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A B S T R A C T

Plants in arid environments have evolved many strategies to resist drought. Among them, the developed water
storage tissue is an essential characteristic of xerophytes. To clarify the role of water storage capacity in plant
performance, we originally formulate a stoichiometric model to describe the interaction between plants and
water with explicit water storage. Via an ecological reproductive index, we explore the effects of precipitation
and water storage capacity on plant dynamics. The model possesses saddle–node bifurcation and forward or
backward bifurcation, and the latter may lead to the emergence of alternative stable states between a stable
survival state and a stable extinction state. Numerical simulations illustrate the persistence and resilience of
plants regulated by soil conditions, precipitation and water storage capacity. Our findings contribute to the
botanical theory in the perspectives of environmental change and plant water storage traits.
1. Introduction

Arid and semi-arid regions are one of the most vulnerable re-
gions in the world’s ecosystems and water resource systems, as well
as regions with the greatest variability in precipitation [1,2]. Plants
growing in this environment often encounter temporary or permanent
drought stress, which severely restricts plant growth and distribu-
tion compared to other environmental factors, resulting in substantial
productivity losses [2,3]. In particular, in recent years, the increas-
ing climate change has seriously affected the survival, growth, and
evolution of plants, posing severe challenges to regional ecological
construction and improvement of vegetation functions [4].

Plants growing in arid and semi-arid environments generally have
good adaptability to drought stress. They respond to drought to a
certain extent, which is not caused by a single factor, but a com-
prehensive response generated by the interaction of multiple factors,
mainly involving plant growth and development, morphological struc-
ture, drought stress signal transduction and drought stress gene expres-
sion regulation and other characteristics [5]. These characteristics of
plants are often referred to as drought resistance. Plants with strong
drought resistance have some morphological or physiological charac-
teristics, and the drought resistance of the same plant will change
with season and age [5,6]. In general, the adaptability of plants to
the arid environments is mainly manifested as developed root systems,
small leaf areas, developed water storage tissue, and high protoplasmic
osmotic pressure [6].

∗ Corresponding author.
E-mail address: sanling@usst.edu.cn (S. Yuan).

It is generally known that plants need four suitable environmental
factors for growth and reproduction: light, water, temperature, and nu-
trients. Stomata are the channels through which plants exchange gases
with the outside world, expelling water and oxygen and absorbing car-
bon dioxide. Stomata shrink when plants sense drought stress, leading
to reduced transpiration and slowing water loss. This in turn affects the
absorption and transportation of nutrients by the roots, thus limiting
nutrient uptake and reducing nutrient concentrations in the cells [7].
Recently, some researchers have developed mathematical models to
study the dynamics of nutrient cycles such as carbon, nitrogen [8],
and phosphorus [9] in drylands. Despite various reports on the effects
of nutrient supply on the plant growth, it is generally accepted that,
under drought conditions, increasing nutrient supply does not improve
plant growth if sufficient nutrients are already in the soil [10,11]. On
the contrary, soil water availability has been recognized as one of the
main limiting factors for plant growth in arid regions [12], which is
affected by precipitation, infiltration, evaporation, transpiration, and
soil drainage [13], and can also affect the occurrence and intensity of
plant drought stress, and has an important impact on the net primary
production capacity of the ecosystem [13].

Plants growing in arid environments generally have the ability to
store a large amount of water in their bodies through various special
tissues to maximize water retention and maintain their morphology.
Compared with the water in the soil, the proportion of water in plants
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is also quite large [14]. Vacuoles are the water storage tissues of
plants. The water storage capacity of plants varies with plant species,
environmental conditions, age, etc. Different types of plants, as well as
the same plant under different environmental conditions, different ages,
and different organs have great differences in water content. For exam-
ple, plants growing in hidden, moist environments have higher water
content than those growing in sunny, dry environments; the active parts
of plant life also have higher water content. This water source, that is,
the water in plants is protected by plants and will not be affected by soil
evaporation and competition for water between plants. Plants consume
stored water through transpiration and replenish water storage through
root absorption [15]. Transpiration demand and soil water availability
jointly determine the storage and release mode of the water in plants.
When transpiration demand is low and soil water availability is high, it
is beneficial to water absorption and storage; With the increase in tran-
spiration demand and the decrease in soil water availability, the water
removal rate of leaves is higher than that of roots, so more stored water
needs to be released to maintain transpiration. Under this strategy,
plants can be supplied with water more stably, delaying the occurrence
of drought stress and the corresponding closure of stomata. Hartzell
et al. [16] investigated a resistance-capacitance model, and they found
that plant water storage may strongly affect plant growth performance
by increasing carbon assimilation during the peak period of evaporation
water demand and reducing plant water stress. It follows that water
storage capacity of plants can play an important role in the plant
performance in a water-limited ecosystem.

Under the condition that other factors are suitable, if water re-
sources are sufficient and plant vacuoles are filled with water to fully
swell, then the growth and development of plants are in the best state.
If the water content of the vacuole is lower than that when it is fully
expanded, there is a certain degree of water deficit and the plants will
consume water from the soil, and if the plants cannot absorb water
from the soil, they will start to consume the water previously stored
in the plant tissues, if there has been no precipitation supplement,
the plants will gradually stop growing or even wilt. Motivated by the
idea of ecological stoichiometry [17–19], an approach that analyzes
the constraints and consequences of mass balance of multiple chemical
elements in ecological interactions, we mechanistically introduce a new
variable (the water content in plants) and the Droop approach (different
from the Monod approach in the literature) to explicitly describe the
water storage in plants and the internal water-based growth following
the same logic in Wang et al. [20] that provided comprehensive com-
parisons and modeling guidance in using Monod and Droop forms. Our
results show that for different types of soil, plants respond differently
to the changes of environmental factors and plants’ traits. Particularly,
in sandy soils, plants are resilient to precipitation and water storage
capacity.

The remaining parts of this paper are organized as follows. In Sec-
tion 2, we propose a mathematical model with water storage capacity to
describe the dynamics of soil water, water in plants, and plant density.
The well-posedness of the model, and the qualitative analysis including
the existence and stability of equilibria and related bifurcation analysis,
are discussed in Section 3. Subsequently, we carry out some numerical
simulations to illustrate the impacts of precipitation and water storage
capacity on the plant dynamics. Finally, we present some biological
implications of our results.

2. Model formulation

In this section, we formulate a coupled plant-water model to capture
the growth dynamics of plants. We mainly focus on plants living in arid
regions, where the solar radiation and mineral nutrients needed for the
plant growth are assumed to be abundant, and the water is the only
element limiting the growth of plants due to the particular climatic
2

characteristics. 𝑓
There are five categories for soil water: runway water, gravitational
water, hygroscopic water, chemically combined water and capillary
water. Among them only the capillary water is available to plants,
which is the water that exists in the gaps between soil particles and
can flow along the soil gaps. Plants absorb capillary water from the
soil into the root xylem through root hairs during various processes
such as respiration, transpiration, and infiltration. Noting that the dry
weight of most organisms is mainly carbon (C), we use carbon content
to characterize the plant density.

Three variables are introduced to describe the interaction between
water and plants: the soil water content (𝑊 , kg H2O/m2), the wa-
er/carbon ratio in plants (𝑄, kg H2O/kg C), and the plant carbon
ensity (𝑃 , kg C/m2). Here, the soil water is specifically referred to the
ater available to plants in the soil. In what follows, we will formulate
ur model by discussing the change rate of the three variables.

We first describe the change of the water/carbon ratio in plants.
s noted, plants absorb water mainly through their roots, which are
ffected by root pressure and transpiration pull, as well as by external
nvironmental factors such as the available water in the soil, soil
eration, and soil temperature. Also, plants capture carbon dioxide
rom the atmosphere for photosynthesis and loses water through tran-
piration. These biological processes work together to maintain the
ater balance in plants to meet the needs of plant survival and growth.
therwise, plant water shortage may lead to leaf wilting, stomatal
losure, photosynthesis reduction and protoplasm disorder.

According to ecological stoichiometry, we denote the minimum
nd maximum water/carbon ratio in plants respectively by 𝑄min and
max: at the level 𝑄 = 𝑄max, the water available to the growth and
evelopment of plants is sufficient, in this case, the plants have the
argest growth rate; at the level 𝑄 = 𝑄min, the plants suffer from severe
ater shortage and thus the growth may cease. Therefore, it can be

een that the water absorption by the plants depends on the soil water
ontent 𝑊 , the water/carbon ratio 𝑄, and the water holding capacity
max −𝑄min, and we assume that it takes the form

max ⋅
𝑄max −𝑄

𝑄max −𝑄min
⋅

𝑊
𝑊 + 𝐶

, (2.1)

where 𝜌max is the maximum water absorption rate of vegetation and the
plant growth function for water takes the Monod form 𝑊

𝑊 +𝐶 , where
is the half-saturation constant. On the other hand, plants consume

he water inside them through photosynthesis and convert it into the
nergy needed for growth [21]. The per capita growth rate of plants
s assumed to subject to the Droop form [20], which is an increasing
unction of the water/carbon ratio in plants 𝑄:

max

(

1 −
𝑄min
𝑄

)

, (2.2)

here 𝜇max is the maximum growth rate. Then the decreased wa-
er/carbon ratio caused by the plant growth is 𝜇max

(

1 − 𝑄min
𝑄

)

𝑄 and
the growth rate of plants is 𝜇max

(

1 − 𝑄min
𝑄

)

𝑃 .
For the soil water, it is affected by precipitation (the only source

of soil water), evaporation, and the absorption by the plant roots. The
rainfall infiltrates into the soil and the infiltration rate of water  de-
pends on the plant biomass and the soil conditions. In fact, there exists
an infiltration feedback mechanism between plants and water [22–24],
and the infiltration rate  can be chosen as

 = 𝛼
𝑃 + 𝐵𝑓
𝑃 + 𝐵

, (2.3)

here 𝐵 measures a plant carbon density reference value beyond which
he infiltration rate  approaches its maximum value 𝛼. 𝑓 ∈ [0, 1]
haracterizes the infiltration contrast for a specific soil: the smaller 𝑓
he higher the infiltration contrast. For example, for sandy soils (𝑓 = 0.1
n Gilad et al. [24]), the infiltration contrast between the bare soil and
he position where plants grow is large, whereas for clay soils (𝑓 = 0.9
n Gilad et al. [24]), the infiltration contrast is small. Specifically, when
= 1, no infiltration feedback exists. The decrease of the soil water
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Table 1
State variables of model (2.4).

Variable Description Units

𝑊 Soil water content kg H2O/m2

𝑄 Water/carbon ratio in plants kg H2O/kg C
𝑃 Plant carbon density kg C/m2

content includes two aspects: evaporation with a constant rate 𝐿 and
ater absorption by the plant roots. The absorption rate of water by
lants, as argued above, which depends on the soil water content, the
ater potential difference inside and outside the roots of the plants and

he plant density, has the form of (2.1).
For plants, they mainly absorb water, minerals and inorganic sub-

tances in the soil through their roots, and absorb carbon dioxide
hrough their leaves. Through a series of life activities such as pho-
osynthesis and respiration, the absorbed nutrients are converted into
rganic matter and stored in plants, and then continuous transforma-
ion and accumulation of organic matter enables plant cells to grow,
ivide, and finally achieve the growth of plants. In addition, more
nd more studies show that drought causes a large number of plant
eaths worldwide [25,26]. Climate change may make droughts more
requent and severe, and one concern is whether droughts will become
ore likely to induce the collapse of forest ecosystems. It is generally

elieved that the combined effects of drought and secondary disasters
ead to large-scale tree death, and intraspecific competition is a very
mportant factor. Here, we describe this loss of plants by crowding
ffect (quadratic mortality) and the mortality rate is assumed to be
. Disturbances other than water stress, such as storms, fires, pests or
athogens, can also cause plant mortality. We might as well call this
ortality background mortality and assume the mortality rate to be
.
Assume the average daily precipitation is a constant 𝐴. Then, sum-

arizing above, the mathematical model studied in this paper has the
ollowing form

d𝑊
d𝑡

= 𝐴
⏟⏟⏟

precipitation inf iltration

− 𝐿𝑊
⏟⏟⏟

evaporation and drainage

− 𝜌max
𝑄max −𝑄

𝑄max −𝑄min

𝑊𝑃
𝑊 + 𝐶

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
soil water loss due to plant absorption

,

d𝑄
d𝑡

= 𝜌max
𝑄max −𝑄

𝑄max −𝑄min

𝑊
𝑊 + 𝐶

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
plant water absorption from soil

− 𝜇max

(

1 −
𝑄min

𝑄

)

𝑄
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

water loss in a single plant due to plant growth

,

d𝑃
d𝑡

= 𝜇max

(

1 −
𝑄min

𝑄

)

𝑃
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

plant growth limited by water

− 𝑀𝑃
⏟⏟⏟

background mortality

− 𝑆𝑃 2
⏟⏟⏟

crowding effect

.

(2.4)

The state variables of model (2.4) are shown in Table 1. The values,
interpretations, units and sources of parameters appearing in (2.4)
are shown in Table 2. The parameter values are justified for shrub
species and taken or deduced from Gilad et al. [24],Rietkerk et al.
[27],HilleRisLambers et al. [28]. Some parameters depend on the local
climate conditions, and therefore are assumed to be constant. For
example, the precipitation parameter 𝐴 and the evaporation rate of
soil water 𝐿. This approximation is valid for some species, such as

oody shrubs, whose growth timescales are much larger than those of
recipitation and evapotranspiration variability Gilad et al. [24].

Model (2.4) is an ordinary differential equations describing the
volution of soil water content, the water/carbon ratio in plants and the
lant carbon density. Considering the biological significance of these
ariables, we will discuss the solutions of model (2.4) with initial values
atisfying

(0) ≥ 0, 𝑄 ≤ 𝑄(0) ≤ 𝑄 , 𝑃 (0) ≥ 0. (2.5)
3

min max
To facilitate mathematical analysis, we use the scaling listed in
Table 3 to transform model (2.4)–(2.5) into the following nondimen-
sionalized form
d𝑤
d𝑡

= 𝑎
𝑝 + 𝑓
𝑝 + 1

− 𝑙𝑤 − 𝛾(𝛿 − 𝑞)
𝑤𝑝

𝑤 + 1
∶= ℎ1(𝑤, 𝑞, 𝑝),

d𝑞
d𝑡

= 𝛽(𝛿 − 𝑞) 𝑤
𝑤 + 1

− 𝑐(𝑞 − 1) ∶= ℎ2(𝑤, 𝑞, 𝑝),

d𝑝
d𝑡

= 𝑐
(

1 − 1
𝑞

)

𝑝 − 𝑝 − 𝑠𝑝2 ∶= ℎ3(𝑤, 𝑞, 𝑝)

(2.6)

ith initial values

(0) ≥ 0, 1 ≤ 𝑞(0) ≤ 𝛿, 𝑝(0) ≥ 0, (2.7)

here we still use 𝑡 by replacing 𝑡′. For the simplification of notation,
enote

∶= R+ × [1, 𝛿] × R+. (2.8)

bviously, (𝑤(0), 𝑞(0), 𝑝(0)) ∈  if and only if it satisfies (2.7). Thus we
eed only to consider model (2.6) with initial values in .

Notice that plants can survive successfully in bare soil only if their
rowth rate exceeds the loss rate; otherwise they will die. Therefore, in
his paper, we always assume that 𝜇max > 𝑀 in model (2.4), i.e., 𝑐 > 1

in model (2.6).

3. Model dynamics

3.1. Feasible domain

Our first theorem states the well-posedness of model (2.6).

Theorem 3.1. Any solution of model (2.6) starting from  remains in it
for all 𝑡 ≥ 0. Moreover, they are uniformly ultimately bounded.

Proof. We first show that  is positively invariant for model (2.6).
Obviously, the vector valued function (ℎ1, ℎ2, ℎ3) defined in model (2.6)
is continuous and local Lipschizian with respect to (𝑤, 𝑞, 𝑝) in . Notice
from the third equation of 𝑝 in model (2.6) that 𝑝 = 0 is a solution
of model (2.6). According to the existence and uniqueness theorem of
solutions for ordinary differential equations, any solution starting from
 cannot leave it by crossing the coordinate plane 𝑝 = 0. It then follows
from the first equation of 𝑤 in model (2.6) that

d𝑤
d𝑡

|

|

|𝑤=0
= 𝑎

𝑝 + 𝑓
𝑝 + 1

> 0, (3.1)

hich means that any solution starting from  with 𝑤(0) = 0 will enter
he interior of . Notice further from the second equation of 𝑞 in model
2.6) that
d𝑞
d𝑡

|

|

|𝑞=1
= 𝛽(𝛿 − 1) 𝑤

𝑤 + 1
≥ 0 and

d𝑞
d𝑡

|

|

|𝑞=𝛿
= −𝑐(𝛿 − 1) < 0. (3.2)

hus we can conclude that for any solution of model (2.6) starting with
he initial value in , it will remain in the region.

Now we are in a position to prove that all solutions starting from 
re uniformly ultimately bounded. Define

= 𝑝𝑞 +
𝛽
𝛾
𝑤. (3.3)

hen we can compute that

d𝑁
d𝑡

= −𝑙𝑁 + (𝑙 − 1)𝑝𝑞 − 𝑠𝑝2𝑞 +
𝑎𝛽(𝑝 + 𝑓 )
𝛾(𝑝 + 1)

≤ −𝑙𝑁 + (𝑙 − 1)𝑝𝑞 − 𝑠𝑝2𝑞 +
𝑎𝛽
𝛾

≤ −𝑙𝑁 +
(𝑙 − 1)2𝑞

4𝑠
+

𝑎𝛽
𝛾

≤ −𝑙𝑁 +
(𝑙 − 1)2𝛿

+
𝑎𝛽

,

4𝑠 𝛾
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𝛺

Table 2
Parameters in model (2.4).

Parameter Description Value (range) Units Sources

𝛼 Proportion of surface water available 0.1 – Gilad et al. [24]
for infiltration

𝐴 Average precipitation rate [0, 2.74] kg H2O/m2/day Gilad et al. [24]
𝐵 Plant carbon density reference value beyond which 0.05 kg C/m2 Gilad et al. [24]

the infiltration rate approaches its maximum value
𝑓 Infiltration contrast between bare soil [0, 1] – HilleRisLambers et al. [28]

and vegetated soil
𝐿 Soil water evaporation rate 0.1 day−1 Rietkerk et al. [27]
𝜌max Maximum soil water consumption rate per carbon 0.05 kg H2O/kg C/day HilleRisLambers et al. [28]
𝑄max Maximal water content per carbon [0.15, 1] kg H2O/kg C Default

at which the water uptake ceases
𝑄min Minimal water content per carbon [0.01, 0.1] kg H2O/kg C Default

at which the plant growth ceases
𝐶 Half saturation constant of specific 3 kg H2O/m2 HilleRisLambers et al. [28]

plant growth and water uptake
𝜇max Maximum plant specific production rate 0.5 day−1 HilleRisLambers et al. [28]
𝑀 Background mortality rate of plants 0.2 day−1 HilleRisLambers et al. [28]
𝑆 Specific loss rate of plants due to intraspecific 0.3 m2/kg C/day Gilad et al. [24]

competition
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Table 3
Relations between variables and parameters in model (2.4) and their non-dimensional
ones in (2.6).

Quantity Scaling Non-dimensional description Value (range)

𝑤 𝑊
𝐶

Soil water content

𝑞 𝑄
𝑄min

Water/carbon ratio in plants

𝑝 𝑃
𝐵

Plant carbon density

𝑡′ 𝑀𝑡 Time

𝛿 𝑄max

𝑄min
Water storage capacity of plants [1.5, 100]

𝑎 𝐴𝛼
𝑀𝐶

Precipitation [0, 0.4567]

𝛾 𝐵𝜌max

𝐶𝑀(𝛿−1)
Soil water consumption rate [0.00004209, 0.00833]

𝛽 𝜌max

𝑀𝑄min (𝛿−1)
Soil water absorption rate [0.02525, 50]

𝑐 𝜇max

𝑀
Plant specific production rate 2.5

𝑠 𝑆𝐵
𝑀

Specific loss rate of plants due to 0.075

crowding effect

𝑙 𝐿
𝑀

Evaporation rate of soil water 0.5

which implies that

lim sup
𝑡→∞

𝑁(𝑡) ≤ (𝑙 − 1)2𝛿
4𝑙𝑠

+
𝑎𝛽
𝑙𝛾

. (3.4)

Thus, combining (3.2), we know that all solutions of model (2.6) with
initial values in  are ultimately bounded and therefore exist globally
for all 𝑡 ≥ 0. □

Denote

=
{

(𝑤, 𝑞, 𝑝) ∈ ||
|

𝑝𝑞 +
𝛽
𝛾
𝑤 ≤ (𝑙 − 1)2𝛿

4𝑙𝑠
+

𝑎𝛽
𝑙𝛾

}

. (3.5)

Then 𝛺 is a globally attracting region of model (2.6) with initial values
in .

3.2. Ecological reproductive index

Biologically, the ecological reproductive index [29] characterizes
the average amount of new plants produced by one unit plants during
the average life span of plants. The viability of plants can be described
by the ecological reproductive index, which is defined for model (2.6)
by

0 =
𝛽𝑐𝑎𝑓 (𝛿 − 1)

𝛽𝛿𝑎𝑓 + 𝑐𝑎𝑓 + 𝑐𝑙
. (3.6)

In terms of the original parameters in model (2.4), 0 can be written
as
4

t

0 = 𝜇max

(

1 −
𝑄min

𝑄̃

)

⋅
1
𝑀

, (3.7)

where

𝑄̃ =
𝜌max

𝑄max
𝑄max−𝑄min

+ 𝜇max𝑄min

𝜇max +
𝜌max

𝑄max−𝑄min

𝛼𝑓𝐴
𝐿

𝛼𝑓𝐴
𝐿 +𝐶

is the water/carbon ratio at the ‘no-vegetation’ equilibrium state ( 𝛼𝑓𝐴𝐿 ,
𝑄̃, 0); 1

𝑀 is the average life span of plants.

Remark 3.2. 0 can be obtained by analyzing the stability of ‘no-
vegetation’ equilibrium state, which is shown in Appendix A. From
(3.6), we can see that increasing water storage capacity of plants 𝛿 or
recipitation 𝑎, improving the soil condition 𝑓 , and reducing the loss
ate of soil water 𝑙 can enhance the colonized rate of plants in the bare
oils.

.3. Existence and stability of equilibria

Notice from (3.5) that all the equilibria of model (2.6) should lie in
he region 𝛺 and can be determined by solving
𝑝 + 𝑓
𝑝 + 1

− 𝑙𝑤 − 𝛾(𝛿 − 𝑞)
𝑤𝑝

𝑤 + 1
= 0, (3.8)

(𝛿 − 𝑞) 𝑤
𝑤 + 1

− 𝑐(𝑞 − 1) = 0, (3.9)
(

1 − 1
𝑞

)

𝑝 − 𝑝 − 𝑠𝑝2 = 0. (3.10)

learly, model (2.6) always possesses a ‘no-vegetation’ equilibrium
0(𝑤0, 𝑞0, 0), where

𝑤0 =
𝑎𝑓
𝑙
, 𝑞0 = 1 +

𝛽𝑎𝑓 (𝛿 − 1)
𝑙𝑐 + (𝛽 + 𝑐)𝑎𝑓

. (3.11)

n the following, we try to find other nonnegative equilibria with 𝑝 ≠ 0.
otice from (3.10) that if 0 < 𝑝 < 𝑐−1

𝑠 , we have

= 𝑐
𝑐 − 1 − 𝑠𝑝

. (3.12)

ubstituting (3.12) into (3.9), we obtain that if 𝛿 > 𝑐(𝛽+1)
(𝑐−1)𝛽 and 0 < 𝑝 <

𝑝 ∶= 𝛽𝛿(𝑐−1)−𝛽𝑐−𝑐
(𝛽𝛿+𝑐)𝑠 , then,

𝑤 =
𝑐(1 + 𝑠𝑝)

𝛽𝛿(𝑐 − 1 − 𝑠𝑝) − 𝛽𝑐 − 𝑐(1 + 𝑠𝑝)
. (3.13)

t is easy to check that 𝑝 < 𝑐−1
𝑠 . Thus, we only need to pay our attention

o the range 𝑝 ∈ 𝐼 ∶= (0, 𝑝) under conditions 𝛿 > 𝑐(𝛽+1) and 𝑐 > 1.
(𝑐−1)𝛽



Mathematical Biosciences 369 (2024) 109147C. Wang et al.

l

O

I
𝐹

t

𝐺

𝑤

M

T

e

𝜆

w

a

T

T
n

D

a
v

s

T
h

By substituting (3.12) and (3.13) into (3.8), we obtain the following
equality:

𝑎(𝑝 + 𝑓 )
(1 + 𝑝)(1 + 𝑠𝑝)

= 𝑙𝑐
𝛽𝛿(𝑐 − 1 − 𝑠𝑝) − 𝛽𝑐 − 𝑐(1 + 𝑠𝑝)

+
𝑐𝛾𝑝

𝛽(𝑐 − 1 − 𝑠𝑝)
. (3.14)

For the convenience of analysis, we denote the expressions on the
eft and right sides of (3.14) respectively as 𝐹 (𝑝) and 𝐺(𝑝). Then the

positive roots of (3.14) can be determined by looking for the possible
intersections of function curves of 𝐹 (𝑝) and 𝐺(𝑝) in the range 𝑝 ∈ 𝐼 .

For the function 𝐹 (𝑝), its derivative has the form

𝐹 ′(𝑝) =
𝑎
(

−𝑠𝑝2 − 2𝑠𝑓𝑝 + 1 − 𝑓 (𝑠 + 1)
)

(𝑠𝑝2 + (𝑠 + 1)𝑝 + 1)2
.

bviously, when 𝑓 ≥ 1
𝑠+1 , 𝐹 ′(𝑝) < 0 for all 𝑝 > 0. But when 𝑓 < 1

𝑠+1 ,
direct computation shows that there exists a positive number

𝑝̃ =
2𝑠𝑓 −

√

4𝑠(𝑓 − 1)(𝑠𝑓 − 1)
−2𝑠

such that 𝐹 ′(𝑝̃) = 0, and 𝐹 ′(𝑝) > 0 for 0 < 𝑝 < 𝑝̃ and 𝐹 ′(𝑝) < 0 for 𝑝 > 𝑝̃.
Furthermore, we can compute the second derivative of 𝐹 (𝑝) as

𝐹 ′′(𝑝) =
−2𝑎

(

𝑠(𝑝 + 𝑓 ) + (−𝑠𝑝2 − 2𝑠𝑓𝑝 + 1 − 𝑓 (𝑠 + 1))(2𝑠𝑝 + 𝑠 + 1)
)

(𝑠𝑝2 + (𝑠 + 1)𝑝 + 1)3
.

t is easy to check that 𝐹 ′′(𝑝) < 0 when 0 < 𝑝 < 𝑝̃, which indicates that
(𝑝) is concave and increasing on the interval 0 < 𝑝 < 𝑝̃.

Similarly, we can compute the first and second derivatives of func-
ion 𝐺(𝑝) as

′(𝑝) =
𝑐𝑙𝑠(𝛽𝛿 + 𝑐)

(

𝛽𝛿(𝑐 − 1 − 𝑠𝑝) − 𝛽𝑐 − 𝑐(1 + 𝑠𝑝)
)2

+
𝛾𝑐(𝑐 − 1)

𝛽(𝑐 − 1 − 𝑠𝑝)2
(3.15)

and

𝐺′′(𝑝) =
2𝑙𝑐𝑠2(𝛽𝛿 + 𝑐)2

(

𝛽𝛿(𝑐 − 1 − 𝑠𝑝) − 𝛽𝑐 − 𝑐(1 + 𝑠𝑝)
)3

+
2𝑐𝛾𝑠(𝑐 − 1)

𝛽(𝑐 − 1 − 𝑠𝑝)3
. (3.16)

We can easily check that 𝐺′(𝑝) > 0 and 𝐺′′(𝑝) > 0 for 𝑝 ∈ 𝐼 . This
indicates that 𝐺(𝑝) is convex and increasing for 𝑝 ∈ 𝐼 . Notice also that

𝐹 (0) = 𝑎𝑓 , lim
𝑝→∞

𝐹 (𝑝) = 0, 𝐺(0) = 𝑙𝑐
𝛽𝛿(𝑐 − 1) − 𝛽𝑐 − 𝑐

> 0, lim
𝑝→𝑝

𝐺(𝑝) = ∞.

(3.17)

Combining the characteristics of curves 𝐹 (𝑝) and 𝐺(𝑝), we can obtain
the following results:

(i) If 𝑓 < 1
𝑠+1 , 𝛿 > 𝑐(𝛽+1)

(𝑐−1)𝛽 and 𝑐 > 1, then when 𝑎 ≥ 𝑙𝑐
𝑓 (𝛽𝛿(𝑐−1)−𝛽𝑐−𝑐) ,

the curves 𝐹 (𝑝) and 𝐺(𝑝) have a unique intersection in 𝐼 ; while
when 𝑎 < 𝑙𝑐

𝑓 (𝛽𝛿(𝑐−1)−𝛽𝑐−𝑐) , the two curves may have none, one or
two intersections in 𝐼 ;

(ii) If 𝑓 ≥ 1
𝑠+1 , 𝛿 > 𝑐(𝛽+1)

(𝑐−1)𝛽 and 𝑐 > 1, then when 𝑎 > 𝑙𝑐
𝑓 (𝛽𝛿(𝑐−1)−𝛽𝑐−𝑐) , the

curves 𝐹 (𝑝) and 𝐺(𝑝) have a unique intersection in 𝐼 ; while when
𝑎 ≤ 𝑙𝑐

𝑓 (𝛽𝛿(𝑐−1)−𝛽𝑐−𝑐) , the two curves have no intersections in 𝐼 .

Notice the expression of 0 defined in (3.6). Then, summarizing,
we obtain the following theorem about the existence of equilibria of
model (2.6).

Theorem 3.3. For model (2.6), there always exists a ‘no-vegetation’
equilibrium 𝐸0(𝑤0, 𝑞0, 0) with

0 =
𝑎𝑓
𝑙
, 𝑞0 = 1 +

𝛽𝑎𝑓 (𝛿 − 1)
𝑙𝑐 + (𝛽 + 𝑐)𝑎𝑓

.

oreover, if 𝛿 > 𝑐(𝛽+1)
(𝑐−1)𝛽 and 𝑐 > 1 are satisfied, then

(1) when 0 > 1, then model (2.6) has a unique positive equilibrium;
(2) when 0 ≤ 1, then model (2.6) has none, one or two positive

equilibria.
5

We now begin to study the stability of equilibria. The Jacobi matrix
at an equilibrium 𝐸(𝑤, 𝑞, 𝑝) of model (2.6) is given by

𝐽 (𝐸) =

⎛

⎜

⎜

⎜

⎝

−𝑙 − 𝛾(𝛿−𝑞)𝑝
(𝑤+1)2

𝛾𝑤𝑝
𝑤+1

𝑎(1−𝑓 )
(𝑝+1)2 − 𝛾(𝛿−𝑞)𝑤

𝑤+1
𝛽(𝛿−𝑞)
(𝑤+1)2 − 𝛽𝑤

𝑤+1 − 𝑐 0
0 𝑐𝑝

𝑞2
𝑐(1 − 1

𝑞 ) − 1 − 2𝑠𝑝

⎞

⎟

⎟

⎟

⎠

∶=
⎛

⎜

⎜

⎝

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 0
0 𝑎32 𝑎33

⎞

⎟

⎟

⎠

.

(3.18)

At the boundary equilibrium 𝐸0(𝑤0, 𝑞0, 0), the eigenvalues of Jacobi
matrix 𝐽 (𝐸0) are

𝜆1 = −𝑙 < 0, 𝜆2 = −
𝛽𝑎𝑓
𝑎𝑓 + 𝑙

− 𝑐 < 0, 𝜆3 = 0 − 1. (3.19)

hus 𝐸0(𝑤0, 𝑞0, 0) is locally asymptotically stable if 0 < 1 and unstable
if 0 > 1.

Notice that 0 < 1 implies that 1 < 𝛿 < 𝑐
𝑐−1 ⋅

𝛽𝑎𝑓+𝑎𝑓+𝑙
𝛽𝑎𝑓 for which 𝐸0 is

locally asymptotically stable. In fact, we can further have the following
global stability result for 𝐸0 (see Appendix B for the proof).

Lemma 3.4. Assume that 1 < 𝛿 < 𝑐
𝑐−1 and 𝑐 > 1. Then for model

(2.6), the ‘no-vegetation’ equilibrium 𝐸0(𝑤0, 𝑞0, 0) is globally asymptotically
stable.

At the positive equilibrium 𝐸∗(𝑤∗, 𝑞∗, 𝑝∗), if exists, its characteristic
quation is
3 − Tr0𝜆2 − ℎ0𝜆 − Det0 = 0, (3.20)

here

Tr0 = − 𝑙 −
𝛾(𝛿 − 𝑞∗)𝑝∗

(𝑤∗ + 1)2
−

𝛽𝑤∗

𝑤∗ + 1
− 𝑐 − 𝑠𝑝∗ < 0,

ℎ0 = − 𝑠𝑝∗
(

𝑙 +
𝛾(𝛿 − 𝑞∗)𝑝∗

(𝑤∗ + 1)2
+

𝛽𝑤∗

𝑤∗ + 1
+ 𝑐

)

− 𝑙
( 𝛽𝑤∗

𝑤∗ + 1
+ 𝑐

)

−
𝛾𝑐(𝛿 − 𝑞∗)𝑝∗

(𝑤∗ + 1)2
< 0,

Det0 = − 𝑠𝑝∗
(

𝑙
( 𝛽𝑤∗

𝑤∗ + 1
+ 𝑐

)

+
𝛾𝑐(𝛿 − 𝑞∗)𝑝∗

(𝑤∗ + 1)2
)

−
𝑐𝛽𝛾(𝛿 − 𝑞∗)2𝑝∗𝑤∗

𝑞∗2(𝑤∗ + 1)3

+
𝑎𝑐𝛽(1 − 𝑓 )(𝛿 − 𝑞∗)𝑝∗

𝑞∗2(𝑤∗ + 1)2(𝑝∗ + 1)2

nd

r0ℎ0 + Det0 =𝑠𝑝∗𝑙
(

𝑙 +
𝛾(𝛿 − 𝑞∗)𝑝∗

(𝑤∗ + 1)2
+ 𝑠𝑝∗

)

+
𝛾𝑠(𝛿 − 𝑞∗)𝑝∗2

(𝑤∗ + 1)2
(

𝑙 + 𝑠𝑝∗ +
𝛾(𝛿 − 𝑞∗)𝑝∗

(𝑤∗ + 1)2
+

𝛽𝑤∗

𝑤∗ + 1

)

+
( 𝛽𝑠𝑝∗𝑤∗

𝑤∗ + 1
+ 𝑠𝑐𝑝∗ +

𝛽𝑙𝑤∗

𝑤∗ + 1
+ 𝑐𝑙 +

𝛾𝑐(𝛿 − 𝑞∗)𝑝∗

(𝑤∗ + 1)2
)

×
(

𝑙 + 𝑐 + 𝑠𝑝∗ +
𝛾(𝛿 − 𝑞∗)𝑝∗

(𝑤∗ + 1)2
𝛽𝑤∗

𝑤∗ + 1

)

−
𝑐𝛽𝛾(𝛿 − 𝑞∗)2𝑝∗𝑤∗

𝑞∗2(𝑤∗ + 1)3
+

𝑎𝑐𝛽(1 − 𝑓 )(𝛿 − 𝑞∗)𝑝∗

𝑞∗2(𝑤∗ + 1)2(𝑝∗ + 1)2
> 0.

hen Hurwitz criteria [30] implies that all the roots of (3.20) have
egative real parts if

et0 < 0, (3.21)

nd (3.20) has at least one root with positive real part if (3.21) is
iolated.

Summarizing above, we have the following conclusion about the
tability of equilibria.

heorem 3.5. Assume that 𝑐 > 1. For the equilibria of model (2.6), we
ave the following results.

(1) The boundary equilibrium 𝐸0(𝑤0, 𝑞0, 0) is locally asymptotically
stable provided 0 < 1 and unstable provided 0 > 1. In particular,
when 1 < 𝛿 < 𝑐 , it is globally asymptotically stable.
𝑐−1
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(2) Any positive equilibrium 𝐸∗(𝑤∗, 𝑞∗, 𝑝∗), if exists, is locally asymp-
totically stable provided Det0 < 0 and unstable provided Det0 >
0.

3.4. Bifurcation analysis

It follows from Theorems 3.3 and 3.5 that when 0 < 1, model
(2.6) may show the coexistence between a boundary equilibrium and
two positive equilibria. To identify this dynamic property, we explore
possible bifurcations that model (2.6) may undergo. For the conve-
nience, we denote the variables 𝑤, 𝑞, 𝑝 in model (2.6) by 𝑥1, 𝑥2, 𝑥3,
and 𝐻 = (ℎ1, ℎ2, ℎ3). The dimensionless precipitation 𝑎 is taken as the
bifurcation parameter.

We first prove the existence of a transcritical bifurcation by using
Theorem 4.1 in [31].

Theorem 3.6. If 𝑎 = 𝑎∗ = 𝑐𝑙
𝑓 (𝛽𝛿(𝑐−1)−𝛽𝑐−𝑐) , i.e., 0 = 1, then model (2.6)

undergoes a transcritical bifurcation at 𝐸0(𝑤0, 𝑞0, 0), which is backward
provided 𝑚1 > 0 and forward bifurcation provided 𝑚1 < 0, where

𝑚1 =
2(𝛽𝛿(𝑐 − 1) − 𝛽𝑐 − 𝑐)

𝛽𝑐2(𝛿 − 1)
+

2𝑠𝛽𝑙𝑓 (𝑐 − 1)(𝛽𝛿(𝑐 − 1) − 𝛽𝑐 − 𝑐)
𝑐(𝑓𝛾(𝛽𝛿(𝑐 − 1) − 𝛽𝑐 − 𝑐) + 𝛽𝑙(𝑐 − 1)(𝑓 − 1))

.

(3.22)

Proof. It follows from 0 = 1 that 𝑎 = 𝑎∗. From (3.19), it is easy
to see that when 𝑎 = 𝑎∗, the Jacobi matrix at (𝑤0, 𝑞0, 0) has a zero
simple eigenvalue. For the zero eigenvalue, a right eigenvector is 𝜇 =
(1, 𝜇2, 𝜇3)𝑇 where the superscript 𝑇 denotes the transpose of a vector
and

𝜇2 =
(𝛽𝛿(𝑐 − 1) − 𝛽𝑐 − 𝑐)2

𝛽𝑐(𝑐 − 1)2(𝛿 − 1)
,

3 = −
𝛽𝑙𝑓 (𝑐 − 1)(𝛽𝛿(𝑐 − 1) − 𝛽𝑐 − 𝑐)

𝑐
(

𝑓𝛾(𝛽𝛿(𝑐 − 1) − 𝛽𝑐 − 𝑐) + 𝛽𝑙(𝑐 − 1)(𝑓 − 1)
) ,

and a left eigenvector is

𝜈 = (𝜈1, 𝜈2, 𝜈3) =
(

0, 0, 1
𝜇3

)

.

ow we examine the signs of two quantities 𝑚1 and 𝑚2, where

1 =
3
∑

𝑘,𝑖,𝑗=1
𝜈𝑘𝜇𝑖𝜇𝑗

𝜕2ℎ𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

, 𝑚2 =
3
∑

𝑘,𝑖=1
𝜈𝑘𝜇𝑖

𝜕2ℎ𝑘
𝜕𝑥𝑖𝜕𝑎

. (3.23)

Due to the left eigenvector 𝜈, we just need to calculate the second
derivatives of ℎ3. Simple calculations show that

𝜕2ℎ3
𝜕𝑥2𝜕𝑥3

|

|

|(𝑤0 ,𝑞0 ,0)
= 𝑐

𝑞2
,

𝜕2ℎ3
𝜕𝑥23

|

|

|(𝑤0 ,𝑞0 ,0)
= −2𝑠, (3.24)

nd the rest of the second derivatives in (3.23) are all zero. Therefore,

1 =
2(𝑐 − 1)2𝜇2

𝑐
− 2𝑠𝜇3

=
2(𝛽𝛿(𝑐 − 1) − 𝛽𝑐 − 𝑐)

𝛽𝑐2(𝛿 − 1)
+

2𝑠𝛽𝑙𝑓 (𝑐 − 1)(𝛽𝛿(𝑐 − 1) − 𝛽𝑐 − 𝑐)
𝑐(𝑓𝛾(𝛽𝛿(𝑐 − 1) − 𝛽𝑐 − 𝑐) + 𝛽𝑙(𝑐 − 1)(𝑓 − 1))

,

𝑚2 =
𝛽𝑓𝑙(𝑐 − 1)2(𝛿 − 𝑞)

(𝑎𝑓 + 𝑙)((𝛽 + 𝑐)𝑎𝑓 + 𝑐𝑙)
> 0.

Based on Theorem 4.1 in [31], we immediately obtain that the bifur-
cation at 0 = 1 (𝑎 = 𝑎∗) is backward when 𝑚1 > 0 and forward when
1 < 0. □

According to (3.20), it is easy to check that Jacobi matrix 𝐽 at the
ositive equilibrium 𝐸∗(𝑤∗, 𝑞∗, 𝑝∗) has a simple zero eigenvalue 𝜆 = 0
hen Det0 = 0, i.e., when

= 𝑎∗∗ ∶=
𝛾(𝑝∗ + 1)2

𝛽(1 − 𝑓 )

( 𝑠𝑙𝑞∗2((𝛽 + 𝑐)𝑤∗ + 𝑐)(𝑤∗ + 1)
𝑐𝛾(𝛿 − 𝑞∗)

+𝑠𝑞∗2𝑝∗+
𝛽(𝛿 − 𝑞∗)𝑤∗

𝑤∗ + 1

)

.

(3.25)
6

The following theorem shows that a saddle–node bifurcation occurs
when 𝑎 crosses the value 𝑎∗∗.

Theorem 3.7. Assume that 𝛿 > 𝑐(𝛽+1)
(𝑐−1)𝛽 and 𝑐 > 1, and 𝐸∗(𝑤∗, 𝑞∗, 𝑝∗) is a

positive equilibrium of model (2.6). If 𝑎 = 𝑎∗∗ and 𝛩 ≠ 0, then model (2.6)
ndergoes a saddle–node bifurcation at 𝐸∗(𝑤∗, 𝑞∗, 𝑝∗).

roof. Let 𝑈 and 𝑉 be a right and left eigenvector of Jacobi matrix 𝐽
orresponding to 𝜆 = 0. Direct calculation yields to

= (𝑈1, 𝑈2, 𝑈3)𝑇 =
( (𝛽𝑤∗ + 𝑐(𝑤∗ + 1))(𝑤∗ + 1)

𝛽(𝛿 − 𝑞∗)
, 1, 𝑐

𝑠𝑞∗2
)𝑇

,

𝑉 = (𝑉1, 𝑉2, 𝑉3)𝑇

=
(

1,
𝑙(𝑤∗ + 1)2 + 𝛾(𝛿 − 𝑞∗)𝑝∗

𝛽(𝛿 − 𝑞∗)
,
𝑎∗∗(1 − 𝑓 )
𝑠𝑝∗(𝑝∗ + 1)2

−
𝛾(𝛿 − 𝑞∗)𝑤∗

𝑠𝑝∗(𝑤∗ + 1)

)𝑇
.

Also, we have

𝐻𝑎(𝐸∗, 𝑎∗) =
( 𝑝∗ + 𝑓
𝑝∗ + 1

, 0, 0
)𝑇

,

and then

𝑉 𝑇𝐻𝑎(𝐸∗, 𝑎∗) =
𝑝∗ + 𝑓
𝑝∗ + 1

≠ 0. (3.26)

e now need to compute 𝐷2𝐻(𝐸∗, 𝑎∗)(𝑈,𝑈 ), which has the form

2𝐻(𝐸∗, 𝑎∗)(𝑈,𝑈 ) =
(

𝛩,
−2(𝛽 + 𝑐)2𝑤∗ + 𝑐(𝛽 + 𝑐)

𝛽(𝛿 − 𝑞∗)
,
2𝑐2(1 − 𝑠)

𝑠𝑞∗4
)𝑇

,

where

𝛩 =
2𝛾𝑝∗((𝛽 + 𝑐)𝑤∗ + 𝑐)2

𝛽2(𝛿 − 𝑞∗)
+

2𝛾𝑝∗((𝛽 + 𝑐)𝑤∗ + 𝑐)
𝛽2(𝛿 − 𝑞∗)(𝑤∗ + 1)

−
2𝑐𝛾((𝛽 + 𝑐)𝑤∗ + 𝑐)
𝛽𝑠𝑞∗2(𝑤∗ + 1)

+
2𝑐𝛾𝑤∗

𝑠𝑞∗2(𝑤∗ + 1)
−

2𝑎∗∗𝑐2(1 − 𝑓 )
𝑠2𝑞∗4(𝑝∗ + 1)3

.

t then follows that

𝑇𝐷2𝐻(𝐸∗, 𝑎∗)(𝑈,𝑈 ) =𝛩 +
(𝑙(𝑤∗ + 1)2 + 𝛾(𝛿 − 𝑞∗)𝑝∗)(−2(𝛽 + 𝑐)2𝑤∗ + 𝑐(𝛽 + 𝑐))

𝛽2(𝛿 − 𝑞∗)2

+
2𝑐2(1 − 𝑠)

𝑠𝑞∗4
( 𝑎∗∗(1 − 𝑓 )
𝑠𝑝∗(𝑝∗ + 1)2

−
𝛾(𝛿 − 𝑞∗)𝑤∗

𝑠𝑝∗(𝑤∗ + 1)

)

∶= 𝛩.

It then follows from Sotomayors theorem [32] that system (2.6) un-
dergoes a saddle–node bifurcation at 𝐸∗(𝑤∗, 𝑞∗, 𝑝∗) when 𝑎 crosses
𝑎∗∗. □

4. Numerical simulations

Soil texture is crucial to the availability of soil water for plants. In
general, sandy soil has large gaps and permeability, but poor water
retention, low nutrient content, and poor fertility. In contrast, clay soil
has small gaps, poor permeability, strong water and fertilizer retention,
more organic matter. These soil properties will affect the absorption
of water by plants and the transmission and consumption of water in
plants to a certain extent. In this paper, we focus on these two soil
conditions by setting 𝑓 = 0.1 as sandy soils and 𝑓 = 0.9 as clay
soils, and study the impacts of plant trait (water storage capacity,
𝛿) and climatic factor (precipitation, 𝑎) on the growth of plants. The
following numerical results are obtained by using the continuation
software MatCont in Matlab.

Water storage capacity is one of the typical characteristics of drought
resistance in dryland plants, and to some extent it can represent a
particular species of plant. The impacts of water storage capacity of
plants 𝛿 on the soil water, the water/carbon ratio in plants, and the
plant growth are shown in Figs. 1 and 2 by bifurcation analysis. If plants
are supported by sandy soil (𝑓 = 0.1, see Fig. 1), model (2.6) undergoes
a saddle–node bifurcation at 𝛿 = 20.9840 ∶= 𝛿1 and a backward
bifurcation at 𝛿 = 86.6007 ∶= 𝛿2, respectively. When 𝛿 < 𝛿1, model (2.6)
only has a ‘no-vegetation’ state 𝐸0, which is globally asymptotically
stable. When 𝛿 < 𝛿 < 𝛿 , model (2.6) has a ‘no-vegetation’ state 𝐸0 and
1 2
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Fig. 1. Bifurcation diagrams of model (2.6) with respect to water storage capacity 𝛿 for sandy soil (𝑓 = 0.1): (a) soil water content, (b) water/carbon ratio in plants, (c) plant
arbon density. The other parameters except 𝛿 and 𝑓 are taken as 𝑎 = 0.2, 𝑙 = 0.5, 𝛾 = 0.00008503, 𝛽 = 0.5102, 𝑐 = 2.5, and 𝑠 = 0.075. The red/black curves denote the stable/unstable
quilibria, respectively. The label ‘SN’ denotes the saddle–node bifurcation and ‘BP’ the transcritical bifurcation point.
Fig. 2. Bifurcation diagrams of model (2.6) with respect to water storage capacity 𝛿 for clay soil (𝑓 = 0.9): (a) soil water content, (b) water/carbon ratio in plants, (c) plant
arbon density. The other parameters except 𝛿 and 𝑓 are taken as 𝑎 = 0.2, 𝑙 = 0.5, 𝛾 = 0.00008503, 𝛽 = 0.5102, 𝑐 = 2.5, and 𝑠 = 0.075. The color of the curves and the labels have
he same meaning as in Fig. 1.
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2 with 𝑝∗1 < 𝑝∗2. In this situation, model
2.6) shows a bistability (alternative stable states) between a stable
no-vegetation’ equilibrium and a stable positive equilibrium. When
> 𝛿2, the ‘no-vegetation’ state becomes unstable, and model (2.6)

as a unique stable vegetated state. If plants are supported by clay soil
𝑓 = 0.9, see Fig. 2), the dynamics of model (2.6) is quite different from
he previous case. Only the forward bifurcation occurs. The bifurcation
alue of 𝛿 is at 𝛿 = 14.007506 ∶= 𝛿3. When 𝛿 < 𝛿3, model (2.6) only
as a ‘no-vegetation’ state 𝐸0, which is globally asymptotically stable.
hen 𝛿 > 𝛿3, the ‘no-vegetation’ state becomes unstable, and a unique

egetated state emerges, which is a global attractor.
Figs. 1 and 2 are obtained with a precipitation level of 𝑎 = 0.2,

hich means that the plants are living in a relatively dry environment.
hese results show that the water storage capacity of plants has an

mportant impact on the survival of plants in arid environments, mainly
n the following three aspects:

∙ For plants with weak water storage capacity, due to the relative
lack of water resources in arid environments, it is impossible to
meet the normal growth needs of plants. Therefore, no matter in
sand or clay soil, plants cannot survive, and the plant population
will collapse. There is no change in the soil water content in the
equilibrium state (see Figs. 1(a) and 2(a)), because it is assumed
that the precipitation is a fixed value, while in the equilibrium
state, the plants die, and the soil water will not be consumed.

∙ There is a critical value of plant water storage capacity in both
types of soil, and when the water storage capacity exceeds this
critical value, plants begin to have the ability to survive in arid
environments. If plants are supported by sandy soil, then in a
suitable range of water storage capacity system (2.6) may exhibit
a bistable phenomenon. The final plant biomass depends on the
7
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initial plant biomass: if the initial vegetation is sparse, then the
plants will die out, while if the initial vegetation is luxuriant,
then the plants can survive. If plants are supported by clay soil,
the bistable behavior does not occur. These indicate that it is
very sensitive to different soils if the plant biomass is low. Due
to the low water retention rate of sandy soil, when the biomass
is small, it is difficult for plants to absorb enough water from
the soil to sustain their growth and development. Under these
conditions, plants are highly susceptible to death. Clay soil, on
the other hand, has a high water retention rate and it is easier
for plants to absorb water from the soil to sustain their growth
and development.

∙ For plants with strong water storage capacity, the growth rate
of plants in sandy and clay soils will not make much difference
due to their strong drought resistance. However, for the water
in the soil, the equilibrium density in the sandy soil will not
change with the change of water storage capacity, while in the
clay, the equilibrium density will decrease with the increase of
water storage capacity.

The effect of precipitation on plant growth and development has
lways been an important topic in plant research. For plants with
ifferent water storage capacity, the effect of precipitation may be quite
ifferent. Here, we conduct some numerical simulations for the level
f water storage capacity of plants 𝛿 = 20 to explore the influence
f precipitation on plants. The corresponding results are shown in
igs. 3 and 4. It can be seen that the dynamics of model (2.6) are
imilar to those shown in Figs. 1 and 2. In extremely dry conditions
i.e., precipitation is very few), plants cannot survive and the plant
opulation collapses. As precipitation gradually increases, the amount

f the soil water also increases accordingly. It is not until the soil water
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d
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Fig. 3. Bifurcation diagrams of model (2.6) with respect to the precipitation 𝑎 for sandy soil (𝑓 = 0.1): (a) soil water content, (b) water/carbon ratio in plants, (c) plant carbon
ensity. The other parameters except 𝑎 and 𝑓 are taken as 𝛿 = 20, 𝑙 = 0.5, 𝛾 = 0.0002193, 𝛽 = 1.3158, 𝑐 = 2.5 and 𝑠 = 0.075. The color of the curves and the labels have the same
eaning as in Fig. 1.
Fig. 4. Bifurcation diagrams of model (2.6) with respect to the precipitation 𝑎 for clay soil (𝑓 = 0.9): (a) soil water content, (b) water/carbon ratio in plants, (c) plant carbon
density. The other parameters except 𝑎 and 𝑓 are taken as 𝛿 = 20, 𝑙 = 0.5, 𝛾 = 0.0002193, 𝛽 = 1.3158, 𝑐 = 2.5 and 𝑠 = 0.075. The color of the curves and the labels have the same
meaning as in Fig. 1.
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content reaches a certain level that plants can survive in this particu-
lar environment. We mainly consider precipitation as an indicator to
describe the role of precipitation in plant growth. As can be seen from
Fig. 3, the precipitation threshold can be determined by the tipping
point of model (2.6) where the model has a ‘no-vegetation’ equilibrium
and a positive equilibrium with multiplicity 2. When precipitation is
greater than this threshold, the plants survive, otherwise the plants will
go extinct. When the climate is relatively humid, the phenomenon of
alternative stable states appears. Similar to the impact of water storage
capacity, we find that the low plant biomass is very sensitive to the
soil types in this humid environment. Compared with sandy soil, clay
soil is more favorable for plant colonization for low initial biomass.
When the climate is very humid, the plant biomass increases with
precipitation, until the plant biomass reaches a certain amount and no
longer increases. At this time, precipitation is no longer a limiting factor
for plant growth.

5. Discussion

In order to survive in arid environments, plants have developed
some drought resistance strategies, including developed root system
and developed water storage tissues, etc. In this paper, we use the
method of mathematical modeling to explore the influence of water
storage capacity of plant on its growth and development in arid en-
vironments. Specifically, we characterize the water storage capacity
of plants as the ratio of the maximum and minimum water/carbon
ratio in plants. Based on this, a three-variable model describing the
dynamics of soil water, water/carbon ratio in plants, and plant carbon
density is proposed. We have investigated the existence and stability
of equilibria, and proved that the model may undergo a forward or
backward bifurcation and a saddle–node bifurcation.
8
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The bifurcation diagrams illustrate that the soil conditions can sig-
nificantly affect successful colonization of plants. For plants supported
in clay soil, the ecological reproductive index 0 can be seen as an
indicator that the plants can be colonized successfully in the bare
areas (see Figs. 2 and 4). According to the formula 0 = 1, the
ritical values of climatic conditions (for example, precipitation) or
lant traits (for example, water storage capacity) for plant survival
an be determined. In this case, the plant biomass does not change
bruptly with precipitation changes. For plants supported in sandy soil,
t is obvious that 0 = 1 is not the indicator that the plants can be
olonized successfully in the bare areas. The true indicator is domi-
ated by the saddle–node bifurcation point, which is smaller than that
etermined by 0 = 1. This bifurcation point is also called a tipping
oint. In addition, it is interesting to note that the plant community
s resilient to precipitation and water storage capacity for the sandy
oil. The result about precipitation is consistent to that in [27]. In
ppropriate parameter ranges, the phenomenon of alternative stable
tates may emerge, and the initial plant biomass determines the final
lant size. In particular, if the initial biomass of plants is sparse, then
hey may become extinct. In Ecology, this phenomenon is called Allee
ffect [33,34].

In natural ecosystems, especially in arid ecosystems, alternative sta-
le states and tipping points are not uncommon [35–38]. Some studies
how that these phenomena are closely related to the degradation and
estoration of ecosystems. As the parameter approaches the tipping
oints, the original stable ecosystem may undergo unpredictable rapid
egradation or even collapse in a short time, and the degraded system
tate also has high stability and is often difficult to recover. On the
ther hand, these phenomena also can explain some irrational facts

n nature, such as the increase of surface runoff in the Sahel region
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after a long-term severe drought from 1970 to 1994 [39]. In fact,
the numerical simulations in Wendling et al. [39] revealed that the
vegetation eco-hydrological system oscillated around the vegetation
state on the eve of the severe drought of 1970–1994 due to changes
in precipitation. During the drought, it started to shift to a degraded
(low vegetation/high runoff) state, where it remained despite the slight
precipitation recovery that followed. In the mechanisms causing these
phenomena, drought may be an important factor in arid environ-
ments [27,35,37]. Moreover, Rietkerk et al. [27] showed that the
site-specific properties such as nutrients or soil water availability is
very important for the resilience of vegetation change. In this paper,
it is interesting to note that plant traits such as water storage capacity
also can induce the occurrence of these phenomena. Unfortunately,
our model only combines empirical data and does not provide more
convincing numerical analysis based on actual data. In fact, if actual
data can be considered, then based on the plant characteristics of a
certain species in a certain region, some predictions can be made about
future plant growth trends. To some extent, this finding may provide a
theoretical framework for early warning of critical phase transitions in
real ecosystems.

As noted, the water storage capacity of different types of plants and
their seasonal changes are quite different. Since most plants growing in
arid regions have the ability to obtain water from deep soil, and their
hydraulics are very complex, determining the dynamics of the water
storage capacity of plants in arid environments remains challenging
in current plant research. In this paper, we do not directly model the
water storage capacity of plants as a state variable, but describe it
by the water/carbon ratio in plants. It is shown that a decrease in
water storage capacity might cause the emergence of alternative stable
states and even induce the occurrence of low biomass vegetation states
(see Fig. 1(c)), which again proves that the water storage capacity
plays a very important role in the drought resistance strategies of
plants. Moreover, recent researches have indicated that the response
of plants to drought has a lag effect [40–43]. When the drought stress
is over, although the water and soil conditions have been restored to
the conditions suitable for plant growth, the plant functions and various
growth indicators cannot be restored immediately, that is, some effects
of stress on plants will last for a period of time. Therefore, considering
this lag effect in the process of describing the interaction between
plants and water will make the model more consistent with the real
growth law of plants. We will further consider this in future research.
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Appendix A. Computation of 𝟎

According to (3.19), we know that the eigenvalues of Jacobi matrix
𝐽 (𝐸0) are

𝜆1 = −𝑙 < 0, 𝜆2 = −
𝛽𝑎𝑓
𝑎𝑓 + 𝑙

− 𝑐 < 0, 𝜆3 =
𝛽𝑐𝑎𝑓 (𝛿 − 1)

𝛽𝛿𝑎𝑓 + 𝑐𝑎𝑓 + 𝑐𝑙
− 1.

It is obvious that the stability of 𝐸0(𝑤1, 𝑞1, 0) is determined by 𝜆3.
efine

0 =
𝛽𝑐𝑎𝑓 (𝛿 − 1)

𝛽𝛿𝑎𝑓 + 𝑐𝑎𝑓 + 𝑐𝑙
.

Then 0 is the ecological reproductive index of plants for model (2.6).

Appendix B. Proof of Lemma 3.4

Proof. The condition 1 < 𝑞 < 𝛿 implies that
d𝑝
d𝑡

= 𝑝
(

𝑐
(

1 − 1
𝑞

)

− 1 − 𝑠𝑝
)

≤ 𝑝
(

𝑐
(

1 − 1
𝛿

)

− 1
)

.

It then follows that when 1 < 𝛿 < 𝑐
𝑐−1 , we have lim𝑡→∞ 𝑝(𝑡) = 0 for any

initial value 𝑝(0) ≥ 0. Accordingly, we have the limiting equation of
𝑤(𝑡) in (2.6) as
d𝑤
d𝜏

= 𝑎𝑓 − 𝑙𝑤,

rom which we know that for any initial value 𝑤(0) ≥ 0, lim𝑡→∞ 𝑤(𝑡) =
𝑎𝑓
𝑙 . Similarly, we obtain the limiting equation for 𝑞 as

d𝑞
d𝜏

=
𝛽𝑎𝑓
𝑎𝑓 + 𝑙

𝛿 + 𝑐 −
( 𝛽𝑎𝑓
𝑎𝑓 + 𝑙

+ 𝑐
)

𝑞,

rom which we immediately have that

lim
→∞

𝑞(𝑡) = 1 +
𝛽𝑎𝑓 (𝛿 − 1)

𝑙𝑐 + (𝛽 + 𝑐)𝑎𝑓
= 𝑞0.

The proof is thus completed. □
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