2.2 subject to boundary conditions that are not of the
periodic type?

5 Mathematical techniques and challenges

5.1 Well-posedness of existingmodels

5.1.1 Implicit memory models

Webeginwith a discussion of some fundamental results (or lack thereof) in the implicit
memory models found in Sect. 2.2. Many open problems presented in the aforemen-
tioned section provide rather explicit questions currently without resolution. Given
the relatively sparse literature available for these systems, it is easiest to describe the
cases where existence is known, complementing previous open problems.

In general, model (2.1) has a large body of literature concerning the well-posedness
of the problem under appropriate regularity assumptions on the function a(x, t). If
a(x, t) is twice continuously differentiable, for example, a unique solution exists for
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all time. Thus, any model which provides a(x, t) explicitly enjoys well-posedness,
essentially following from standard theory of linear partial differential equations, see
e.g. (Wu et al. 2006, Chap. 8), Friedman (1964), (Evans and Society 1998, Part II).
This means that models (2.4), (2.6)–(2.7) have a unique, global solution, so long as the
resource m(x, t) is sufficiently smooth. On the other hand, model (2.8) is nonlinear
and existence is not so obvious.

The difficulty is increased substantially with models introduced in Sect. 2.2.2.
Indeed, such systems are nonlinear at a higher order (i.e. the coupling occurs inside
the gradient). Proving the well-posedness of such models is highly nontrivial, with at
least one exception: if the perceptual kernel g(·) is sufficiently smooth, the regularity
requirements for the nonlinear term can be transferred to the kernel itself, and so exis-
tence follows from standard L p-theory of parabolic equations (Wu et al. 2006, Chap.
9). Recently, the well-posedness of model (2.10) has been shown under the assump-
tion that the perceptual kernel is twice continuously differentiable (Giunta et al. 2022).
This was shown using semi-group theory and fixed point methods (Amann 2021; Pazy
1983). We note that a similar existence result should be possible using L p-theory of
parabolic equations when the perceptual kernel is twice differentiable, and its second
derivative belongs to L∞(QT ), where QT = � × (0, T ). Indeed, estimates found in
(Wu et al. 2006, Chap. 9) hold somewhat trivially, sincewemay transfer the derivatives
from the solution u itself to the spatial kernel instead. Hence, the existence of a strong
solution belonging to W 2,1

2 (QT ) for a smooth, bounded domain � and T > 0 fixed
follows from a mere L2(QT ) estimate on the solution u. Of course, this is assuming
one has determined an appropriate method to deal with whatever boundary conditions
are being applied. As previously noted, periodic boundary conditions are easiest to
deal with in this sense. In fact, this is roughly the technique used in Jüngel et al. (2022),
where the authors study the existence and uniqueness of solutions to a special case of
model (2.10).

As a summary, the well-posedness of any model featuring a Gaussian kernel enjoys
well-posedness due to the regularity of the kernel, but one is restricted to studying
the problem in an infinite domain. The exponential kernel is more difficult due to
the lack of differentiability at zero. The most difficult case, and perhaps most bio-
logically interesting, is the top-hat detection function, which is discontinuous. This
fact is precisely what makes these models so difficult to study analytically, and new
techniques or tools must be used. On the other hand, modellers may be satisfied with
approximating the top-hat detection function through a regularization technique, e.g.
mollification, in which case well-posedness is less of an issue and will follow from a
careful application of existing theory.

5.1.2 Explicit memory models

In contrast, time-delay models found in Sect. 2.3 generally have more results con-
cerning their well-posedness. In fact, almost no modification of standard techniques
is required to prove existence of a solution. In this sense, their complexity is offset by
the existing literature for delay equations and do not often require a study of nonlocal
(in space) effects. We highlight some key results existing in the literature:
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• Model (2.20) has a unique, global solution under mild conditions, see (Shi et al.
2019, Proposition 2.1). This follows froma standard bootstrappingmethod, assum-
ing regular initial data and applying classical theory of parabolic equations.

• Song et al. (2019) does not consider the existence of solutions to model (2.21)
(a proposed open problem). This may follow from standard arguments, since the
non-locality appears in the reaction term rather than inside the gradient.

• Model (2.22) has a unique, global solution under mild conditions, see (Shi et al.
2019, Theorem 2.1). This also follows from a standard bootstrapping argument
with minor modifications to deal with two time delays.

• An et al. (2020) considers the existence of inhomogeneous steady states to
model 2.23 under some stronger regularity assumptions on the growth term and
nonlocal kernel appearing within it. This is achieved through a Lyapunov-Schmidt
reduction, see (An et al. 2020, Theorem 2.1). Existence of solutions to the time
dependent problem is not considered, and so this is an open problem.

• Song et al. (2022) does not consider the existence of solutions to problem (2.24),
and so this is an open problem.

• Shi et al. (2021) does not explicitly consider the existence of solutions to model
(2.28), however (Shi et al. 2021, Lemma2.2) (the statement ofwhich is found in the
Appendix) provides an interesting equivalence result between the delay differential
equations and a certain form of Keller-Segel chemotaxis model. Hence, existence
and non-existence of solutions may follow from the vast literature concerning
Keller-Segel type systems.

• Song et al. (2021) does not consider the existence of solutions tomodel (2.30), how-
ever some references concerning periodic solutions and travelling wave solutions
are provided. The study of the well-posedness of this model is an open problem.

To conclude, models which feature a spatiotemporal convolution, defined most
generally in line (2.26), do not have many results concerning the well-posedness of
solutions. Similar to the caveats made in Sect. 5.1.1, existence is less of an issue when
the kernels are appropriately smooth. Themost interesting cases, however, do not often
feature such regularity (as in the case of the top-hat detection function due to a lack
of continuity, or when the kernel is taken to be the fundamental solution to the heat
equation and the kernel becomes singular), and thus further development of analytical
tools is necessary.

5.2 Pattern formation through linear stability analysis

5.2.1 Implicit memory models

We discuss some of the results found in Potts and Lewis (2016a) and the general
trends based on dispersal relations (see Potts and Lewis 2016a, Fig. 1), at least as
they are found in the case of two interacting species. These results are most closely
related to model (2.13), however readers are reminded that the model appearing in
Potts and Lewis (2016a) treats the memory component ki as a probability distribution
as opposed to a magnitude alone (see the brief discussion in Sect. 2.2 before model
(2.13) is introduced).
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First, it is found that in the limit as the perceptual radius R decreases, the set of
wavenumbers at which patterns may form increases in size; in the limit as R → 0+,
patterns may form at arbitrarily high wavenumbers, and so the problem becomes ill-
posed. This indicates that a decreasing perceptual radius has a destabilizing effect on
the constant steady states.

Another set of important parameters considered is the rate at which memories
decay (μ) or the rate at which foragers update their cognitive map should they revisit
a site and deem it safe (β). It was found that if either μ is too large, or β is too small,
patterns cannot occur at any wavenumber. Hence, for patterns to form, foragers cannot
forget information too quickly, and they must have some mechanism to update their
cognitive map. In the case of conflict zones, this means that foragers must have some
mechanism through which they feel safe should they revisit a site and experience no
conflict. Similarly, it was found that the set of wavenumbers at which patterns may
form increases as the advection rate increases. This suggests that foragers must move
quickly enough towards safe areas or away from conflict zones for patterns to occur.
On the other hand, it was found that the rate of diffusion and rate at which conflicts
occur does not change the set of wavenumbers at which patterns may form, however
the rate at which these patterns grow is smaller when the conflict rate ρ is larger or
the diffusion rate is smaller.

This exploration provides some preliminary insights into the relative effects these
parameters have on the possibility of pattern formation, and some further investiga-
tion of these effects is explored in Potts and Lewis (2019), where some simplifying
assumptions allow the authors to unifymodels (2.10), (2.11), and (2.13). These simpli-
fications are convenient for their analysis, however it may be interesting to investigate
the effects that differing parameter regimes may have without simplification. In par-
ticular, one may consider the effects of different rates of diffusion, rates of advection,
as well as the relative effects of the memory decay rates, without an appeal to a quasi
steady-state approximation. Readers should note that for three or more populations,
less is known, and the numerical results found in Potts and Lewis (2019) suggest that
the dynamics may be chaotic.

Finally, readers should note that the above holds when we know the existence of a
positive steady state. This is easiest when constant steady states are valid, but this is
highly dependent on the boundary conditions chosen: with a homogeneous Dirichlet
boundary condition, the constant steady state is the trivial one, and so an additional
step of proving the existence of a non-trivial steady state is required.

Open Problem 56 How do different parameters change the broad insights obtained
above? That is, what role might unequal diffusion rates, advection rates, perceptual
radii, perceptual kernels etc. play in altering space use outcomes? Do the general
trends highlighted above remain true? If not, under what conditions do these general
trends change?

Open Problem 57 Can we expand our understanding of the impact of numerous (3
or more) interacting populations in the current setting? This is considered briefly
in Potts and Lewis (2019), for example, where 3 interacting populations demonstrate
oscillatory behaviour. In general, increasing the number of populations will complicate
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the analysis significantly, and so this is a highly non-trivial question to answer in any
universal sense.

5.2.2 Explicit memory models

In the case of explicit memory models (Sect. 2.3), a linear stability analysis still allows
one to investigate the possibility of pattern formation. However, due to the complex
nature of delay differential equations, the resultant analysis of local stability of con-
stant steady states is often significantly more involved. A good introductory reference
for partial delay differential equations is found inWu (1996), however, readers should
carefully note that all delay parameters appear in lower order terms. For this rea-
son, new tools and techniques need to be developed in the case of knowledge based
movement models since the delay parameters appear at a higher order, increasing the
difficulty substantially. Despite this, we may still discuss some of the key insights
found in the use of temporal delays, which is primarily done through changes in sta-
bility of possible constant steady states (model (2.23) is the one exception due to the
hostile boundary condition). Readers should note that these are general trends, and
to cover every possible outcome in detail here is more challenging than in the cases
without delays since the possible outcomes are much richer and can vary significantly
across models.

We begin with the prototypical delay model (2.20). It was shown in Shi et al. (2019)
that the stability of the constant steady state depends on the ratio of diffusion rate and
advection speed, but is independent of the discrete the time delay τ . Roughly, the
advection speed away (or towards) high density areas must be sufficiently large in
relation to the diffusion in order to destabilize the constant steady state. This suggests
that the average time which the foragers reference back to does not influence the emer-
gence of patterns, but there must be a mechanism by which the foragers move towards
these preferred areas more quickly than the random diffusive movements. Intuitively,
this makes sense: if the random motion is too large, this overtakes any possibility of
aggregation/segregation and the population density will remain uniformly distributed
in the environment.

Model (2.21) generalizes this through an inclusion of nonlocal effect in the growth
of the population. Interestingly, Song et al. (2019) shows that the changes in stability
remain roughly the same, however these changes are no longer independent of the delay
parameter τ . Similarly, the rate of advection must be sufficiently large in magnitude to
destabilize the constant steady state. This is shown through the appearance of a Turing-
Hopf or double Hopf bifurcation for some values of τ with respect to the advection
speed. This is most easily viewed through (Song et al. 2019, Fig. 5) where a stability
region is provided with respect to advection and delay parameters. Furthermore, there
are many different forms of steady states that are possible (periodic solutions, non-
constant steady states), as opposed to only a constant steady state. This demonstrates
that a nonlocal effect in the growth termpromotes awider variety of potential outcomes
in animal space use.

Model (2.22) studied in Shi et al. (2019) is most similar to model (2.20) with similar
conclusions drawn: the advection rate must be sufficiently large in comparison to the
diffusion rate to destabilize the constant steady state, and this occurs independent
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of both delay parameters (see (Shi et al. 2019, Theorem 2.6, Theorem 2.8) and the
Discussion). However, when the advection speed is small in relation to the diffusion
rate, the memory delay parameter plays a key role in determining the stability of the
constant steady state.

Model (2.23) studied in An et al. (2020) is an exception to other delay model
results, as the hostile boundary condition implies that 0 is the only constant steady
state. Therefore, they ensure that a non-trivial steady state exists (see An et al. 2020,
Theorem2.1). Then, a similar trend holds: destabilization of this steady state is induced
by a sufficiently large advection rate (see An et al. 2020, Theorem 3.9). Numerically, it
is observed that the hostile boundary condition results in “stripe" patterns, as opposed
to “checkerboard" patterns as found in the case of zero-flux or periodic boundary
conditions.

Different from the models discussed above, model (2.24) in Song et al. (2021)
features consumers as well as resources, and hence it is fundamentally different from
a single species model. This model features both memory and dynamic resources,
which may be more realistic than resource densities given apriori. Despite this, some
of the general trends still hold: when the advection speed is small, there are no changes
in stability of the constant steady state; when the advection rate is moderate, the delay
parameter may have a destabilizing effect; when the advection speed is large, there is
a critical delay value τ ∗ for which the constant steady state is stable when τ < τ ∗, and
unstablewhen τ > τ ∗ (see Song et al. 2021, Theorems 2.1−2.3). Similar tomaturation
delays, interaction between consumers and resources introduces a key difference from
single species models in that the delay parameter can drastically change the long term
dynamics.

The final twomodels instead feature distributed delays. Model (2.28) studied in Shi
et al. (2021) features a single species model with distributed delay, as well as differing
kernels determining how previous information influences movement. First, it is shown
that the choices of kernels found in Song et al. (2019) correspond to an equivalence
of systems, particularly a well know Keller-Segel system (see the Appendix). This
means that the analytical tools used to study the dynamics of Keller-Segel models can
be used on this distributed delay model. Despite the departure from the discrete delay
models, the same trend holds once more: the advection speed must be sufficiently
large in order to destabilize the constant steady state (see Shi et al. 2021, Theorems
3.2, 4.3).

Finally, model (2.30) studied in Song et al. (2021) includes a distributed delay in
bothmemory and growth terms. The destabilizing effect of advection speeds no longer
holds, at least in theweakkernel case:when the advection speed is positive (segregation
effect), patterns cannot occur; when the advection speed is negative (aggregation),
bifurcations can occur at any advection speed, depending on the delay parameter τ

(see Song et al. 2021, Theorems 2.1−2.3). This suggests that large advection speeds
in magnitude is no longer sufficient to induce destabilization. Similarly, when the
memory delay is held fixed, bifurcations occur in relation to the advection speed and
maturation delay parameter σ .
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5.3 Unification and equivalence of existingmodels

To combine these models into a cohesive form, one may generalize the spatial kernel
introduced in (2.2) to include both spatial and temporal influences as in (2.26). To this
end, suppose we are given a potential a(x, t). We then define

a(x, t) = K ∗ ∗a(x, t) :=
∫ t

−∞

∫
�

K(x, y, t, s)a(y, s)dyds, (5.1)

where K is some reasonably defined space-time kernel describing modifications to
the quantity a(x, t) with respect to both distance an time. For example, we may
consider space-time kernels that are separable in their variables, i.e. K(x, y, t, s) =
g(x, y)G(t, s), so that

a(x, t) =
∫ t

−∞

∫
�

g(x − y)G(t − s)a(y, s)dyds. (5.2)

Since space and temporal effects are now independent, one may consider two “aver-
aging" processes over each domain so that combining both yield the form above. That
is, define the linear operators S and T by

S[a](x, t) :=
∫

�

g(x − y)a(y, t)dy,

T [a](x, t) :=
∫ t

−∞
G(t − s)a(x, s)ds.

Assuming these integrals are well defined, we may take the composition

T [S[a]](x, t) = T

[∫
�

g(x − y)a(y, t)dy

]

=
∫ t

−∞

(∫
�

g(x − y)a(y, s)dy

)
G(t − s)ds = a(x, t),

to recover (5.2). Onemay then relate all forms presented so far through various choices
in K(·), g(·), G(·), as well as the quantity a(x, t) itself. For example, any model that
does not feature an integration of information over previous times, we fix g(t) = δ(t).
In doing so, (5.2) collapses to the form in (2.2), and we recover the models found
in Sect. 2.2. When a discrete delay is included with no perception (as in Sect. 2.3.1),
we fix G(t) = δ(t − τ) and g(x) = δ(x). In the case of distributed delays, one must
consider the more general form (5.1) and choose K to be a product of the Green’s
function for the heat equation and the weak or strong kernel defined in (2.27), which
recovers models (2.28) and (2.30). Table 1 highlights these connections explicitly for
models introduced in this manuscript. In it, the advective potential a(x, t) as found in
(5.1) is described, along with the relevant kernels g(x) and G(t), and the associated
reference(s) when applicable.
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It should be noted that these generalizations do not necessarily lend themselves to
a concrete mathematical analysis; for some cases it may provide a stepping stone to
results concerning the existence and uniqueness of solutions to the time-dependent
problems.

6 Concluding remarks

We conclude our review with some overarching themes and broad impacts of the
works discussed thus far. First, we have taken care to introduce multiple key cog-
nitive mechanisms in these pioneering models from the biological perspective. This
includes mechanisms of perception, memory, and learning. Mathematically, these are
incorporated through an advective potential which biases movement beyond passive
diffusion. The details found in Sect. 3, while certainly not new to this area of study,
provide useful insights into the mechanistic derivation of diffusion-advection equa-
tions in general, which in turn produces a foundation on which subsequent models
can stand. We then systematically explore how these cognitive modelling components
commonly appear in the existing literature.

Perception (Sect. 2.1), included through a spatial convolution (2.5), incorporates
differing perceptual capabilities through a perceptual radius R and perceptual ker-
nel g(·). Memory, included as an implicit static quantity (Sect. 2.2.1), an implicit
dynamic quantity (Sect. 2.2.2), or an explicit quantity through time delays (Sect. 2.3),
incorporates the process of encoding, storing, and retrieving information within the
equation(s) describing movement. Often, this is included through a cognitive map.
Learning (Sect. 2.5), either implicitly through memory uptake functions, or explic-
itly through variable diffusion/advection rates via satisfaction measures, allows one to
consider, compare and contrast the consequences of different learning mechanisms. In
each of these categories, we have described in detail the prototypical models and the
connections and departures between each. From these formulations, we have provided
some of the important insights gained through studying these models. This includes
some of the technical details concerning the development and analysis of these new
models, as well as the current direction of study within particular classes of models.

Important too is the distinction and connection between mathematical and biolog-
ical insights. Hence our effort to keep all technical mathematical questions raised
connected to the ecological systems that initiate our motivation. This ranges from
mathematical questions of existence and well-posedness (Sects. 4.1 and 5.1 ) to ques-
tions of more direct biological consequence (Sects. 4.2-4.6). To help provide direction
for future study, we propose a wide variety of new models and related extensions to
existing models throughout the manuscript. To motivate researchers currently in the
field or in adjacent fields, we propose a large number of open problems related to all
of the content explored. This includes specific, technical questions, but also includes
a large number of open-ended questions that do not necessarily have a clear yes or no
answer. These problems highlight how primitive some of the existing results are when
compared to more mature areas of study, while emphasizing how much room there is
for growth and further study.
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While we do not assert that we have provided a complete description of all existing
cognitive mechanisms included within a diffusion-advection equation framework, we
havemade a substantial effort to include amajority of the common tools and techniques
used. In cases where the big picture is perhaps treated as more important than the fine-
grain detail, we have provided many relevant reference materials to accommodate
further reading.

From the points raised above and the precise details found throughout this review,
it is clear that these knowledge-based movement models and their extensions will
have a broad impact for applied mathematicians and biologists alike. Many insights
are provided here, but there are many more connections to be made. This includes a
rich, diverse, and challenging branch of mathematical models which will require study
from many different perspectives. New insights can be found through a more detailed
exploration using existingmathematical techniques, while further insights will require
the development of more novel tools and techniques, leaving much room for up-and-
coming researchers to become pioneers in this growing field of study. Complimentary
to this, mathematical explorations will be aided greatly by the contribution of knowl-
edgeable biologists who can help make connections between analytical insights and
biological ones, help make models biologically reasonable while favoring simplicity,
and aid in the further development of new models and extensions beyond those dis-
cussed here. We hope this review will encourage new researchers to contribute to this
exciting new intersection of mathematical biology and partial differential equations.
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Appendix

A Equivalence of Models

In some cases, the models presented in this review can be reformulated into an equiv-
alent model. We first write the full problem studied in Shi et al. (2019):

⎧⎪⎨
⎪⎩

∂u
∂t = d1�u + d2∇ · (u∇v) + f (u), x ∈ �, t > 0,
∂u
∂n = 0, x ∈ ∂�, t > 0,

u(x, t) = η(x, t), x ∈ �, −∞ < t ≤ 0,

(A.1)
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in a smooth, bounded domain �, η(x, t) is given initial data, and v(x, t) is defined as

v(x, t) = G ∗ ∗u =
∫ t

−∞

∫
�

G(d3, x, y, t − s)G(t − s)u(y, s)dyds,

where G is the Green’s function for the heat equation in � subject to homogeneous
Neumann boundary data, d3 is the diffusion rate for the Green’s function, and G is
either the weak or strong kernel defined in (2.27). We first state Lemma 2.1 found in
Shi et al. (2021). The lemma is stated as follows.

Lemma A.1 Suppose that kernelGw(t) is chosen to be the weak kernel defined in (2.27)
and define

v(x, t) = Gw ∗ ∗u(x, t) =
∫ t

−∞

∫
�

G(d3, x, y, t − s)Gw(t − s)u(y, s)dyds,

where G is the Green’s function for the heat equation subject to homogeneous Neu-
mann boundary data. Then,

1. If u(x, t) is the solution of (A.1), then (u(x, t), v(x, t)) is the solution of

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u
∂t = d1�u + d2∇ · (u∇v) + f (u), x ∈ �, t > 0,
∂v
∂t = d3�v + τ−1(u − v), x ∈ �, t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂�, t > 0,

u(x, t) = η(x, t), x ∈ �, t ≤ 0,

v(x, 0) = τ−1
∫ 0
−∞

∫
�

G(x, y,−s)esτ−1
η(y, s)dyds.

(A.2)

2. If (u(x, t), v(x, t)) is a solution of

⎧⎪⎨
⎪⎩

∂u
∂t = d1�u + d2∇ · (u∇v) + f (u), x ∈ �, t ∈ R,
∂v
∂t = d3�v + τ−1(u − v), x ∈ �, t ∈ R,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂�, t ∈ R,

(A.3)

then u(x, t) satisfies equation (A.1) such that η(x, s) = u(x, s), −∞ < s < 0. In
particular, if (u(x), v(x)) is a steady state of (A.3), then u(x) is a steady state of
(A.1); if (u(x, t), v(x, t)) is a periodic solution of (A.3), then u(x, t) is a periodic
solution of (A.1).

This is an interesting result for two reasons. First, it is interesting to see that model
(A.1) is actually equivalent to a Keller-Segel chemotaxis model when the weak kernel
is chosen. Second, as a result of this first fact, one can then use the huge body of
literature studying chemotaxis models in order to gain insights into this new delay
partial differential equation. In the case where one chooses the strong kernel, there
is another equivalent system consisting of 3 equations and similar insights can be
gathered. This is Lemma 2.2 in Shi et al. (2021), which we do not provide here.
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