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Abstract. Organisms are composed of multiple chemical elements such as
carbon, nitrogen, and phosphorus. The scarcity of any of these elements can
severely restrict organismal and population growth. However, many trophic
interaction models only consider carbon limitation via energy flow. In this
paper, we construct an algal growth model with the explicit incorporation
of light and nutrient availability to characterize both carbon and phosphorus
limitations. We provide a global analysis of this model to illustrate how light
and nutrient availability regulate algal dynamics.

1. Introduction. For growth and maintenance of organismal cells, carbon (C),
nitrogen (N) and phosphorus (P) are vital chemical elements: C supplies energy,
N is an essential component of proteins, and P is an essential component of nu-
cleic acids. The scarcity of any of these elements can severely restrict organismal
and population growth. This concept forms the framework of the newly emerging
research area “ecological stoichiometry” that deals with the balance of energy and
nutrient elements in ecology [17]. In many circumstances, natural stoichiometric
constraints can be essential for modeling ecological interactions [7, 12, 16].

Suspended algae, called phytoplankton, live in almost all kinds of aquatic envi-
ronments. Algae grow in open water by taking up energy from sunlight and nutrients
such as N, P from the water. Light and nutrient availability are two most funda-
mental characteristics of an aquatic ecosystem for living organisms. Light intensity
varies greatly along the depth of water column or seasonally or day-and-night. Nu-
trient availability is controlled by many environmental inputs such as surrounding
farms, rivers, brooks, and atmosphere.
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Algae are the primary producer in aquatic ecosystems and the main food for
herbivores and some small fishes. Furthermore, algae produce energy through pho-
tosynthesis to support the whole community of living organisms including fish and
heterotrophic bacteria. Therefore, it is pivotal to better understand the dynamics
of algal density and nutritional status.

Algal dynamics have been modeled and/or discussed by many scientists: Huis-
man and Weissing (1994,1995) [9, 10], Klausmeier and Litchman (2001) [11], Diehl
(2002) [3], Diehl et al.(2005) [4], Berger et al. (2006) [2]. Many modeling efforts for
stoichiometry of ecological interactions have been made by the following studies:
Andersen (1997) [1], Hessen and Bjerkeng (1997) [8], Loladze et al. (2000) [16],
Grover (2002) [7], Kuang et al. (2004) [13], Kuijper et al. (2004) [14], Logan et al.
(2004) [15], Wang et al. (2007) [18], Wang et al. (2008) [19].

In this paper, we derive a new stoichiometric model for algal growth in a nutrient-
closed system. Our model captures key biological features of light- and nutrient-
dependent algal growth, especially, the algal cell quota is always above the minimum
cell quota. We present rigorous mathematical analysis for the model. The main
difficulty is that the system is undefined at the origin, which is a transformation
generated steady state. To show the global stability of the origin, we devise a
transformation to generate a new system that is defined at this steady state. The
transformation converts variables algal C and algal P to variables algal C:P ratio
and algal P. From our mathematical results, we obtain the following observations:
1) Algae go extinct if the nutrient is severely limiting; 2) Algae always survive with
sufficient nutrient and any nonzero light intensity; 3) Whenever algae can survive,
the unique internal steady state is globally attracting under strong light, whereas
the boundary steady state with algal C at its carrying capacity is globally attracting
under weak light. The simulation with realistic parameter values illustrates that
the origin is always unstable and algae always survive with two possible globally
attracting states: the internal equilibrium or the boundary equilibrium with algal
C at its carrying capacity. We also find that algal quality is worse when light is
stronger and algal quality is better when the nutrient availability is higher.

2. Derivation of algal growth model. We consider a carbon-open but nutrient-
closed ecosystem for algae. We define algal carbon biomass (measure in density) as
x, algal phosphorus biomass (measure in density) as p, and thus Q = p/x is algal
cell quota (intracellular P:C ratio). Based on two recently published papers [13, 19],
we introduce differential equations for algal P and cell quota, which are applied to
derive the algal growth equation.

According to Wang et al. (2008) [19], we have the following equation for algal P:

dp

dt
= g(T − p)x− dp,

where T is the total P, g(T−p) is the P-uptake function, and d is the P loss/recycling
rate of algae.

According to Kuang et al. (2004) [13], we have the following equation for algal
cell quota:

dQ

dt
= g(T − p)− µ(Q− q),

where q is the minimum cell quota of algae, and µ is the algal maximal growth rate.
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We apply the equations for p and Q to derive the equation for nutrient-dependent
algal growth (measured by carbon content):

dx

dt
=

d

dt

(

p

Q

)

=

(

dp

dt
Q− p

dQ

dt

)/

Q2

= [g(T − p)xQ − dpQ− g(T − p)p+ µ(Q− q)p]/Q2

= [(µ− d)pQ− µqp]/Q2

= (µ− d)x− µqx2/p

= (µ− d)x

[

1−
µ

µ− d

x

p/q

]

.

This new equation obeys the framework of Droop’s cell quota model [5, 6].
Together with the logistic equation for light-dependent algal growth, we obtain

the full version of algal growth equation:

dx

dt
= (µ− d)x

(

1−max

{

x

K
,

µ

µ− d

x

p/q

})

.

Let µ−d = r and q̄ = µ

µ−d
q > q, then the model for nutrient- and light-dependent

algal growth is simplified to be

dx

dt
= rx

(

1−
x

min{K, p/q̄}

)

, (1)

dp

dt
= g(T − p)x− dp. (2)

3. Mathematical analysis. Let k = min{K,T/q̄} and Ω = {(x, p) ∈ R
2
+ : 0 <

x < k, qx < p < T }. Biologically any solution starting from a point in the region
Ω should stay in Ω for ever (i.e., Ω is positively invariant), because algal C biomass
should be less than the limiting carrying capacity K (if light is limiting) or T/q̄ (if
the nutrient is limiting), algal P biomass should be less than T (the total nutrient
availability), and the algal cell quota p/x should be greater than the minimum
structural cell quota q. Mathematically we can also show that Ω is a positively
invariant region for the system (1)-(2) (see Theorem 1), thus our new model is
biologically reasonable.

Theorem 1. The open trapezoid domain Ω is positively invariant for the flow
generated by the system (1)-(2).

Proof. To prove the positive invariance of Ω, we only need to examine direction
fields on the boundary of Ω. On the upper boundary of Ω, p = T , x ∈ [0, k],
dp

dt
= −dT < 0. On the left boundary of Ω, x = 0, p ∈ (0, T ),

dx

dt
= 0. On the right

boundary of Ω, x = k, p ∈ (0, T ),
dx

dt
= rk

(

1−
k

min{K, p/q̄}

)

≤ 0. Therefore, all

orbits starting from Ω cannot escape Ω from these three boundaries.
It remains to show that all orbits starting from Ω cannot leave Ω from the bottom

boundary {(x, p) : 0 < x < k, p = qx} of Ω. Observe that if the light is more limiting
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at time t, then K < µ−d
µq

p(t), i.e.,

(µ− d)x

µK
>

q

Q
. (3)

In the following, we show that if p(0)/x(0) > q, then p(t)/x(t) > q for all t > 0.
If this is not true, there is a t1 > 0 such that Q(t1) = p(t1)/x(t1) = q and Q(t) =

p(t)/x(t) > q for t ∈ [0, t1). These clearly imply that
dQ

dt
(t1) ≤ 0. We consider

below the case that the light is limiting at time t1 (the other case is obvious from
the derivation of the x equation)

dQ(t)

dt
=

d

dt

(

p(t)

x(t)

)

=
dp(t)

dt

1

x(t)
−

Q

x(t)

dx(t)

dt

= g(T − p)− dQ−Q(µ− d)

(

1−
x

K

)

= g(T − p)− µQ

(

1−
µ− d

µK
x

)

.

This together with (3) implies

dQ

dt
(t1) > g(T − p(t1)) > 0

which contradicts
dQ

dt
(t1) ≤ 0. This concludes the proof. �

To analyze the stability of equilibria, we first compute the nullclines. Define that

F (x, p) = rx

(

1−
x

min{K, p/q̄}

)

=

{

rx(1 − x
K
), p ≥ q̄K;

rx(1 − q̄x

p
), p < q̄K.

G(x, p) = g(T − p)x− dp.

Algal C-nullcline: x = 0, and x = K (if p ≥ q̄K) or p = q̄x (if p < q̄K).

Denote l1 : p = q̄x , p1(x).

Algal P-nullcline: g(T −p)x = dp. Since G(0, 0) = 0,
∂G

∂p
= −g′(T −p)x−d <

0, we can deduce the existence of the smooth curve l2 : p = p2(x) satisfying

i): G(x, p2(x)) ≡ 0, ∀x ∈ (0, k];
ii): p2(0) = 0, p2(k) = p∗ ∈ (0, T );

iii):
dp2(x)

dx
= −

Gx(x, p2(x))

Gp(x, p2(x))
> 0;

iv):
d2p2(x)

dx2
< 0.

We now discuss steady states and their stabilities for all possible cases. There
are five possible cases according to light intensity (K) and nutrient availability (T ).

⋆ Case 1. K ≥ T/q̄, g(T ) ≤ dq̄.

In this case, k = min{K,T/q̄} = T/q̄, F (x, p) = rx(1 − q̄x/p), G(x, p) = g(T −
p)x − dp. The condition g(T ) ≤ dq̄ implies the slope of l1 is larger than that of l2
at the origin. Note that p′′2(x) < 0, then l2 is below l1 (see Figure 1(a)). Thus, no
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(a) The nullclines of the original system (1)-
(2) in case 1

(b) The nullclines of the transformed system (5)-
(6) in case 1

Figure 1. The nullclines and notations for case 1.

equilibria exist in this case. A natural question arises: where will orbits go? We will
prove that all orbits tend to the origin E0 = (0, 0), i.e., algae go extinct. Actually,
the origin is not a steady state but plays a similar role as a steady state.

Theorem 2. All solutions in Ω tend to the origin E0, i.e., E0 is G.A.S. (globally
asymptotically stable).

Proof. we introduce the transformation

Φ : Ω → Φ(Ω), (x, p) 7→ (u = x/p, p), (4)

which converts the system (1)-(2) in Ω into the new system

du

dt
= u[d+ r − (q̄r + g(T − p))u], (5)

dp

dt
= p[g(T − p)u− d]. (6)

Here
Φ(Ω) = {(u, p) ∈ R

2
+ : 0 < u < 1/q, 0 < p < T }.

This system has two equilibria (0, 0) and (u0, 0) with u0 =
d+ r

q̄r + g(T )
(see Figure

1(b)). Note that g(T ) ≤ dq̄, then u0 < 1/q̄ < 1/q, and the equilibrium (u0, 0) lies
on the left boundary of Φ(Ω).

The u-nullcline is l3 : u = 0 and u = u1(p) = d+r
q̄r+g(T−p) , 0 ≤ p < T . The p-

nullcline is l4 : p = 0 and u = u2(p) =
d

g(T−p) , 0 ≤ p < T . Since 1/q >
d

g(T − p)
≥

dr

q̄r + g(T )
by dq̄ ≥ g(T ), l4 is above l3 (see Figure 1(b)).

Define the regions

D1 = {(u, p) : 0 < p < T, 0 < u < u1(p)},

D2 = {(u, p) : 0 < p < T, u1(p) < u < u2(p)},

D3 = {(u, p) : 0 < p < T, u2(p) < u < 1/q}.
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Figure 2. The nullclines and notations for case 2.

In D1,
du

dt
> 0,

dp

dt
< 0. In D2:

du

dt
< 0,

dp

dt
< 0. In D3:

du

dt
< 0,

dp

dt
> 0. Thus, any

solution starting from the region D1 tends to the equilibrium (u0, 0). Any solution
starting from the regionD3 first enters the regionD2, and then either directly tends
to the equilibrium (u0, 0) or passes through the region D1 and then tends to the
equilibrium (u0, 0). Thus, any solution (u(t), p(t)) of the system (5)-(6) tends to
the equilibrium (u0, 0), i.e.,

lim
t→∞

u(t) = u0 =
d+ r

q̄r + g(T )
, lim

t→∞

p(t) = 0,

which implies that

lim
t→∞

x(t) = lim
t→∞

u(t)p(t) = 0, lim
t→∞

p(t) = 0.

Therefore, the origin of the system (1)-(2) is G.A.S. �

In the proof of Theorem 2, we introduce the transformation Φ in (4) to prevent
orbits entering into the origin where the system is undefined. This transformation
converts variables algae C and algal P to variables algal C:P ratio (reciprocal of cell
quota) and algal P. In many of the following theorems, this transformation will be
used again.

⋆ Case 2. K ≥ T/q̄, g(T ) > dq̄.

In this case, k = min{K,T/q̄} = T/q̄, F (x, p) = rx(1 − q̄x/p), G(x, p) = g(T −
p)x− dp.

The condition g(T ) > dq̄ means that the slope of l2 at the origin is larger than
that of l1 at the origin (see Figure 2). Thus, l1 and l2 have a unique intersection
E1 = (x̄, p̄), which is the unique equilibrium of the system (1)-(2) with p̄ = q̄x̄, and
p̄ satisfies

g(T − p̄) = dq̄. (7)

Theorem 3. The internal equilibrium E1 is G.A.S.

Proof. We first show that E1 is L.A.S. (locally asymptotically stable). At the
equilibrium E1,

Fx = r(1 − 2q̄x̄/p̄) = −r, Fp = rq̄x̄2/p̄2 = r/q̄,
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Figure 3. The nullclines and notations for case 3.

Gx = g(T − p̄), Gp = −g′(T − p̄)x̄− d.

The determinant of Jacobian Matrix at E1 is

FxGp −GxFp = rg′(T − p̄)x̄+ rd− (r/q)g(T − p̄) = rg′(T − p̄)x̄ > 0.

The trace of Jacobian Matrix at E1 is

Fx +Gp = −r − g′(T − p̄)x̄− d < 0.

Therefore, E1 is L.A.S.
Next, we show that all solutions (x(t), p(t)) of the system (1)-(2) satisfy the

condition limt→+∞ p(t) 6= 0, i.e., solutions of (1)-(2) never tend to the origin. Note
that Theorem 1 has shown that all solutions of (1)-(2) do not touch the origin at a
finite time. Following the same logic, we introduce the transformation Φ defined in
(4) and the transformed system (5)-(6). This system has two equilibria (u0, 0) and
(1/q̄, p̄). Therefore, in order to show that any solution of the original system (1)-(2)
does not tend to the origin as time goes to infinity, we only need to prove that
any solution of the transformed system (5)-(6) does not tend to the equilibrium
(u0, 0). This result is obvious because the equilibrium (u0, 0) is a saddle whose
stable manifold is the u-axis.

Finally, in order to show that E1 is G.A.S., we only need to show that the system
(1)-(2) in Ω has no periodic orbits. Suppose that the system (1)-(2) has a periodic
solution Γ : (x(t), p(t)) in Ω. Since E1 is the unique equilibrium of (1)-(2), then it
has to be inside closed orbit Γ. Therefore, Γ must intersect with l1, l2. Denote the
intersections of Γ and l1 as A (left) and B (right); denote the intersections of Γ and
l2 as C (left) and D (right) (see Figure 2).

Note that in the region D4 = {(x, p) : 0 < x < k, q̄x < p < T },
dx

dt
> 0, and in

the region D5 = {(x, p) : 0 < x < k, p2(x) < p < T },
dp

dt
< 0.

From the first fact, we deduce that the orbit Γ has the clockwise direction. On
the other hand, integrating the equation (2) and from the second fact, we deduce
that the p-coordinate of the point D is smaller than that of the point C, which
contradicts to the fact that the curve l2 is monotone increasing. This concludes the
proof. �

⋆ Case 3. p∗/q̄ < K ≤ T/q̄, g(T ) ≤ dq̄.
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Figure 4. The nullclines and notations for case 4.

The number p∗ satisfies g(T − p∗)k = dp∗. In this case, k = min{K,T/q̄} = K,

F (x, p) =

{

rx(1 − q̄x/p), 0 < p < q̄K

rx(1 − x/K), q̄K ≤ p < T
, G(x, p) = g(T − p)x− dp.

In this case, the system has no equilibria, and the origin E0 is G.A.S.

Theorem 4. The origin E0 is G.A.S.

Proof. Denote D6 = {(x, p) : 0 < x < K, q̄K < p < T }, D7 = {(x, p) : 0 < x <

K, 0 < p < q̄K}. Since
dp

dt
< 0 in D6, any solution starting from D6 will enter the

region D7 and stay in D7 for all times. The remaining proof is the same as that in
Theorem 1. �

⋆ Case 4. p∗/q̄ < K ≤ T/q̄, g(T ) > dq̄.

In this case, k = min{K,T/q̄} = K, F (x, p) =

{

rx(1 − q̄x/p), 0 < p < q̄K

rx(1 − x/K), q̄K ≤ p < T
,

G(x, p) = g(T − p)x− dp, x̄ = p̄/q̄, g(T − p̄) = q̄d.

Theorem 5. The internal equilibrium E1 = (x̄, p̄) is G.A.S.

Proof. The proof is completely same as that of Theorem 3. �

⋆ Case 5. K ≤ p∗/q̄.

In this case, k = min{K,T/q̄} = K, F (x, p) =

{

rx(1 − q̄x/p), 0 < p < q̄K
rx(1 − x/K), q̄K ≤ p < T

,

G(x, p) = g(T −p)x−dp. The system (1)-(2) has a unique equilibrium E2 = (K, p∗)
on the boundary of Ω.

Theorem 6. The boundary equilibrium E2 is G.A.S.

Proof. E2 is L.A.S because Fx = −r, Fp = 0, Gx = g(T − p∗) and Gp = −g′(T −
p∗)K−d. In order to prove that E2 is G.A.S., we only need to prove that lim

t→∞

p(t) 6=

0.
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Figure 5. The nullclines and notations for case 5.

Recall that the C-nullcline is l1 : p = p1(x) = q̄x, and the P-nullcline l2 : p =
p2(x) satisfies four conditions i)-iv). Define the regions

D8 = {(x, p) : 0 < x < K, p2(x) < p < T },

D9 = {(x, p) : 0 < x < K, p1(x) < p < p2(x)},

D10 = {(x, p) : 0 < x < K, qx < p < p1(x)}.

In D8,
dx

dt
> 0,

dp

dt
< 0. In D9,

dx

dt
> 0,

dp

dt
> 0. In D10,

dx

dt
< 0,

dp

dt
> 0.

The region D9 is positively invariant, and any solution starting from D9 will tend
to E2. Some orbits in the region D8 directly tend to E2, and the others enter into
D9 first and then tend to E2. All orbits starting in the region D10 enter into D9

first, and tend to E2 finally. �

Note that in Case 3, Case 4, and Case 5, p∗ = αTK/(αK + d), if g(y) = αy;

or p∗ = [cK + ad + Td −
√

(cK + ad+ Td)2 − 4dcKT ]/2d, if g(y) = cy/(a + y).
We should take these relationships into consideration when we examine how global
stability conditions depend on light intensity (K) and nutrient availability (T ).

4. Discussion. We develop and analyze a new stoichiometric algae model. Our
global stability results provide conditions on how light and nutrient availability de-
termine algal dynamics. The numerical test (Figure 6(a)) plots separated regions
for all five cases to graphically illustrate these mathematical conditions. Algae
go extinct if the nutrient is severely limiting. Algae always survive with sufficient
nutrient supply and any nonzero light intensity, which means that the nutrient avail-
ability is more crucial for algal survival. Whenever algae can survive, the unique
internal steady state is globally attracting under strong light, while the boundary
steady state is globally attracting under weak light. The five cases are reduced to
two cases in the numerical simulation (Figure 6(b)) with realistic parameter values
(estimated in Table 1). This figure illustrates that algae always survive with two
possible globally attracting states: the internal equilibrium or the boundary equi-
librium. Figure 7 shows that, with fixed nutrient availability T , the algal P:C ratio
at the attracting steady state is always decreasing as light intensity K increases,
that is, algal quality becomes worse when light is stronger. When the nutrient
availability is higher, algal quality becomes better. However, this difference is small
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(a) c = 0.0006 (mg P)/(mg C)/day, which is
an unrealistic value. It is designed mathemat-
ically to show all possible cases.
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(b) c = 0.2 (mg P)/(mg C)/day, which is the
realistic value in Table 1. We observe that
Only two cases exist in reality.

Figure 6. The dependence of dynamics on light intensity (K) and
nutrient availability (T). Here, g(y) = cy/(a+ y). The blue line is
cT/(a + T ) = dq̄; the green line is K = T/q̄; the red line is K =
p∗/q̄. The panel (a) illustrates that all five cases can occur when
the parameter c is unrealistically small. The panel (b) illustrates
that only two cases have dominant probability to occur while other
three cases occur with almost zero probability when the parameter
c is realistic.

Table 1. The parameters (P) of the system (1)-(2) and their val-
ues (V) used for numerical simulations.

P Description V Unit

K Light-dependent carrying capacity of algae 0− 2 (mg C)/l
T Total P in the system 0− 0.03 (mg P)/l
µ Maximum growth rate of algae 1.2 day−1

q Minimum P:C ratio of algae 0.004 (mg P)/(mg C)
d P loss/recycling rate of algae 0.05 day−1

c Maximum P uptake rate of algae 0.2 (mg P)/(mg C)/day
a P-dependent half-saturation constant of algae 0.008 (mg P)/l

Note that g(y) =
cy

a+ y
. Parameter values are estimated from [1, 13, 16, 19].

when light is strong. These observations are consistent to previous empirical studies
[17, 20].

A transformation generated steady state appears in our model and can be glob-
ally asymptotically stable (see Theorems 2&4). Linear stability analysis cannot be
applied because the Jacobian matrix is undefined at such a steady state. We devise
a transformation to prove its global stability.

We model a nutrient-closed system for algae because many microcosm experi-
ments are closed in nutrients. The system can be open such as open-water lake
ecosystems. A nutrient-open system can easily be constructed by incorporating
standard chemostat in- and out-flows.
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Figure 7. Algal cell quota versus light and nutrient availability.
The parameter c = 0.2 as in Table 1.
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