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A B S T R A C T

Engaging in smoking not only leads to substantial health risks but also imposes considerable financial burdens.
To deepen our understanding of the mechanisms behind smoking transmission and to address the tobacco
epidemic, we examined a five-dimensional smoking epidemic model that accounts for different degrees of
smoking under both deterministic and stochastic conditions. In the deterministic case, we determine the
basic reproduction number, analyze the stability of equilibria with and without smoking, and investigate
the existence of saddle–node bifurcation. Our analysis reveals that the basic reproduction number cannot
completely determine the existence of smoking, and the model possesses bistability, indicating its dynamic is
susceptible to interference from environmental noises. In the stochastic case, we establish sufficient conditions
for the ergodic stationary distribution and the elimination of smokers by constructing appropriate Lyapunov
functions. Numerical simulations suggest that the effects of inevitable random fluctuations in the natural
environment on controlling the smoking epidemic may be beneficial, harmful, or negligible, which are closely
related to the noise intensities, initial smoking population sizes, and the effective exposure rate of smoking
transmission (𝛽). Given the uncontrollable nature of environmental random effects, effective smoking control
strategies can be achieved by: (1) accurate monitoring of initial smoking population sizes, and (2) implementing
effective measures to reduce 𝛽. Therefore, it is both effective and feasible to implement a complete set of strong
MPOWER measures to control smoking prevalence.
1. Introduction

Medical studies indicated that tobacco smoking inflicts severe harm
to health. Tobacco contains nicotine, which is highly addictive and
poses a substantial risk factor for a wide range of health issues [1–4],
including cardiovascular and respiratory diseases, more than 20 types
of cancer, and various other major complications [5]. According to
the World Health Organization (WHO), tobacco is responsible for the
death of more than half of its consumers, with over 8 million deaths
annually [6]. Out of these, more than 7 million are direct smokers and
around 1.3 million are non-smokers exposed to second-hand smoke.
The tobacco epidemic, with around 1.3 billion users worldwide, over
80% of whom live in low- and middle-economic countries, stands as
one of the most significant global public health threats [7]. Moreover,
the use of tobacco exacerbates poverty by diverting household expen-
ditures from essential needs, such as food and shelter, to purchasing
tobacco [8,9]. Therefore, taking action to quit smoking is a matter of
utmost urgency.
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(H. Wang).

To address the tobacco epidemic, the World Health Assembly rati-
fied the WHO Framework Convention on Tobacco Control (WHO FCTC)
on 21 May 2003, which took effect on 27 February 2005 [10]. In 2008,
WHO introduced the MPOWER initiative, a practical and cost-effective
approach, to further expand the implementation of the main provisions
of WHO FCTC [11]. Moreover, strengthening WHO FCTC implemen-
tation has also been explicitly incorporated into the United Nations’
sustainable development goals [12]. Currently, the WHO FCTC has 182
contracting parties, covering over 90% of the global population [6].
Despite some progress in global tobacco control, smoking remains a
leading risk factor for premature death and disability [13–15]. There-
fore, gaining a deep understanding of the transmission mechanism of
smoking is crucial in determining the optimal control strategies.

To comprehend the propagation of smoking behavior within a
population, a common approach is to establish appropriate mathemat-
ical models. These models are often formulated using the concepts
of epidemiology, treating smoking behavior as an infectious disease
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Table 1
Interpretation of the parameters of model (1.1).

Parameter Interpretation Unit

𝛬 Recruitment rate of potential smokers 𝑃 (𝑡) Day−1

𝛽 Effective contact rate between 𝑃 (𝑡) and 𝑆(𝑡) Day−1

𝜇 Natural mortality rate Day−1

𝛼 Transformation rate from 𝑂(𝑡) to 𝑆(𝑡) Day−1

𝜆 Relapse rate from 𝑄(𝑡) to 𝑆(𝑡) Day−1

𝛾 Smoking quitting rate Day−1

𝛿 Proportion of smokers who quit smoking permanently Dimensionless
w

a
p
a
t
c

f
h
p
m
a
m
s
s
n
e
a
o
a
o
t
S

2

i
s
e
e
t
d
t

2

T
t
b

that can be transmitted through social interactions [16–27]. For ex-
ample, Sharomi et al. [18] proposed a dynamic model for reducing
smoking, including four sub-populations such as potential smokers
(non-smokers), smokers, temporary and permanent quitters. Through
a theoretical analysis, the authors established a threshold to determine
the success of smoking cessation. Additionally, by considering the in-
fluence of smoking level or frequency on smoking-related diseases, the
authors investigated an extended model and demonstrated that differ-
ent levels of smoking have significant effects on controlling the number
of smokers. Inspired by the impact of smoking levels on smoking
cessation, Ullah et al. [21] included a fifth sub-population, occasional
smokers, and proposed a five-dimensional deterministic smoking model

⎧
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⎪

⎪

⎪
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d𝑃 (𝑡)
d𝑡

= 𝛬 − 𝛽𝑃 (𝑡)𝑆(𝑡) − 𝜇𝑃 (𝑡),

d𝑂(𝑡)
d𝑡

= 𝛽𝑃 (𝑡)𝑆(𝑡) − 𝛼𝑂(𝑡) − 𝜇𝑂(𝑡),

d𝑆(𝑡)
d𝑡

= 𝛼𝑂(𝑡) + 𝜆𝑄(𝑡)𝑆(𝑡) − 𝛾𝑆(𝑡) − 𝜇𝑆(𝑡),

d𝑄(𝑡)
d𝑡

= 𝛾(1 − 𝛿)𝑆(𝑡) − 𝜆𝑄(𝑡)𝑆(𝑡) − 𝜇𝑄(𝑡),

d𝑅(𝑡)
d𝑡

= 𝛾𝛿𝑆(𝑡) − 𝜇𝑅(𝑡),

(1.1)

where 𝑃 (𝑡), 𝑂(𝑡), 𝑆(𝑡), 𝑄(𝑡) and 𝑅(𝑡) represent the population sizes of
potential smokers (non-smokers), occasional smokers, smokers, tem-
porary quitters, and permanent quitters at time 𝑡, with initial values
(𝑃 (0), 𝑂(0), 𝑆(0), 𝑄(0), 𝑅(0))𝑇 ∈ R5

+. The biological interpretations of the
model parameters are given in Table 1. Although the authors [21] per-
formed a stability analysis of the smoking-free and positive equilibria
of the model (1.1), they did not provide comprehensive descriptions of
all dynamic behaviors of the model. Consequently, further exploration
of the model’s dynamics is needed.

In addition, biological populations are inherently influenced by
stochastic effects in the real world [28]. As noted by May [29], many
biological parameters in biomathematical models experience varying
degrees of impact from stochastic fluctuations. Thus, the stochastic
differential equation models can more accurately predict the evolu-
tion trend of populations, which has attracted widespread attention
among scholars [24,30–40]. For instance, Sharma [24] considered a
smoking epidemic model with demographic stochasticity under the ex-
ternal intervention of raising tobacco taxes, revealing that demographic
stochasticity can be beneficial in controlling smoking prevalence. Mad-
husudanan et al. [27] introduced a smoking model with time delays and
Gaussian white noise by considering the influence of psychological and
social addictions. Their results indicate that tobacco is a sensitive social
addiction. Moreover, the parameters of addiction models depend on the
properties of each environmental mechanism and affect the different
stages and categories of addiction. Therefore, it is more practical to
consider the dynamic effects of random fluctuations in smoking models.
To address this, we followed the classical approach of incorporating
2

random effects [41–44] and proposed the following stochastic version P
based on model (1.1):

⎧

⎪

⎪
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⎪

⎪

⎪

⎩

d𝑃 (𝑡) = [𝛬 − 𝛽𝑃 (𝑡)𝑆(𝑡) − 𝜇𝑃 (𝑡)]d𝑡 + 𝜎1𝑃 (𝑡)d𝐵1(𝑡),

d𝑂(𝑡) = [𝛽𝑃 (𝑡)𝑆(𝑡) − 𝛼𝑂(𝑡) − 𝜇𝑂(𝑡)]d𝑡 + 𝜎2𝑂(𝑡)d𝐵2(𝑡),

d𝑆(𝑡) = [𝛼𝑂(𝑡) + 𝜆𝑄(𝑡)𝑆(𝑡) − 𝛾𝑆(𝑡) − 𝜇𝑆(𝑡)]d𝑡 + 𝜎3𝑆(𝑡)d𝐵3(𝑡),

d𝑄(𝑡) = [𝛾(1 − 𝛿)𝑆(𝑡) − 𝜆𝑄(𝑡)𝑆(𝑡) − 𝜇𝑄(𝑡)]d𝑡 + 𝜎4𝑄(𝑡)d𝐵4(𝑡),

d𝑅(𝑡) = [𝛾𝛿𝑆(𝑡) − 𝜇𝑅(𝑡)]d𝑡 + 𝜎5𝑅(𝑡)d𝐵5(𝑡),

(1.2)

ith initial value (𝑃 (0), 𝑂(0), 𝑆(0), 𝑄(0), 𝑅(0))𝑇 ∈ R5
+. Here 𝜎2𝑖 > 0,

𝑖 = 1, 2, 3, 4, 5 are the environmental noise intensities, 𝐵𝑖(𝑡) are mutu-
lly independent standard Brownian motions defined on a complete
robability space (𝛺, , {𝑡}𝑡≥0,P), where 𝛺 is a sample space, P is
probability measure,  is a 𝜎-algebra on 𝛺, and {𝑡}𝑡≥0 is a filtra-

ion possessing usual conditions, meaning it is increasing and right
ontinuous while 0 contains all P-null sets.

The aim of this paper is to propose effective, reasonable, and
easible measures for achieving successful smoking cessation within
uman society by investigating the dynamic behavior of the smoking
opulation through theoretical and numerical analyses in both deter-
inistic and stochastic environments. The rest of the paper is structured

s follows. In Section 2, we investigate the dynamics of deterministic
odel (1.1), which includes the positivity and boundedness of the

olution, the existence of local and global asymptotic stability of the
moking-free and smoking-present equilibria, the existence of saddle–
ode bifurcation, and the phenomenon of bistability. In Section 3, we
xplore the dynamics of the stochastic model (1.2), which includes
nalyzing the model’s well-posedness, the existence and uniqueness
f ergodic stationary distribution, conditions for smoker elimination,
nd a series of numerical simulations to investigate the influence
f different degrees of environmental random effects on controlling
he prevalence of smoking. Lastly, we present a brief discussion in
ection 4.

. The dynamics of deterministic model (1.1)

The dynamic behavior of deterministic model (1.1) is explored
n this section which includes the positivity and boundedness of the
olution, the stability analysis of smoking-free and smoking-present
quilibria, and the existence of saddle–node bifurcation. Moreover, the
xistence of bistability is demonstrated between the smoking-free and
he smoking-present equilibria through a numerical simulation. For a
eeper understanding of the relevant theoretical concepts, please refer
o [45–49] and the associated references therein.

.1. The positivity and boundedness of solution

heorem 2.1. For all 𝑡 ≥ 0, any solution (𝑃 (𝑡), 𝑂(𝑡), 𝑆(𝑡), 𝑄(𝑡), 𝑅(𝑡))𝑇 of
he model (1.1) with positive initial value is always positive and uniformly
ounded.
roof. See Appendix A. □
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2.2. The existence of equilibria

Theorem 2.2. The model (1.1) has a smoking-free equilibrium 𝐸0(
𝛬
𝜇 , 0, 0,

, 0). Furthermore, if R0 =
𝛼𝛽𝛬

𝜇(𝛼+𝜇)(𝛾+𝜇) , then there exists

1) a unique smoking-present equilibrium provided R0 > 1.

(2) either two smoking-present or no positive equilibria provided R0 < 1.

Proof. See Appendix B. □

2.3. The stability of smoking-free equilibrium

Using the method of next generation matrix [50], we obtain the ba-
sic reproduction number of model (1.1), which is R0 =

𝛼𝛽𝛬
𝜇(𝛼+𝜇)(𝛾+𝜇) (see

ppendix C). Thereby we give the conditions for the local and global
tability of smoking-free equilibrium 𝐸0 in the following theorems.

heorem 2.3. If R0 < 1, then the smoking-free equilibrium 𝐸0 of model
1.1) is locally asymptotically stable. However, 𝐸0 is unstable if R0 > 1.

roof. See Appendix D. □

heorem 2.4. Denoting R̃0 = 𝛼𝛽𝛬
𝜇2(𝛼+𝜇) , and if R̃0 < 1, then the

smoking-free equilibrium 𝐸0 of model (1.1) is globally asymptotically stable.

Proof. See Appendix E. □

Remark 2.5. Since R0 = 𝛼𝛽𝛬
𝜇(𝛼+𝜇)(𝛾+𝜇) ≤ 𝛼𝛽𝛬

𝜇2(𝛼+𝜇) = R̃0, then from
Theorems 2.2, 2.3 and 2.4 it follows that

1. 𝐸0 is globally asymptotically stable for R0 ≤ R̃0 < 1, indicating
there will be no smokers.

2. 𝐸0 is unstable for 1 < R0 ≤ R̃0, indicating smoking will extend.
3. 𝐸0 is only locally and not globally asymptotically stable for R0 <

1 < R̃0; furthermore,
(i) the model has a multistability if there are two smoking-

present equilibria.
(ii) 𝐸0 is the ultimate state of the model if there is no positive

equilibria.

2.4. The local stability of smoking-present equilibrium

Theorem 2.6. Assume that model (1.1) has a smoking-present equilibrium
𝐸∗(𝑃 ∗, 𝑂∗, 𝑆∗, 𝑄∗, 𝑅∗), then 𝐸∗ is locally asymptotically stable provided the
following conditions hold:

(1) 𝑘𝑖 > 0, 𝑖 = 1, 2, 3, 4,

(2) 𝑘1𝑘2 − 𝑘3 > 0,

(3) 𝑘1(𝑘2𝑘3 − 𝑘1𝑘4) − 𝑘23 > 0,

where 𝑘𝑖, 𝑖 = 1, 2, 3, 4 are defined in Appendix F.

Proof. See Appendix F. □

2.5. The saddle–node bifurcation

Theorem 2.7. If 𝛽 is the bifurcation parameter with the critical value

𝛽 =
𝜇(𝛼 + 𝜇)[𝜇(𝛾 + 𝜇 − 𝜆𝑄∗) + 𝜆𝑆∗(𝜇 + 𝛾𝛿)]

𝛼𝜇𝑃 ∗(𝜆𝑆∗ + 𝜇) − 𝑆∗(𝛼 + 𝜇)[𝜇(𝛾 + 𝜇 − 𝜆𝑄∗) + 𝜆𝑆∗(𝜇 + 𝛾𝛿)]
> 0,

(2.1)

where 𝑃 ∗, 𝑆∗, 𝑄∗ are the elements in 𝐸∗, then model (1.1) has

(1) no transcritical and pitchfork bifurcation,
3

(2) a saddle–node bifurcation provided

𝜆(𝛼 + 𝜇)[𝛾(1 − 𝛿) − 𝜆𝑄∗]
𝛼(𝜆𝑆∗ + 𝜇)2

−
𝛽2𝑃 ∗

(𝛽𝑆∗ + 𝜇)2
≠ 0. (2.2)

roof. See Appendix G. □

2.6. Numerical simulations of model (1.1)

We performed a series of numerical simulations to validate our
theoretical results by keeping all the parameters fixed except 𝛼 and 𝛽,
where 𝛽 was systematically varied across the experiments. The fixed
initial condition and parameters are

𝑃 (0) = 4, 𝑂(0) = 1, 𝑆(0) = 3, 𝑄(0) = 1, 𝑅(0) = 1,

𝛬 = 1, 𝜇 = 0.1, 𝜆 = 0.8, 𝛾 = 0.5, 𝛿 = 0.1.
(2.3)

(1) Let 𝛼 = 0.2. Considering 𝛽 as a bifurcation parameter that satisfies
the critical value 𝛽 > 0 as defined by (2.1). We have the corre-
sponding smoking-present equilibrium 𝐸∗ ≈ (7.492, 0.836, 0.791,
0.486, 0.395) and the critical value 𝛽 ≈ 0.042 > 0, which validates
the condition (2.2). According to Theorem 2.7, the model has
a saddle–node bifurcation at 𝐸∗ (Fig. 1(1)). By keeping all the
parameters as (2.3) with 𝛼 = 0.2 and varying 𝛽, we observe
that (i) for 𝛽 < 𝛽, a single smoking-free equilibrium point
exists and is globally asymptotically stable; (ii) for 𝛽 < 𝛽 <
0.09 (approximately), there is a smoking-free equilibrium point
and two positive equilibrium points exist, one of the positive
equilibrium points is unstable, while the other and the smoking-
free equilibrium point are both locally asymptotically stable,
representing bistability; (iii) for 𝛽 > 0.09 (approximately), a
smoking-free equilibrium point and a positive equilibrium point
exist, with the positive equilibrium point is globally asymptoti-
cally stable and the smoking-free equilibrium point is unstable
(Fig. 1(1)).

2) Let 𝛼 = 0.01. By computations, it becomes evident that the con-
dition (2.1) in Theorem 2.7 does not hold for the positive
equilibrium. Consequently, there is no saddle–node bifurcation
in model (1.1) (Fig. 1(2)).

In the subsequent simulations, we fix (2.3) with 𝛼 = 0.2, and further
varying 𝛽 to verify the correctness of the theoretical analysis for the
model (1.1).

Example 2.8. Choosing 𝛽 = 0.014, we have only one smoking-free
equilibrium 𝐸0 = (10, 0, 0, 0, 0), with R0 ≈ 0.156 < 1 and R̃0 ≈ 0.933 < 1.
It follows from Theorem 2.4 that 𝐸0 is globally asymptotically stable
(Fig. 2(a)).

Example 2.9. Choosing 𝛽 = 0.04, we have only a smoking-free
equilibrium 𝐸0 = (10, 0, 0, 0, 0), with R0 ≈ 0.444 < 1 and R̃0 ≈ 2.667 > 1.
Following Remark 2.5, we conclude that 𝐸0 is the ultimate state, which
is consistent with Fig. 2(b).

Example 2.10. Choosing 𝛽 = 0.06, we have one smoking-free
equilibrium 𝐸0 = (10, 0, 0, 0, 0) and two smoking-present equilibria 𝐸∗

1 ≈
(4.369, 1.877, 2.148, 0.532, 1.074) and 𝐸∗

2 ≈ (9.280, 0.240, 0.129, 0.286, 0.065)
with R0 ≈ 0.667 < 1 and R̃0 = 4 > 1. Thus, by Remark 2.5, the
model has bistability, comprising a smoking-free equilibrium and a
smoking-present equilibrium. Furthermore,

1. at 𝐸∗
1 , we have, 𝑘1 ≈ 2.522 > 0, 𝑘2 ≈ 1.346 > 0, 𝑘3 ≈ 0.182 > 0,

𝑘4 ≈ 0.009 > 0, 𝑘1𝑘2 − 𝑘3 ≈ 3.213 > 0, and 𝑘1(𝑘2𝑘3 − 𝑘1𝑘4) − 𝑘23 ≈
0.525 > 0, resulting 𝐸∗

1 is locally stable by Theorem 2.6.
2. at 𝐸∗

2 , we have, 𝑘4 ≈ −0.001 < 0, resulting 𝐸∗
2 is unstable by
Theorem 2.6.
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Fig. 1. (1) Bifurcation diagram where LP is the limit point, the red curve is unstable, and the blue curve is stable; (2) Curve of equilibrium points of 𝑆(𝑡).
Fig. 2. (a), (b) Time series of the unique smoking-free equilibrium; (c) Bistable phenomenon: blue curve and red curve are time series of 𝐸∗
1 and 𝐸0, respectively; (d) Time series

of the unique smoking-present equilibrium.
Therefore, the bistable phenomenon is composed of 𝐸0 and 𝐸∗
1 . To vali-

date this phenomenon, we choose two different initial values (4, 1, 3, 1, 1)
and (9.4, 0.1, 0.3, 0.1, 0.1), while keeping the parameters unchanged, and
simulate the population of smokers 𝑆(𝑡) over time. The results of the
simulation corroborate the existence of a smoking-present equilibrium
𝐸∗
1 and a smoking-free equilibrium 𝐸0 (Fig. 2(c)).

Example 2.11. Choosing 𝛽 = 0.14, we have 𝐸0 = (10, 0, 0, 0, 0)
and 𝐸∗ ≈ (1.784, 2.739, 3.290, 0.542, 1.645), with R0 ≈ 1.556 > 1 and
R̃0 ≈ 9.333 > 1. According to Remark 2.5, 𝐸0 is unstable. Furthermore,
we determine that 𝑘1 ≈ 3.759 > 0, 𝑘2 ≈ 3.025 > 0, 𝑘3 ≈ 0.700 > 0,
𝑘 ≈ 0.056 > 0, 𝑘 𝑘 −𝑘 ≈ 10.671 > 0 and 𝑘 (𝑘 𝑘 −𝑘 𝑘 )−𝑘2 ≈ 6.687 >
4

4 1 2 3 1 2 3 1 4 3
0. Following Theorem 2.6, 𝐸∗ is stable. This implies that smoking will
persist (Fig. 2(d)).

Remark 2.12. It is worth noting that there is an unresolved statement
presented in Theorem 2.2(2), i.e., when R0 < 1, it remains unclear
under what conditions two smoking-present equilibria exist, and when
there are no positive equilibria for model (1.1). However, it follows
from Theorem 2.7 and Examples 2.8, 2.9, and 2.10 that under the
premise of R0 < 1, we need to further consider the critical value of
saddle–node bifurcation 𝛽 with the effective exposure rate of smoking
transmission 𝛽 as the bifurcation parameter. More specifically, when

R0 < 1,



Mathematical Biosciences 368 (2024) 109132S. Zhang et al.

R
e
e
e
R

a

C
𝐸

d
s
l
A
d
a
b
o
a
f
f

3

t
c
s
5

3

T
R
𝑅

P

3

T

w



• if 0 < 𝛽 < 𝛽, then the model (1.1) does not have positive
equilibria;

• if 𝛽 > 𝛽, then there are two smoking-present equilibria.

emark 2.13. It is noteworthy that when R0 > 1, the smoking-free
quilibrium 𝐸0 is unstable, and there exists a unique smoking-present
quilibrium 𝐸∗. Furthermore, based on the numerical simulations, it is
vident that the model does not exhibit a limit cycle. Therefore, when
0 > 1, even though we did not present a specific proof for the global

symptotic stability of 𝐸∗, we still propose the following conjecture.

onjecture 2.14. For R0 > 1, the unique smoking-present equilibrium
∗ of model (1.1) is globally asymptotically stable.

To sum up, the basic reproduction number R0 cannot completely
etermine the existence of smoking behavior. This confirms a conclu-
ion similar to that in [50]: even when the smoking-free equilibrium is
ocally asymptotically stable, smoking behavior may still be prevalent.
dditionally, the presence of bistability indicates that the long-term
ynamics of model (1.1) are influenced by different initial values,
nd the existence of saddle–node bifurcation implies that the dynamic
ehaviors of the model are quite sensitive to the effective exposure rate
f smoking transmission 𝛽. Consequently, the dynamics of model (1.1)
re significantly impacted by environmental white noise, and in the
ollowing section, we explore the dynamic effects of inevitable random
luctuations in the environment on the smoking epidemic model.

. The dynamics of stochastic model (1.2)

The existence, uniqueness and boundedness of the stochastic posi-
ive solution of model (1.2) will be discussed first, as these aspects are
rucial for the subsequent analysis of the main findings. We will use
ome correlation theories of stochastic differential equations (see [51–
4] and references therein) to obtain these results.

.1. Existence and uniqueness of global positive solution of model (1.2)

heorem 3.1. For any given initial value (𝑃 (0), 𝑂(0), 𝑆(0), 𝑄(0), 𝑅(0))𝑇 ∈
5
+, the model (1.2) has a unique global solution (𝑃 (𝑡), 𝑂(𝑡), 𝑆(𝑡), 𝑄(𝑡),
(𝑡))𝑇 ∈ R5

+ for all 𝑡 ≥ 0 almost surely (a.s.).

roof. See Appendix H. □

.2. Ultimate boundedness of stochastic positive solution for model (1.2)

heorem 3.2. The solution (𝑃 (𝑡), 𝑂(𝑡), 𝑆(𝑡), 𝑄(𝑡), 𝑅(𝑡))𝑇 of the model (1.2)
established by Theorem 3.1 satisfies

lim sup
𝑡→∞

[𝑃 (𝑡) + 𝑂(𝑡) + 𝑆(𝑡) +𝑄(𝑡) + 𝑅(𝑡)] <∞ 𝑎.𝑠. (3.1)

Proof. See Appendix I. □

In the next sections, we theoretically establish the specific condi-
tions for the persistence or eradication of smoking populations, which
will help to further explore the efficient and feasible control strategies
for giving up smoking.

3.3. Persistence of smokers

To establish the criterion for the persistence of smokers in the
following theorem, we denote,

𝜛 =
𝛼𝛽𝛬

(𝜇 +
𝜎21
2 )(𝛼 + 𝜇 +

𝜎22
2 )(𝛾 + 𝜇 +

𝜎23
2 )
.

Theorem 3.3. If 𝜛 > 1, then model (1.2) has a unique ergodic stationary
5

distribution.
Proof. Following the definition of ergodic stationary distribution [55,
Theorems 4.1 and 4.2], we divided the proof into two parts. In the first
part we constructed a 𝐂2-function 𝑉 (𝑃 ,𝑂, 𝑆,𝑄,𝑅) ∶ R5

+ → R+ and a
bounded open set 𝑈𝜀 such that 𝑉 < 0 for all (𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ R5

+∖𝑈𝜀.
In the second part, we verified the uniform elliptic criterion.

Part I. Applying Itô’s formula to model (1.2) yields

(− ln𝑃 ) = − 1
𝑃
(𝛬 − 𝛽𝑃𝑆 − 𝜇𝑃 ) +

𝜎21
2

= − 𝛬
𝑃

+ 𝛽𝑆 + 𝜇 +
𝜎21
2

= − 𝛬
(

𝛬

𝜇+
𝜎21
2

) ⋅

(

𝛬

𝜇+
𝜎21
2

)

𝑃
+ 𝜇 +

𝜎21
2

+ 𝛽𝑆

≤ −
(

𝜇 +
𝜎21
2
)

⎡

⎢

⎢

⎢

⎢

⎣

ln

(

𝛬

𝜇+
𝜎21
2

)

𝑃
+ 1

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝜇 +
𝜎21
2

+ 𝛽𝑆

= −
(

𝜇 +
𝜎21
2
)

ln

(

𝛬

𝜇+
𝜎21
2

)

𝑃
+ 𝛽𝑆,

(3.2)

here the above inequality holds, because 𝑥 ≥ ln 𝑥 + 1 for 𝑥 > 0.
Similarly, we have

(− ln𝑂) = − 1
𝑂
(𝛽𝑃𝑆 − 𝛼𝑂 − 𝜇𝑂) +

𝜎22
2

= − 𝛽 𝑃𝑆
𝑂

+ 𝛼 + 𝜇 +
𝜎22
2

= −
(

𝛼 + 𝜇 +
𝜎22
2
)

⋅
𝑃

(

𝛬

𝜇+
𝜎21
2

) ⋅

(

𝛽

𝛼+𝜇+
𝜎22
2

)(

𝛬

𝜇+
𝜎21
2

)

𝑂
⋅ 𝑆 + 𝛼 + 𝜇 +

𝜎22
2

≤ −
(

𝛼 + 𝜇 +
𝜎22
2
)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ln

⎡

⎢

⎢

⎢

⎢

⎣

𝑃
(

𝛬

𝜇+
𝜎21
2

) ⋅

(

𝛽

𝛼+𝜇+
𝜎22
2

)(

𝛬

𝜇+
𝜎21
2

)

𝑂
⋅ 𝑆

⎤

⎥

⎥

⎥

⎥

⎦

+ 1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+ 𝛼

+ 𝜇 +
𝜎22
2

= −
(

𝛼 + 𝜇 +
𝜎22
2
)

ln 𝑃
(

𝛬

𝜇+
𝜎21
2

) −
(

𝛼 + 𝜇 +
𝜎22
2
)

ln

(

𝛽

𝛼+𝜇+
𝜎22
2

)(

𝛬

𝜇+
𝜎21
2

)

𝑂

−
(

𝛼 + 𝜇 +
𝜎22
2
)

ln𝑆,

(3.3)

(− ln𝑆) = − 1
𝑆
(𝛼𝑂 + 𝜆𝑄𝑆 − 𝛾𝑆 − 𝜇𝑆) +

𝜎23
2

= − 𝛼 𝑂
𝑆

− 𝜆𝑄 + 𝛾 + 𝜇 +
𝜎23
2

≤ − 𝛼
( 𝛽

𝛼 + 𝜇 +
𝜎22
2

)( 𝛬

𝜇 +
𝜎21
2

)

⋅
𝑂

(

𝛽

𝛼+𝜇+
𝜎22
2

)(

𝛬

𝜇+
𝜎21
2

) ⋅
1
𝑆

+ 𝛾 + 𝜇 +
𝜎23
2

≤ − 𝛼
( 𝛽

𝛼 + 𝜇 +
𝜎22
2

)( 𝛬

𝜇 +
𝜎21
2

)

⎡

⎢

⎢

⎢

⎢

⎣

ln 𝑂
(

𝛽

𝛼+𝜇+
𝜎22
2

)(

𝛬

𝜇+
𝜎21
2

) + ln 1
𝑆

+ 1

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝛾 + 𝜇 +
𝜎23
2
.

(3.4)
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w

𝐻

w

𝐻

F



w

𝐻

In addition,

(− ln𝑄) = − 1
𝑄
[𝛾(1 − 𝛿)𝑆 − 𝜆𝑄𝑆 − 𝜇𝑄] +

𝜎24
2

= −
𝛾(1 − 𝛿)𝑆

𝑄
+ 𝜆𝑆 + 𝜇 +

𝜎24
2
,

(3.5)

(− ln𝑅) = − 1
𝑅
(𝛾𝛿𝑆 − 𝜇𝑅) +

𝜎25
2

= −
𝛾𝛿𝑆
𝑅

+ 𝜇 +
𝜎25
2
.

(3.6)

Thus, we take

𝑉1(𝑃 ,𝑂, 𝑆) =
𝛼𝛽𝛬

(𝜇 +
𝜎21
2
)(𝛼 + 𝜇 +

𝜎22
2
)

⎡

⎢

⎢

⎣

− 1

𝜇 +
𝜎21
2

ln𝑃 − 1

𝛼 + 𝜇 +
𝜎22
2

ln𝑂
⎤

⎥

⎥

⎦

− ln𝑆,

it then follows from (3.2), (3.3) and (3.4) that

𝑉1 ≤
𝛼𝛽𝛬

(𝜇 +
𝜎21
2
)(𝛼 + 𝜇 +

𝜎22
2
)

⎡

⎢

⎢

⎢

⎢

⎣

− ln

(

𝛬

𝜇+
𝜎21
2

)

𝑃
+

𝛽𝑆

𝜇 +
𝜎21
2

− ln 𝑃
(

𝛬

𝜇+
𝜎21
2

) − ln

(

𝛽

𝛼+𝜇+
𝜎22
2

)(

𝛬

𝜇+
𝜎21
2

)

𝑂
− ln𝑆

⎤

⎥

⎥

⎥

⎥

⎦

− 𝛼
( 𝛽

𝛼 + 𝜇 +
𝜎22
2

)( 𝛬

𝜇 +
𝜎21
2

)

⎡

⎢

⎢

⎢

⎢

⎣

ln 𝑂
(

𝛽

𝛼+𝜇+
𝜎22
2

)(

𝛬

𝜇+
𝜎21
2

) + ln 1
𝑆

+ 1

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝛾 + 𝜇 +
𝜎23
2

= −
𝛼𝛽𝛬

(𝜇 +
𝜎21
2
)(𝛼 + 𝜇 +

𝜎22
2
)
+ 𝛾 + 𝜇 +

𝜎23
2

+
𝛽𝑆

𝜇 +
𝜎21
2

= − (𝛾 + 𝜇 +
𝜎23
2
)(𝜛 − 1) +

𝛽𝑆

𝜇 +
𝜎21
2

.

(3.7)

Moreover, we consider

𝑉2(𝑃 ,𝑂, 𝑆,𝑄,𝑅) =
1

𝜂 + 1
(𝑃 + 𝑂 + 𝑆 +𝑄 + 𝑅)𝜂+1,

here 𝜂 ∈
(

0, 2𝜇
max{𝜎21 ,𝜎

2
2 ,𝜎

2
3 ,𝜎

2
4 ,𝜎

2
5}

)

is a sufficiently small constant. Using
Itô’s formula to 𝑉2(𝑃 ,𝑂, 𝑆,𝑄,𝑅), we have

𝑉2 =(𝑃 + 𝑂 + 𝑆 +𝑄 + 𝑅)𝜂 ⋅ [𝛬 − 𝜇(𝑃 + 𝑂 + 𝑆 +𝑄 + 𝑅)]

+
𝜂
2
(𝑃 + 𝑂 + 𝑆 +𝑄 + 𝑅)𝜂−1 ⋅ (𝜎21𝑃

2 + 𝜎22𝑂
2 + 𝜎23𝑆

2 + 𝜎24𝑄
2 + 𝜎25𝑅

2)

≤𝛬(𝑃 + 𝑂 + 𝑆 +𝑄 + 𝑅)𝜂 − 𝜇(𝑃 + 𝑂 + 𝑆 +𝑄 + 𝑅)𝜂+1

+
𝜂
2
max{𝜎21 , 𝜎

2
2 , 𝜎

2
3 , 𝜎

2
4 , 𝜎

2
5}(𝑃 + 𝑂 + 𝑆 +𝑄 + 𝑅)𝜂+1

≤ − 𝓁
2
(𝑃 + 𝑂 + 𝑆 +𝑄 + 𝑅)𝜂+1 +𝐻1

≤ − 𝓁
2
(𝑃 𝜂+1 + 𝑂𝜂+1 + 𝑆𝜂+1 +𝑄𝜂+1 + 𝑅𝜂+1) +𝐻1,

(3.8)

where 𝓁 ∶= 𝜇 − 𝜂
2 max{𝜎21 , 𝜎

2
2 , 𝜎

2
3 , 𝜎

2
4 , 𝜎

2
5} and

1 = sup
(𝑃 ,𝑂,𝑆,𝑄,𝑅)𝑇 ∈R5+

{

−𝓁
2
(𝑃 + 𝑂 + 𝑆 +𝑄 + 𝑅)𝜂+1 + 𝛬(𝑃 + 𝑂 + 𝑆 +𝑄 + 𝑅)𝜂

}

<∞.

Thus we construct a 𝐂2-function 𝑉 (𝑃 ,𝑂, 𝑆,𝑄,𝑅) ∶ R5
+ → R by

𝑉 (𝑃 ,𝑂, 𝑆,𝑄,𝑅)

=𝑀𝑉1(𝑃 ,𝑂, 𝑆) − ln𝑃 − ln𝑂 − ln𝑄 − ln𝑅 + 𝑉2(𝑃 ,𝑂, 𝑆,𝑄,𝑅)

=𝑀

⎡

⎢

⎢

⎢

𝛼𝛽𝛬

(𝜇 +
𝜎21 )(𝛼 + 𝜇 +

𝜎22 )

⎛

⎜

⎜

⎜

− 1

𝜇 +
𝜎21

ln𝑃 − 1

𝛼 + 𝜇 +
𝜎22

ln𝑂

⎞

⎟

⎟

⎟

− ln𝑆

⎤

⎥

⎥

⎥

6

⎣ 2 2 ⎝ 2 2 ⎠ ⎦
− ln𝑃 − ln𝑂 − ln𝑄 − ln𝑅 + 1
𝜂 + 1

(𝑃 + 𝑂 + 𝑆 +𝑄 + 𝑅)𝜂+1,

where 𝑀 is a sufficiently large positive constant such that

−𝑀(𝛾 + 𝜇 +
𝜎23
2
)(𝜛 − 1) +𝐻2 ≤ −2, (3.9)

here

2 = sup
(𝑃 ,𝑂,𝑆,𝑄,𝑅)𝑇 ∈R5

+

{

− 𝓁
2
(𝑃 𝜂+1 + 𝑂𝜂+1 + 𝑆𝜂+1 +𝑄𝜂+1 + 𝑅𝜂+1)

+ 𝐻1 + (𝜆 + 𝛽)𝑆 + 𝛼 + 4𝜇

+
𝜎21
2

+
𝜎22
2

+
𝜎24
2

+
𝜎25
2

}

< ∞.

It is straightforward that 𝑉 (𝑃 ,𝑂, 𝑆,𝑄,𝑅) is continuous and approaches
to infinity as (𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 tends to the boundary of R5

+. Thus 𝑉 (𝑃 ,𝑂,
𝑆,𝑄,𝑅) has a minimum lower bound, and further we assume that (𝑃 ,𝑂,
𝑆,𝑄,𝑅)𝑇 denotes a point in the interior of R5

+ at which 𝑉 (𝑃 ,𝑂, 𝑆,𝑄,𝑅)
reaches this lowest bound. Then we define a non-negative 𝐂2-function
𝑉 (𝑃 ,𝑂, 𝑆,𝑄,𝑅) ∶ R5

+ → R+ by

𝑉 (𝑃 ,𝑂, 𝑆,𝑄,𝑅) = 𝑉 (𝑃 ,𝑂, 𝑆,𝑄,𝑅) − 𝑉 (𝑃 ,𝑂, 𝑆,𝑄,𝑅). (3.10)

rom (3.2)–(3.8), and applying the Itô’s formula to (3.10), we have

𝑉 ≤ −𝑀(𝛾 + 𝜇 +
𝜎23
2
)(𝜛 − 1) +

𝑀𝛽𝑆

𝜇 +
𝜎21
2

− 𝛬
𝑃

− 𝛽 𝑃𝑆
𝑂

−
𝛾(1 − 𝛿)𝑆

𝑄
−
𝛾𝛿𝑆
𝑅

+ (𝛽 + 𝜆)𝑆

− 𝓁
2
(𝑃 𝜂+1 + 𝑂𝜂+1 + 𝑆𝜂+1 +𝑄𝜂+1 + 𝑅𝜂+1)

+ 𝐻1 + 𝛼 + 4𝜇 +
𝜎21
2

+
𝜎22
2

+
𝜎24
2

+
𝜎25
2
.

(3.11)

We construct the following bounded open set

𝑈𝜀 =
{

(𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ R5
+ ∶ 𝑃 ∈ (𝜀, 1

𝜀
), 𝑂 ∈ (𝜀3, 1

𝜀3
),

𝑆 ∈ (𝜀, 1
𝜀
), 𝑄 ∈ (𝜀2, 1

𝜀2
), 𝑅 ∈ (𝜀2, 1

𝜀2
)
}

,
(3.12)

where 𝜀 ∈ (0, 1) is a sufficiently small constant. In the complementary
set, 𝑈𝐶

𝜀 = R5
+∖𝑈𝜀, we take the sufficiently small value of 𝜀 such that the

following conditions hold

− 𝛬
𝜀
+𝐻3 ≤ −1, (3.13)

−
𝛽
𝜀
+𝐻3 ≤ −1, (3.14)

𝜀 ≤
𝜇 + 𝜎21∕2
𝑀𝛽

, (3.15)

−
𝛾(1 − 𝛿)

𝜀
+𝐻3 ≤ −1, (3.16)

− 𝓁
4𝜀𝜂+1

+𝐻3 ≤ −1, (3.17)

−
𝛾𝛿
𝜀

+𝐻3 ≤ −1, (3.18)

− 𝓁
4𝜀3(𝜂+1)

+𝐻3 ≤ −1, (3.19)

− 𝓁
4𝜀2(𝜂+1)

+𝐻3 ≤ −1, (3.20)

here

3 = sup
(𝑃 ,𝑂,𝑆,𝑄,𝑅)𝑇 ∈R5

+

{

− 𝓁
4
(𝑃 𝜂+1 + 𝑂𝜂+1 + 𝑆𝜂+1 +𝑄𝜂+1 + 𝑅𝜂+1)

+
𝑀𝛽𝑆

𝜇 + 𝜎21∕2
+𝐻1 + (𝜆 + 𝛽)𝑆

+ 𝛼 + 4𝜇 +
𝜎21
2

+
𝜎22
2

+
𝜎24
2

+
𝜎25
2

}

<∞.

For convenience, we divide 𝑈𝐶
𝜀 into the following ten domains

𝑈𝐶 =
{

(𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ R5 ∶ 𝑃 ≤ 𝜀
}

;
𝜀,1 +
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𝑈

𝑈

(



(



(



(



(



(



(



𝑈𝐶
𝜀,2 =

{

(𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ R5
+ ∶ 𝑃 ≥ 𝜀, 𝑆 ≥ 𝜀, 𝑂 ≤ 𝜀3

}

;
𝐶
𝜀,3 =

{

(𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ R5
+ ∶ 𝑆 ≤ 𝜀

}

;
𝐶
𝜀,4 =

{

(𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ R5
+ ∶ 𝑆 ≥ 𝜀,𝑄 ≤ 𝜀2

}

;

𝑈𝐶
𝜀,5 =

{

(𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ R5
+ ∶ 𝑃 ≥ 1∕𝜀

}

;

𝑈𝐶
𝜀,6 =

{

(𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ R5
+ ∶ 𝑆 ≥ 𝜀, 𝑅 ≤ 𝜀2

}

;

𝑈𝐶
𝜀,7 =

{

(𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ R5
+ ∶ 𝑂 ≥ 1∕𝜀3

}

;

𝑈𝐶
𝜀,8 =

{

(𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ R5
+ ∶ 𝑆 ≥ 1∕𝜀

}

;

𝑈𝐶
𝜀,9 =

{

(𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ R5
+ ∶ 𝑄 ≥ 1∕𝜀2

}

;

𝑈𝐶
𝜀,10 =

{

(𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ R5
+ ∶ 𝑅 ≥ 1∕𝜀2

}

.

It is obvious that, 𝑈𝐶
𝜀 =

⋃10
𝑖=1 𝑈

𝐶
𝜀,𝑖. The following cases are used to

verify that 𝑉 ≤ −1 always holds on each partitioned domain 𝑈𝐶
𝜀,𝑖,

𝑖 = 1, 2,… , 10.
Case 1. When (𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ 𝑈𝐶

𝜀,1, then following (3.11) and
(3.13), we have

𝑉 ≤ − 𝛬
𝑃

+
𝑀𝛽𝑆

𝜇 +
𝜎21
2

− 𝓁
4
(𝑃 𝜂+1 + 𝑂𝜂+1 + 𝑆𝜂+1 +𝑄𝜂+1 + 𝑅𝜂+1)

+ 𝐻1 + (𝛽 + 𝜆)𝑆

+ 𝛼 + 4𝜇 +
𝜎21
2

+
𝜎22
2

+
𝜎24
2

+
𝜎25
2

≤ − 𝛬
𝜀
+𝐻3

≤ − 1.

Case 2. When (𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ 𝑈𝐶
𝜀,2, then following (3.11) and

(3.14), we have

𝑉 ≤ −
𝛽𝑃𝑆
𝑂

+
𝑀𝛽𝑆

𝜇 +
𝜎21
2

− 𝓁
4
(𝑃 𝜂+1 + 𝑂𝜂+1 + 𝑆𝜂+1 +𝑄𝜂+1 + 𝑅𝜂+1)

+ 𝐻1 + (𝛽 + 𝜆)𝑆

+ 𝛼 + 4𝜇 +
𝜎21
2

+
𝜎22
2

+
𝜎24
2

+
𝜎25
2

≤ − 𝛽 ⋅ 𝜀 ⋅ 𝜀
𝜀3

+𝐻3 = −
𝛽
𝜀
+𝐻3

≤ − 1.

Case 3. When (𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ 𝑈𝐶
𝜀,3, then following (3.9), (3.11)

and (3.15), we have

𝑉 ≤ −𝑀(𝛾 + 𝜇 +
𝜎23
2
)(𝜛 − 1) +

𝑀𝛽𝑆

𝜇 +
𝜎21
2

− 𝓁
2
(𝑃 𝜂+1 + 𝑂𝜂+1 + 𝑆𝜂+1 +𝑄𝜂+1 + 𝑅𝜂+1) +𝐻1

+ (𝛽 + 𝜆)𝑆 + 𝛼 + 4𝜇 +
𝜎21
2

+
𝜎22
2

+
𝜎24
2

+
𝜎25
2

≤ −𝑀(𝛾 + 𝜇 +
𝜎23
2
)(𝜛 − 1) +

𝑀𝛽𝜀

𝜇 +
𝜎21
2

+𝐻2

≤ − 1.

Case 4. When (𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ 𝑈𝐶
𝜀,4, then following (3.11) and

3.16), we have

𝑉 ≤ −
𝛾(1 − 𝛿)𝑆

𝑄
+
𝑀𝛽𝑆

𝜇 +
𝜎21
2

− 𝓁
4
(𝑃 𝜂+1 + 𝑂𝜂+1 + 𝑆𝜂+1 +𝑄𝜂+1 + 𝑅𝜂+1)

+ 𝐻1 + (𝛽 + 𝜆)𝑆

+ 𝛼 + 4𝜇 +
𝜎21
2

+
𝜎22
2

+
𝜎24
2

+
𝜎25
2

≤ −
𝛾(1 − 𝛿)𝜀

𝜀2
+𝐻3 = −

𝛾(1 − 𝛿)
𝜀

+𝐻3

≤ − 1.
7

Case 5. When (𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ 𝑈𝐶
𝜀,5, then following (3.11) and

3.17), we have

𝑉 ≤ − 𝓁
4
𝑃 𝜂+1 +

𝑀𝛽𝑆

𝜇 +
𝜎21
2

− 𝓁
4
(𝑃 𝜂+1 + 𝑂𝜂+1 + 𝑆𝜂+1 +𝑄𝜂+1 + 𝑅𝜂+1)

+ 𝐻1 + (𝛽 + 𝜆)𝑆

+ 𝛼 + 4𝜇 +
𝜎21
2

+
𝜎22
2

+
𝜎24
2

+
𝜎25
2

≤ − 𝓁
4𝜀𝜂+1

+𝐻3

≤ − 1.

Case 6. When (𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ 𝑈𝐶
𝜀,6, then following (3.11) and

3.18), we have

𝑉 ≤ −
𝛾𝛿𝑆
𝑅

+
𝑀𝛽𝑆

𝜇 +
𝜎21
2

− 𝓁
4
(𝑃 𝜂+1 + 𝑂𝜂+1 + 𝑆𝜂+1 +𝑄𝜂+1 + 𝑅𝜂+1)

+ 𝐻1 + (𝛽 + 𝜆)𝑆

+ 𝛼 + 4𝜇 +
𝜎21
2

+
𝜎22
2

+
𝜎24
2

+
𝜎25
2

≤ −
𝛾𝛿𝜀
𝜀2

+𝐻3 = −
𝛾𝛿
𝜀

+𝐻3

≤ − 1.

Case 7. When (𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ 𝑈𝐶
𝜀,7, then following (3.11) and

3.19), we have

𝑉 ≤ − 𝓁
4
𝑂𝜂+1 +

𝑀𝛽𝑆

𝜇 +
𝜎21
2

− 𝓁
4
(𝑃 𝜂+1 + 𝑂𝜂+1 + 𝑆𝜂+1 +𝑄𝜂+1 + 𝑅𝜂+1)

+ 𝐻1 + (𝛽 + 𝜆)𝑆

+ 𝛼 + 4𝜇 +
𝜎21
2

+
𝜎22
2

+
𝜎24
2

+
𝜎25
2

≤ − 𝓁
4𝜀3(𝜂+1)

+𝐻3

≤ − 1.

Case 8. When (𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ 𝑈𝐶
𝜀,8, then following (3.11) and

3.17) we have

𝑉 ≤ − 𝓁
4
𝑆𝜂+1 +

𝑀𝛽𝑆

𝜇 +
𝜎21
2

− 𝓁
4
(𝑃 𝜂+1 + 𝑂𝜂+1 + 𝑆𝜂+1 +𝑄𝜂+1 + 𝑅𝜂+1)

+ 𝐻1 + (𝛽 + 𝜆)𝑆

+ 𝛼 + 4𝜇 +
𝜎21
2

+
𝜎22
2

+
𝜎24
2

+
𝜎25
2

≤ − 𝓁
4𝜀𝜂+1

+𝐻3

≤ − 1.

Case 9. When (𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ 𝑈𝐶
𝜀,9, then following (3.11) and

3.20), we have

𝑉 ≤ − 𝓁
4
𝑄𝜂+1 +

𝑀𝛽𝑆

𝜇 +
𝜎21
2

− 𝓁
4
(𝑃 𝜂+1 + 𝑂𝜂+1 + 𝑆𝜂+1 +𝑄𝜂+1 + 𝑅𝜂+1)

+ 𝐻1 + (𝛽 + 𝜆)𝑆

+ 𝛼 + 4𝜇 +
𝜎21
2

+
𝜎22
2

+
𝜎24
2

+
𝜎25
2

≤ − 𝓁
4𝜀2(𝜂+1)

+𝐻3

≤ − 1.

Case 10. When (𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ 𝑈𝐶
𝜀,10, then following (3.11) and

3.20), we have

𝑉 ≤ − 𝓁
4
𝑅𝜂+1 +

𝑀𝛽𝑆

𝜇 +
𝜎21
2

− 𝓁
4
(𝑃 𝜂+1 + 𝑂𝜂+1 + 𝑆𝜂+1 +𝑄𝜂+1 + 𝑅𝜂+1)

+ 𝐻 + (𝛽 + 𝜆)𝑆
1
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≤
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+ 𝛼 + 4𝜇 +
𝜎21
2

+
𝜎22
2

+
𝜎24
2

+
𝜎25
2

≤ − 𝓁
4𝜀2(𝜂+1)

+𝐻3

≤ − 1.

Therefore, we conclude 𝑉 (𝑃 ,𝑂, 𝑆,𝑄,𝑅) ≤ −1, for any (𝑃 ,𝑂, 𝑆,
𝑄,𝑅)𝑇 ∈ R5

+∖𝑈𝜀, which establish the first part of having an ergodic
stationary distribution.

Part II. The diffusion matrix of model (1.2) is

𝐺 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜎21𝑃
2 0 0 0 0

0 𝜎22𝑂
2 0 0 0

0 0 𝜎23𝑆
2 0 0

0 0 0 𝜎24𝑄
2 0

0 0 0 0 𝜎25𝑅
2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Let 𝜚 = min(𝑃 ,𝑂,𝑆,𝑄,𝑅)𝑇 ∈𝑈𝜀{𝜎
2
1𝑃

2, 𝜎22𝑂
2, 𝜎23𝑆

2, 𝜎24𝑄
2, 𝜎25𝑅

2}, then
5
∑

,𝑗=1
𝑔𝑖𝑗 (𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝜉𝑖𝜉𝑗 = 𝜎21𝑃

2𝜉21 +𝜎
2
2𝑂

2𝜉22 +𝜎
2
3𝑆

2𝜉23 +𝜎
2
4𝑄

2𝜉24 +𝜎
2
5𝑅

2𝜉25 ≥ 𝜚‖𝜉‖2,

or all (𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ 𝑈𝜀 and 𝜉 = (𝜉1, 𝜉2, 𝜉3, 𝜉4, 𝜉5)𝑇 ∈ R5, where
𝜀 is defined by (3.12). Thus the second part of ergodic stationary
istribution is satisfied.

By combining both of the parts, we conclude that the model (1.2)
as a unique ergodic stationary distribution, which completes the proof
f Theorem 3.3. □

emark 3.4. Theorem 3.3 gives the sufficient criterion for the ex-
stence of ergodic stationary distribution, which indicates the weak
tability and persistence of stochastic model (1.2). In addition, when
he effect of environmental random fluctuations on smoking models
s not considered, namely 𝜎𝑖 = 0, 𝑖 = 1, 2,… , 5, we deduce 𝜛 =

𝛼𝛽𝛬
𝜇(𝛼+𝜇)(𝛾+𝜇) = R0, indicating that the positive solution of the determinis-
ic model (1.1) is globally asymptotically stable for 𝜛 = R0 > 1, which

is consistent with Conjecture 2.14.

3.4. Elimination of smokers

To derive the conditions for the elimination of the smoking popula-
tion, we denote,

𝜙 = 𝜇(R − 1)I{R≤1} + (𝛼 + 𝜇)(R − 1)I{R>1}

+ 𝜎1

√

𝛼𝛽𝛬
(𝛼 + 𝜇)(2𝜇 − 𝜎21 )

−
[

2(𝜎−22 + 𝜎−23 + 𝜎−24 + 𝜎−25 )
]−1 ,

here R =
√

R̃0 =
√

𝛼𝛽𝛬
𝜇2(𝛼+𝜇) , and I{⋅} is the indicator function of {⋅}.

We use this notation to establish the following theorem.

Theorem 3.5. Let (𝑃 (𝑡), 𝑂(𝑡), 𝑆(𝑡), 𝑄(𝑡), 𝑅(𝑡))𝑇 be the solution of model
(1.2) with initial value (𝑃 (0), 𝑂(0), 𝑆(0), 𝑄(0), 𝑅(0))𝑇 ∈ R5

+. If 𝜇 >
𝜎21
2 ,

hen for almost all 𝜔 ∈ 𝛺, we have

im sup
𝑡→∞

1
𝑡
ln
[

𝜇
√

𝛼𝑂 +
√

(𝛼 + 𝜇)𝛽𝛬(𝑆 +𝑄 + 𝑅)
]

≤ 𝜙 𝑎.𝑠.

If 𝜙 < 0, then there are no smoking populations. Moreover, the distribution
of 𝑃 (𝑡) converges weakly a.s. to an invariant measure with density

𝜋(𝑥) =
⎡

⎢

⎢

⎣

𝜎−21

(

𝜎21
2𝛬

)
2𝜇
𝜎21

+1

𝛤

(

2𝜇
𝜎21

+ 1

)

⎤

⎥

⎥

⎦

−1

𝑥
−2− 2𝜇

𝜎21 𝑒
− 2𝛬
𝜎21𝑥 , 𝑥 > 0. (3.21)

Proof. It follows from Theorem 3.1 that for any given initial value
(𝑃 (0), 𝑂(0), 𝑆(0), 𝑄(0), 𝑅(0))𝑇 ∈ R5

+, the positive solution (𝑃 (𝑡), 𝑂(𝑡), 𝑆(𝑡),
(𝑡), 𝑅(𝑡))𝑇 of model (1.2) exists and is unique. From the first equation

of model (1.2), we have

d𝑃 (𝑡) ≤ [𝛬 − 𝜇𝑃 (𝑡)]d𝑡 + 𝜎 𝑃 (𝑡)d𝐵 (𝑡).
8

1 1
f 𝑋(𝑡) is the solution of a one-dimensional stochastic differential equa-
ion

d𝑋(𝑡) = [𝛬 − 𝜇𝑋(𝑡)]d𝑡 + 𝜎1𝑋(𝑡)d𝐵1(𝑡),
𝑋(0) = 𝑃 (0),

hen by following the comparison theorem for one-dimensional Itô’s
rocesses [56, Theorem 6.1.1], we have 𝑃 (𝑡) ≤ 𝑋(𝑡) a.s. In addition,
hen 𝜇 >

𝜎21
2 , the stochastic process 𝑋(𝑡) converges weakly a.s. to an

rgodic stationary distribution with the invariant density 𝜋(𝑥) given
y (3.21) [57, Theorems 3.1 and 4.1]. Consequently, from the ergodic
heorem, we have

lim
→∞

1
𝑡 ∫

𝑡

0
𝑋(𝜃)d𝜃 = ∫R+

𝑥𝜋(𝑥)d𝑥 = 𝛬
𝜇
𝑎.𝑠.

We define a 𝐂2-function 𝑉 (𝑂,𝑆,𝑄,𝑅) ∶ R4
+ → R+ by

𝑉 (𝑂,𝑆,𝑄,𝑅) = 𝑘1𝑂 + 𝑘2(𝑆 +𝑄 + 𝑅),

where 𝑘1 = 𝜇
√

𝛼 and 𝑘2 =
√

𝛽𝛬(𝛼 + 𝜇). Using the Itô’s formula to ln𝑉 ,
e obtain

(ln𝑉 ) = (ln𝑉 )d𝑡+
𝑘1𝜎2𝑂
𝑉

d𝐵2(𝑡)+
𝑘2𝜎3𝑆
𝑉

d𝐵3(𝑡)+
𝑘2𝜎4𝑄
𝑉

d𝐵4(𝑡)+
𝑘2𝜎5𝑅
𝑉

d𝐵5(𝑡),

(3.22)

here

(ln𝑉 ) =
𝑘1
𝑉

[𝛽𝑃𝑆 − (𝛼 + 𝜇)𝑂] +
𝑘2
𝑉

(𝛼𝑂 − 𝜇𝑆 − 𝜇𝑄 − 𝜇𝑅)

−
𝑘21𝜎

2
2𝑂

2

2𝑉 2
−
𝑘22𝜎

2
3𝑆

2

2𝑉 2
−
𝑘22𝜎

2
4𝑄

2

2𝑉 2
−
𝑘22𝜎

2
5𝑅

2

2𝑉 2
,

with

𝑉 2 =
[

𝑘1𝜎2𝑂
1
𝜎2

+ 𝑘2

(

𝜎3𝑆
1
𝜎3

+ 𝜎4𝑄
1
𝜎4

+ 𝜎5𝑅
1
𝜎5

)]2

≤
[

𝑘21𝜎
2
2𝑂

2 + 𝑘22
(

𝜎23𝑆
2 + 𝜎24𝑄

2 + 𝜎25𝑅
2)]

(

1
𝜎22

+ 1
𝜎23

+ 1
𝜎24

+ 1
𝜎25

)

,

(3.23)

and

1
𝑉
{

𝑘1[𝛽𝑃𝑆 − (𝛼 + 𝜇)𝑂] + 𝑘2(𝛼𝑂 − 𝜇𝑆 − 𝜇𝑄 − 𝜇𝑅)
}

=
𝑘1𝛽𝑆
𝑉

(

𝑃 − 𝛬
𝜇

)

+ 1
𝑉

{

𝑘1
[ 𝛽𝛬𝑆
𝜇

− (𝛼 + 𝜇)𝑂
]

+ 𝑘2(𝛼𝑂 − 𝜇𝑆 − 𝜇𝑄 − 𝜇𝑅)
}

𝑘1𝛽
𝑘2

|

|

|

𝑋 − 𝛬
𝜇
|

|

|

+ 1
𝑉

{

𝑘1
[ 𝛽𝛬𝑆
𝜇

− (𝛼 + 𝜇)𝑂
]

+ 𝑘2(𝛼𝑂 − 𝜇𝑆)
}

𝛽𝜇
√

𝛼
𝛽𝛬(𝛼 + 𝜇)

|

|

|

𝑋 − 𝛬
𝜇
|

|

|

+ 1
𝑉

{

𝜇
√

𝛽𝛬(𝛼 + 𝜇)(R − 1)𝑆 + (𝛼 + 𝜇)(R − 1)𝑂
}

≤𝜇

√

𝛼𝛽
𝛬(𝛼 + 𝜇)

|

|

|

𝑋 − 𝛬
𝜇
|

|

|

+ 𝜇(R − 1)I{R≤1} + (𝛼 + 𝜇)(R − 1)I{R>1}.

(3.24)

ombining (3.23) and (3.24) we obtain

(ln𝑉 ) ≤𝜇

√

𝛼𝛽
𝛬(𝛼 + 𝜇)

|

|

|

𝑋 − 𝛬
𝜇
|

|

|

+ 𝜇(R − 1)I{R≤1} + (𝛼 + 𝜇)(R − 1)I{R>1}

−
[

2(𝜎−22 + 𝜎−23 + 𝜎−24 + 𝜎−25 )
]−1 .

It then follows from (3.22) that

d(ln𝑉 ) ≤
{

𝜇

√

𝛼𝛽
𝛬(𝛼 + 𝜇)

|

|

|

𝑋 − 𝛬
𝜇
|

|

|

+ 𝜇(R − 1)I{R≤1} + (𝛼 + 𝜇)(R − 1)I{R>1}

−
[

2(𝜎−22 + 𝜎−23 + 𝜎−24 + 𝜎−25 )
]−1

}

d𝑡

+
𝑘1𝜎2𝑂
𝑉

d𝐵2(𝑡) +
𝑘2𝜎3𝑆
𝑉

d𝐵3(𝑡) +
𝑘2𝜎4𝑄
𝑉

d𝐵4(𝑡) +
𝑘2𝜎5𝑅
𝑉

d𝐵5(𝑡).

(3.25)
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Integrating from 0 to 𝑡 and dividing by 𝑡 on the both sides of (3.25)
yields
ln𝑉 (𝑡)
𝑡

≤ ln𝑉 (0)
𝑡

+ 𝜇(R − 1)I{R≤1} + (𝛼 + 𝜇)(R − 1)I{R>1}

−
[

2(𝜎−22 + 𝜎−23 + 𝜎−24 + 𝜎−25 )
]−1

+ 𝜇

√

𝛼𝛽
𝛬(𝛼 + 𝜇)

1
𝑡 ∫

𝑡

0

|

|

|

𝑋(𝜃) − 𝛬
𝜇
|

|

|

d𝜃

+ 1
𝑡 ∫

𝑡

0

𝑘1𝜎2𝑂(𝜃)
𝑉 (𝜃)

d𝐵2(𝜃) +
1
𝑡 ∫

𝑡

0

𝑘2𝜎3𝑆(𝜃)
𝑉 (𝜃)

d𝐵3(𝜃)

+ 1
𝑡 ∫

𝑡

0

𝑘2𝜎4𝑄(𝜃)
𝑉 (𝜃)

d𝐵4(𝜃) +
1
𝑡 ∫

𝑡

0
+
𝑘2𝜎5𝑅(𝜃)
𝑉 (𝜃)

d𝐵5(𝜃)

=
ln𝑉 (0)
𝑡

+ 𝜇(R − 1)I{R≤1} + (𝛼 + 𝜇)(R − 1)I{R>1}

−
[

2(𝜎−22 + 𝜎−23 + 𝜎−24 + 𝜎−25 )
]−1

+ 𝜇

√

𝛼𝛽
𝛬(𝛼 + 𝜇)

1
𝑡 ∫

𝑡

0

|

|

|

𝑋(𝜃) − 𝛬
𝜇
|

|

|

d𝜃

+
2(𝑡)
𝑡

+
3(𝑡)
𝑡

+
4(𝑡)
𝑡

+
5(𝑡)
𝑡

,

(3.26)

where

2(𝑡) ∶= ∫

𝑡

0

𝑘1𝜎2𝑂(𝜃)
𝑉 (𝜃)

d𝐵2(𝜃), 3(𝑡) ∶= ∫

𝑡

0

𝑘2𝜎3𝑆(𝜃)
𝑉 (𝜃)

d𝐵3(𝜃),

4(𝑡) ∶= ∫

𝑡

0

𝑘2𝜎4𝑄(𝜃)
𝑉 (𝜃)

d𝐵4(𝜃), 5(𝑡) ∶= ∫

𝑡

0

𝑘2𝜎5𝑅(𝜃)
𝑉 (𝜃)

d𝐵5(𝜃),

are locally continuous martingales, and their corresponding quadratic
variations are

⟨2,2⟩𝑡 = 𝜎22 ∫

𝑡

0

(

𝑘1𝑂(𝜃)
𝑉 (𝜃)

)2
d𝜃 ≤ 𝜎22 𝑡,

⟨3,3⟩𝑡 = 𝜎23 ∫

𝑡

0

(

𝑘2𝑆(𝜃)
𝑉 (𝜃)

)2
d𝜃 ≤ 𝜎23 𝑡,

⟨4,4⟩𝑡 = 𝜎24 ∫

𝑡

0

(

𝑘1𝑄(𝜃)
𝑉 (𝜃)

)2
d𝜃 ≤ 𝜎24 𝑡,

⟨5,5⟩𝑡 = 𝜎25 ∫

𝑡

0

(

𝑘2𝑅(𝜃)
𝑉 (𝜃)

)2
d𝜃 ≤ 𝜎25 𝑡.

It is straightforward that lim sup𝑡→∞
⟨𝑖 ,𝑖⟩𝑡

𝑡 ≤ 𝜎2𝑖 < ∞, 𝑖 = 2, 3, 4, 5.
ubsequently, it follows the strong law of large numbers for local
artingales [52], i.e.,

lim
𝑡→∞

𝑖(𝑡)
𝑡

= 0 𝑎.𝑠., 𝑖 = 2, 3, 4, 5. (3.27)

In addition, from the ergodic theorem, we obtain

lim
𝑡→∞

1
𝑡 ∫

𝑡

0

|

|

|

𝑋(𝜃) − 𝛬
𝜇
|

|

|

d𝜃 =∫R+

|

|

|

𝑥 − 𝛬
𝜇
|

|

|

𝜋(𝑥)d𝑥 ≤
[

∫

∞

0

(

𝑥 − 𝛬
𝜇

)2
𝜋(𝑥)d𝑥

]
1
2

≤
[

∫

∞

0
𝑥2𝜋(𝑥)d𝑥 − 2𝛬

𝜇 ∫

∞

0
𝑥𝜋(𝑥)d𝑥 +

(𝛬
𝜇

)2
]

1
2

=

[

2𝛬2

𝜇(2𝜇 − 𝜎21 )
− 2𝛬2

𝜇2
+
(𝛬
𝜇

)2
]

1
2

=
𝜎1𝛬

𝜇
√

2𝜇 − 𝜎21

.

(3.28)

Taking the limit superior on both sides of (3.26), and considering (3.27)
and (3.28), we obtain

lim sup
𝑡→∞

ln𝑉 (𝑡)
𝑡

≤𝜇(R − 1)I{R≤1} + (𝛼 + 𝜇)(R − 1)I{R>1}

−
[

2(𝜎−22 + 𝜎−23 + 𝜎−24 + 𝜎−25 )
]−1

+ 𝜎1

√

𝛼𝛽𝛬
9

(𝛼 + 𝜇)(2𝜇 − 𝜎1)
∶=𝜙 𝑎.𝑠.

Therefore, when 𝜙 < 0, we have

lim
→∞

[

𝜇
√

𝛼𝑂(𝑡) +
√

(𝛼 + 𝜇)𝛽𝛬
(

𝑆(𝑡) +𝑄(𝑡) + 𝑅(𝑡)
)

]

= 0 𝑎.𝑠.,

eading us to have

lim
𝑡→∞

𝑂(𝑡) = 0, lim
𝑡→∞

𝑆(𝑡) = 0, lim
𝑡→∞

𝑄(𝑡) = 0, lim
𝑡→∞

𝑅(𝑡) = 0 𝑎.𝑠. (3.29)

Thus for any small 0 < 𝜀 ≪ 1, it follows from (3.29) that there exist a
time 𝜀 > 0 and a set 𝛺𝜀 ⊂ 𝛺, satisfying P(𝛺𝜀) > 1−𝜀 and 𝛽𝑃𝑆 ≤ 𝜀𝑃 for
all 𝑡 ≥ 𝜀 and 𝜔 ∈ 𝛺𝜀. Consequently, from the first equation of model
(1.2), we obtain

[𝛬−𝜀𝑃 (𝑡)−𝜇𝑃 (𝑡)]d𝑡+𝜎1𝑃 (𝑡)d𝐵1(𝑡) ≤ d𝑃 (𝑡) ≤ [𝛬−𝜇𝑃 (𝑡)]d𝑡+𝜎1𝑃 (𝑡)d𝐵1(𝑡).

rom the stochastic comparison theorem [56, Theorem 6.1.1, PP437-
38] and for sufficiently small 𝜀, we conclude that 𝑃 (𝑡) has the same
rgodic stationary distribution and invariant density as 𝑋(𝑡). This com-
letes the proof of Theorem 3.5. □

.5. Numerical simulations of model (1.2)

In order to numerically verify the theoretical results of model (1.2),
e used Milstein’s higher-order method [58], and investigated the

nfluence of unavoidable environmental random effects on smoking
pidemic dynamics. The discretized equations of the stochastic model
1.2) are

𝑃𝑘+1 = 𝑃𝑘 + (𝛬 − 𝛽𝑃𝑘𝑆𝑘 − 𝜇𝑃𝑘)𝛥𝑡 +
𝜎21
2
𝑃𝑘(2

1,𝑘 − 1)𝛥𝑡 + 𝜎1𝑃𝑘
√

𝛥𝑡1,𝑘,

𝑂𝑘+1 = 𝑂𝑘 + (𝛽𝑃𝑘𝑆𝑘 − 𝛼𝑂𝑘 − 𝜇𝑂𝑘)𝛥𝑡 +
𝜎22
2
𝑂𝑘(2

2,𝑘 − 1)𝛥𝑡 + 𝜎2𝑂𝑘
√

𝛥𝑡2,𝑘,

𝑆𝑘+1 = 𝑆𝑘 + (𝛼𝑂𝑘 + 𝜆𝑄𝑘𝑆𝑘 − 𝛾𝑆𝑘 − 𝜇𝑆𝑘)𝛥𝑡 +
𝜎23
2
𝑆𝑘(2

3,𝑘 − 1)𝛥𝑡 + 𝜎3𝑆𝑘
√

𝛥𝑡3,𝑘,

𝑄𝑘+1 = 𝑄𝑘 + [𝛾(1 − 𝛿)𝑆𝑘 − 𝜆𝑄𝑘𝑆𝑘 − 𝜇𝑄𝑘]𝛥𝑡 +
𝜎24
2
𝑄𝑘(2

4,𝑘 − 1)𝛥𝑡 + 𝜎4𝑄𝑘

√

𝛥𝑡4,𝑘,

𝑅𝑘+1 = 𝑅𝑘 + (𝛾𝛿𝑆𝑘 − 𝜇𝑅𝑘)𝛥𝑡 +
𝜎25
2
𝑅𝑘(2

5,𝑘 − 1)𝛥𝑡 + 𝜎5𝑅𝑘
√

𝛥𝑡5,𝑘,

here 𝑃𝑘+1, 𝑂𝑘+1, 𝑆𝑘+1, 𝑄𝑘+1, and 𝑅𝑘+1 are respectively the population
izes of potential smokers, occasional smokers, smokers, temporary
uitters, and permanent quitters obtained by 𝑘 + 1 iteration, 𝛥𝑡 > 0 is
he time increment, and 𝑗,𝑘, 𝑗 = 1, 2, 3, 4, 5 are mutually independent
aussian random variables with standard normal distribution  (0, 1).

We explored the impacts of environmental random fluctuations
n the dynamics of smoking model under two different scenarios
f deterministic model (1.1): (1) a single smoking-present equilib-
ium, (2) a bistable state comprising a smoking-free equilibrium and
smoking-present equilibrium. The details are as follows.

xample 3.6. Using the system parameters from (2.3) with 𝛼 = 0.2
nd setting 𝛽 = 0.14, as established in Example 2.11, we found that
odel (1.1) exhibits only a stable smoking-present equilibrium. We
ow investigate the impacts of different intensities of environmental
hite noise on the dynamics of model (1.2)

1) Setting 𝜎1 = 𝜎2 = 𝜎3 = 𝜎4 = 𝜎5 = 0.05, we obtain 𝜛 ≈ 1.527 > 1,
indicating the existence of a unique ergodic stationary distribu-
tion for stochastic model (1.2), as supported by Theorem 3.3 and
Fig. 3. This indicates that the effect of small environmental noise
intensities on smoking control is negligible.

2) Setting 𝜎1 = 0.05 and 𝜎2 = 𝜎3 = 𝜎4 = 𝜎5 = 2.5, we compute
𝜇 = 0.1 > 0.00125 =

𝜎21
2 and 𝜙 ≈ −0.130 < 0, satisfying

the sufficient conditions of Theorem 3.5. Consequently, smoking-
associated populations will extinct, leaving only non-smokers
with an ergodic stationary distribution, which is consistent with
Fig. 4. This indicates that large stochastic fluctuations in the
environment are beneficial for controlling smoking behavior.
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Fig. 3. Time series diagrams of five populations (top row) and density functions of the corresponding species (bottom row) for model (1.2) with 𝜎𝑖 = 0.05 for 𝑖 = 1, 2, 3, 4, 5.
Fig. 4. (1) Time series of non-smokers 𝑃 (𝑡); (2) Density function of 𝑃 (𝑡) corresponding to (1); (3) Eliminated time series of four populations related to smoking in model (1.2)
with 𝜎1 = 0.05 and 𝜎2 = 𝜎3 = 𝜎4 = 𝜎5 = 2.5.
.1).

t

n

Example 3.7. We fixed the parameters as (2.3) and 𝛼 = 0.2,
with 𝛽 = 0.06. In Example 2.10, we established that the model
(1.1) exhibits bistability, with a smoking-present equilibrium 𝐸∗

1 ≈
(4.369, 1.877, 2.148, 0.532, 1.074) and a smoking-free equilibrium 𝐸0 =
(10, 0, 0, 0, 0) for different initial values: (4, 1, 3, 1, 1) and (9.4, 0.1, 0.3, 0.1, 0
Moreover, according to Theorem 3.5, large noise can eliminate smoking
behavior. Now, we investigate the impact of small fluctuations in
the natural environment on controlling smoking behavior through
numerical simulations.

(i) When the initial value is (9.4, 0.1, 0.3, 0.1, 0.1), smoking is certain
to vanish provided random fluctuations in the environment are
not taken into account (Fig. 2(b)). However, when the inevitable
random fluctuations in the environment are assumed as 𝜎𝑖 =
0.05, 𝑖 = 1, 2, 3, 4, 5, we simulated 5000 sample trajectories over
the same time period, resulting in Fig. 5(a), which includes
2734 smoking-free and 2266 smoking-present sample paths. This
indicates that even small random fluctuations in the environment
can lead to the prevalence of smoking behavior.

(ii) When the initial value is set to (4, 1, 3, 1, 1), smoking continues to
prevail in deterministic model (1.1) (Fig. 2(b)). Similarly, with
𝜎𝑖 = 0.05, Fig. 5(b) shows the existence of 21 smoking-free
and 4979 smoking-present sample orbits. This suggests that small
noises are also beneficial to smoking control to some extent.

In conclusion, large random fluctuations in the environment are
lways conducive to the control of smoking, while the influences of
mall noises on smoking control can be favorable, or harmful, or
egligible. The conclusions are closely related to the intensities of
nvironmental noises, the initial sizes of smoking populations, and the
10

ffective exposure rate of smoking transmission 𝛽.
4. Discussion

To explore the population dynamics of smoking behavior com-
prehensively and realistically, this paper examined a 5-dimensional
smoking model in both deterministic and stochastic environments,
including potential smokers 𝑃 (𝑡), occasional smokers 𝑂(𝑡), smokers 𝑆(𝑡),
emporary quitters 𝑄(𝑡), and permanent quitters 𝑅(𝑡).

In deterministic model (1.1), we obtained the basic reproduction
umber R0 =

𝛼𝛽𝛬
𝜇(𝛼+𝜇)(𝛾+𝜇) using the next-generation matrix method [50].

Then, we established conditions for the local and global asymptotic
stability of the smoking-free equilibrium and the local asymptotic
stability of the smoking-present equilibrium. Additionally, we investi-
gated the existence of saddle–node bifurcation. Our findings align with
those in [50], showing that R0 alone cannot completely determine the
existence of smoking behavior. In other words, even when the smoking-
free equilibrium is locally asymptotically stable, smoking behavior
can persist. This implies that the model has a bistable phenomenon
composed of a smoking-free equilibrium and a smoking-present equi-
librium. Consequently, the initial sizes of smoking populations can
significantly influence the presence or elimination of smoking behavior.

Compared to [18], we found that considering different levels of
smoking can completely change the dynamics of smoking models,
leading to the following insights:

1. The basic reproduction number R0, obtained using the next-
generation matrix method, cannot be completely used as a thresh-
old condition for determining the existence of smoking behavior.

2. The existence of saddle–node bifurcation and the emergence of
bistability reflect more realistically that the different initial sizes
of smoking populations can also determine whether smoking
prevails to a certain extent.
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Fig. 5. (a) and (b) represent 5000 sample paths of smokers 𝑆(𝑡) for stochastic model (1.2) with same noise intensities 𝜎𝑖 = 0.05 but different initial values.
These significant differences indicate that considering different lev-
els of smoking can make smoking models more realistic and compre-
hensive in describing the prevalence of smoking in the real world.
Furthermore, through rigorous mathematical derivations, we improved
the analysis of the dynamics of model (1.1) originally presented in [21].

In stochastic model (1.2), we first analyzed the well-posedness,
including the existence, uniqueness, and ultimate boundedness of a
globally positive solution. Then, we established the sufficient condition
for the existence and uniqueness of the ergodic stationary distribution.
Especially, when random effects in the environment are not considered,
i.e., the intensities of noises are zero, we validated Conjecture 2.14
for the deterministic model (1.1). Furthermore, we provided sufficient
criteria for the eradication of smoking behavior. Finally, through nu-
merical simulations, we concluded that the effects of inevitable random
fluctuations in the natural environment on the control of the smoking
epidemic can be favorable, or harmful, or negligible. The ultimate
effects of environmental noises on smoking control are closely related
to noise intensities, initial smoking population sizes, and the effective
exposure rate of smoking transmission 𝛽. More specifically,

▶ When 𝛽 is larger, such that R0 > 1, significant stochastic envi-
ronmental fluctuations are conducive to the control of smoking,
however, the effect of small noise intensities is negligible.

▶ When 𝛽 is reduced, such that R0 < 1, the deterministic model
(1.1) has a bistability composed of a smoking-free equilibrium
and a smoking-present equilibrium. Large random fluctuations
in the environment can still effectively control the smoking epi-
demic, while the control effects of small noise intensities can be
favorable or harmful. Specifically,

(1) All smokers are removed in the deterministic model (1.1)
for a low initial size of smoking populations. Furthermore,
for mild environmental noises, smokers will continue to
epidemic with a certain positive probability. This indicates
that random effects are detrimental to smoking control.

(2) Conversely, when the initial size of smoking populations
is large, smoking is prevalent in deterministic model (1.1).
Further taking small noise intensities into account, we found
that smokers will be eliminated with a positive probability.
This demonstrates that random effects are beneficial for
smoking control.

As environmental changes are inherent in natural ecosystems, it
becomes challenging to accurately regulate the intensities of inevitable
environmental noises. To successfully eradicate smoking behavior, two
key approaches are crucial. First, conducting early and accurate mon-
itoring of the initial sizes of smoking populations is essential. Second,
11
implementing effective, reasonable, and feasible measures to reduce
the effective exposure rate of smoking transmission 𝛽, is vital. Notably,
when environmental random effects are not considered, with a decrease
of 𝛽, the originally prevalent smoking populations gradually enter
a bistable transition period (i.e., the coexistence of smoking-present
and smoking-free equilibria). Only during the transition period, the
different initial sizes of smoking populations can effectively regulate the
presence or absence of smoking. Therefore, taking effective measures to
reduce the effective exposure rate of smoking transmission 𝛽 is the key
to controlling the smoking epidemic.

To explore effective smoking control measures, we compared the
strategies outlined in the WHO FCTC [10] with the MPOWER approach
introduced by WHO [11]. Both approaches align in their smoking con-
trol measures [6], leading us to focus our discussion on the MPOWER
approach.

(1) Monitor tobacco use and prevention policies [11]. The measure
aims to capture periodic data on key indicators of tobacco use
among adolescents and adults nationwide.

(2) Protect people from tobacco use [11]. The measure aims to estab-
lish and implement completely smoking-free environments in all
indoor public places, such as medical and educational institutions.

(3) Offer help to quit tobacco use [11]. The measure aims to
strengthen health systems to provide comprehensive support for
smoking cessation.

(4) Warn about the dangers of tobacco [11]. The measure aims to
promote the dangers of tobacco in the media.

(5) Enforce bans on tobacco advertising, promotion and sponsor-
ship [11]. The measure aims to establish and implement effective
legislation to comprehensively prohibit any form of direct or
indirect tobacco publicizing.

(6) Raise taxes on tobacco [11]. The measure aims to increase the tax
rate and strengthen tax administration on tobacco products.

In [59], the authors emphasized the effectiveness of the MPOWER
series of policies in reducing smoking prevalence. Tax and price in-
creases are considered as the most influential tobacco control policies
among various alternative MPOWER measures [60–63]. Additionally,
WHO MPOWER measures have been shown to save lives and reduce
healthcare costs [6]. Therefore, there is an urgent need to accelerate
the implementation of a strong set of MPOWER measures for smoking
control. However, intriguing and unexplored questions remain regard-
ing how to quantify the impacts of different effective policies within
MPOWER measures in controlling 𝛽, and how to effectively combine
these measures to achieve the greatest reduction in the effective ex-
posure rate of smoking transmission 𝛽. These will be the focus of our

future research.
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ppendix A. Proof of Theorem 2.1

roof. To verify the positivity of the solution of model (1.1) with a
ositive initial value, we rewrite the model as
d𝑌 (𝑡)
d𝑡

= 𝐹 (𝑌 (𝑡)), (A.1)

where 𝑌 = (𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∈ R5, and

𝐹 (𝑌 ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐹1(𝑌 )
𝐹2(𝑌 )
𝐹3(𝑌 )
𝐹4(𝑌 )
𝐹5(𝑌 )

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛬 − 𝛽𝑃 (𝑡)𝑆(𝑡) − 𝜇𝑃 (𝑡)
𝛽𝑃 (𝑡)𝑆(𝑡) − 𝛼𝑂(𝑡) − 𝜇𝑂(𝑡)

𝛼𝑂(𝑡) + 𝜆𝑄(𝑡)𝑆(𝑡) − 𝛾𝑆(𝑡) − 𝜇𝑆(𝑡)
𝛾(1 − 𝛿)𝑆(𝑡) − 𝜆𝑄(𝑡)𝑆(𝑡) − 𝜇𝑄(𝑡)

𝛾𝛿𝑆(𝑡) − 𝜇𝑅(𝑡)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Since 𝐹 (𝑌 ) ∶ R5 → R satisfies the local Lipschitz condition, it follows
from the fundamental theorem of ordinary differential equations that
the solution of model (A.1) with positive initial value exists and is
unique. In addition, it is worth noting that 𝐹𝑖(𝑌 )|𝑦𝑖=0 ≥ 0, where
𝑦1 = 𝑃 (𝑡), 𝑦2 = 𝑂(𝑡), 𝑦3 = 𝑆(𝑡), 𝑦4 = 𝑄(𝑡), 𝑦5 = 𝑅(𝑡). Using Nagumo
theorem [64], we obtain for all 𝑡 ≥ 0, the solution of model (1.1) with
positive initial value remains positive.

To investigate the boundedness of the solutions of model (1.1), we
consider (𝑃 (𝑡), 𝑂(𝑡), 𝑆(𝑡), 𝑄(𝑡), 𝑅(𝑡))𝑇 is a solution of model (1.1) with
positive initial value (𝑃 (0), 𝑂(0), 𝑆(0), 𝑄(0), 𝑅(0))𝑇 . By adding equations
of model (1.1), we obtain the total population size, 𝑁(𝑡) = 𝑃 (𝑡) +𝑂(𝑡) +
𝑆(𝑡)+𝑄(𝑡)+𝑅(𝑡), satisfies d𝑁(𝑡)

d𝑡 = 𝛬−𝜇𝑁(𝑡), and then lim𝑡→∞𝑁(𝑡) = 𝛬
𝜇 𝑎.𝑠.

Thus the positively invariant region of model (1.1) is given by

𝛤 =
{

(𝑃 ,𝑂, 𝑆,𝑄,𝑅)𝑇 ∶ 0 ≤ 𝑃 ,𝑂, 𝑆,𝑄,𝑅 and 𝑃 + 𝑂 + 𝑆 +𝑄 + 𝑅 = 𝛬
𝜇

}

.
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This completes the proof of Theorem 2.1. □
Appendix B. Proof of Theorem 2.2

Proof. For any nonnegative equilibrium 𝐸(𝑃 ,𝑂, 𝑆,𝑄,𝑅) of model
1.1), the system of equations satisfy

𝛬 − 𝛽𝑃𝑆 − 𝜇𝑃 = 0,

𝛽𝑃𝑆 − 𝛼𝑂 − 𝜇𝑂 = 0,

𝛼𝑂 + 𝜆𝑄𝑆 − 𝛾𝑆 − 𝜇𝑆 = 0,

𝛾(1 − 𝛿)𝑆 − 𝜆𝑄𝑆 − 𝜇𝑄 = 0,

𝛾𝛿𝑆 − 𝜇𝑅 = 0,

⇒

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑃 = 𝛬
𝛽𝑆+𝜇 ,

𝑂 = 𝛬𝛽𝑆
(𝛼+𝜇)(𝛽𝑆+𝜇) ,

𝑄 = 𝛾(1−𝛿)𝑆
𝜆𝑆+𝜇 ,

𝑅 = 𝛾𝛿𝑆
𝜇 ,

and
𝛼𝛽𝛬𝑆

(𝛼 + 𝜇)(𝛽𝑆 + 𝜇)
+
𝛾(1 − 𝛿)𝜆𝑆2

𝜆𝑆 + 𝜇
= (𝛾 + 𝜇)𝑆. (B.1)

When the population size of smokers is zero, i.e., 𝑆 = 0, we obtain
the smoke-free equilibrium 𝐸0(

𝛬
𝜇 , 0, 0, 0, 0). However, when 𝑆 > 0, from

(B.1) we can derive that

𝛽𝜆(𝛼 + 𝜇)(𝜇 + 𝛾𝛿)𝑆2 + (𝛼𝜆𝜇2 + 𝛼𝜆𝜇𝛾𝛿 + 𝜆𝜇3

+ 𝜆𝜇2𝛾𝛿 + 𝛼𝛽𝜇𝛾 + 𝛽𝜇2𝛾 + 𝛼𝛽𝜇2 + 𝛽𝜇3 − 𝛼𝛽𝜆𝛬)𝑆

+ 𝜇[𝜇(𝛼 + 𝜇)(𝜇 + 𝛾) − 𝛼𝛽𝛬] = 0.

(B.2)

t follows from Vieta theorem [65] that two roots (𝑆1 and 𝑆2) of the
uadratic Eq. (B.2) satisfy 𝑆1 ⋅ 𝑆2 = 𝜇[𝜇(𝛼+𝜇)(𝜇+𝛾)−𝛼𝛽𝛬]

𝛽𝜆(𝛼+𝜇)(𝜇+𝛾𝛿) . Therefore, we
have two situations:

(1) when 𝜇(𝛼 + 𝜇)(𝜇 + 𝛾) < 𝛼𝛽𝛬, that is R0 ∶= 𝛼𝛽𝛬
𝜇(𝛼+𝜇)(𝛾+𝜇) > 1, then

𝑆1 ⋅ 𝑆2 < 0, which implies that (B.2) has a unique positive root
𝐸∗
1 (𝑃

∗
1 , 𝑂

∗
1 , 𝑆

∗
1 , 𝑄

∗
1 , 𝑅

∗
1);

2) when R0 < 1, then 𝑆1 ⋅ 𝑆2 > 0, which implies that (B.2) either has
two positive roots 𝐸∗

21(𝑃
∗
21, 𝑂

∗
21, 𝑆

∗
21, 𝑄

∗
21, 𝑅

∗
21) and 𝐸∗

22(𝑃
∗
22, 𝑂

∗
22,

𝑆∗
22, 𝑄

∗
22, 𝑅

∗
22) or none.

This completes the proof of Theorem 2.2. □

Appendix C. The basic reproduction number R𝟎 of model (1.1)

Since the subpopulations with smoking behavior in model (1.1) are
𝑂(𝑡), 𝑆(𝑡), and 𝑄(𝑡), and the transitions from 𝑂(𝑡) to 𝑆(𝑡), from 𝑆(𝑡) to
(𝑡), and from 𝑄(𝑡) back to 𝑆(𝑡) are not considered as new smokers,

hen following the next generation matrix method [50], we have

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
𝛽𝑃𝑆
0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

and  =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛽𝑃𝑆 + 𝜇𝑃 − 𝛬
𝛼𝑂 + 𝜇𝑂

𝛾𝑆 + 𝜇𝑆 − 𝛼𝑂 − 𝜆𝑄𝑆
𝜆𝑄𝑆 + 𝜇𝑄 − 𝛾(1 − 𝛿)𝑆

𝜇𝑅 − 𝛾𝛿𝑆

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

hen there are no smoking populations, i.e., 𝑂(𝑡) = 𝑆(𝑡) = 𝑄(𝑡) = 0,
he non smoking equilibrium is 𝐸0 = (𝛬𝜇 , 0, 0, 0, 0)

𝑇 , and at 𝐸0 we have

F =

⎛

⎜

⎜

⎜

⎝

0 𝛽𝛬
𝜇 0

0 0 0
0 0 0

⎞

⎟

⎟

⎟

⎠

and V =
⎛

⎜

⎜

⎝

𝛼 + 𝜇 0 0
−𝛼 𝛾 + 𝜇 0
0 −𝛾(1 − 𝛿) 𝜇

⎞

⎟

⎟

⎠

.

Using F and V, it is straightforward to compute

V−1 =

⎛

⎜

⎜

⎜

⎜

⎝

1
𝛼+𝜇 0 0
𝛼

(𝛼+𝜇)(𝛾+𝜇)
1
𝛾+𝜇 0

𝛼𝛾(1−𝛿)
𝜇(𝛼+𝜇)(𝛾+𝜇)

𝛾(1−𝛿)
𝜇(𝛾+𝜇)

1
𝜇

⎞

⎟

⎟

⎟

⎟

⎠

and

FV−1 =

⎛

⎜

⎜

⎜

⎝

𝛼𝛽𝛬
𝜇(𝛼+𝜇)(𝛾+𝜇)

𝛽𝛬
𝜇(𝛾+𝜇) 0

0 0 0

0 0 0

⎞

⎟

⎟

⎟

⎠

.



Mathematical Biosciences 368 (2024) 109132S. Zhang et al.

T

o
s

𝐽

T

(

w
𝑘

𝑘

𝑘

𝑘

T
c
s

A

P
𝛽
i
f

𝐽

T
e

w
r

1

Thus the basic reproduction number of model (1.1) is

R0 = 𝜌(FV−1) =
𝛼𝛽𝛬

𝜇(𝛼 + 𝜇)(𝛾 + 𝜇)
,

where 𝜌(⋅) is the spectral radius of a matrix (⋅).

Appendix D. Proof of Theorem 2.3

Proof. For model (1.1), the Jacobian matrix evaluated at the smoke-
free equilibrium 𝐸0 is

𝐽 |𝐸0
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝜇 0 − 𝛽𝛬
𝜇 0 0

0 −𝛼 − 𝜇 𝛽𝛬
𝜇 0 0

0 𝛼 −𝛾 − 𝜇 0 0
0 0 𝛾(1 − 𝛿) −𝜇 0
0 0 𝛾𝛿 0 −𝜇

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The characteristic equation of 𝐽 |𝐸0
is

(𝜓 + 𝜇)3
[

𝜓2 + (𝛼 + 2𝜇 + 𝛾)𝜓 + (𝛼 + 𝜇)(𝜇 + 𝛾) −
𝛼𝛽𝛬
𝜇

]

= 0.

One of the eigenvalue of 𝐽 |𝐸0
is −𝜇 (triple root). To establish the

local asymptotic stability of smoke-free equilibrium 𝐸0, we need to
determine the characteristic roots of the equation

𝜓2 + (𝛼 + 2𝜇 + 𝛾)𝜓 + (𝛼 + 𝜇)(𝜇 + 𝛾) −
𝛼𝛽𝛬
𝜇

= 0. (D.1)

The discriminant of (D.1) is

𝛥 = (𝛼+2𝜇+𝛾)2−4
[

(𝛼+𝜇)(𝜇+𝛾)−
𝛼𝛽𝛬
𝜇

]

= (𝛼−𝛾)2+4(𝛼+𝜇)(𝜇+𝛾)R0 > 0.

Which implies that Eq. (D.1) has two real roots 𝜓1 and 𝜓2, where
R0 = 𝛼𝛽𝛬

𝜇(𝛼+𝜇)(𝛾+𝜇) . Further, it follows from the Vieta theorem [65] that
𝜓1+𝜓2 = −(𝛼+2𝜇+𝛾) < 0 and 𝜓1 ⋅𝜓2 = (𝛼+𝜇)(𝜇+𝛾)(1−R0). Therefore,
there are two scenarios:

(1) when R0 < 1, 𝜓1 ⋅ 𝜓2 > 0, where 𝜓1 < 0 and 𝜓2 < 0, then the
smoke-free equilibrium 𝐸0 is locally asymptotically stable;

(2) when R0 > 1, 𝜓1 ⋅𝜓2 < 0, which implies that there exists a positive
root and a negative root, then 𝐸0 losses stability.

This completes the proof of Theorem 2.3. □

Appendix E. Proof of Theorem 2.4

Proof. Based on the positively invariant region 𝛤 in Appendix A, we
can reduce model (1.1) to lower dimensions, resulting in the following
systems

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

d𝑂(𝑡)
d𝑡 = 𝛽

(

𝛬
𝜇 − 𝑂(𝑡) − 𝑆(𝑡) −𝑄(𝑡) − 𝑅(𝑡)

)

𝑆(𝑡) − 𝛼𝑂(𝑡) − 𝜇𝑂(𝑡),

d𝑆(𝑡)
d𝑡 = 𝛼𝑂(𝑡) + 𝜆𝑄(𝑡)𝑆(𝑡) − 𝛾𝑆(𝑡) − 𝜇𝑆(𝑡),

d𝑄(𝑡)
d𝑡 = 𝛾(1 − 𝛿)𝑆(𝑡) − 𝜆𝑄(𝑡)𝑆(𝑡) − 𝜇𝑄(𝑡),

d𝑅(𝑡)
d𝑡 = 𝛾𝛿𝑆(𝑡) − 𝜇𝑅(𝑡),

(E.1)

with positive initial value (𝑂(0), 𝑆(0), 𝑄(0), 𝑅(0))𝑇 ∈ R4
+. The system

(E.1) always has a zero solution, and to validate the global asymptotic
stability of the zero solution, we construct a 𝐂2-function as

𝑉 (𝑂,𝑆,𝑄,𝑅) = 𝓁1𝑂(𝑡) + 𝑆(𝑡) +𝑄(𝑡) + 𝑅(𝑡)

The total derivative of 𝑉 is
d𝑉
d𝑡

=𝓁1

[

𝛽
(𝛬
𝜇

− 𝑂 − 𝑆 −𝑄 − 𝑅
)

𝑆 − 𝛼𝑂 − 𝜇𝑂
]

+ 𝛼𝑂 − 𝜇𝑆 − 𝜇𝑄 − 𝜇𝑅

≤
(

𝓁1𝛽𝛬
𝜇

− 𝜇
)

𝑆 + [𝛼 − 𝓁1(𝛼 + 𝜇)]𝑂 − 𝜇𝑄 − 𝜇𝑅.

Let
{ 𝓁1𝛽𝛬

𝜇 − 𝜇 < 0,
⇒

𝛼
𝛼 + 𝜇

< 𝓁1 <
𝜇2

𝛽𝛬
,
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𝛼 − 𝓁1(𝛼 + 𝜇) < 0,
that is

R̃0 =
𝛼𝛽𝛬

𝜇2(𝛼 + 𝜇)
< 1.

hus, when R̃0 < 1, choosing 𝓁1 = 1
2 (

𝛼
𝛼+𝜇 + 𝜇2

𝛽𝛬 ), we have d𝑉
d𝑡 ≤ 0,

and when 𝑂 = 𝑆 = 𝑄 = 𝑅 = 0, we have d𝑉
d𝑡 = 0. It further follows

from the Routh–Hurwitz criteria that when R̃0 < 1, the zero solution
f system (E.1) is globally asymptotically stable. This indicates that the
moking-free equilibrium 𝐸0 of model (1.1) is globally asymptotically

stable. Hence, the proof of Theorem 2.4 is completed. □

Appendix F. Proof of Theorem 2.6

Proof. The Jacobian matrix of model (1.1) evaluated at the positive
equilibrium 𝐸∗(𝑃 ∗, 𝑂∗, 𝑆∗, 𝑄∗, 𝑅∗) is

|𝐸∗ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝛽𝑆∗ − 𝜇 0 −𝛽𝑃 ∗ 0 0
𝛽𝑆∗ −𝛼 − 𝜇 𝛽𝑃 ∗ 0 0
0 𝛼 𝜆𝑄∗ − 𝛾 − 𝜇 𝜆𝑆∗ 0
0 0 𝛾(1 − 𝛿) − 𝜆𝑄∗ −𝜆𝑆∗ − 𝜇 0
0 0 𝛾𝛿 0 −𝜇

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

he characteristic equation of 𝐽 |𝐸∗ is

𝜓 + 𝜇)(𝜓4 + 𝑘1𝜓3 + 𝑘2𝜓2 + 𝑘3𝜓 + 𝑘4) = 0,

here

1 =𝛾 + 4𝜇 + 𝜆𝑆∗ − 𝜆𝑄∗ + 𝛼 + 𝛽𝑆∗ > 0,

2 =𝜇(𝛾 + 𝜇 − 𝜆𝑄∗) + 𝜆𝑆∗(𝜇 + 𝛾𝛿) + (𝛼 + 𝛽𝑆∗ + 2𝜇)(𝛾 + 2𝜇 + 𝜆𝑆∗ − 𝜆𝑄∗)

+ (𝛽𝑆∗ + 𝜇)(𝛼 + 𝜇) − 𝛼𝛽𝑃 ∗,

3 =(𝛼 + 𝛽𝑆∗ + 2𝜇)[𝜇(𝛾 + 𝜇 − 𝜆𝑄∗) + 𝜆𝑆∗(𝜇 + 𝛾𝛿)] − 𝛼𝛽𝑃 ∗(𝜆𝑆∗ + 2𝜇)

+ (𝛽𝑆∗ + 𝜇)(𝛼 + 𝜇)(𝛾 + 2𝜇 + 𝜆𝑆∗ − 𝜆𝑄∗),

4 =(𝛽𝑆∗ + 𝜇)(𝛼 + 𝜇)[𝜇(𝛾 + 𝜇 − 𝜆𝑄∗) + 𝜆𝑆∗(𝜇 + 𝛾𝛿)] − 𝛼𝛽𝑃 ∗𝜇(𝜆𝑆∗ + 𝜇).

hus, it follows from the Routh–Hurwitz criteria [47] that 𝐸∗ is lo-
ally asymptotically stable provided the conditions of Theorem 2.6 are
atisfied. This completes the proof. □

ppendix G. Proof of Theorem 2.7

roof. It follows from Appendix F that when
̃= 𝜇(𝛼+𝜇)[𝜇(𝛾+𝜇−𝜆𝑄∗)+𝜆𝑆∗(𝜇+𝛾𝛿)]

𝛼𝜇𝑃 ∗(𝜆𝑆∗+𝜇)−𝑆∗(𝛼+𝜇)[𝜇(𝛾+𝜇−𝜆𝑄∗)+𝜆𝑆∗(𝜇+𝛾𝛿)] > 0, we have 𝑘4 = 0, which
mplies that the matrix 𝐽 |𝐸∗ has a zero eigenvalue. Thus we have the
ollowing modified matrix:

(𝐸∗, 𝛽) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝛽𝑆∗ − 𝜇 0 −𝛽𝑃 ∗ 0 0
𝛽𝑆∗ −𝛼 − 𝜇 𝛽𝑃 ∗ 0 0
0 𝛼 𝜆𝑄∗ − 𝛾 − 𝜇 𝜆𝑆∗ 0
0 0 𝛾(1 − 𝛿) − 𝜆𝑄∗ −𝜆𝑆∗ − 𝜇 0
0 0 𝛾𝛿 0 −𝜇

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

he eigenvectors of matrices 𝐽 (𝐸∗, 𝛽) and 𝐽𝑇 (𝐸∗, 𝛽) with respect to zero
igenroot is

𝐔 =

(

−
𝛽𝑃 ∗𝑢
𝛽𝑆∗ + 𝜇

,
𝜇𝛽𝑃 ∗𝑢

(𝛼 + 𝜇)(𝛽𝑆∗ + 𝜇)
, 𝑢,

𝛾(1 − 𝛿) − 𝜆𝑄∗

𝜆𝑆∗ + 𝜇
𝑢,

𝛾𝛿
𝜇
𝑢

)𝑇

,

𝐖 =

(

𝛽𝑆∗

𝛽𝑆∗ + 𝜇
𝑤, 𝑤,

𝛼 + 𝜇
𝛼

𝑤,
(𝛼 + 𝜇)𝜆𝑆∗

𝛼(𝜆𝑆∗ + 𝜇)
𝑤, 0

)𝑇

,

here 𝑢 and 𝑤 are two non-zero numbers. Then we have the following
esults:

. 𝐹𝛽 (𝑌 , 𝛽) = (−𝑃 (𝑡)𝑆(𝑡), 𝑃 (𝑡)𝑆(𝑡), 0, 0, 0)𝑇 , 𝐹𝛽 (𝐸∗, 𝛽) =
(−𝑃 ∗𝑆∗, 𝑃 ∗𝑆∗, 0, 0, 0)𝑇 and 𝐖𝑇 ⋅ 𝐹𝛽 (𝐸∗, 𝛽) = 𝜇𝑃 ∗𝑆∗𝑤

𝛽𝑆∗+𝜇
≠ 0. By

Sotomayor’s theorem [48], we obtain that both the transcritical
bifurcation and pitchfork bifurcation are nonexistent.
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2. When (2.2) holds, then 𝐖𝑇 ⋅
(

𝐷2𝐹𝛽 (𝐸∗, 𝛽)(𝑈,𝑈 )
)

=

2𝜇𝑢2𝑤
(

𝜆(𝛼+𝜇)[𝛾(1−𝛿)−𝜆𝑄∗]
𝛼(𝜆𝑆∗+𝜇)2 − 𝛽2𝑃 ∗

(𝛽𝑆∗+𝜇)2

)

≠ 0. Using Sotomayor’s the-
orem [48], we can verify that model (1.1) undergoes a saddle–
node bifurcation when the parameter 𝛽 crosses threshold value
𝛽 = 𝛽.

his completes the proof of Theorem 2.7. □

ppendix H. Proof of Theorem 3.1

roof. Since the coefficients of model (1.2) satisfy the local Lipschitz
onditions, then for any given positive initial value (𝑃 (0), 𝑂(0), 𝑆(0),
(0), 𝑅(0))𝑇 , the model admits a unique local solution 𝑃 (𝑡), 𝑂(𝑡), 𝑆(𝑡),
(𝑡), 𝑅(𝑡)𝑇 ∈ R5

+ on 0 ≤ 𝑡 < 𝜏𝑒 a.s., where 𝜏𝑒 denotes the explosion
ime. In order to establish the global property of the solution, we only
eed to verify 𝜏𝑒 = ∞ a.s. To do so, let 𝑚0 ≥ 1 be sufficiently large such

that 𝑃 (0), 𝑂(0), 𝑆(0), 𝑄(0) and 𝑅(0) lie within [ 1
𝑚0
, 𝑚0]. For any integer

𝑚 ≥ 𝑚0, we define the following stopping time

𝜏𝑚 = inf
{

𝑡 ∈ [0, 𝜏𝑒) ∶ min{𝑃 (𝑡), 𝑂(𝑡), 𝑆(𝑡), 𝑄(𝑡), 𝑅(𝑡)} ≤ 1
𝑚

or max{𝑃 (𝑡), 𝑂(𝑡), 𝑆(𝑡), 𝑄(𝑡), 𝑅(𝑡)} ≥ 𝑚
}

.

We consider inf ∅ = ∞ (generally, ∅ is the empty set). It follows from
the definition that 𝜏𝑚 is increasing as 𝑚 → ∞. Let 𝜏∞ = lim𝑚→∞ 𝜏𝑚,
obviously 𝜏∞ ≤ 𝜏𝑒 a.s. When 𝜏∞ = ∞ a.s. holds, then 𝜏𝑒 = ∞ a.s. and
(𝑃 (𝑡), 𝑂(𝑡), 𝑆(𝑡), 𝑄(𝑡), 𝑅(𝑡))𝑇 ∈ R5

+ a.s. for all 𝑡 ≥ 0. To proceed with the
proof by contradiction, we assume that 𝜏∞ = ∞ a.s. is false, then there
exist two values  > 0 and 𝜀 ∈ (0, 1) satisfying

P{𝜏∞ ≤  } > 𝜀.

Then there is an integer 𝑚1 ≥ 𝑚0 such that

P{𝜏𝑚 ≤  } ≥ 𝜀 for any 𝑚 ≥ 𝑚1.

Further, we define a non-negative 𝐂2-function 𝑉 (𝑃 ,𝑂, 𝑆,𝑄,𝑅) as

𝑉 (𝑃 ,𝑂, 𝑆,𝑄,𝑅) =
[

𝑃 −
𝜇
2𝛽

−
𝜇
2𝛽

ln 𝑃
( 𝜇
2𝛽
)

]

+ (𝑂 − 1 − ln𝑂) + (𝑆 − 1 − ln𝑆)

+
[

𝑄 −
𝜇
2𝜆

−
𝜇
2𝜆

ln 𝑄
( 𝜇
2𝜆
)

]

+ (𝑅 − 1 − ln𝑅).

Using the Itô’s formula [52] to 𝑉 (𝑃 ,𝑂, 𝑆,𝑄,𝑅), we have

d𝑉 (𝑃 ,𝑂, 𝑆,𝑄,𝑅) =𝑉 (𝑃 ,𝑂, 𝑆,𝑄,𝑅)d𝑡 + 𝜎1
(

𝑃 −
𝜇
2𝛽

)

d𝐵1(𝑡) + 𝜎2(𝑂 − 1)d𝐵2(𝑡)

+ 𝜎3(𝑆 − 1)d𝐵3(𝑡) + 𝜎4
(

𝑄 −
𝜇
2𝜆

)

d𝐵4(𝑡) + 𝜎5(𝑅 − 1)d𝐵5(𝑡),

where 𝑉 (𝑃 ,𝑂, 𝑆,𝑄,𝑅) ∶ R5
+ → R is described as

𝑉 =
(

1 −
𝜇

2𝛽𝑃

)

(𝛬 − 𝛽𝑃𝑆 − 𝜇𝑃 ) +
𝜇𝜎21
4𝛽

+
(

1 − 1
𝑂

)

(𝛽𝑃𝑆 − 𝛼𝑂 − 𝜇𝑂) +
𝜎22
2

+
(

1 − 1
𝑆

)

(𝛼𝑂 + 𝜆𝑄𝑆 − 𝛾𝑆 − 𝜇𝑆) +
𝜎23
2

+
(

1 −
𝜇

2𝜆𝑄

)

[𝛾(1 − 𝛿)𝑆 − 𝜆𝑄𝑆 − 𝜇𝑄] +
𝜇𝜎24
4𝜆

+
(

1 − 1
𝑅

)

(𝛾𝛿𝑆 − 𝜇𝑅) +
𝜎25
2

=𝛬 − 𝛽𝑃𝑆 − 𝜇𝑃 −
𝛬𝜇
2𝛽𝑃

+
𝜇𝑆
2

+
𝜇2

2𝛽
+
𝜇𝜎21
4𝛽

+ 𝛽𝑃𝑆 − 𝛼𝑂 − 𝜇𝑂 −
𝛽𝑃𝑆
𝑂

+ 𝛼 + 𝜇 +
𝜎22
2

+ 𝛼𝑂 + 𝜆𝑄𝑆 − 𝛾𝑆 − 𝜇𝑆 − 𝛼𝑂
𝑆

− 𝜆𝑄 + 𝛾

+ 𝜇 +
𝜎23
2

+ 𝛾(1 − 𝛿)𝑆 − 𝜆𝑄𝑆 − 𝜇𝑄

−
𝜇𝛾(1 − 𝛿)𝑆

2𝜆𝑄
+
𝜇𝑆
2

+
𝜇2

2𝜆
+
𝜇𝜎24
4𝜆

+ 𝛾𝛿𝑆 − 𝜇𝑅 −
𝛾𝛿𝑆
𝑅

+ 𝜇 +
𝜎25
2

=𝛬 +
𝜇2

+
𝜇𝜎21 + 𝛼 + 𝜇 +

𝜎22 + 𝛾 + 𝜇 +
𝜎23 +

𝜇2
+
𝜇𝜎24 + 𝜇 +

𝜎25
14

2𝛽 4𝛽 2 2 2𝜆 4𝜆 2
+ (−𝛽𝑃𝑆 + 𝛽𝑃𝑆) +
(𝜇𝑆

2
− 𝜇𝑆 +

𝜇𝑆
2

)

+ (−𝛼𝑂 + 𝛼𝑂)

+ (𝜆𝑄𝑆 − 𝜆𝑄𝑆) +
(

−𝛾𝑆 + 𝛾(1 − 𝛿)𝑆 + 𝛾𝛿𝑆
)

+
(

−𝜇𝑃 −
𝛬𝜇
2𝛽𝑃

− 𝜇𝑂 −
𝛽𝑃𝑆
𝑂

− 𝛼𝑂
𝑆

− 𝜆𝑄 − 𝜇𝑄 −
𝜇𝛾(1 − 𝛿)𝑆

2𝜆𝑄
− 𝜇𝑅 −

𝛾𝛿𝑆
𝑅

)

≤𝛬 +
𝜇2

2𝛽
+
𝜇𝜎21
4𝛽

+ 𝛼 + 𝜇 +
𝜎22
2

+ 𝛾 + 𝜇 +
𝜎23
2

+
𝜇2

2𝜆
+
𝜇𝜎24
4𝜆

+ 𝜇 +
𝜎25
2

∶=𝐾.

Here, 𝐾 is a positive constant independent of the variables 𝑃 , 𝑂, 𝑆, 𝑄,
and 𝑅. The remaining steps of the proof, following a similar approach
to that of [66, Theorem 3.1], are omitted here, thereby completing the
proof of Theorem 3.1. □

Appendix I. Proof of Theorem 3.2

Proof. Let 𝑁(𝑡) = 𝑃 (𝑡) +𝑂(𝑡) +𝑆(𝑡) +𝑄(𝑡) +𝑅(𝑡), using the equations of
model (1.2), we obtain

⎧

⎪

⎨

⎪

⎩

d𝑁(𝑡) = [𝛬 − 𝜇𝑁(𝑡)]d𝑡 + 𝜎1𝑃 (𝑡)d𝐵1(𝑡) + 𝜎2𝑂(𝑡)d𝐵2(𝑡)
+𝜎3𝑆(𝑡)d𝐵3(𝑡) + 𝜎4𝑄(𝑡)d𝐵4(𝑡) + 𝜎5𝑆(𝑡)d𝐵5(𝑡),

𝑁(0) = 𝑃 (0) + 𝑂(0) + 𝑆(0) +𝑄(0) + 𝑅(0).

he solution of 𝑁(𝑡) is given by

(𝑡) = 𝑁(0)𝑒−𝜇𝑡 + 𝛬
𝜇

− 𝛬
𝜇
𝑒−𝜇𝑡 +(𝑡), (I.1)

where (𝑡) = ∫ 𝑡0 𝑒
−𝜇(𝑡−𝜃)[𝜎1𝑃 (𝜃)d𝐵1(𝜃) + 𝜎2𝑂(𝜃)d𝐵2(𝜃) + 𝜎3𝑆(𝜃)d𝐵3(𝜃) +

𝜎4𝑄(𝜃)d𝐵4(𝜃) + 𝜎5𝑆(𝜃)d𝐵5(𝜃)] is a locally continuous martingale with
(0) = 0. In addition, Eq. (I.1) can be rewritten as

𝑁(𝑡) = 𝑁(0) + 𝐴(𝑡) − 𝐵(𝑡) +(𝑡),

here 𝐴(𝑡) = 𝛬
𝜇

(

1−𝑒−𝜇𝑡
)

and 𝐵(𝑡) = 𝑁(0)
(

1−𝑒−𝜇𝑡
)

. Obviously, when 𝑡 ≥
0, 𝐴(𝑡) and 𝐵(𝑡) are two continuous bounded increasing processes with
(0) = 𝐵(0) = 0. By [52, Theorem 1.3.9], we deduce that lim𝑡→∞𝑁(𝑡)
xists and is finite a.s., thereby confirming the validity of (3.1). Thus,
he proof is completed. □
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