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Exercise 3.9.7: Linear systems

Thanks to Pandora Lam, University of Alberta, for providing this solution.

(a)

A =

[
1 1
3 −1

]

tr A = a + d = 1 + (−1) = 0

det A = ad − bc = 1 ∗ (−1) − 1 ∗ 3 = −4 < 0

λ1, λ2 =
tr A

2
± 1

2

√

(tr A)2 − 4 ∗ det A = 0 ± 1

2

√

0 − 4 ∗ (−4) = ±1

2
∗ 4 = ±2

Hence, (0, 0) is a saddle point.
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(b)

A =

[
2 1
2 3

]

tr A = 2 + 3 = 5 > 0

det A = ad − bc = 2 ∗ (3) − 1 ∗ 2 = 4 > 0

λ1, λ2 =
tr A

2
± 1

2

√

(tr A)2 − 4 ∗ det A =
5

2
± 1

2

√

25 − 4 ∗ (4) =
5

2
± 3

2
= 4, 1

Hence, (0, 0) is an unstable node.
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(c)

A =

[
−1 −2

2 −1

]

tr A = −1 + (−1) = −2 < 0

det A = ad − bc = −1 ∗ (−1) − (−2) ∗ 2 = 5 > 0

λ1, λ2 =
tr A

2
± 1

2

√

(tr A)2 − 4 ∗ det A =
−2

2
± 1

2

√

4 − 4 ∗ (5) = −1± 1

2

√
−16 = −1 ± 2i

Hence, (0, 0) is a stable spiral.
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(d)

A =

[
1 2

−2 1

]

tr A = 1 + 1 = 2 > 0

det A = ad − bc = 1 ∗ 1 − 2 ∗ (−2) = 5 > 0

λ1, λ2 =
tr A

2
± 1

2

√

(tr A)2 − 4 ∗ det A =
2

2
± 1

2

√

4− 4 ∗ (5) = 1 ± 1

2

√
−16 = 1 ± 2i

Hence, (0, 0) is an unstable spiral.
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(e)

A =

[
0 −2
2 0

]

tr A = 0 + 0 = 0

det A = ad − bc = 0 ∗ 0 − (−2) ∗ 2 = 4 > 0

λ1, λ2 =
tr A

2
± 1

2

√

(tr A)2 − 4 ∗ det A = 0 ± 1

2

√

0 − 4 ∗ (4) = ±1

2

√
−16 = ±2i

Hence, (0, 0) is a center.
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Exercise 3.9.8: A linear system with complex eigenvalues

Thanks to Pandora Lam, University of Alberta, for providing this solution.

We need to show that both x(1)(t) and x(2)(t) satisfy the differential equation

d

dt

[
x1

x2

]

=

[
α β
−β α

] [
x1

x2

]

.

If we let
[

x1

x2

]

= x(1)(t) =

[
eαt cosβt
−eαt sinβt

]

,

then

d

dt

[
x1

x2

]

=

[
αeαt cosβt − βeαt sin βt
−αeαt sinβt − βeαt cosβt

]

=

[
α(eαt cosβt) + β(−eαt sin βt)
−β(eαt cosβt) + α(−eαt sin βt)

]

=

[
α β
−β α

][
eαt cosβt
−eαt sin βt

]

=

[
α β
−β α

][
x1

x2

]

,

as required.

Similarly, if we let
[

x1

x2

]

= x(2)(t) =

[
eαt sin βt
eαt cosβt

]

,

then

d

dt

[
x1

x2

]

=

[
αeαt sin βt + βeαt cosβt
αeαt cosβt − βeαt sin βt

]

=

[
α(eαt sin βt) + β(eαt cosβt)
−β(eαt sin βt) + α(eαt cosβt)

]

=

[
α β
−β α

] [
eαt sin βt
eαt cosβt

]

=

[
α β
−β α

] [
x1

x2

]

,

as required.

We now let x(t) = c1x
(1)(t) + c2x

(2)(t), and rewrite x(t) in the required form as



“sol-gerda”
2006/11/20
page 42

i

i

i

i

i

i

i

i

42 Solutions manual for de Vries et al, SIAM 2006

follows:

x(t) = c1x
(1)(t) + c2x

(2)(t)

= c1

[
eαt cosβt
−eαt sinβt

]

+ c2

[
eαt sin βt
eαt cosβt

]

= eαt

[
c1 cosβt + c2 sin βt
−c1 sinβt + c2 cosβt

]

.

Introducing a and φ such that c1 = a cos(−φ) and c2 = a sin(−φ), we get

x(t) = aeαt

[
cosβt cos(−φ) + sin βt sin(−φ)

−(sin βt cos(−φ) − cosβt sin(−φ))

]

= aeαt

[
cos(βt + φ)
− sin(βt + φ)

]

.

Note that c1 = a cos(−φ) and c2 = a sin(−φ) imply

c2
1 + c2

2 = a2 cos2(−φ) + a2 sin2(−φ) = a2,

or

a =
√

c2
1 + c2

2

and
a sin(−φ)

a cos(−φ)
= tan(−φ) = − tan(φ) =

c2

c1
,

or
φ = arctan(−c2

c1
).

Exercise 3.9.9: The trace-determinant formula

Given a matrix,

A =

(
a b
c d

)

,

The eigenvalues of A are the λ satisfying |λI −A| = 0, where I is the 2× 2 identity
matrix. Notice that tr(A) = a + d, and det(A) = ad − bc. Hence,

0 = |λI − A|
= (λ − a)(λ − d) − bc

= λ2 + λ(−a − d) + ad − bc

= λ2 − tr(A)λ + det(A).

From the quadratic formula, we find

λ1/2 =
tr(A) ±

√

(tr(A))2 − 4 det(A)

2
.



“sol-gerda”
2006/11/20
page 43

i

i

i

i

i

i

i

i

A. Beltaos, G. de Vries, T. Hillen, November 20, 2006 43

Q.E.D.

Exercise 3.9.10: Using the trace-determinant formula

Thanks to Pandora Lam, University of Alberta, for providing this solution.

(a)

A =

[
1 5
3 2

]

tr A = a + d = 1 + 2 = 3

det A = ad − bc = 1 ∗ 2 − 5 ∗ 3 = −13 < 0

λ1, λ2 =
tr A

2
± 1

2

√

(tr A)2 − 4 ∗ det A =
3

2
± 1

2

√

9− 4 ∗ (−13) =
3

2
± 1

2

√
61 ≈ 5.41,−2.41

Hence, (0, 0) is a saddle point.

(b)

A =

[
0 −2
1 −3

]

tr A = a + d = 0 + (−3) = −3 < 0

det A = ad − bc = 0 ∗ (−3) − 1 ∗ (−2) = 2 > 0

λ1, λ2 =
tr A

2
± 1

2

√

(tr A)2 − 4 ∗ det A =
−3

2
± 1

2

√

9 − 4 ∗ (2) =
−3

2
± 1

2
= −1,−2

Hence, (0, 0) is a stable node.

(c)

A =

[
−2 4
−3 4

]

tr A = a + d = −2 + 4 = 2 > 0

det A = ad − bc = −2 ∗ 4 − 4 ∗ (−3) = 4 > 0

λ1, λ2 =
tr A

2
± 1

2

√

(tr A)2 − 4 ∗ det A =
2

2
± 1

2

√

4− 4 ∗ (4) = 1 ± 1

2

√
−12 = 1 ±

√
3i

Hence, (0, 0) is an unstable spiral.

(d)

A =

[
2 1
1 3

]

tr A = a + d = 2 + 3 = 5 > 0

det A = ad − bc = 2 ∗ 3 − 1 ∗ 1 = 5 > 0

λ1, λ2 =
tr A

2
± 1

2

√

(tr A)2 − 4 ∗ det A =
5

2
± 1

2

√

25− 4 ∗ (5) =
5

2
± 1

2

√
5 ≈ 3.62, 1.38

Hence, (0, 0) is an unstable node.
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(e)

A =

[
−2 −1

1 2

]

tr A = a + d = −2 + 2 = 0

det A = ad − bc = −2 ∗ 2 − (−1) ∗ 1 = −3 < 0

λ1, λ2 =
tr A

2
± 1

2

√

(tr A)2 − 4 ∗ det A = 0 ± 1

2

√

0 − 4 ∗ (−3) = ±1

2

√
12 = ±

√
3

Hence, (0, 0) is a saddle point.

(f)

A =

[
−1 −2

2 1

]

tr A = a + d = −1 + 1 = 0

det A = ad − bc = −1 ∗ 1 − (−2) ∗ 2 = 3 > 0

λ1, λ2 =
tr A

2
± 1

2

√

(tr A)2 − 4 ∗ det A = 0 ± 1

2

√

0 − 4 ∗ (3) = ±1

2

√
−12 = ±

√
3i

Hence, (0, 0) is a center.

Exercise 3.9.11: Two-population model

Thanks to Pandora Lam, University of Alberta, for providing the outline of this

solution.

The two-population model, (3.8), is

ẋ = αx + βxy,

ẏ = γy + δxy.

There are two steady states, namely P1 = (0, 0) and P2 = (−γ
δ ,−α

β ).

In the solutions shown below, we determine the stability of any biologically relevant
steady states. Note that P1 always is biologically relevant. However, P2 only is
biologically relevant if α and β as well as γ and δ have opposite signs.

Knowing the stability of the steady states will be helpful in sketching the phase
portraits, not (yet) provided here.

The Jacobian matrix for the system is

J =

[
∂f1

∂x
∂f1

∂y
∂f2

∂x
∂f2

∂y

]

=

[
α + βy βx

δy γ + δx

]

.
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In general then, the stability of P1 = (0, 0) is determined by

J(0, 0) =

[
α 0
0 γ

]

,

with eigenvalues λ1 = α and λ2 = γ.

Similarly, the stability of P2 = (−γ
δ , −α

β ) is determined by

J(
−γ

δ
,
−α

β
) =

[
0 −βγ

δ−αδ
β 0

]

,

with tr J = 0 and det J = −αγ.

(a) Case α > 0, β > 0, γ > 0, δ < 0

For P1 = (0, 0):
The eigenvalues are λ1,2 > 0, therefore P1 = (0, 0) is an unstable node.

For P2 = (−γ
δ , −α

β ):
Since α and β have the same sign, P2 is not biologically relevant.

INSERT PHASE PORTRAIT HERE

Biological interpretation: We have a predator-prey model . . .

(b) Case α > 0, β > 0, γ < 0, δ < 0

For P1 = (0, 0):
The eigenvalues are λ1 = α > 0 and λ2 = γ < 0, therefore P1 = (0, 0) is a
saddle point.

For P2 = (−γ
δ , −α

β ):
P2 is not biologically relevant.

INSERT PHASE PORTRAIT HERE

Biological interpretation: We have a predator-prey model . . .

(c) Case α < 0, β > 0, γ < 0, δ < 0

For P1 = (0, 0):
The eigenvalues are λ1 = α < 0 and λ2 = γ < 0, therefore (0, 0) is a stable
node.

For P2 = (−γ
δ , −α

β ):
P2 is not biologically relevant.

INSERT PHASE PORTRAIT HERE
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Biological interpretation: We have a predator-prey model . . .

(d) Case α > 0, β > 0, γ > 0, δ > 0

For P1 = (0, 0):
The eigenvalues are λ1 = α > 0 and λ2 = γ > 0, therefore (0, 0) is an unstable
node.

For P2 = (−γ
δ , −α

β ):
P2 is not biologically relevant.

INSERT PHASE PORTRAIT HERE

Biological interpretation: We have a mutualism or symbiosis model . . .

(e) Case α > 0, β > 0, γ < 0, δ > 0

For P1 = (0, 0):
The eigenvalues are λ1 = α > 0 and λ2 = γ < 0, therefore (0, 0) is a saddle
point.

For P2 = (−γ
δ , −α

β ):
P2 is not biologically relevant.

INSERT PHASE PORTRAIT HERE

Biological interpretation: We have a mutualism or symbiosis model . . .

(f) Case α > 0, β < 0, γ > 0, δ < 0

For P1 = (0, 0):
The eigenvalues are λ1 = α > 0 and λ2 = γ > 0, therefore (0, 0) is an unstable
node.

For P2 = (−γ
δ , −α

β ):
P2 IS biologically relevant! Since tr J = 0 and det J = −αγ < 0, P2 =
(−γ

δ , −α
β ) is a saddle point.

INSERT PHASE PORTRAIT HERE

Biological interpretation: We have a competition model . . .

(g) Case α < 0, β < 0, γ < 0, δ < 0

For P1 = (0, 0):
The eigenvalues are λ1 = α < 0 and λ2 = γ < 0, therefore (0, 0) is a stable
node.

For P2 = (−γ
δ , −α

β ):
P2 is not biologically relevant.

INSERT PHASE PORTRAIT HERE
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Biological interpretation: We have a competition model . . .

Exercise 3.9.12: Predator-prey model

Thanks to Pandora Lam, University of Alberta, for providing this solution.

(a) Let x(t) be the prey population, and y(t) be the natural predator population.

Assuming exponential growth for the prey population in the absense of the
predator, and exponential decay for the predator population in the absense of
prey, the 2-species interaction model reads

dx

dt
= αx − βxy,

dy

dt
= γy + δxy.

(b) Let r1 be the rate that the poison kills the prey population, and r2 be the
rate that the poison kills the predator population.

The new model then reads

dx

dt
= αx − βxy − r1x,

dy

dt
= γy + δxy − r2y.

Exercise 3.9.13: Inhibited enzymatic reaction

Let s = [S], e = [E], b1 = [B1], q = [Q], b2 = [B2], and i = [I ].

The first reaction gives the following differential equations:

ds

dt
= −k1se + K−1b1,

de

dt
= −k1se + K−1b1 + k2b1,

db1

dt
= k1se − K−1b1 − k2b1,

dq

dt
= k2b1.
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The second gives the following three equations:

db2

dt
= k1ei − k−1b2,

de

dt
= −k1ei + k−1b2,

di

dt
= −k1ei + k−1b2.

Exercise 3.9.14: A feedback mechanism for oscillatory reactions

Thanks to Pandora Lam, University of Alberta, for providing this solution.

We are given the following pathway:

A
k1




k−1

B
k2




k−2

C
k3




k−3

A.

Let a = [A], b = [B], and c = [C].

A differential equation model for the above pathway then is

da

dt
= k−1b + k3c − k1a − k−3a,

db

dt
= k1a + k−2c − k−1b − k2b,

dc

dt
= k2b + k−3a − k−2c − k3c.

Exercise 3.9.15: Enzymatic reaction with two intermediate steps

Thanks to Pandora Lam, University of Alberta, for providing this solution.

We are given the following reaction:

S + E
k1




k−1

C1

k2




k−2

C2

k3




k−3

E + P.

Let s = [S], e = [E], c1 = [C1], c2 = [C2], and p = [P ].
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A differential equation model for the above reaction then is

ds

dt
= k−1c1 − k1se,

de

dt
= k−1c1 + k3c2 − k1se − k−3ep,

dc1

dt
= k1se + k−2c2 − k−1c1 − k2c1,

dc2

dt
= k2c1 + k−3ep − k−2c2 − k3c2,

dp

dt
= k3c2 − k−3ep.

Exercise 3.9.16: Self-intoxicating population

Thanks to Pandora Lam, University of Alberta, for providing this solution.

We are working with the following system:

ṅ = (α − β − Ky)n,

ẏ = γn − δy.

To avoid having to consider all sorts of special cases in the solution below, we assume
α, β, γ, δ, K > 0 instead of α, β, γ, δ, K ≥ 0.

(a) The term αn represents birth, increasing the population.
The term −βn represents natural death, decreasing the population.
The term −Kyn represents death due to a toxic environment, decreasing the
population.

The term γn represents the production of waste products, proportional to the
size of the population.
The term −δy represents natural degradation of the waste products.

(b) We begin with the nullclines.

There are two n-nullclines, given by ṅ = 0, namely the vertical line

n = 0

and the horizontal line

y =
α − β

K
.

Similarly, there is one y-nullcline, given by ẏ = 0, namely the straight line
passing through the origin (with positive, finite slope γ/δ)

y =
γ

δ
n.
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We now find steady states by looking for all the intersections of an n-nullcline
with a y-nullcline.

The intersection of the first n-nullcline, n = 0, and the y-nullcline is given by
the solution of n = 0 and y = γn/δ, that is, at

P1 := (n, y) = (0, 0).

The intersection of the second n-nullcline, y = (α−β)/K, and the y-nullcline
is given by the solution of y = (α − β)/K and y = γn/δ, that is, at

P2 := (n, y) =

(
δ

γ

α − β

K
,
α − β

K

)

.

We will refer to P1 as the trivial steady state and P2 as the nontrivial (co-
existence) steady state. Note that P2 is biologically relevant only provided
α > β.

We think it doesn’t make sense to sketch a phase portrait here (since there are
too many cases, and not all information has been determined yet). It should
come later, in part (e).

(c) We think it doesn’t make sense to sketch a vector field here (since there are
too many cases, and not all information has been determined yet). It should
come later, in part (e).

(d) The Jacobian matrix of the system is

J(n, y) =

[
∂f1

∂n
∂f1

∂y
∂f2

∂n
∂f2

∂y

]

=

[
α − β − Ky −Kn

γ −δ

]

The stability of P1 is determined by

J(0, 0) =

[
α − β 0

γ −δ

]

.

The eigenvalues of J(0, 0) are λ1 = α − β and λ2 = −δ < 0.

If α < β, then P1 is the only biologically relevant steady state. In this case,
λ1 < 0, and P1 is a stable node.

If α > β, then both steady states are relevant. In this case, λ1 > 0, and P1 is
a saddle point.

Similarly, the stability of P2 is determined by

J

(
δ

γ

α − β

K
,
α − β

K

)

=

[
0 − δ

γ (α − β)

γ −δ

]

.

We have tr J = −δ < 0 and det J = δ(α − β).
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If α < β, then det J < 0, and P2 is a saddle point (but in this case, P2 is not
biologically relevant).

If α > β, then det J > 0, and P2 is either a stable node or a stable spiral.

To summarize what we have so far:

If α < β, then P1 is the only relevant steady state, and it is a stable node.

If α > β, then both P1 and P2 are biologically relevant. In this case, P1 is a
saddle point, and P2 is a stable node or a stable spiral.

For P2 to be a stable node, we need (tr J)2−4 detJ > 0, that is δ2−4δ(α−β) >
0, or δ > 4(α − β) > 0.

Similarly, for P2 to be a stable spiral, we need (tr J)2 − 4 det J < 0, or
δ < 4(α − β).

(e) Here we look at one of the cases determined above, namely when δ < 4(α−β).
In this case, P1 is a saddle point, and P2 is a stable spiral.

INSERT VECTOR FIELD AND PHASE PORTRAIT HERE

Interpretation in terms of the biology: Starting from any initial population
(other than zero), the population and amount of toxicity eventually reach a
steady state. That is, under ideal conditions (no stochasticity), the population
persists, no matter how much waste it produces. The steady state is reached
in a damped oscillatory fashion. However, depending on the initial conditions,
trajectories may pass close to the first n-nullcline, n = 0. When this happens,
n is very small. That is, in the presence of stochastic events, the population
could become extinct.

(f) Solution not available.

Exercise 3.9.17: Fish populations in a pond

(a) Exponential growth:
dT

dt
= rT T

(b) Growth with competition:

dT

dt
= (−mB + rT )T

(c) Exponential growth:
dB

dt
= rBb

Growth with competition:

dB

dt
= (−nT + rB)B
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(d) Solution not available.

(e) We get the system

dT

dt
= rT T − mBT,

dB

dt
= rBB − nBT.

The steady states are determined by dT/dt = dB/dt = 0. This means that
any steady state (T̃ , B̃) must satisfy

rT T̃ = mB̃T̃ ,

rBB̃ = nB̃T̃ .

Therefore, we get the trivial steady state,

(T̃ , B̃) = (0, 0),

and the nontrivial steady state,

(T̃ , B̃) = (
rB

n
,
rT

m
).

The jacobian matrix of this system, evaluated at the nontrivial steady state,
is

J
(rB

n
,
rT

m

)

=





rT − mB̃ −mT̃

−nB̃ rB − nT̃



 =





0 −mrB

n

−nrT

m 0



 .

Exercise 3.9.18: Exact solution for the logistic equation

(a) We have

N ′ = µN

(

1 − N

K

)

, N(0) = N0.

Solution method 1: We recognize the differential equation as a separable
equation, so that we can write

∫ N(t)

N0

dN̄

N̄
(

1 − N̄
K

) =

∫ t

0

µ dt̄.

Using partial fractions, we can rewrite the left hand side:

∫ N(t)

N0

[

1

N̄
+

1
K

1 − N̄
K

]

dN̄ =

∫ t

0

µ dt̄.
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We integrate to obtain

[

ln N̄ − ln

(

1 − N̄

K

)]N(t)

N0

= µt

ln

(

N̄

1 − N̄
K

)N(t)

N0

= µt

ln

(

N(t)

1 − N(t)
K

)

− ln

(

N0

1 − N0

K

)

= µt

ln





(
1 − N0

K

)
N(t)

(

1 − N(t)
K

)

N0



 = µt.

Exponentiating both sides and rearranging gives

K − N0

K − N(t)
N(t) = N0e

µt

(K − N0)N(t) = N0e
µt(K − N(t))

(K − N0 + N0e
µt)N(t) = N0Keµt

N(t) =
N0Keµt

K − N0 + N0eµt

=
eµtN0

1 + N0

K (eµt − 1)
.

Solution method 2: Let u = 1
N . Then N = 1

u and

dN

dt
= − 1

u2

du

dt
.

Substitution into the logistic equation gives

− 1

u2

du

dt
= µ

1

u

(

1 − 1

K

1

u

)

du

dt
= µ

(
1

K
− u

)

.
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We separate variables and integrate, as follows:

∫ u(t)

u0

dū
1
K − ū

=

∫ t

0

µ dt̄

− ln

(
1

K
− ū

)∣
∣
∣
∣

u(t)

u0

= µt

− ln

(
1

K
− u(t)

)

+ ln

(
1

K
− u0

)

= µt

ln

( 1
K − u0

1
K − u(t)

)

= µt

1 − Ku0

1 − Ku(t)
= eµt

1 − Ku(t) = (1 − Ku0)e
−µt

u(t) =
1

K

[
1 − (1 − Ku0)e

−µt
]
.

Now we return to original variables, as follows:

1

N(t)
=

1

K

[

1 −
(

1 − K
1

N0

)

e−µt

]

N(t) =
K

1 −
(

1 − K
N0

)

e−µt

=
Keµt

eµt − 1 + K
N0

=
eµtN0

N0

K eµt − N0

K + 1

=
eµtN0

1 + N0

K (eµt − 1)
.

(b) This solution is of the same form as that of the Beverton-Holt model, except
we have eµt in place of rn+1.
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4.5 Exercises for PDEs

Exercise 4.5.1: Diffusion through a membrane

ut = Duxx, ut = 0

(a) uxx = 0 ⇒ ux = const = c ⇒ u(x) = cx + d

Boundary conditions:

u(0) = c1 ⇒ d = c1

u(L) = c2 ⇒ cL + c1 = c2 ⇒ c =
c2 − c1

L

Solution:

u(x) =
c2 − c1

L
x + c1

For c2 > c1:

0 L x

u(x)

outsideinside

u(0) = c
1

u(L) = c
2

(b) J(x) = −D ∂
∂xu(x) = −D c2−c1

L = −D
L (c2−c1). The flux is proportional to the

concentration difference. The proportionality factor D
L is called permeability.

Exercise 4.5.2: Fundamental solution

Solution not available.

Exercise 4.5.3: Signalling in ant populations

ut = Duxx, u(0) = αδ0(x), D = 1 (4.10)

(a) Fundamental solution of {ut = Duxx, u(0) = δ0(x)} is g(x) = 1√
2πt

e−
x2

4t .

Hence u(x) = αg(x) solves (4.10).
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At x(t): u(x(t)) = 0.1 · α = αg(x)

⇒ g(x) =
1

10
, e−

x2

4t =

√
2πt

10
, e

x2

4t =
10√
2πt

, x2 = 4t ln

(
10√
2πt

)

⇒ x(t) =

√

4t ln

(
10√
2πt

)

(b)

0 5 10 15
t

0

1

2

3

x(t)

Range of Influence

(c) x(t) defined only for ln
(

10√
2πt

)

> 0, hence 10√
2πt

> 1. So

10 >
√

2πt, 100 > 2πt,
50

π
> t

⇒ t∗ =
50

π
≈ 15.9

Exercise 4.5.4: Dingos in Australia

(Thanks to Dr. Markus Owen (Nottingham), who used this problem in one of his
Math-bio classes).

ut = Duxx + ku(1 − u), k = 1

(a) D1 = 100, wave speed of a travelling wave,

c∗ = 2
√

D1f ′(0), f ′(0) = k = 1

= 2
√

D1 = 20

(
miles

month

)

distance = 100 miles ⇒ T = 100 miles
c∗ = 100

20 = 5 months.
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The decay rate of this wave front is:

λ1 = − c∗

2D1
= − 10

100
= − 1

10
,

The wave looks like e−
1
10 x near farm A.

e
 (−x/10)

c*

(b) Between A and B: D2 = 50

Decay rate λ1 = − 1
10 = − c

2D2

⇒ wave speed = c = −λ12D2 =
1

10
· 2 · 50 = 10

⇒ T2 = 10 months from farm A to B.

c

A B

Exercise 4.5.5: Signal transport in the axon

ut = uxx + u(1 − u)(u − 1

2
)

ux(t, 0) = 0, ux(t, l) = 0

0 l

(a) Steady states: ut = 0. Introduce v := ux.

ux = v

vx = −u(1− u)(u − 1

2
) = u3 − 3

2
u2 +

1

2
u

(b) equlibria of (a): v = 0, u = 0, 1, 1
2 .
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Jacobian:

Df(u, v) =





0 1

3u2 − 3u + 1
2 0





Df(0, 0) =





0 1

1
2 0



 , tr(Df(0, 0)) = 0, det(Df(0, 0)) < 0 ⇒ saddle

Df(
1

2
, 0) =





0 1

3
4 − 3

2 + 1
2 0



 =





0 1

− 1
4 0





tr(Df(
1

2
, 0)) = 0, det(Df(

1

2
, 0)) > 0 ⇒ center

Df(1, 0) =





0 1

1
2 0



 , tr(Df(0, 0)) = 0, det(Df(0, 0)) < 0 ⇒ saddle

(c) Hamilton function if

d

dx
H(u, v) = 0 and ux =

∂H

∂v
, vx = −∂H

∂u
,

Here H(u, v) = 1
2 (v)2 − 1

4u4 + 1
2u3 − 1

4u2.

Let’s check:

∂H

∂v
= v = ux X

∂H

∂u
= −u3 − 3

2
u2 − 1

2
u = −vx X

d

dx
H(u, v) =

∂H

∂u

du

dx
+

∂H

∂v

dv

dx
= −vxux + uxvx = 0.

(d)
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0 1/2 1 u

v

(e) Neumann boundary conditions:

v(0) = 0 v(l) = 0

Following candidates in the phase-portrait of (d):

1/2 u

v

I

1/2 u

v

II

1/2 u

v

III

etc.

As functions of x:

x

u(x)

0 lI x

u(x)

0 lII x

u(x)

0 lIII

etc.
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x

u(x)

l0

a = 9

a = 8 + 1

(4.11)

(f) Solution not available.

Exercise 4.5.6: Separation

Solution not available.

Exercise 4.5.7: Linear transport

Solution not available.

Exercise 4.5.8: Correlated random walk

Solution not available.


