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Abstract

This paper presents Part I of a two-part series on studying the long-term coexistence states of stochas-
tic generalized Kolmogorov systems with small diffusion. Part I establishes a mathematical framework 
for approximating the invariant probability measures (IPMs) and density functions (IPDFs) of these sys-
tems, while Part II will focus on analyzing their non-autonomous periodic counterparts. Compared with 
the existing approximation methods available only for systems with non-degenerate linear diffusion, this 
paper introduces two new and easily implementable approximation methods, the log-normal approxima-
tion (LNA) and updated normal approximation (uNA), which can be used for systems with not only 
non-degenerate but also degenerate diffusion. Moreover, we utilize the Kolmogorov-Fokker-Planck (KFP) 
operator and matrix algebra to develop algorithms for calculating the associated covariance matrix and ver-
ifying its positive definiteness. Our new approximation methods exhibit good accuracy in approximating 
the IPM and IPDF at both local and global levels, and significantly relaxes the minimal criteria for positive 
definiteness of the solution of the continuous-type Lyapunov equation. We demonstrate the utility of our 
methods in several application examples from biology and ecology.
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1. Introduction

Kolmogorov systems are a class of deterministic systems to characterize the dynamics of in-
teracting populations and have been widely employed in biological and ecological modeling [1]. 
However, most real processes are subject to small noise perturbations from environmental factors 
or intrinsic uncertainties, and it is shown that such small perturbations could have a great impact 
on the dynamics of these processes [13–16,56]. Thus, investigating stochastic Kolmogorov sys-
tems with small perturbations is significant to capture the asymptotic behavior of the underlying 
process. A general form of an n-dimensional stochastic Kolmogorov system of Itô type can be 
expressed as follows:

dxi(t)= xi(t)bi(x1(t), ..., xn(t))dt + xi(t)σi(x1(t), ..., xn(t))dWi(t), i = 1, ..., n, (1.1)

where W1(·), ..., Wn(·) is n independent real-valued Brownian motions. The formulation in (1.1)
covers some common dynamical systems in the literature, such as phytoplankton-zooplankton 
models, Lotka-Volterra population models, and vegetation models [23,60], etc.

A long-standing central issue pertaining to Kolmogorov system is: Under what conditions 
can interacting populations coexist stably [2]? For deterministic models, it can be well addressed 
through asymptotic stability of the positive equilibrium state. However, such positive equilibrium 
may not exist in stochastic settings [11]. Instead, analyzing asymptotic stability in distribution
(ASD) [3] is relatively applicable in stochastic systems, including the existence and uniqueness 
of an invariant probability measure (IPM) [12]. Two common approaches to investigate ASD 
are: (i) Lyapunov functional method [4–7] and (ii) a combination of Lyapunov exponents and 
the tightness of random occupation measures [8–10]. In recent decades, variants of Kolmogorov 
systems with regard to ASD have been also studied, such as chemostat models [2,61], nutrient-
plankton systems [74], and epidemic models [64–67].

In this paper, we consider a generalized stochastic Kolmogorov system with small noise per-
turbations as follows:⎧⎪⎨⎪⎩dXε,i(t)= fi(Xε(t))dt + √

εXε,i(t)
N∑
j=1

gij (Xε(t))dWj (t), i = 1, ..., n,

Xε(0)= x0

(1.2)

taking values in (0, ∞)n := Rn+, where Xε(t) = (Xε,1(t), ..., Xε,n(t))
�
t≥0 (the superscript “�” 

stands for the transpose), ε > 0 is a small parameter, and (W1(t), ..., WN(t))
� := W(t) is an N -

dimensional standard Brownian motions. f = (fi) is a vector field on Rn+, called the drift field; 
Gc = (xigij ) is an n ×N matrix-valued function on Rn+, called the Kolmogorov noise matrix.

In addition to the existence of IPMs, a complete characterization of the coexistence state in 
practice also necessitates its invariant probability density function (IPDF), which is the funda-
mental solution of the stationary Kolmogorov–Fokker–Planck (KFP) equation. In particular, the 
KFP equation of the IPDF �ε(·) associated with system (1.2) is
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 = −

n∑
i=1

∂i
(
fi(x)�ε(x)

)+ ε

2

n∑
i,j=1

∂2
ij

(
gcij (x)�ε(x)

)
:= Lε�ε(x), ∀ x ∈Rn+,
�ε(x)≥ 0,

∫
Rn+ �ε(x)dx = 1,

(1.3)

where ∂i = ∂
∂xi

, ∂2
ij = ∂2

∂xi∂xj
, (gcij )n×n = GcG

�
c is the diffusion matrix, and Lε is the KFP 

operator.
To understand quantitatively the impact of noises on coexistence behavior of stochastic mod-

els, the IPMs and KFP equations, especially with small diffusion, have attracted much attention 
in the past decades. The associated analysis is carried out through several aspects including ex-
istence [21], noise-vanishing behavior (e.g., [17,18]) and quantification of concentration (e.g., 
[19,20]), etc. However, there have been virtually no investigations concerning the explicit ex-
pression of IPDF in the literature yet. This is likely due to the lack of available techniques and 
systematic treatments for solving KFP equations. There are a few exceptions, such as the study 
of one-dimensional ecological models [22–24] and Gibbs density of gradient system [25,26], but 
these models are relatively simple. In fact, most stochastic systems (in particular, Kolmogorov 
type) modeled by the continuous-time processes are complex and highly nonlinear [27], mak-
ing the solving of KFP equations challenging. Therefore, numerical schemes or approximation 
techniques are often used as viable alternatives.

A few numerical schemes for IPMs have been proposed such as the truncated Euler–
Maruyama (EM) method [28,29] for diffusion systems, Wong–Zakai approximation [30] for 
dissipative periodic equations, and the newly modified EM scheme [31,32] for switching dif-
fusion systems. Although these numerical schemes have shown their abilities to approximate the 
IPMs, one limitation is that the approximate expressions of their IPDFs cannot be obtained. Re-
cently, resurgent effort has been devoted to solving KFP equations by Monte Carlo simulation 
and numerical PDE method [33–35,40,50]. However, such techniques are almost unavailable for 
(1.2) due to two reasons. First, (1.2) is defined on Rn+ (i.e., an unbounded domain) and does not 
satisfy the usual “dissipation” conditions [44]; thus, the boundary condition of a discretized KFP 
equation is not determined. Second, computing the eigenfunction of the KFP operator is quite 
challenging. Unlike the aforementioned numerical approaches, an interesting new routine is to 
consider special continuous probability distributions to approximate IPMs [15], and the follow-
ing expressions of IPDFs can then be explicitly approximated. Our study in this paper adopts this 
idea.

Inspired by the analysis of gradient systems, a classical assumption is that IPM of (1.2) can 
be approximated by a Gibbs measure, i.e., the IPDF �ε(x) satisfies

�ε(x)≈
1

K
e−

Q(x)
ε , x ∈Rn+,

where Q(x) represents the quasi-potential function [26,36,37], and K = ∫Rn+ e
−Q(x)

ε dx. How-
ever, this assumption is difficult to verify due to the high regularity requirements of Q(x), even 
in some simple cases [38,39]. Li et al. [56] reinitiated the study by adding small perturbations 
to a biochemical system with a unique stable equilibrium x∗. They suggested that under non-
degenerate diffusion (i.e., the diffusion matrix ℵ is positive definite), the IPM near x∗ may be 
approximately normally distributed, and the covariance matrix � satisfies the continuous-type 
Lyapunov equation ��� + �� + ℵ = O (
c(�, � , ℵ) = O for short), where O denotes zero 
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matrix. Zhou et al. [41] further developed their work and proposed a newly developed normal 
approximation method. Then approximate expressions of the local IPDFs for some low dimen-
sions (≤ 5) stochastic epidemic models have been obtained [42,45–48]. These studies rely on the 
analysis of the “standard L0-algebraic equation”, see [41, Lemma 3] and [46, Lemma 3.1]. Then 
by superposition principle, the explicit form of � and its positive definiteness can be determined.

It should be noted that the associated study from special epidemic models to that of system 
(1.2) requires a big leap. Specifically,

(a) By Routh–Hurwitz criterion, a well-known result for Lyaunov equation 
c(�, � , ℵ) = O is 
that � is positive definite if all eigenvalues of � are of negative real part and ℵ is pos-
itive definite [49]. However, such property of � is unknown under degenerate diffusion 
(i.e., ℵ is positive semi-definite). Moreover, degenerate diffusion is ubiquitous in stochastic 
modeling such as distributed delays [5,51–53], dependent Brownian motions [57–59] and 
Ornstein–Uhlenbeck processes [54,55,62]. Thus in this case, when using the existing nor-
mal approximation method, � should be required to be positive definite to obtain an explicit 
approximate form for the joint marginal density of some subpopulations. In fact, existing 
works on normal approximations are only established under non-degenerate diffusion.

(b) Although the newly developed normal approximation method has some potential to verify 
the positive definiteness of � under degenerate diffusion, there are two main restrictions 
to its application. Firstly, the analysis of standard L0-algebraic equation is limited to the 
positive definiteness of solutions, which is computed directly (e.g., [46, Appendix B]) and 
can become increasingly challenging as the equation’s dimension increases. The complete 
characterization of the solution of n-dimensional standard L0-algebraic equation remains 
a challenging issue. Secondly, this normal approximation method requires that at least one 
Lyapunov sub-equation can be transformed into standard L0-algebraic equation. Otherwise, 
additional conditions are needed to verify the positive definiteness of � (see [45,47,48]).

(c) The current normal approximation methods provide only local approximations for IPDF 
around a quasi-positive equilibrium, and the approximation accuracy is unknown. A natural 
extension is to investigate whether it has a good global fitting ability for IPDF. Furthermore, 
the corresponding error estimates and approximate level for KFP equation have not been 
explored yet.

(d) In some stochastic risk-adjusted volatility models, IPM exhibits long right tails, as shown 
in [28, Fig. 4]. According to the Freidlin-Wentzell theory [40], the tails of the probability 
distribution are non-negligible, which implies that normal approximation methods are not 
applicable. Therefore, new approximation methods and techniques are required to analyze 
skewed IPMs.

These challenges motivate our current work. Our aim is to provide unified approximation 
algorithms for the IPM of stochastic generalized Kolmogorov system (i.e., (1.2)) and to derive 
an approximate expression for the IPDF. To address the issue of degenerate diffusion, we need 
to focus on the fundamental properties of the general standard L0-algebraic equation, including 
the structure of the eigenpolynomial and the positive definiteness of the solution. The relevant 
analysis is highly challenging as the eigenvalues have to be treated in a complex field. We try to 
solve it with the help of both the residue theorem and ideas from linear control theory. Although 
the generalized Kolmogorov-type equation (1.2) is more general and realistic, the study of large-
scale approximations for IPDF is much more challenging. To obtain the positive definiteness 
of the covariance matrix in approximation algorithms under degenerate diffusion, we need to 
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transform each sub-equation into an equivalent form with a higher-dimensional standard L0-
algebraic equation structure.

Our main contributions are as follows:

• We develop two easily implementable explicit approaches for approximating the IPM and 
IPDF of system (1.2) in both local and global horizons: (i) log-normal approximation (LNA) 
for right-skewed measure, and (ii) updated normal approximation (uNA) for roughly sym-
metrical measure. Combining Lyapunov functional method, convergence results in the mean 
sense are established, and the asymptotic behavior of (1.2) around the positive equilibrium 
of f is studied.

• New theoretical algorithms for calculating the expression of the covariance matrix of LNA 
(or uNA) are derived. A novelty of these algorithms is that its positive definiteness can be 
verified simultaneously. Moreover, two modified approximation algorithms are provided un-
der slightly complex diffusions. It should be mentioned that the matrix transformations we 
adopted are different from those of the classical command “lyap(·, ·)” in MATLAB software 
[43], and have some excellent features such as wider applicability and cheaper computational 
cost; see Remark 3.

• A complete characterization for general standard L0-algebraic equation is presented. The 
maximal error bounds of the difference between the IPDF of (1.2) and the approximate form 
obtained from our algorithms in the sense of the KFP equation are calculated.

• As corollaries of our main theorems, the classical conditions for ensuring positive defi-
niteness of the solution of general Lyapunov equation 
c(�, � , ℵ) = O by using Routh–
Hurwitz criterion are substantially relaxed. Furthermore, we demonstrate the utility in several 
application examples arising in biology and ecology.

The rest of the paper is organized as follows. Section 2 is a preliminary section, where we 
present mathematical definitions, notations as well as important properties for standard L0-
algebraic equations. Section 3 gives a complete framework of LNA approach for the IPM and 
IPDF of (1.2), including basic formulation, explicit theoretical algorithms, and the approximate 
effect in local and large-scale ranges. The corresponding framework of uNA approach is devel-
oped in Section 4. Section 5 provides several applications of our main results. Finally, we present 
the proofs of some key auxiliary lemmas and propositions in the Appendix.

2. Preliminaries

Throughout this paper, let {�, F , {Ft}t≥0, P } be a complete filtered probability space with 
{Ft }t≥0 satisfying the usual conditions (i.e., it is right continuous and increasing while F0 con-
tains all P -null sets) [63], and E denotes the expectation corresponding to P ; W(t) is adapted to 
{Ft }t≥0. A glossary of notations used in this paper is shown in Table 1.

Below we introduce the Routh–Hurwitz criterion (Lemma 2.1) and a simple conclusion for 
the Lyapunov equation (Lemma 2.2).

Lemma 2.1. ([49]) Let ψA(λ) = λl +∑l
i=1 aiλ

l−i (with λ defined in complex field), then A ∈
RH(l) if and only if |H (k)

l,A | > 0 for any k ∈ S0
l , where Hl,A is the l-dimensional Hurwitz matrix 

defined by
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Table 1
A glossary of symbols and notations.

C2(Rn+;R+)b set of all Rn+-valued nonnegative functions V (x) which are continuously twice differentiable 
in x

| · | the Euclidean norm (or determinant of a matrix)
L the classical Itô’s operator
δ∗(·) the Dirac measure
ln X := (lnX1, ..., lnXl)�, where X = (X1, ..., Xl)�
a〈l〉 subvector formed by the first l part of vector a
A−1 inverse matrix of A
A� transpose of A
Il l-dimensional identity matrix
A(k) (or a(k)) submatrix formed by the first k × k part of matrix A (or the kth element of vector a)
A[k] submatirx of the first k row of matrix A
Ol,q (or Ol )

a l × q (or l × l)-dimensional zero matrix
Sk
l

b index set {k+ 1, k+ 2, ..., l} (−1 ≤ k ≤ l)

A� B A −B is a positive definite matrix
A� B A −B is positive definite or positive semidefinite matrix
RH(l) := {A ∈Rl×l | A has eigenvalues with all negative real components}
S (l) set of all l-dimensional standard kl matrices in Definition 2.1
U(l) set of all l-dimensional nonsingular upper triangular matrices
Uq (l) set of all l-dimensional upper Hurwitz–Hessenberg matrices in Definition 2.2
ψA(·) the eigenpolynomial of matrix A
Hl,A l-dimensional Hurwitz matrix (see Lemma 2.1) of ψA(·)

c(�,� ,ℵ)=O the continuous-type Lyapunov equation ��� + �� + ℵ =O, where � is real symmetric
el := (1, 0, 0, ..., 0)� ∈Rlb

βl := (0, 0, ..., 0, 1) ∈R1×l
�l,k := diag{0,0, ...,0︸ ︷︷ ︸

k−1 term

, 1, 0, ..., 0} ∈Rl×l

a If there is no ambiguity in theoretical derivation, Ol,q (or Ol ) can be simplified as O.
b Rl+ = (0, ∞)l := {(x1, ..., xl)� ∈Rl |xi > 0, ∀ i ∈ S0

l
}; R+ = [0, ∞); Sl

l
= ∅; Rl :=Rl×1.

Hl,A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a1 a3 a5 · · · a2l−3 a2l−1
1 a2 a4 · · · a2l−4 a2l−2
0 a1 a3 · · · a2l−5 a2l−3
0 1 a2 · · · a2l−6 a2l−4
...

...
... . .

. ...
...

0 0 0 · · · al−2 al

⎞⎟⎟⎟⎟⎟⎟⎟⎠
with aj = 0 if j > l.

Lemma 2.2. ([49]) For any given matrix A ∈ Rl×l , if all the eigenvalues si of A satisfy si +
sj �= 0 (∀ i, j ∈ S0

l ), then for any D ∈ Rl×l , there is a unique matrix B satisfying the equation 

c(B, A, D) = O.

To obtain the desired results, two necessary mathematical definitions are shown.

Definition 2.1. D is called an l-dimensional standard kl matrix if D ∈ RH(l) and it takes the
form
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D =
(−d〈l−1〉 −dl

Il−1 O

)
,

where d = (d1, d2, ..., dl).

Definition 2.2. C = (cij )l×l is called an l-dimensional upper Hurwitz–Hessenberg matrix if C ∈
RH(l) and it satisfies ci+1,i �= 0 and cji = 0 for any i ∈ S0

l−1; j ∈ Si+1
l .

Remark 1. By Lemma 2.1 and Definition 2.1, a consequence of D ∈ S (l) is that d� ∈ Rl+. If 
l = 1, then D ∈ S (1) if and only if D = (−d1) with d1 > 0. Thus, Uq(1) = S (1).

In fact, standard L0-algebraic equation is a special class of Lyapunov equation 
c(�, α, ℵ) =
O with α ∈ S (k) and ℵ = �k,1 (k = 1, 2, ...).

Proposition 2.1. Consider the following l-dimensional standard L0-algebraic equation


c(
l,A,�l,1)= O, (2.1)

where A ∈ S (l). Then

(i) (Positive definiteness) 
l is unique and 
l �O.
(ii) (Expression) 
l is of the following form:


l =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ1 0 −θ2 0 θ3 · · ·
0 θ2 0 −θ3 · · · . .

.

−θ2 0 θ3 · · · . .
.

0

0 −θ3 · · · . .
.

0 −θl−1

θ3 · · · . .
.

0 θl−1 0
... . .

.
0 −θl−1 0 θl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.2)

where (θ1, −θ2, ..., (−1)l−1θl)
� := θ is determined by equation Hl,Aθ = 1

2 el , and θ ∈ Rl+. 
In particular, if all the roots λj (j ∈ S0

l ) of equation ψA(λ) = 0 are simple, then

θk = (−1)l−k
l∑

i=1

λ
2(l−k)
i

ψ ′
A(λi)ψA(−λi)

, ∀ k ∈ S0
l . (2.3)

(iii) (Determinant)

|
l | =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ2
ol

2a2
l−1al

, for odd l,

ϕ2
el

4a2 a
, for even l,
l−1 l
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where al =ψA(0), al−1 =ψ ′
A(0), and

ϕol =

∣∣∣∣∣∣∣∣
θ1 · · · (−1)[ l+1

2 ]θ[ l−1
2 ]

...
. . .

...

(−1)[ l+1
2 ]θ[ l−1

2 ] · · · (−1)l−1θl−2

∣∣∣∣∣∣∣∣ ,

ϕel =

∣∣∣∣∣∣∣∣
−θ2 · · · (−1)[ l2 ]+1θ[ l2 ]
...

. . .
...

(−1)[ l2 ]+1θ[ l2 ] · · · (−1)l−1θl−2

∣∣∣∣∣∣∣∣ ,
with [·] denoting the bracket function.

Proposition 2.2. For any matrix C ∈ Uq(l), let M� = ((β lC
l−1)�, (β lCl−2)�, ..., β�

l ), then 
M ∈ U(l) and MCM−1 ∈ S (l).

The proofs of the above propositions are collected in Appendices A and B.
We impose the following assumptions for system (1.2).

Assumption 2.1. The following conditions hold:

(1) For any x0 ∈ Rn+ and ε > 0, system (1.2) has a unique solution Xε(t) on t ≥ 0 and the 
solution will remain in Rn+ with probability 1 (a.s.).

(2) There exists ε0 > 0 such that for each ε ∈ (0, ε0), system (1.2) has a unique IPM με on Rn+, 
with its IPDF �ε(·) determined by (1.3).

Assumption 2.2. Some of the following conditions hold:

(a) The matrix (gij (x))n×N(gij (x))�n×N � O for any x ∈Rn+. Furthermore, there is ε1 > 0 such 

that for any ε ∈ [0, ε1), equations F(x) = 0 have a unique solution X
∗
ε := (X

∗
ε,1, ..., X

∗
ε,n)

� ∈
Rn+, and the matrix ( ∂Fi(x)

∂(lnxj )
)n×n at x = X

∗
ε belongs to RH(n), where F(x) = (F1(x), ...,

Fn(x))� with

Fi(x)= fi(x)
xi

− ε

2

N∑
j=1

g2
ij (x).

(b) There is an a > 0 and a function V (·) ∈ C2(Rn+; R+) satisfying

LV (Xε(t))≤ −a∣∣Xε(t)− X∗∣∣2 + κ(ε), (2.4)

where X∗ is the unique root of f (x) = 0 on Rn+, κ(ε) > 0 is a continuous function satisfying 
lim κ(ε) = 0.

ε→0
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(c) The diffusion matrix GcG
�
c � O for any x ∈ Rn+. In addition, the matrix ( ∂fi(x)

∂(xj )
)n×n at 

x = X∗ belongs to RH(n).

Remark 2. Assumption 2.2(b) ensures that the solution of (1.2) will oscillate around X∗ under 
some small diffusions. In particular, if further the function V is positive-definite decrescent ra-
dially unbounded, then X∗ is stochastically asymptotically stable in the large; see [63]. We need 
Assumption 2.2(a) (resp., (c)) to guarantee that our LNA (resp., uNA) method can be carried out 
for approximating the IPM με and its IPDF �ε(·). Both Assumptions 2.2(a) and (c) imply that 
our approximation methods can work in non-degenerate diffusion.

3. Log-normal approximation (LNA) for IPDF

This section is devoted to providing a LNA method to approximate με and �ε(·).

3.1. Main transformations of (1.2)

We first consider the logarithmic transformation of (1.2), i.e.,⎧⎪⎨⎪⎩d(lnXε,i(t))= Fi(Xε(t))dt + √
ε

N∑
j=1

gij (Xε(t))dWj (t), i ∈ S0
n,

Xε(0)= x ∈ Rn+.
(3.1)

Under Assumption 2.2(a), we can define a quasi-positive equilibrium X
∗
ε , which uniquely satis-

fies the equation F(x) = 0. By calculation,

lim
ε→0+ X

∗
ε = X∗. (3.2)

This implies that X
∗
ε is biologically reasonable assumptions involved in the stochasticity. Then 

the linearized equation of the solution lnXε(t) of (3.1) around ln X
∗
ε is as follows:

dYε(t)=
( ∂Fi(x)
∂(lnxj )

)
n×n
∣∣
x=X

∗
ε
Yε(t)dt + √

ε(gij (X
∗
ε ))n×NdW(t)

:=BεYε(t)dt + √
εΘεdW(t), (3.3)

where the initial value Yε(0) = ln x0 − ln X
∗
ε .

Let λ+
k (k ∈ S0

ξ ) be all the nonzero eigenvalues of ΘεΘ
�
ε . As in Assumption 2.2(a), we have 

λ+
k > 0, ∀ k ∈ S0

ξ . Thus, there exists an orthogonal matrix Gε such that

Gε(ΘεΘ
�
ε )G�

ε =
ξ∑

k=1

λ+
k �n,φk , (3.4)

where 1 ≤ φi < φj ≤ n, ∀ i < j . Obviously, ξ = rank(ΘεΘ
�).
ε
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3.2. Local approximation-I

Let φ = {φ1, ..., φξ } and Aε = GεBεG−1
ε .

Theorem 3.1. Under Assumptions 2.1 and 2.2(a), the IPM με around X
∗
ε is approximated by a 

log-normal distribution LNn(ln X
∗
ε , �ε) (with �ε(·) denoting its density), where

�ε = εG�
ε

( ξ∑
k=1

λ+
k �φk,ε

)
Gε, (3.5)

with �φk,ε obtained by Algorithm 1. Moreover, for any constant vector X = (X1, ..., Xn)
� ∈ Rn, 

the following assertion holds:

X��εX ≥ ρε

ξ∑
k=1

(
Y 2
φk

+
ηk∑
j=2

(H(j)
φk,j

)2
)
, (3.6)

where Y = GεX := (Y1, ..., Yn)�, ρε > 0 is defined in (3.35), and Hφk,j =[∏j−1
i=0 (Q

−1
φk,i

)�Pφk,i
]
JφkY, with ηk , Jφk , Pφk,i and Qφk,i shown in Algorithm 1.

Proof. It is readily seen that system (3.3) has a unique explicit solution

Yε(t)= eBεtYε(0)+ √
ε

t∫
0

eBε(t−τ)ΘεdW(τ ).

Note that Θε is a constant matrix, by a standard argument [63,68], 
√
ε
∫ t

0 e
Bε(t−τ)ΘεdW(τ )

follows a Gaussian distribution Nn(0, �(t)) with

�(t)= ε

t∫
0

eBε(t−τ)ΘεΘ
�
ε e

B�
ε (t−τ)dτ.

That is, system (3.3) admits a transient distribution Nn(e
BεtYε(0), �(t)) at time t . Under As-

sumption 2.2(a), we have Bε ∈ RH(n), and

lim
t→∞ eBεtYε(0)= 0, lim

t→∞�(t)= ε

∞∫
0

eBεtΘεΘ
�
ε e

B�
ε t dt ��ε. (3.7)

Hence, the process {Yε(t)}t≥0 has a unique IPM Nn(0, �ε).
Based on the relationship between (3.3) around ln X

∗
ε and (1.2), we determine that ln Xε (t)

X
∗
ε

(:=
ln Xε(t) − ln X

∗
ε ) around Xε(t) = X

∗
ε can be approximated by Yε(t), i.e., the probability measure 

με of (1.2) near X
∗

is approximately a log-normal distribution LNn(ln X
∗
, �ε).
ε ε
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Algorithm 1: Algorithm for obtaining �φk,ε .
Input: Aε , φk (or φ).
Output: ηk , �φk,ε =

(
∏ηk−1
i=0 a

�φk,i�
νk(i),i

)2[Mφk,ηk
(
∏ηk−1
i=0 Qφk,i

Pφk,i )Jφk ]−1�φk,ηk {[Mφk,ηk
(
∏ηk−1
i=0 Qφk,i

Pφk,i )Jφk ]−1}�a.

1 (Initialization): ηk = 1;

2 (Order transformation): Aφk,1 = JφkAεJ
−1
φk

;

3 for i = 1 : n − 1 do

4 if
∑n
j=i+1(a

�φk,i�
ji

)2 = 0 then
5 ηk = i;
6 break;
7 else

8 Choose a “suitablea “νk(i) ∈ Sin such that a�φk,i�
νk(i),i

�= 0;

9 (Rotation transformation): Âφk,i = Pφk,iAφk,iP
−1
φk,i

c;

10 (Elimination transformation): Aφk,i+1 :=Qφk,i
Âφk,iQ

−1
φk,i

tsupc;

11 end
12 ηk++;
13 end

14 (Standardized transformation): As,φk =Mφk,ηk
Aφk,ηkM

−1
φk,ηk

;

15 Consider a standard L0-algebraic equation 
c(
φk,ηk , A
(ηk)
s,φk

, �ηk,1) =Oc;

16 return ηk, 
φk,ηk , �φk,ε .

a a
�·�
ji

(or a�·�
j,i

) denotes the ith element of the j th row of A(·) . Jφk and Mφk,ηk
are called the order and standardized 

φk -Aε matrices, respectively. Pφk,i (resp., Qφk,i
) is called the ith rotation (resp., elimination) φk -Aε matrix. 

Specifically, a�φk,0�
νk(0),0

= 1 and Pφk,l =Qφk,l
= In , where l ∈ {0, n − 1}. Furthermore,

Mφk,ηk
=
(
Mηk O
O In−ηk

)
, Mηk =

⎛⎜⎜⎜⎜⎝
βηk (A

(ηk)
φk,ηk

)ηk−1

βηk (A
(ηk)
φk,ηk

)ηk−2

· · ·
βηk

⎞⎟⎟⎟⎟⎠ , Jφk =
⎛⎝ O 1 O

Iφk−1 O O
O O In−φk

⎞⎠ ,

�φk,ηk =
(

φk,ηk O
O O

)
, Pφk,i =

⎛⎜⎝ Ii O O
O O In+1−νk(i)
O Iνk(i)−1−i O

⎞⎟⎠ , Qφk,i
=
⎛⎝ Ii O O
O 1 O
O �k,n−1−i In−1−i

⎞⎠ ,
where �k,n−1−i = −1

â
�φk,i�
i+1,i

(̂a
�φk,i�
i+2,i , ..., ̂a

�φk,i�
n,i

)� . [The paraphrase of ̂a�·�
j,i

is the same as a�·�
j,i

.]

b The aim of “suitable” is that the choice of νk(i) is helpful to prove �ε �O. More details refer to Sections 5.1-5.4.
c Pφk,i and Qφk,i

are determined by νk(i) . 
φk,ηk is shown in (3.20).

Below we combine the superposition principle to derive the specific form of �ε . As similarly 
in (A.2), �ε can be determined by the Lyapunov equation


c
(
�ε,Bε, εΘεΘ

�
ε

)= O. (3.8)
151



B. Zhou, H. Wang, T. Wang et al. Journal of Differential Equations 382 (2024) 141–210
In view of (3.4) and Aε , Eq. (3.8) is equivalently transformed into


c
(1

ε
Gε�εG�

ε ,Aε,

ξ∑
k=1

λ+
k �n,φk

)
= O. (3.9)

Consider the following algebraic equations


c(�φk,ε,Aε,�n,φk )= O, ∀ k ∈ S0
ξ , (3.10)

where �φk,ε is the same as in Algorithm 1.
Combining (3.9) and (3.10) yields

Gε�εG�
ε = ε

ξ∑
k=1

λ+
k �φk,ε .

Then (3.5) is obtained by the orthogonality of Gε .
Inspired by the Gaussian elimination method, we divide the remaining proof of Theorem 3.1

into three steps. The first is to solve Eq. (3.10) (i.e., �φk,ε ) by Algorithm 1. The second is to 
obtain an important property of Hφk,j , ∀ j ∈ S0

ηk
, and the third is to verify (3.6).

Step 1. For any k ∈ S0
ξ , let Aφk,1 = JφkAεJ

−1
φk

. It is clear that Jφk �n,φk J
�
φk

= �n,1, and (3.10)
can then be equivalently transformed into


c
(
(Qφk,0Pφk,0Jφk )�φk,ε(Qφk,0Pφk,0Jφk )

�,Aφk,1,�n,1
)= O. (3.11)

Based on the definition of ηk in Algorithm 1, we have ηk ≥ 1, and

(1-i)
n∑

j=i+1

(a
�φk,i�
ji )2 �= 0, ∀ i ∈ S0

ηk−1, (1-ii) a
�φk,ηk�
j,ηk

= 0, ∀ j ∈ Sηk+1
n , (3.12)

where each a�φk,i�
ji is obtained by the following iterative scheme:{

Âφk,i = Pφk,iAφk,iP
−1
φk,i

,

Aφk,i+1 :=Qφk,iÂφk,iQ
−1
φk,i

, ∀ i ∈ S0
ηk
.

(3.13)

We first illustrate (3.12) for two special cases

(A1) ηk = 1, (A2) ηk = n.

Under (A1), (3.12) is simplified as condition (1-ii), whereas it is simplified as (1-i) if (A2) holds.
Combining (3.12), (3.13), and the forms of Pφk,i and Qφk,i yields that

a
�φk,ηk�
i+1,i = a

�φk,i�
νk(i),i

(�= 0), and a
�φk,ηk�
j,i = 0, ∀ i ∈ S−1

ηk−1; j ∈ Sin. (3.14)

Moreover, Eq. (3.11) is equivalent to
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c
(((ηk−1∏

i=0

Qφk,iPφk,i

)
Jφk

)
�φk,ε

((ηk−1∏
i=0

Qφk,iPφk,i

)
Jφk

)�
,Aφk,ηk ,�n,1

)
= O. (3.15)

In the display above, we have used

[(ηk−1∏
i=0

Qφk,iPφk,i

)
Jφk

]
�n,1

[(ηk−1∏
i=0

Qφk,iPφk,i

)
Jφk

]� = �n,1.

Using (3.14) and Definition 2.2, we get A
(ηk)

φk,ηk
∈ Uq(ηk). Combined with Proposition 2.2, we can 

determine a matrix Mηk ∈ U(ηk):

Mηk =

⎛⎜⎜⎜⎝
βηk (A

(ηk)

φk,ηk
)ηk−1

βηk (A
(ηk)

φk,ηk
)ηk−2

· · ·
βηk

⎞⎟⎟⎟⎠ ,

which forces MηkA
(ηk)

φk,ηk
M−1

ηk
∈ S (ηk). A similar argument in (B.2), (B.3) coupled with (3.14)

leads to

(
βηk (A

(ηk)

φk,ηk
)ηk−1)(1) =

ηk−1∏
i=0

a
�φk,ηk�
i+1,i �= 0. (3.16)

By Algorithm 1, let

Mφk,ηk =
(
Mηk O
O In−ηk

)
, As,φk =Mφk,ηkAφk,ηkM

−1
φk,ηk

.

Combining (3.16) and Definition 2.1, one has

Mφk,ηk �n,1 M
�
φk,ηk

=
(ηk−1∏
j=0

a
�φk,ηk�
j+1,j

)2�n,1, (3.17)

and there is a vector α�
φk

= (αφk,1, ..., αφk,ηk )
� ∈ Rηk+ satisfying

A
(ηk)
s,φk

=
(

−α
〈ηk−1〉
φk

−αφk,ηk
Iηk−1 O

)
∈ S (ηk). (3.18)

Consider an ηk-dimensional algebraic equation


c
(

φk,ηk ,A

(ηk)
s,φk

,�ηk,1
)= O. (3.19)

By (3.18) and Proposition 2.1, we determine that 
φ ,η � O and

k k
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φk,ηk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ1 0 −ζ2 0 ζ3 · · ·
0 ζ2 0 −ζ3 · · · . .

.

−ζ2 0 ζ3 · · · . .
.

0

0 −ζ3 · · · . .
.

0 −ζηk−1

ζ3 · · · . .
.

0 ζηk−1 0
... . .

.
0 −ζηk−1 0 ζηk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.20)

where (ζ1, −ζ2, ..., (−1)ηk−1ζηk )
� = 1

2H −1

ηk,A
(ηk)

s,φk

eηk .

To proceed, we define

�̃φk,ε =
[(ηk−1∏

i=0

Qφk,iPφk,i

)
Jφk

]
�φk,ε

[(ηk−1∏
i=0

Qφk,iPφk,i

)
Jφk

]�
.

Using (3.17), Eq. (3.15) is equivalent to


c
(
Mφk,ηk �̃φk,εM

�
φk,ηk

,As,φk ,
(ηk−1∏
j=0

a
�φk,ηk�
j+1,j

)2�n,1

)
= O, (3.21)

after which the related analysis can be divided into the following two conditions:

(A ′
1) ηk ∈ S0

n−1, (A ′
2) ηk = n.

Case 1. Under (A ′
1), it follows from (3.14) that Aφk,ηk takes the form

Aφk,ηk =
(
A
(ηk)

φk,ηk
A1,ηk

O A2,ηk

)
(3.22)

with A1,ηk ∈ Rηk×(n−ηk). For simplicity, we assume that

�̃φk,ε :=
(
�̃
(ηk)
φk,ε

£1

£�
1 £2

)
, (3.23)

where £2 is real symmetric.
Below we need to prove £i = O for any i = 1, 2. Applying (3.22) and (3.23) to Eq. (3.21) yields⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩


c
(
Mηk �̃

(ηk)
φk,ε

M�
ηk
,A

(ηk)
s,φk

,
(ηk−1∏
j=0

a
�φk,ηk�
j+1,j

)2�ηk,1

+MηkA1,ηk (Mηk£1)
� +Mηk£1(MηkA1,ηk )

�
)

= O,

A
(ηk)
s,φk

Mηk£1 +Mηk£1A
�
2,ηk

+MηkA1,ηk£2 = O,


 (£ ,A ,O
)= O.

(3.24)
c 2 2,ηk
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In view of A
(ηk)

φk,ηk
∈ RH(ηk), we get A2,ηk ∈ RH(n − ηk). Then by (A.2) and the third equality of 

(3.24), one has £2 = O. Thus,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c
(
Mηk �̃

(ηk)
φk,ε

M�
ηk
,A

(ηk)
s,φk

,
(ηk−1∏
j=0

a
�φk,ηk�
j+1,j

)2�ηk,1

+MηkA1,ηk (Mηk£1)
� +Mηk£1(MηkA1,ηk )

�
)

= O,

A
(ηk)
s,φk

Mηk£1 +Mηk£1A
�
2,ηk

= O.

(3.25)

Since �̃φk,ε is unique, the solution (�̃(ηk)
φk,ε

, £1, O) of (3.24) is unique. Let � :=A
(ηk)
s,φk

Mηk£1, we 

obtain from (3.25) that Mηk£1A
�
2,ηk

= −�, i.e., Mηk£1 = (A
(ηk)
s,φk

)−1� = −�(A�
2,ηk

)−1. Then,

A
(ηk)
s,φk

�+�A�
2,ηk = O.

Below we prove � = Mηk£1 by reductio ad absurdum. If M−1
ηk

� �= £1, we consider an ηk-

dimensional algebraic equation of �̂���
φk,ε

:


c
(
Mηk �̂

���
φk,ε

M�
ηk
,A

(ηk)
s,φk

,
(ηk−1∏
j=0

a
�φk,ηk�
j+1,j

)2 �ηk,1 +MηkA1,ηk�
� +�(MηkA1,ηk )

�
)

= O.

Using Lemma 2.2, �̂���
φk,ε

exists and is unique. This leads to a contradiction that there are two 

different solutions (�̃(ηk)
φk,ε

, £1, O) and (�̂���
φk,ε

, M−1
ηk

�, O) satisfying Eq. (3.24). Hence, £1 =
M−1

ηk
�, which means

(A
(ηk)
s,φk

− Iηk )� = O. (3.26)

As in (3.18), we calculate

∣∣A(ηk)s,φk
− Iηk
∣∣= (−1)ηk

(
1 +

ηk∑
i=1

αφk,i

)
�= 0.

According to (3.26), one has � = O and £1 = O. Then (3.21) can be equivalently transformed 
into


c
((ηk−1∏

j=0

a
�φk,ηk�
j+1,j

)−2
Mηk �̃

(ηk)
φk,ε

M�
ηk
,A

(ηk)
s,φk

,�ηk,1

)
= O.

This together with Proposition 2.1 and Eq. (3.19) implies that

(ηk−1∏
a

�φk,ηk�
j+1,j

)−2
Mηk �̃

(ηk)
φk,ε

M�
ηk

=
φk,ηk � O.
j=0
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Thus,

�φk,ε =
((ηk−1∏

i=0

Qφk,iPφk,i

)
Jφk

)−1
(
�̃
(ηk)
φk,ε

O
O O

)[((ηk−1∏
i=0

Qφk,iPφk,i

)
Jφk

)−1]�

=
(ηk−1∏
j=0

a
�φk,ηk�
j+1,j

)2(
Mφk,ηk

(ηk−1∏
i=0

Qφk,iPφk,i

)
Jφk

)−1

�φk,ηk

[(
Mφk,ηk

(ηk−1∏
i=0

Qφk,iPφk,i

)
Jφk

)−1]�
, (3.27)

where �φk,ηk is the same as in Algorithm 1.
Case 2. Under (A ′

2), by Mφk,n = Mn and As,φk ∈ S (n), we can equivalently transform 
Eq. (3.21) into


c
((n−1∏

j=0

a
�φk,n�
j+1,j

)−2(
Mφk,n

(n−1∏
i=0

Qφk,iPφk,i

)
Jφk

)
�φk,ε

×
(
Mφk,n

(n−1∏
i=0

Qφk,iPφk,i

)
Jφk

)�
,As,φk ,�n,1

)
= O.

Using Lemma 2.2 and (3.19), we have

�φk,ε =
(n−1∏
j=0

a
�φk,n�
j+1,j

)2(
Mφk,n

(n−1∏
i=0

Qφk,iPφk,i

)
Jφk

)−1

φk,n

[(
Mφk,n

(n−1∏
i=0

Qφk,iPφk,i

)
Jφk

)−1]�
.

(3.28)

Combining (3.27) and (3.28), the expression of �φk,ε in Algorithm 1 is derived, and �φk,ε � O, 
∀ k ∈ S0

ξ . In this sense, �ε can be determined by (3.5).
Step 2. To verify (3.6), for any ηk ≥ 2, we show an important assertion of Hφk,j below.

H〈j〉
φk,m

= H〈j〉
φk,j

, ∀ m ∈ Sjηk . (3.29)

By Algorithm 1, it is clear that

(Q−1
φk,i

)� =
⎛⎝ Ii O O
O 1 −��

k,n−1−i
O O In−1−i

⎞⎠ , ((Q−1
φk,i

)�Pφk,i)[i] = ( Ii O
)
,

which implies
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H〈j〉
φk,j+1 =[((Q−1

φk,j
)�Pφk,j

)
Hφk,j

]〈j〉
=
[(
(Q−1

φk,j
)�Pφk,j

)[j ]Hφk,j

]〈j〉 = H〈j〉
φk,j

, ∀ j ∈ S0
ηk−1.

Then by a natural result (H〈c−1〉
φk,c−1)

〈j〉 = (H〈c−2〉
φk,c−1)

〈j〉, ∀ c ∈ Sj+1
ηk ,

(
H〈c−1〉
φk,c

)〈j〉 = (H〈c−2〉
φk,c−1

)〈j〉
. (3.30)

Using (3.30) recursively, we obtain

H〈j〉
φk,m

= (H〈m−1〉
φk,m

)〈j〉 = (H〈j〉
φk,j+1

)〈j〉 = H〈j〉
φk,j

.

Therefore, the desired assertion follows.
Step 3. In view of (3.5), (3.14), (3.27)-(3.29) and the definition of Y, we obtain

X��εX =X�[εG�
ε

( ξ∑
k=1

λ+
k �φk,ε

)
Gε
]
X

≥ε min
k∈S0

ξ

{λ+
k }
[ ξ∑
k=1

(GεX)��φk,ε(GεX)
]

≥ε min
k∈S0

ξ

{
λ+
k

(ηk−1∏
i=0

a
�φk,i�
νk(i),i

)2}{ ξ∑
k=1

Y�
(
Mφk,ηk

(ηk−1∏
i=0

Qφk,iPφk,i

)
Jφk

)−1

×�φk,ηk

[(
Mφk,ηk

(ηk−1∏
i=0

Qφk,iPφk,i

)
Jφk

)−1]�
Y

}

=ε min
k∈S0

ξ

{
λ+
k

(ηk−1∏
i=0

a
�φk,i�
νk(i),i

)2} ξ∑
k=1

{[(((ηk−1∏
i=0

Qφk,iPφk,i

)
Jφk

)−1
)�

Y
]�

×
(
M−1
φk,ηk

�φk,ηk (M
−1
φk,ηk

)�
)[(((ηk−1∏

i=0

Qφk,iPφk,i

)
Jφk

)−1
)�

Y
]}
. (3.31)

Intuitively,

M−1
φk,ηk

�φk,ηk (M
−1
φk,ηk

)� =
(
M−1

ηk

φk,ηk (M−1

ηk
)� O

O O

)
. (3.32)

Let λ̃k be the minimal eigenvalue of M−1
ηk

φk,ηk (M−1

ηk
)�, an application of 
φk,ηk � O for 

(3.32) implies that ̃λk > 0 and

M−1
φk,ηk

�φk,ηk (M
−1
φk,ηk

)� � λ̃k

(
Iηk O
O O

)
. (3.33)
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Note that J−1
φk

= J�
φk

and P−1
φk,i

= P�
φk,i

, we determine that

((( ηk−1∏
i=0

Qφk,iPφk,i

)
Jφk

)−1
)�

Y = Hφk,ηk . (3.34)

Applying (3.29), (3.33) and (3.34) to (3.31) leads to

X��εX ≥ε min
k∈S0

ξ

{
λ+
k

(ηk−1∏
i=0

a
�φk,i�
νk(i),i

)2} ξ∑
k=1

λ̃k(H
〈ηk〉
φk,ηk

)�H〈ηk〉
φk,ηk

≥ρε
ξ∑

k=1

ηk∑
j=1

(H(j)
φk,ηk

)2

=ρε
ξ∑

k=1

ηk∑
j=1

(H(j)
φk,j

)2, (3.35)

where

ρε = ε min
k∈S0

ξ

{̃
λkλ

+
k

(ηk−1∏
i=0

a
�φk,i�
νk(i),i

)2}
> 0.

The assertion (3.6) easily follows from (3.35) and H(1)
φk,1

= Yφk . This completes the proof. �
Remark 3. It should be mentioned that throughout the above proof, only the existence of the 
IPM με is required for Theorem 3.1, not its uniqueness. In other words, the conditions of The-
orem 3.1 can be reduced to Assumptions 2.1(1) and 2.2(a) as well as the existence of stationary 
distribution of (1.2). However, if the IPM με is not unique, the local approximation accuracy of 
the distribution LNn(ln X

∗
ε , �ε) (resp., �ε(·)) on με (resp., �ε(·)) around X cannot be verified 

by computer simulations; see Remark 8 and Example 5.5 for details.
By Theorem 3.1, we provide a local approximation LNn(ln X

∗
ε , �ε) for the IPM με around 

X
∗
ε and also obtain the expression and positive definiteness of �ε . As in (3.7), �ε has an explicit 

form 
∫∞

0 eBεtΘεΘ
�
ε e

B�
ε t dt . However, this method still has some limitations: (i) It is difficult to 

compute matrix integral as it requires an accurate result of eBεt for any t ≥ 0 (ii) Only �ε � O
can be derived under Assumption 2.2(a) (i.e., ΘεΘ

�
ε � O), but �ε � O is unknown. Hence, we 

consider studying �ε from a matrix equation perspective; see Eq. (3.8). An effective approach 
for solving Lyapunov equation 
c(�, � , ℵ) is to obtain a simple canonical form of � (called 
Cf (� )) by matrix transformations, thereby simplifying calculations and deriving implementable 
iteration schemes.

Bartels–Stewart method [43] is currently the most popular algorithm along this line and 
has been widely adopted, the associated command “lyap(·, ·)” in MATLAB is thus developed 
[82]. This numerical method is based on Schur factorization, i.e., find an orthogonal matrix Q
satisfying Q−1�Q = Cf (� ) := R ∈ U(·), then 
c(�, � , ℵ) is equivalently transformed into 

c(Q��Q, R, Q�ℵQ), which is easily treated. By now, using different matrix factorizations, 
several modified Bartels–Stewart methods have been developed including (i) Hessenberg–Schur 
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method [69], where Cf (� ) is an upper Hessenberg matrix, and (ii) Hammarling method [70–72], 
where the condition ℵ �O is required.

In the study of LNA method for locally approximating the IPM με , we develop a novel nu-
merical framework for solving the Lyapunov equation, as shown in Algorithm 1. A key idea is 
to introduce a new canonical form S (·) and combine similarity transformations such that

Cf (�
(k)) ∈ S (k), ∀ � ∈ RH(l),

where k ∈ S0
l .

The aim of Algorithm 1 is to obtain the expression of �ε in (3.8). To highlight, our main 
advantages here are as follows:

• (Simpler Computational Routine): Based on the superposition principle and (3.4), our first 
step is to transform Eq. (3.8) into the equations 
c(�φk,ε, Aε, �n,φk ) = O for all k ∈ S0

ξ , 
i.e., Eq. (3.10). Unlike the aforementioned algorithms that focus mainly on the factorization 
of Bε , our method only requires the computation of large ηk ∈ S0

n that satisfy Cf (A
(ηk)
ε ) ∈

S (ηk). This is achieved using a Gaussian-like elimination method (see (3.11)-(3.13)), which 
is simpler and more effective than Householder transformation method. The computational 
routine of our method is thus easier to understand and implement. Moreover, for each k, 
Eq. (3.10) can be equivalent to an ηk-dimensional standard L0 algebraic equation, except for 
the zero matrix equations. Then by Proposition 2.1, the expression of �ε is easily derived. 
Compared with existing numerical methods that use complex iterative schemes for ΘεΘ

�
ε

and factorization of Bε , our Algorithm 1 has a lower computational cost.
• (Characterization of Positive Definiteness): Although Bartels–Stewart method and its vari-

ants can be used to solve (3.8), the positive definiteness of �ε cannot be verified. Instead, 
this question is positively addressed by Algorithm 1. Specifically, combining Gaussian-like 
elimination method and Proposition 2.2, for any k ∈ S0

ξ , we determine a sequence {Hφk,i}ηki=1, 
which records the form and minimal rank (i.e., ηk) of all column components of �φk,ε . Then 
(3.6), a criterion for analyzing �ε � O, is derived. To be specific, for each j ∈ S0

ηk
, there is 

a vector hφk,j such that H(j)
φk,j

= hφk,jY, where G�
ε Y = X. To prove �ε � O, it is sufficient 

to verify that X��εX = 0 holds if and only if Y = 0.
• (General Applicability) The existing theories approximating IPDFs can be at most applied to 

five-dimensional stochastic models established in non-degenerate diffusion; see Zhou et al. 
[73]. Our results (i.e., (3.6) and Algorithm 1) will cover, improve and generalize the relevant 
theories, and can work on stochastic systems with arbitrary dimension setting and degenerate 
diffusion.

As was mentioned, we obtain a criterion (3.6) for verifying �ε � O. However, under a special 
case, where the diffusion matrix ΘεΘ

�
ε of (3.3) is complicated and its drift term Bε is “simple” 

in the sense that approaching the canonical form S (·), we can further simplify the analysis of 
�ε � O by introducing a modified criterion as follows.

Using Assumption 2.2(a), there are a constant λ+
θ > 0 and a set φ◦ := {φ◦

1 , ..., φ
◦
ξ◦ } ⊆ S0

n such 
that

ΘεΘ
�
ε � λ+

θ

ξ◦∑
�n,φ◦

k
, (3.36)
k=1
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where φi < φj , ∀ i < j . In particular, we stipulate λ+
θ = 1 if φ◦ = ∅. In view of (3.4), one has 

ξ◦ ≤ ξ .

Theorem 3.2. Under Assumptions 2.1 and 2.2(a), the following result is true:

X��εX ≥ ρ◦
ε

ξ◦∑
k=1

(
X2
φ◦
k
+

η◦
k∑

j=2

(H(j)

φ◦
k ,j
)2
)
, (3.37)

where X is the same as in Theorem 3.1, ρ◦
ε > 0 is shown in (3.41), and Hφ◦

k ,j
=[∏j−1

i=0 (Q
−1
φ◦
k ,i
)�Pφ◦

k ,i

]
Jφ◦

k
X (j ∈ S0

η◦
k
), with η◦

k, Jφ◦
k
, Pφ◦

k ,i
and Q

φ◦
k ,i

(i ∈ S0
j−1) determined 

in Algorithm 2.

Algorithm 2: Algorithm for obtaining {Hφ◦
k ,j

}η◦
k

j=1.

Input: Bε , φ◦
k

(or φ◦).

Output: Hφ◦
k
,j = [∑j−1

i=0 (Q
−1
φ◦
k
,i
)�Pφ◦

k
,i

]
Jφ◦

k
Xa.

1 (Initialization): η◦
k

= 1, Bφ◦
k
,1 = Jφ◦

k
BεJ

−1
φ◦
k

;

2 (Technical framework): By a FOR loop similar to Algorithm 1, we can determine the values of η◦
k

and some 
suitable ν◦

k(i)
∈ Sin, which yield

3 (2-i) b
�φ◦
k
,i�

ν◦
k(i)

,i
�= 0a, ∀ i ∈ S0

η◦
k
−1, (2-ii) b

�φ◦
k
,η◦
k
�

j,η◦
k

= 0, ∀ j ∈ S
η◦
k
+1

n ,

4 where each b
�φ◦
k
,i�

ji
is obtained by the iterative scheme:

5 B̂φ◦
k
,i = Pφ◦

k
,iBφ◦

k
,iP

−1
φ◦
k
,i

a, Bφ◦
k
,i+1 :=Q

φ◦
k
,i
B̂φ◦

k
,iQ

−1
φ◦
k
,i

;

6 return η◦
k

, Jφ◦
k

, Pφ◦
k
,i , Qφ◦

k
,i
(i ∈ S0

η◦
k
−1).

a Jφ◦
k
, Pφ◦

k
,i and Q

φ◦
k
,i

have the same form as Jφk , Pφk,i and Qφk,i
(see Algorithm 1) by replacing 

(φk, νk(i), �k,n−1−i ) with (φ◦
k
, ν◦
k(i)

, �k,n−1−i ), where �k,n−1−i = −1

b̂
�φ◦
k
,i�

i+1,i

(̂b
�φ◦
k
,i�

i+2,i , ..., ̂b
�φ◦
k
,i�

n,i
)� . [The 

paraphrase of b�·�
j,i (resp., ̂b�·�

j,i
) is the same as a�·�

j,i
(resp., ̂a�·�

j,i
).] In addition, we stipulate that b

�φ◦
k
,0�

ν◦
k(0),0

= 1 and 

Pφk,l
=Q

φk,l
= In, ∀ k ∈S0

ξ◦ ; l ∈ {0, n − 1}.

Proof. Consider an n-dimensional algebraic equation


c
(
�+
θ ,Bε, ε

(
ΘεΘ

�
ε − λ+

θ

ξ◦∑
k=1

�n,φ◦
k

))
= O. (3.38)

Similar to (A.2) and (A.3), it follows from Lemma 2.2 and (3.36) that

�+
θ = ε

∞∫
eBεt
(
ΘεΘ

�
ε − λ+

θ

ξ◦∑
k=1

�n,φ◦
k

)
eB

�
ε t dt � O.
0
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We construct the following auxiliary Lyapunov equations:


c
(
�φ◦

k ,ε
,Bε,�n,φ◦

k

)= O, ∀ k ∈ S0
ξ◦ . (3.39)

By a slight modification of (3.11)-(3.35), an application of (3.10) and Algorithm 2 for (3.39)
yields that there exists a ̃λ+

θ > 0 such that

X�(λ+
θ

ξ◦∑
k=1

�φ◦
k ,ε

)
X ≥ λ+

θ λ̃
+
θ min
k∈S0

ξ◦

{(η◦
k−1∏
i=0

b
�φ◦

k ,i�
ν◦
k(i)

,i

)2} ξ◦∑
k=1

η◦
k∑

j=1

(
H(j)

φ◦
k ,j

)2
. (3.40)

Let

ρ◦
ε = ελ+

θ λ̃
+
θ min
k∈S0

ξ◦

{(η◦
k−1∏
i=0

b
�φ◦

k ,i�
ν◦
k(i)

,i

)2}
. (3.41)

Combining H(1)
φ◦
k ,1

=Xφ◦
k
, ∀ k ∈ S0

ξ◦ , (3.40) is then simplified as

X�(λ+
θ

ξ◦∑
k=1

�φ◦
k ,ε

)
X ≥ ρ◦

ε

ε

ξ◦∑
k=1

(
X2
φ◦
k
+

η◦
k∑

j=2

(H(j)

φ◦
k ,j
)2
)
. (3.42)

In view of (3.8), (3.38) and (3.39), we have

�ε = ελ+
θ

ξ◦∑
k=1

�φ◦
k ,ε

+�+
θ . (3.43)

This coupled with (3.42) completes the proof. �
Applying Theorems 3.1 and 3.2, we present some special cases ensuring �ε � O, which are 

stated as in the following Corollary.

Corollary 3.1. Under Assumptions 2.1 and 2.2(a), if one of the following four conditions holds:

(1-a) ξ = n, (1-b) ηk1 = n, ∃ k1 ∈ S0
ξ , (1-c) ξ◦ = n, (1-d) η◦

k2
= n, ∃ k2 ∈ S0

ξ◦ .

Then �ε � O.

Proof. If case (1-a) is satisfied, it is easily seen that φj = j, ∀ j ∈ S0
n. Using (3.6),

X��εX ≥ ρε

n∑
k=1

Y 2
k = ρε |Y|2,

implying that X��εX = 0 if and only if Y = 0. Then by Remark 3, �ε � O.
If case (1-b) holds, by (3.6),
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X��εX ≥ρε
(
Y 2
φk1

+
ηk1∑
j=2

(H(j)
φk1 ,j

)2
)

=ρε
n∑

j=1

(H(j)
φk1 ,n

)2 = ρε |Hφk1 ,n
|2,

where in the first equality, we have used (3.29). In view of Hφk1 ,n
= [∏n−1

i=0 (Q
−1
φk1 ,i

)�Pφk1 ,i
]
Jφk1

Y, 

we deduce that X��εX = 0 if and only if Y = 0. Using case (1-a), then �ε � O.
As for case (1-c) or (1-d), the desired results can be similarly concluded from (3.37), and are 
omitted. �
Remark 4. To supplement, we first show another proof for �ε �O in case (1-b). A consequence 
of (3.20) and (3.28) under (1-b) is that �φk1 ,ε

� O. Combining (3.5) and �φl,ε � O (∀ l ∈
S0
ξ \ {k1}) yields �ε �O. Now consider a special diffusion of (1.2):

GcG
�
c = diag{σ 2

1X
2
ε,1, ..., σ

2
nX

2
ε,n}, (3.44)

which is known as linear diffusion [75,76], and is a well-established way of introducing stochas-
ticity into biologically realistic dynamic models. In this case, we have ΘεΘ

�
ε = diag{σ 2

1 , ..., σ
2
n }. 

If σ 2
i �= 0, ∀ i ∈ S0

n, i.e., ξ = n, we obtain �ε � O, which substantially eases the cumbersome 
proofs for examining the positive definiteness of some covariance matrices in the literature (e.g., 
[41,45–48,73,81]). In particular, for a stochastic SICA-type HIV/AIDS infection model [45], the 

condition ω �= α+d+ σ 2
4
2 − σ 2

3
2 is not required in their Theorem 5.4. To summarize, Corollary 3.1

is a generalization of existing results. Moreover, it should be noted that similar to Remark 3, the 
uniqueness of the IPM με is not required for Theorem 3.2 and Corollary 3.1.

3.3. Global approximation-I

By Theorem 3.1, we determine that the density function �ε(·) of the distribution LNn(ln X
∗
ε ,

�ε) is a local approximation for the IPDF �ε(·) near X
∗
ε . This section is further devoted to 

studying the fitting effect of such approximation in global horizon.

Theorem 3.3. Under Assumptions 2.1 and 2.2(a)-(b), for sufficiently small ε,

(i) The IPM με (resp., IPDF �ε(·)) can be globally approximated by the distribution 
LNn(ln X

∗
ε , �ε) (resp., �ε(·)). If �ε �O, then

�ε(Xε(t))= (2π)−
n
2 |�ε |− 1

2

( n∏
i=1

Xε,i

)−1

e−
1
2 (ln Xε−ln X

∗
ε )

��−1
ε (ln Xε−ln X

∗
ε ). (3.45)

(ii) For any γ ∈ (0, 2], one has

lim
ε→0

∫
Rn

∣∣y − X∗∣∣γ ∣∣�ε(y)−�ε(y)
∣∣dy = 0.
+
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(iii) Under linear diffusion (3.44) and �ε � O, then Lε�ε(X
∗
ε ) = 0. If there further exist con-

stants K̃ > 0, α ∈ (0, 1) and a vector γ 1 such that

n∑
i=1

(∣∣∣fi(x)
xi

∣∣∣+ ∣∣∂ifi(x)∣∣)≤ K̃e
1
εα

| ln x−γ 1|2, ∀ x ∈Rn+. (3.46)

Then

sup
x∈Rn+

∣∣Lε�ε(x)
∣∣≤ ℘1(ε), (3.47)

where limε→0
℘1(ε)

ε2 = 0.

Proof. We divide the proof into three steps.
Step 1. (Proof of (i)): By Assumption 2.2(b) and the Itô’s formula, we obtain

V (Xε(t))

t
− V (Xε(0))

t
≤ −a

t

t∫
0

∣∣Xε(s)− X∗∣∣2ds + κ(ε). (3.48)

Applying the expectation on (3.48) yields

lim sup
t→∞

EV (Xε(t))

t
≤ −a lim sup

t→∞
E
(1

t

t∫
0

∣∣Xε(s)− X∗∣∣2)ds + κ(ε),

which implies

lim sup
t→∞

E
(1

t

t∫
0

∣∣Xε(s)− X∗∣∣2)ds ≤ κ(ε)

a
. (3.49)

Under Assumption 2.1(2), it follows from (3.49) and the dominated convergence theorem that

∫
Rn+

∣∣y − X∗∣∣2�ε(y)dy =E
(∫
Rn+

∣∣y − X∗∣∣2�ε(y)dy
)

=E
(

lim
t→∞

1

t

t∫
0

∣∣Xε(s)− X∗∣∣2)ds ≤ κ(ε)

a
. (3.50)

Let Mε be the random variable of �ε(·), by (3.50), then
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με
(
O(X∗, ς)∩Rn+

)=1 − P
(∣∣Mε − X∗∣∣≥ ς

)
≥1 − 1

ς2

∫
dist(y,X∗)≥ς

∣∣y − X∗∣∣2με(dy)

≥1 − 1

ς2

∫
Rn+

∣∣y − X∗∣∣2�ε(y)dy

≥1 − κ(ε)

aς2 , for all ς > 0,

where O(X∗, ς) := {z ∈ Rn : |z − X∗| ≤ ς}. Thus, με(x) 
w−→ δ∗(x − X∗) as ε → 0.

In addition, let ς = 3
√
κ(ε). By Fatou’s lemma, we obtain

lim
t→∞

1

t

t∫
0

P
(∣∣Xε(s)− X∗∣∣≤ 3

√
κ(ε)
)
ds ≥ 1 −

3
√
κ(ε)

a
. (3.51)

This means that, the solution Xε(t) is distributed in O(X∗, 3
√
κ(ε)) in a large probability for some 

small ε.
In view of (3.3) and (3.7), we determine that the process {eYε(t)+ln X

∗
ε }t≥0 has a unique IPM 

LN(X
∗
ε , �ε), where eYε(t)+ln X

∗
ε := (eYε,1(t)+lnX

∗
ε,1 , ..., eYε,n(t)+lnX

∗
ε,n )�. Then

lim
t→∞

1

t

t∫
0

∣∣eYε (s)+ln X
∗
ε − X

∗
ε

∣∣2ds =
∫
Rn+

∣∣y − X
∗
ε

∣∣2�ε(y)dy =
n∑

i,j=1

∣∣�ε(i, j)
∣∣, (3.52)

where �ε(i, j) is the ith element of the j th row of �ε . Using (3.2) and (3.5), we have 
LN(X

∗
ε , �ε) 

w−→ δ∗(x − X∗) as ε → 0. Thus,

με(·) w−→ LN(X
∗
ε ,�ε), as ε → 0. (3.53)

Intuitively, such weak convergence is established in the sense of the Dirac measure. To this end, 
we should further focus on the approximate degree of με(·) and LN(X

∗
ε , �ε) in terms of curve 

shape when ε → 0.
By (3.50) and (3.52), there holds

lim sup
t→∞

1

t

t∫
0

∣∣Xε(s)− eYε(s)+ln X
∗
ε
∣∣2ds ≤3 lim sup

t→∞
1

t

t∫
0

∣∣Xε(s)− X∗
ε

∣∣2ds
+ 3 lim

t→∞
1

t

t∫ ∣∣X∗
ε − X

∗
ε

∣∣2ds

0
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+ 3 lim
t→∞

1

t

t∫
0

∣∣eYε (s)+ln X
∗
ε − X

∗
ε

∣∣2ds
≤3
(κ(ε)

a
+ ∣∣X∗

ε − X
∗
ε

∣∣2 +
n∑

i,j=1

∣∣�ε(i, j)
∣∣)

:=κ̂(ε). (3.54)

Clearly, limε→0 κ̂(ε) = 0. Hence, the difference of two solutions in the mean sense is small for 
sufficiently small ε. Combined with (3.51), (3.53) and (3.54), the desired result (i) is obtained.

Step 2. (Proof of (ii)): For any γ ∈ (0, 2], an application of Hölder inequality for (3.50) and 
(3.52) yields ∫

Rn+

∣∣y − X∗∣∣γ ∣∣�ε(y)−�ε(y)
∣∣dy

≤
∫
Rn+

∣∣y − X∗∣∣γ�ε(y)dy +
∫
Rn+

|y − X
∗
ε

∣∣2�ε(y)dy

≤
(∫
Rn+

∣∣y − X∗∣∣2�ε(y)dy
) γ

2 +
(∫
Rn+

|y − X
∗
ε

∣∣2�ε(y)dy
) γ

2

≤
(κ(ε)

a

) γ
2 +
( n∑
i,j=1

∣∣�ε(i, j)
∣∣) γ2 .

Then by (3.5) and Assumption 2.2(b), we obtain the assertion (ii).
Step 3. (Proof of (iii)): Denote

Tp =
n∑
i=1

∂i
(
fi(x)�ε(x)

)
, Tq = ε

2

n∑
i,j=1

∂2
ij

(
gcij (x)�ε(x)

)
, ∀ x ∈Rn+.

Under (3.44), by (1.3) and (3.45), one has⎧⎪⎪⎨⎪⎪⎩
Tq = ε

2

n∑
i=1

σ 2
i

(
2�ε(x)+ 4xi∂i�ε(x)+ x2

i ∂
2
ii�ε(x)

)
,

Tp =
n∑
i=1

(
�ε(x)∂ifi(x)+ fi(x)∂i�ε(x)

)
.

This yields∣∣Lε�ε(x)
∣∣=|Tq − Tp|

=
∣∣∣∣ n∑
i=1

((
εσ 2

i − ∂ifi(x)
)
�ε(x)+

(
2εσ 2

i xi − fi(x)
)
∂i�ε(x)+ εσ 2

i

2
x2
i ∂

2
ii�ε(x)

)∣∣∣∣.
(3.55)
165



B. Zhou, H. Wang, T. Wang et al. Journal of Differential Equations 382 (2024) 141–210
To proceed, let �−1
ε := (mij )n×n. By direct calculation,

∂i�ε(x)=(2π)− n
2 |�ε |− 1

2

[
−x−1

i

( n∏
i=1

xi

)−1
e−

1
2 (ln x−ln X

∗
ε )

��−1
ε (ln x−ln X

∗
ε )

− e−
1
2 (ln x−ln X

∗
ε )

��−1
ε (ln xε−ln X

∗
ε )
( n∏
i=1

xi

)−1 n∑
k=1

mki(lnxk − lnX
∗
ε,k)

xi

]

= − �ε(x)
xi

(
1 +

n∑
k=1

mki

(
lnxk − lnX

∗
ε,k

))
. (3.56)

Then by (3.56),

∂2
ii�ε(x)= − ∂i

(
�ε(x)
xi

(
1 +

n∑
k=1

mki

(
lnxk − lnX

∗
ε,k

)))

=�ε(x)

x2
i

[(
1 +

n∑
k=1

mki

(
lnxk − lnX

∗
ε,k

))2 +
(

1 +
n∑
k=1

mki

(
lnxk − lnX

∗
ε,k

))−mii

]

=�ε(x)

x2
i

[
(2 −mii)+ 3

n∑
k=1

mki

(
lnxk − lnX

∗
ε,k

)+ ( n∑
k=1

mki

(
lnxk − lnX

∗
ε,k

))2]
.

(3.57)

For simplicity, let

dL,i (x,X
∗
ε )=

n∑
k=1

mki

(
lnxk − lnX

∗
ε,k

)
.

Inserting (3.56) and (3.57) into (3.55) leads to

∣∣Lε�ε(x)
∣∣=�ε(x)

∣∣∣∣ n∑
i=1

[(
εσ 2

i − ∂ifi(x)
)− 2εσ 2

i xi − fi(x)

xi

(
1 + dL,i (x,X

∗
ε )
)

+ εσ 2
i

2

(
(2 −mii)+ 3dL,i (x,X

∗
ε )+ d2

L,i (x,X
∗
ε )
)]∣∣∣∣

=�ε(x)

∣∣∣∣ n∑
i=1

(fi(x)
xi

− εσ 2
i mii

2
− ∂ifi(x)

)

+
n∑
i=1

dL,i (x,X
∗
ε )
(fi(x)

xi
+ εσ 2

i

2

(
dL,i (x,X

∗
ε )− 1
))∣∣∣∣. (3.58)

Intuitively, (3.8) under �ε � O is equivalent to

B�
ε +�−1

ε Bε�ε = −ε�−1
ε ΘεΘ

�
ε ,
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and hence

−trace(�−1
ε ΘεΘ

�
ε )= 1

ε

(
trace(B�

ε )+ trace(�−1
ε Bε�ε)

)= 2

ε
trace(Bε).

As in (3.44), we have ΘεΘ
�
ε = diag{σ 2

1 , ..., σ
2
n }, i.e., trace(�−1

ε ΘεΘ
�
ε ) =
∑n

i=1 σ
2
i mii . Using 

Assumption 2.2(a) and ∂jfj (x) = x−1
j

∂fj (x)
∂(lnxj )

, ∀ j ∈ S0
n, then

trace(Bε)= −
n∑
i=1

(fi(x)
xi

− ∂ifi(x)
)∣∣

x=X
∗
ε
,

which implies

n∑
i=1

(fi(x)
xi

− εσ 2
i mii

2
− ∂ifi(x)

)∣∣
x=X

∗
ε
= 0. (3.59)

Thus, Lε�ε(X
∗
ε ) = 0. By (3.2), (3.3) and Assumption 2.2(a), there holds⎧⎪⎨⎪⎩

lim
ε→0

ΘεΘ
�
ε = (gij (X∗))n×N(gij (X∗))�n×N � O,

lim
ε→0

Bε =
(∂Fi(X∗)
∂(lnxj )

)
n×n ∈ RH(n). (constant matrix)

Combining (3.5) and (3.8) yields that, for any i, j ∈ S0
n and u > 0,

lim
ε→0

ε−1|�ε(i, j)| = ιij <∞, and lim
ε→0

ε−(1+u)|�ε(i, j)| = ∞ (or 0). (3.60)

By virtue of (3.46) and (3.58)-(3.60), we determine that there are constants ς0 ∈ (0, mink∈S0
n
X

∗
ε,k)

and m0 > 0 such that

lim
ε→0

( 1

ε2 sup
x∈O(X

∗
ε ,ς0)

∣∣Lε�ε(x)
∣∣)= 0, (3.61)

and

∣∣Lε�ε(x)
∣∣≤�ε(x)

∣∣∣∣m0

(
1 +

n∑
i=1

d2
L,i (x,X

∗
ε )

)
K̃e

1
εα

| ln x−γ 1|2
∣∣∣∣

=m0K̃(2π)
− n

2
(1 +∑n

i=1 d
2
L,i (x,X

∗
ε ))e

1
εα

| ln x−γ 1|2

|�ε | 1
2 e

1
2 (ln x−ln X

∗
ε )

��−1
ε (ln x−ln X

∗
ε )
∏n
j=1 xj

, ∀ x ∈Rn+ \O(X∗
ε , ς0).

(3.62)

Using (3.60), we obtain
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lim
ε→0

(
1

ε2 sup
x∈Rn+\O(X

∗
ε ,ς0)

{
(1 +∑n

i=1 d
2
L,i (x,X

∗
ε ))e

1
εα

| ln x−γ 1|2

|�ε | 1
2 e

1
2 (ln x−ln X

∗
ε )

��−1
ε (ln x−ln X

∗
ε )
∏n
j=1 xj

})
= 0. (3.63)

Then the desired result (iii) follows from (3.61)-(3.63). �
Remark 5. Two remarks on Theorem 3.3 are shown as follows.

• Throughout the rest of the paper, let μ∂ε (Xε,k1 , ..., Xε,kl ) be the marginal measure of 
με with respect to the variables Xε,k1, ..., Xε,kl , and its probability density is denoted 
by �∂

ε (Xε,k1, ..., Xε,kl ). Similarly, we define �∂
ε(Xk1, ..., Xkl ) as the marginal density of 

LNn(ln X
∗
ε , �ε) involving the components (Xk1, ..., Xkl ). In this sense, we combine The-

orem 3.3 to obtain that, for sufficiently small ε > 0, the measure μ∂ε (Xε,i) approximately 
has a log-normal density function �∂

ε(Xε,i), which takes the form

�∂
ε (Xε,i)= 1

Xε,i

√
2π�ε(i, i)

e
− (lnXε,i−lnX∗

ε,i )
2

2�ε(i,i) , ∀ i ∈ S0
n,

where �ε � O is required.
• Under linear diffusion, (3.47) is equivalent to{∣∣Lε�ε(x)

∣∣≤ ℘1(ε), ∀ x ∈Rn+,
�ε(x)≥ 0,

∫
Rn+ �ε(x)dx = 1.

(3.64)

Then in practical terms, �ε(·) can be regarded as the numerical solution of (1.3) if ℘(ε) is 
in the allowed error range. That is, �ε(·) is relatively close to �ε(·) in the sense of KFP 
equation. Clearly, such property can be generalized to slightly complex diffusion settings 
(e.g., GcG

�
c = (σijX

2
ε,i)n×n).

4. Updated normal approximation (uNA) for IPDF

Section 3 provides a LNA method for the IPM με (or IPDF �ε(·)) of (1.2) in local and global 
horizons. Inspired by the idea, an updated version of the existing normal approximation for �ε(·)
is presented in this section.

4.1. Local approximation-II

By Taylor expansion, the linearized equation of (1.2) near X∗ is

⎧⎪⎪⎨⎪⎪⎩
dZε(t)=

(∂fi(x)
∂xj

)
n×n
∣∣
x=X∗Zε(t)dt + √

εGc|x=X∗dW(t)

:= C[o]Zε(t)dt + √
εΓ dW(t),

Zε(0)= x0 − X∗.

(4.1)

Under Assumption 2.2(b), by a similar argument in (3.4), we can find an orthogonal matrix H[o]
and a set φ := {φ1, ..., φ } ⊆ S0 such that
ξ n
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H[o](Γ Γ �)H�[o] =
ξ∑

k=1

λ
+
k �n,φk

, (4.2)

where λ
+
k (k ∈ S0

ξ
) are all the positive eigenvalues of Γ Γ �, and φj > φi, ∀ j > i. Clearly, 

ξ = rank(Γ Γ �).
To proceed, let

A[o] = H[o]C[o]H−1
[o] .

Then we can mimic the proof of Theorem 3.1 to obtain the uNA method for με(·) in local 
horizon, which is stated as in the following Theorem.

Theorem 4.1. Under Assumptions 2.1 and 2.2(c), the IPM με near X∗ can be approximately by 
a normal distribution Nn(X∗, �[o]ε) (with �[o]ε(·) denoting its density), where

�[o]ε = εH�[o]
( ξ∑
k=1

λ
+
k �[o]φk,ε

)
H[o], (4.3)

with �[o]φk,ε shown in Algorithm 3. In addition, let Z = H0X and Gφk,j
=

[∑j−1
i=0 (Q

−1
[o]φk,i )

�P[o]φk,i]J[o]φkZ, then

X��[o]εX ≥ !ε

ξ∑
k=1

(
Z2
φk

+
ηk∑
j=2

(G(j)

φk,j
)2
)
, (4.4)

where X is the same as in (3.6), !ε > 0 is determined later, and ηk, J[o]φk , P[o]φk,i and 

Q[o]φk,i (∀ i ∈ S0
ηk
) are defined in Algorithm 3.

Proof. System (4.1) has an explicit solution

Zε(t)= eC[o]tZε(0)+ √
ε

t∫
0

eC[o](t−τ)Γ dW(τ ).

Based on Assumption 2.2(c), we have C[o] ∈ RH(n). Using a similar argument in (3.7) yields 
that, the solution process {Zε(t)}t≥0 of (4.1) has a unique stationary distribution Nn(0, �[o]ε), 
where

�[o]ε = ε

∞∫
0

eC[o]tΓ Γ �eC
�[o]t dt. (4.5)

As a consequence of (4.2), (4.5), (A.2) and (A.3), �[o]ε � O and it satisfies
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Algorithm 3: Algorithm for obtaining �[o]φk,ε .

Input: A[o] , φk (or φ).

Output: ηk , �[o]φk,ε = (
∏ηk−1
i=0 a

�[o]φk,i�
νk(i),i

)2×
[M[o]φk,ηk(

∏ηk−1
i=0 Q[o]φk,iP[o]φk,i )J[o]φk ]

−1�[o]φk,ηk {[M[o]φk,ηk(
∏ηk−1
i=0 Q[o]φk,iP[o]φk,i )J[o]φk ]

−1}�a.

1 (Initialization): ηk = 1, A[o]φk,1 = J[o]φkA[o]J−1
[o]φk ;

2 for i = 1 : n − 1 do

3 if
∑n
j=i+1(a

�[o]φk,i�
ji

)2 = 0 then
4 ηk = i;
5 break;
6 else

7 Choose a “suitableb” νk(i) ∈ Sin such that a�[o]φk,i�
νk(i),i

�= 0;

8 Let Â[o]φk,i = P[o]φk,iA[o]φk,iP
−1
[o]φk,i and A[o]φk,i+1 :=Q[o]φk,i Â[o]φk,iQ

−1
[o]φk,i ;

9 end
10 ηk++;
11 end

12 Let A[o]s,φk =M[o]φk,ηkA[o]φk,ηkM
−1
[o]φk,ηk ;

13 Obtain a standard L0-algebraic equation 
c
(

[o]φk,ηk , A

(ηk)

[o]s,φk , �ηk,1
)=O;

14 return ηk, 
[o]φk,ηk , �[o]φk,ε .

a J[o]φk , Mφk,ηk
, P[o]φk,i and Q[o]φk,i are called the order, standardized, the ith rotation and elimination φk -A[o]

matrices, respectively, ∀ i ∈ S−1
ηk−1. Similar to Algorithm 1, a�[o]φk,0�

νk(0),0
= 1, P[o]φk,l =Q[o]φk,l = In (∀ l ∈

{0, n − 1}), and J[o]φk , P[o]φk,i and Q[o]φk,i (i ∈S0
ηk−1) have the same form as Jφk , Pφk,i and Qφk,i

by 
replacing (φk, νk(i), �k,n−1−i ) with (φk, νk(i), �[o]k,n−1−i ), where 
�[o]k,n−1−i = −1

â
�[o]φk,i�
i+1,i

(̂a
�[o]φk,i�
i+2,i , ..., ̂a�[o]φk,i�

n,i
)� . Moreover, 
[o]φk,ηk is shown in (4.10), and

M[o]φk,ηk =
(
M[o]ηk O

O In−ηk

)
, M[o]ηk =

⎛⎜⎜⎜⎜⎝
βηk (A

(ηk)

[o]φk,ηk )
ηk−1

βηk (A
(ηk)

[o]φk,ηk )
ηk−2

· · ·
βηk

⎞⎟⎟⎟⎟⎠ , �[o]φk,ηk =
(

[o]φk,ηk O

O O

)
.

b The choice of νk(i) is conducive to verifying �[o]ε �O. More details refer to Section 5.5.


c
(
�[o]ε,C[o], εΓεΓ �

ε

)= O, (4.6)

or equivalently,


c
(1

ε
H[o]�[o]εH�[o],A[o],

ξ∑
k=1

λ
+
k �n,φk

)
= O. (4.7)

Let � (k ∈ S ) be the solutions of the following algebraic equations, respectively:
[o]φk,ε ξ
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c
(
�[o]φk,ε,A[o],�n,φk

)= O. (4.8)

The assertion (4.3) can follows from (4.7), (4.8) and the superposition principle.
In view of (4.6), and the relationship between (4.1) near X∗ and (1.2), we obtain that the 

solution Xε(t) near X∗ is approximated by Zε(t) + X∗, i.e., the distribution Nn(X∗, �[o]ε) can 
be a local approximation for με around X∗. Therefore, the first part of Theorem 4.1 is proved.

According to the theoretical schemes in Algorithm 3, for any k ∈ S0
ξ
, we construct an ηk-

dimensional Lyapunov equation


c
(

[o]φk,ηk ,A

(ηk)

[o]s,φk ,�ηk,1

)
= O. (4.9)

Then we can mimic the analysis of (3.10)-(3.20) to prove that (4.9) is a standard L0-algebraic 
equation, i.e., A(ηk)[o]s,φk ∈ S (ηk) and


[o]φk,ηk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ 1 0 −ζ 2 0 ζ 3 · · ·
0 ζ 2 0 −ζ 3 · · · . .

.

−ζ 2 0 ζ 3 · · · . .
.

0

0 −ζ 3 · · · . .
.

0 −ζ ηk−1

ζ 3 · · · . .
.

0 ζ ηk−1 0
... . .

.
0 −ζ ηk−1 0 ζ ηk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� O, (4.10)

where (ζ 1, −ζ 2, ..., (−1)ηk−1ζ ηk )
� = 1

2H −1

ηk,A
(ηk)

[o]s,φk
eηk .

Also by proceeding a complex procedure similar to (3.20)-(3.30), we derive

G〈j〉
φk,m

= G〈j〉
φk,j

, ∀ j ∈ S0
ηk

;m ∈ Sjηk , (4.11)

and

�[o]φk,ε =
(ηk−1∏
i=0

a
�[o]φk,i�
νk(i),i

)2(
M[o]φk,ηk

(ηk−1∏
i=0

Q[o]φk,iP[o]φk,i
)
J[o]φk

)−1

×
(

[o]φk,ηk O

O O

)[(
M[o]φk,ηk

(ηk−1∏
i=0

Q[o]φk,iP[o]φk,i
)
J[o]φk

)−1]�
.

(4.12)

Thus, �[o]φk,ηk in Algorithm 3 is verified.

To proceed, let ̂λk be the minimal eigenvalue of M−1
[o]ηk
[o]φk,ηk (M

−1
[o]ηk )

�. Using (4.10), we 

have ̂λk > 0 and

M−1
[o]ηk
[o]φk,ηk (M

−1
[o]ηk )

� � λ̂kIηk . (4.13)

Combining (4.3), (4.11)-(4.13) and the definition of Z yields
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X��[o]εX =X�
[
εH�[o]
( ξ∑
k=1

λ
+
k �[o]φk,ε

)
H[o]
]

X

≥ε min
k∈S0

ξ

{
λ

+
k

(ηk−1∏
i=0

a
�[o]φk,i�
νk(i),i

)2} ξ∑
k=1

{[(((ηk−1∏
i=0

Q[o]φk,iP[o]φk,i
)
J[o]φk
)−1
)�

Z
]�

×M−1
[o]φk,ηk�[o]φk,ηk (M

−1
[o]φk,ηk )

�
[(((ηk−1∏

i=0

Q[o]φk,iP[o]φk,i
)
J[o]φk
)−1
)�

Z
]}

=ε min
k∈S0

ξ

{
λ

+
k

(ηk−1∏
i=0

a
�[o]φk,i�
νk(i),i

)2}
ξ∑

k=1

[
G�
φk,ηk

(
M−1

[o]ηk
[o]φk,ηk (M
−1
[o]ηk )

� O

O O

)
Gφk,ηk

]

≥ε min
k∈S0

ξ

{
λ

+
k λ̂k

(ηk−1∏
i=0

a
�[o]φk,i�
νk(i),i

)2} ξ∑
k=1

ηk∑
j=1

(G(j)

φk,ηk
)2

:=!ε
ξ∑

k=1

ηk∑
j=1

(G(j)

φk,j
)2

=!ε
ξ∑

k=1

(
Z2
φk

+
ηk∑
j=2

(G(j)

φk,j
)2
)
,

where !ε = εmink∈S0
ξ

{λ+
k λ̂k(
∏ηk−1
i=0 a

�[o]φk,i�
νk(i),i

)2}. In the display above, we have used the fact

G(1)
φk,1

= Zφk
, and

(((ηk−1∏
i=0

Q[o]φk,iP[o]φk,i
)
J[o]φk
)−1
)�

Z = Gφk,ηk
, ∀ k ∈ S0

ξ
.

Thus we obtain (4.4). This completes the proof. �
It should be mentioned that in the case of complex diffusion ΓΓ �, if the drift term C[o]

of (4.1) is “simple” in the sense that approaching the canonical form S (·), the criterion (4.4)
may be tedious for verifying �[o]ε � O. To this end, another available criterion is supplemented 
below.

Analogous to (3.36), if Assumption 2.2(c) holds, we can determine a set φ
� := {φ�

1, ..., φ
�
ξ

�
k
} ⊆

S0
n (including φ

� = ∅) and a constant λ
+
θ > 0 satisfying

Γ Γ � � λ
+
θ

ξ
�∑

�
n,φ

�
k
, (4.14)
k=1
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where φ
�
j > φ

�
j , ∀ i < j . By (4.2), we obtain ξ

�
k ≤ ξ .

Theorem 4.2. Under Assumptions 2.1 and 2.2(c), the following assertion is true:

X��[o]εX ≥ !�
ε

ξ
�∑

k=1

(
X2
φ

�
k

+
η�
k∑

j=2

(G(j)

φ
�
k ,j
)2
)
, (4.15)

where G
φ

�
k ,j

= [∑j−1
i=0 (Q

−1
[o]φ�

k ,i
)�P [o]φ�

k ,i

]
J [o]φ�

k
X, with η�

k , J [o]φ�
k
, P [o]φ�

k ,i
and Q[o]φ�

k ,i
ob-

tained in Algorithm 4, ∀ i ∈ S0
j−1. Furthermore, X is the same as in (3.6), and !�

ε > 0 can be 
similarly determined like !ε .

Algorithm 4: Algorithm for obtaining {G
φ

�
k ,j

}η
�
k

j=1.

Input: C[o], φ�
k .

Output: G
φ

�
k ,j

= [∑j−1
i=0 (Q

−1
[o]φ�

k ,i
)�P [o]φ�

k ,i

]
J [o]φ�

k
Xa, ∀ j ∈ S0

η�
k

.

1 (Initialization): η�
k

= 1, C[o]φ�
k ,1

= J [o]φ�
k
C[o]J−1

[o]φ�
k

;

2 (Technical framework): By a FOR loop similar to Algorithm 2, we determine the values of η�
k

and some 
suitable ν�

k(i)
∈ Sin, which satisfies

3 (4-i) c
�[o]φ�

k ,i�
ν�
k(i)

,i
�= 0, ∀ i ∈S0

η�
k
−1
, (4-ii) c

�[o]φ�
k ,η

�
k
�

η�
k
,j

= 0, ∀ j ∈ S
η�
k
+1

n
a,

4 where each c�[o]φ
�
k ,i�

ji
is determined by the iterative scheme:

5 Ĉ[o]φ�
k ,i

= P [o]φ�
k ,i
C[o]φ�

k ,i
P−1

[o]φ�
k ,i

a, C[o]φ�
k ,i+1 :=Q[o]φ�

k ,i
Ĉ[o]φ�

k ,i
Q−1

[o]φ�
k ,i

;

6 return η�
k

, J [o]φ�
k

, P [o]φ�
k ,i

, Q[o]φ�
k ,i

(i ∈ S0
η�
k
−1
).

a The matrices J [o]φ�
k
, P [o]φ�

k ,i
and Q[o]φ�

k ,i
have the same form as Jφk , Pφk,i and Qφk,i

by replacing 

(φk, νk(i), �k,n−1−i ) with (φ�
k , ν�

k(i)
, �[o]k,n−1−i ), where �[o]k,n−1−i = −1

ĉ
�[o]φ�

k ,i�
i+1,i

(̂c
�[o]φ�

k ,i�
i+2,i , ..., ̂c�[o]φ

�
k ,i�

n,i
)� . 

[The paraphrase of c�·�
j,i

(resp., ̂c�·�
j,i

) is the same as a�·�
j,i

(resp., ̂a�·�
j,i

).] Analogously, c�[o]φ
�
k ,0�

ν�
k(0),0

:= 1 and 

P
φ

�
k ,l

=Q
φ

�
k ,l

:= In, ∀ l ∈ {0, n − 1}; k ∈S0
ξ
� .

Proof. For any k ∈ S0
ξ

� , let �[o]φ�
k ,ε

be the solution of the following algebraic equation:


c
(
�[o]φ�

k ,ε
,C[o],�n,φ

�
k

)= O. (4.16)

Using (4.6), (4.14) and (4.16), there holds

�[o]ε � ελ
+
θ

ξ
�∑
�[o]φ�

k ,ε
.

k=1
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The remainder of the proof is similar to that of (3.39)-(3.42), and is omitted. �
Below we show some sufficient conditions for �[o]ε � O (with the motivation originating 

from the study on the local approximation for the IPDFs of existing ecological and biological 
models).

Corollary 4.1. Under Assumptions 2.1 and 2.2(c), if one of the following four conditions holds:

(2-a) ξ = n, (2-b) ηk3
= n, ∃ k3 ∈ S0

ξ
, (2-c) ξ

� = n, (2-d) η�
k4

= n, ∃ k4 ∈ S0
ξ

� .

Then �[o]ε � O.

Proof. This is a direct corollary of (4.4) and (4.15); see a standard argument in Corollary 3.1. �
Remark 6. Most theoretical results regarding the positive definiteness of covariance matrices 
(�[o]ε � O) are established only under case (2-b) or non-degenerate linear diffusion (a special 
case of (2-a)), based on existing normal approximation methods; see [41,45–48,79–82]. Then, 
some models based on the Ornstein–Uhlenbeck process, such as those in Yang et al. [62] and 
Zhou et al. [90], cannot verify �[o]ε � O using these methods. However, our method can ad-
dress this issue. Although these models do not fall into the general setting of Corollary 4.1, the 
desired result �[o]ε � O can still be obtained from Theorems 4.1 and 4.2. The relevant analysis 
is left for the reader. Our uNA method will advance and outperform existing results of normal 
approximation for IPDFs. Furthermore, it should be mentioned that similar to Remark 3, the 
uniqueness of the IPM με is not required for Theorems 4.1, 4.2 and Corollary 4.1.

4.2. Global approximation-II

Combined with Assumption 2.2(b), by a standard argument in Theorem 3.3, we have the 
following results of the uNA method for με in global horizon.

Theorem 4.3. Under Assumptions 2.1 and 2.2(b)-(c), for sufficiently small ε,

(i) The IPM με (resp., IPDF �ε(·)) can be globally approximated by the distribution 
Nn(X∗, �[o]ε) (resp., �[o]ε(·)) limited on Rn+. If �[o]ε �O, then

�[o]ε(Xε(t))= (2π)−
n
2 |�[o]ε |− 1

2 e
− 1

2 (Xε−X∗)��−1
[o]ε(Xε−X∗)

, (4.17)

and

lim
ε→0

∫
Rn+

∣∣y − X∗∣∣γ ∣∣�ε(y)−�[o]ε(y)
∣∣dy = 0, ∀ γ ∈ (0,2].

(ii) Under (3.44) and �[o]ε � O, if there further exist constants K̂ > 0, α1 ∈ (0, 1) and a vector 
γ 2 such that
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n∑
i=1

(∣∣fi(x)∣∣+ ∣∣∂ifi(x)∣∣)≤ K̂e
1
εα1 | ln x−γ 2|2, ∀ x ∈Rn+. (4.18)

Then

sup
x∈Rn+

∣∣Lε�[o]ε(x)
∣∣≤ ℘2(ε), (4.19)

where limε→0
℘2(ε)√

ε
= 0.

Remark 7. Similar to Remark 5, we let �∂[o]ε(Xk1, ..., Xkl ) be the marginal density of 
Nn(X∗, �[o]ε) with respect to the components (Xk1, ..., Xkl ), where 1 ≤ k1 < · · ·< kl ≤ n. Then 
by Theorem 4.3, for sufficiently small ε, if �[o]ε � O, then the measure μ∂ε (Xε,i) approximately 
has a normal probability density

�∂[o]ε(Xε,i)= 1√
2π�[o]ε(i, i)

e
− (Xε,i−X∗

i
)2

2�[o]ε (i,i) , ∀ i ∈ S0
n,

which is limited on Rn+.
The LNA method is considered to be a more biologically reasonable approximation for the 

IPDF �ε(·) of (1.2) compared with the uNA method. Most generalized Kolmogorov systems 
are modeled to describe the dynamics of interacting populations that are required to be nonneg-
ative. This requirement is in accordance with the result P (Xε ∈ Rn+) = 1 under the distribution 
LNn(ln X

∗
ε , �ε). But if the distribution Nn(X∗, �[o]ε) is considered as a global approximation 

for με , it causes a unreasonable result P (Xε ∈ Rn \ Rn+) > 0. Fortunately, such probability is 
negligible for sufficiently small ε. In this case, the distribution Nn(X∗, �[o]ε) limited on Rn+
becomes a viable approximation for με , as shown before in part (i) of Theorem 4.3.

5. Applications

This section presents a number of applications of our theoretical results. Our main aim is to 
approximately characterize the relevant IPMs and IPDFs by the LNA (or uNA) method.

Remark 8. Before proceeding further, let us make the following remarks.

• As is well known, the IPM με denotes a long-time, stochastic, positive steady state of the 
generalized Kolmogorov system (1.2), and is a distribution function defined on t → ∞. The 
existence and form of με cannot be directly determined due to the finite number of iterations 
of computer simulation. By a standard argument in [8,13,79], for any finite time interval 
[0, T0], if Assumption 2.1(2) holds, system (1.2) will have an empirical normalized occu-
pation measure με(T0, ·) that relies on T0. In addition, the measure με(T0, ·) will converge 
weakly to με(·) in the sense that for every continuous and bounded function h(·),

lim
T0→∞

∫
Rn

h(x)με(T0, dx)=
∫
Rn

h(x)μ(dx).
+ +
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This implies that for sufficiently large T0 > 0, με(T0, ·) can reflect most of the dynamic 
behavior and statistical properties of με . Thus, unless specifically stated, we use the empir-
ical measure με(T0, ·) with a large enough time interval and sufficient iterations as a viable 
alternative for με . Accordingly, let �ε(T0, ·) be the empirical density function of με(T0, ·). 
Combined with Remark 5, the notations μ∂ε (T0, ·) and �

∂

ε (T0, ·) can be similarly understood.
• In each application example, �ε(Xε) should be specifically written as �ε((Xε,1, ..., Xε,n)

�). 
For convenience, a short notation �ε(Xε,1, ..., Xε,n) is used. Without causing ambigu-
ity, we will adopt such abbreviation throughout Section 5. [Similarly, �∂

ε (Xε,k1, ..., Xε,kl ), 
�ε(Xε,1, ..., Xε,n) and �[o]ε(Xε,1, ..., Xε,n) are well defined.]

5.1. Stochastic SIR epidemic models

Compartmental models, introduced first by Kermack and McKendrick [77,78], are an effec-
tive way to describe the transmission dynamics of infectious diseases such as avian influenza, 
cholera and syphilis. The main idea of these models is to subdivide a host population into several 
epidemiological distinct types of individuals (or called compartments), and the SIR (Susceptible-
Infected-Recovered) model is one of the basic building blocks along this line [1], from which 
many epidemic systems are established. To begin, we consider the following stochastic equation 
with degenerate diffusion, which in the absence of 

√
ε was studied in [57,83]:

{
dSε(t)= ["− aSε(t)Iε(t)− pSε(t)

]
dt + √

εσ1Sε(t)dW(t),

dIε(t)= [aSε(t)Iε(t)− (p+ α + γ )Iε(t)
]
dt + √

εσ2Iε(t)dW(t),
(5.1)

where Sε(t) and Iε(t) denote the population of susceptible and infected humans, respectively, at 
time t . " is the intrinsic recruitment rate; a is the incidence rate; p and α are the natural death 
rate and disease-induced mortality rate, respectively; γ denotes the recovery rate of infected 
individuals. All of the above parameters are positive. Normally the recovered individuals Rε(t)
have no influence on the underlying properties of infectious diseases, thus only the dynamics of 
individuals Sε(t) and Iε(t) are considered in (5.1).

By a similar argument in [57,83], one can conclude that Assumptions 2.1 and 2.2(b) are sat-
isfied by system (5.1) if the following conditions hold:

RS
0,ε = a"

p(p+ α + γ + εσ 2
2

2 )

> 1, p > εσ 2
1 , p+ α + γ > εσ 2

2 . (5.2)

Before applying Theorem 3.1, the procedures in Assumption 2.2(a) and (3.1)-(3.3) corresponding 
to system (5.1) should be provided. Denote RS

1,ε = a"

(p+ εσ2
1

2 )(p+α+γ+ εσ2
2

2 )

, and let

⎧⎪⎪⎨⎪⎪⎩
"

S
∗
ε

− aI
∗
ε −
(
p+ εσ 2

1

2

)
= 0,

aS
∗
ε −
(
p+ α + γ + εσ 2

2
)

= 0.

2
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If RS
1,ε > 1, the solution of above equations is unique on R2+, and it is S

∗
ε = p+α+γ+ εσ2

2
2

a
, I

∗
ε =

(p+ εσ2
1

2 )(RS
1,ε−1)

a
. Then by calculation, we have

Bε =
(− "

S
∗
ε

−aI∗
ε

aS
∗
ε 0

)
, ΘεΘ

�
ε =
(

σ 2
1 σ1σ2

σ1σ2 σ 2
2

)
, Gε =

⎛⎜⎝
σ1√
σ 2

1 +σ 2
2

σ2√
σ 2

1 +σ 2
2

σ2√
σ 2

1 +σ 2
2

− σ1√
σ 2

1 +σ 2
2

⎞⎟⎠ .
This yields that Gε(ΘεΘ

�
ε )G�

ε = (σ 2
1 + σ 2

2 )�2,1, and

Aε = 1

σ 2
1 + σ 2

2

(
a11 a12
a21 a22

)
,

where

a11 = −σ 2
1"

S
∗
ε

+ aσ1σ2(S
∗
ε − I

∗
ε ), a12 = −σ1σ2"

S
∗
ε

+ a(σ 2
1 I

∗
ε + σ 2

2 S
∗
ε ),

a21 = −σ1σ2"

S
∗
ε

− a(σ 2
1 S

∗
ε + σ 2

2 I
∗
ε ), a22 = −σ 2

2"

S
∗
ε

+ aσ1σ2(I
∗
ε − S

∗
ε ).

By Algorithm 1, we consider the algebraic equation


c(�1,ε ,Aε,�2,1)= O.

Clearly, J1 = I2. Note that a21 �= 0, then ν1(1) = 2 and η1 = 2. Using Theorem 3.1, we can 
construct a matrix M1,2 such that M1,2�1,εM

�
1,2 =�1,2 �O, where

M1,2 =
(

a21
σ 2

1 +σ 2
2

a22
σ 2

1 +σ 2
2

0 1

)
, �1,2 =

(
S

∗
ε

2" 0
0 1

2a2"I
∗
ε

)
.

Hence,

�ε = εa2
21

σ 2
1 + σ 2

2

G�
ε M

−1
1,2�1,2(M

−1
1,2)

�Gε � O. (5.3)

Combining Theorem 3.3, (5.2) and RS
1,ε ≤ RS

0,ε , we obtain

(⊗-1) If RS
1,ε > 1, p > εσ 2

1 and p + α + γ > εσ 2
2 , then the unique IPM με of (5.1) around 

(S
∗
ε , I

∗
ε )

� is approximated by the distribution LN2(ln(S
∗
ε , I

∗
ε )

�, �ε), with �ε shown in 
(5.3). Moreover, for sufficiently small ε, the IPDF �ε(Sε, Iε) can be globally approxi-
mated by

�ε(Sε, Iε)= 1√ e
− 1

2 (ln
Sε

S
∗
ε
,ln Iε

I
∗
ε
)�−1

ε (ln Sε

S
∗
ε
,ln Iε

I
∗
ε
)�
.

2π |�ε |SεIε
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To demonstrate, a numerical example is provided.

Example 5.1. Consider (5.1) with parameters λ = 0.2, a = 0.65, p = 0.2, α = 0.1, γ =
0.2, σ1 = 0.05, σ2 = 0.1 and initial value (Sε(0), Iε(0)) = (0.8, 0.1). By choosing ε = 10−2, 
we then compute RS

1,ε = 1.2998, p − εσ 2
1 > 0.199, p + α + γ − εσ 2

2 = 0.4999, (S
∗
ε , I

∗
ε ) =

(0.7693, 0.0922), and

�ε = 10−5 ×
(

7.1144 −9.9990
−9.9990 190

)
.

Thus,

�ε(Sε, Iε)= 454.9527

SεIε
e
−7602(ln Sε

S
∗
ε
)2−290.6696(ln Iε

I
∗
ε
)2−817.0503 ln Sε

S
∗
ε

ln Iε

I
∗
ε ,

with two marginal densities (MDs):

�∂
ε (Sε)= 47.2978

Sε
e−7028(ln Sε

0.7693 )
2
, �∂

ε (Iε)= 9.1524

Iε
e−263.158(ln Iε

0.0922 )
2
.

We first plot the empirical marginal measures (MMs) μ∂ε (T0, Sε) and μ∂ε (T0, Iε) at itera-
tion time T0 = 30000 (i.e., the frequency histograms of Sε and Iε of the empirical measure 
με(30000, Sε, Iε)), as shown in the right-hand column of Fig. 1. Intuitively, their outlines are 
close to the type of log-normal or normal distribution. To verify (⊗-1), we use the command 
“ksdensity(·, ·)” in MATLAB (MathWorks, 2022b) to plot the empirical density �ε(T0, Sε, Iε) of 
(5.1) in 2D setting at T0 = 10000, 20000 and 30000, respectively in Fig. 2(a)-(c). Fig. 2(d) shows 
the function �ε(·) in 2D setting. It is easily seen that these four density pictures are very similar. 
To further support the similarity, Fig. 3 depicts the empirical MDs �

∂

ε (T0, Sε) and �
∂

ε (T0, Iε)
(i.e., the frequency histogram fitting curves of Sε and Iε) at T0 = 10000, 20000 and 30000, each 
in a different color. In this figure, �∂

ε(Sε) and �∂
ε (Iε) both almost coincide with the correspond-

ing three fitting curves. To illustrate this quantitatively, we use the Kolmogorov–Smirnov test [84]

to test the alternative hypothesis that �∂
ε(Sε) (resp., �∂

ε (Iε)) and �
∂

ε (T0, Sε) (resp., �
∂

ε (T0, Iε)) 
are from different distributions against the null hypothesis that they are from the same distribution 
for each component, where T0 ∈ {10000, 20000, 30000}. With 5% significance level, the relevant 
Kolmogorov–Smirnov tests imply that we cannot reject the null hypothesis. Thus, the log-normal 
density �ε(Sε, Iε) approximates the IPDF �ε(Sε, Iε) very well, which verifies (⊗-1).

5.2. Stochastic delayed chemostat models

The chemostat is a laboratory apparatus used for the continuous culture of microorganisms. 
The researchers continuously add fresh substrate while simultaneously removing culture liquid 
at the same rate, including metabolic end products and leftover nutrients, to maintain a constant 
culture volume [27]. Chemostat models are considered to be the best idealization for biological 
systems [2], and are widely used in fermentation processes, wastewater treatment, and microbial 
dynamics research [96]. It has been discovered that there is a delay between the time nutrients 
are consumed and the time they are converted to available energy. Remarkably, chemostat exper-
iments have fully confirmed the hypothesis that an infinite (distributed) delay with the general 
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Fig. 1. The left-hand column presents the trajectories of Sε(t) and Iε(t) of (5.1), and of its deterministic system on 
t ∈ [0, 1000]. The right-hand column shows the empirical MMs μ∂ε (T0, Sε) and μ∂ε (T0, Iε) of (5.1) on the iteration 
interval [0, 30000]. All the iteration step sizes are �t = 10−3.

Fig. 2. (a)-(c) The empirical density �ε(T0, Sε, Iε) of (5.1) in 2D setting at iteration time T0 equals to 10000, 20000
and 30000, respectively; (d) The function �ε(·) in 2D setting. All of the parameter values and step size are the same as 
in Fig. 1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

concept of a response time kernel can reflect the cumulative effect of past states [85]. There-
fore, in this study, we focus on a class of chemostat models that incorporate delay in uptake 
conversion, which was first proposed in [86] without 

√
ε. Precisely,
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Fig. 3. The blue, green and black lines represent the empirical MDs �∂ε (T0, Sε) and �∂ε (T0, Iε) of (5.1) at iteration time 
T0 = 10000, 20000 and 30000, respectively. The purple lines denote the MDs of �ε(Sε, Iε) (i.e., �∂ε (Sε) and �∂ε (Iε)). 
All of the parameter values and step size are the same as in Fig. 1.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dSε(t)=
[(
S0 − Sε(t)

)
D − xε(t)

h̄(Sε(t))

]
dt + √

εσSε(t)dW(t),

dxε(t)=
[
−(D+ θ)xε(t)+

t∫
−∞

xε(τ )

h̄(Sε(τ ))
e−D(t−τ)#(t − τ)dτ

]
dt,

(5.4)

where Sε(t) and xε(t) are the concentrations of substrate and microbial species, respectively, at 
time t . D is the dilution rate (or equivalently, 1

D
is the mean residence time), S0 is the input 

concentration of nutrient, and θ is the specific death rate of microorganism. Due to the outflow in 
the chemostat, xε(τ )e−D(t−τ) stands for the biomass of xε that consumes nutrient at time t − τ

and survives so that it can complete the conversion process of the substrate at time t . The kernel 
#(·) depicts the distribution of time delay involved in the conversion of nutrient to viable cells, 
and is usually simulated by a Gamma distribution [52], i.e.,

#(·)= tmαm+1e−αt

m! , ∀ t ≥ 0, (5.5)

where m is a nonnegative integer, and the constant α > 0 denotes the decay rate. Two common 
types of (5.5) in the literature are: (i) The weak kernel (m = 0) (ii) The strong kernel (m = 1). 

1
h̄(Sε)

denotes the nutrient consumption capacity, and the function h̄(·) ∈ C2(R+; R+) is generally 
assumed to satisfy

h̄′(s)≤ 0,
1

sh̄(s)
≤ c and h̄′′(s)s3 ≤m0, ∀ s > 0, (5.6)

where c > 0 and m0 are two constants.
In what follows, we mainly analyze the case of the weak kernel. Clearly, system (5.4) does 

not have the exact form as in (1.2). To this end, we give an equivalent transformation for (5.4) by 
means of the linear chain trick [87]. Let

Uε(t)=
t∫

−∞

xε(τ )

h̄(Sε(τ ))
e−D(t−τ)#(t − τ)dτ.

Then (5.4) is equivalent to
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dSε(t)=

[(
S0 − Sε(t)

)
D − xε(t)

h̄(Sε(t))

]
dt + √

εσSε(t)dW(t),

dxε(t)= [−(D + θ)xε(t)+Uε(t)
]
dt,

dUε(t)=
[ αxε(t)
h̄(Sε(t))

− (D + α)Uε(t)
]
dt,

(5.7)

which falls into our general setting. Thus, we need only to discuss the IPDF of (5.7). Denote

RS
2,ε = α

(D + α)(D + θ)h̄((1 + εσ 2

2D )
−1S0)

, RS
3,ε = α

(D + α)(D + θ + c1S
0εσ 2

2 )h̄(S0)
,

where c1 = max{0, αm0
2D(D+α)(S0h̄(S0))2

}.
A summary of the theoretical results in [83,86] indicates that Assumptions 2.1 and 2.2(b) 

are satisfied by (5.7) if RS
3,ε > 1. Taking steps along the procedures in Assumption 2.2(a) and 

(3.1)-(3.3), we define a quasi-positive equilibrium (S
∗
ε , x

∗
ε , U

∗
ε ) ∈ R3+ by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(S0

S
∗
ε

− 1
)
D − x∗

ε

S
∗
ε h̄(S

∗
ε )

− εσ 2

2
= 0,

−(D + θ)+ U
∗
ε

x∗
ε

= 0,

αx∗
ε

U
∗
ε h̄(S

∗
ε )

− (D + α)= 0.

By calculation, the equilibrium (S
∗
ε , x

∗
ε , U

∗
ε ) exists and is unique when RS

2,ε > 1. In this case, we 
have ΘεΘ

�
ε = σ 2�3,1, Gε = I3, λ+

1 = σ 2, and

Aε = Bε =
⎛⎝−a11 −a12 0

0 −a22 a22
a31 a33 −a33

⎞⎠ , (5.8)

where a11 = (D + εσ 2

2 ) − x∗
ε h̄

′(S∗
ε )

h̄2(S
∗
ε )

> 0, a12 = x∗
ε

S
∗
ε h̄(S

∗
ε )
, a22 =D + θ , a31 = − (D+α)S∗

ε h̄
′(S∗

ε )

h̄(S
∗
ε )

≥ 0

and a33 =D + α.
In view of

ψBε (λ)=λ3 + (a11 + a22 + a33)λ
2 + a11(a22 + a33)λ+ a12a22a31

:=λ3 + a1λ
2 + a2λ+ a3,

we compute |H (1)
3,Bε

| = a1 > 0,

|H (2)
3,Bε

|> a22(a11a33 − a12a31)= (D + α)
(
D + εσ 2

2

)
> 0,

and |H3,Bε | = a3|H (2)
3,Bε

| > 0. Thus, Bε ∈ RH(3).
Consider the algebraic equation
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c(�1,ε,Aε,�3,1)= O,

where Aε is shown in (5.8). By Algorithm 1 and (3.18), we determine that Q1,1 = I3 and

P1,1 =
⎛⎝ 1 0 0

0 0 1
0 1 0

⎞⎠ (i.e., ν1(1) = 3).

Then, η1 = 3 and A1,2 ∈ Uq(3). Combined with Corollary 3.1 and Theorem 3.1, one has

�1,3 =

⎛⎜⎜⎜⎜⎝
a2

2|H (2)
3,Bε

| 0 − 1
2|H (2)

3,Bε
|

0 1
2|H (2)

3,Bε
| 0

− 1
2|H (2)

3,Bε
| 0

|H (1)
3,Bε

|
2|H3,Bε |

⎞⎟⎟⎟⎟⎠� O, M1,3 =
⎛⎝ β3A

2
1,2

β3A1,2
β3

⎞⎠ ,

and �1,ε = (a22a31)
2(M1,3P1,1)

−1�1,3[(M1,3P1,1)
−1]�. Therefore,

�ε = ε(a22a31σ)
2(M1,3P1,1)

−1�1,3[(M1,3P1,1)
−1]� �O. (5.9)

In summary, we conclude

(⊗-2) If mini=2,3{RS
i,ε} > 1, then the distribution LN3(ln(S

∗
ε , x

∗
ε , U

∗
ε )

�, �ε) is a local approx-

imation for the unique IPM με of (5.7) around (S
∗
ε , x

∗
ε , U

∗
ε )

�, where �ε is given in (5.9). 
Moreover, for sufficiently small ε, the IPDF �ε(Sε, xε, Uε) is globally approximated by

�ε(Sε, xε,Uε)= 1

(2π)
3
2
√|�ε |SεxεUε

e
− 1

2 (ln
Sε

S
∗
ε
,ln xε

x∗ε ,ln
Uε

U
∗
ε
)�−1

ε (ln Sε

S
∗
ε
,ln xε

x∗ε ,ln
Uε

U
∗
ε
)�
.

Below we provide a numerical example for illustration.

Example 5.2. Let the consumption capacity 1
h̄(Sε)

be the Michaelis–Menten response type [88], 

i.e., 1
h̄(Sε)

= mcSε
a+Sε , where the constants a, mc > 0, then condition (5.6) is satisfied. According to 

[88], we choose initial value (Sε(0), xε(0), Uε(0)) = (0.4, 0.3, 0.6) and the following parame-
ters:

S0 = 1, D = 1.2, mc = 15, a = 2, θ = 0.4, α = 3, σ = 0.5.

By letting ε = 2 × 10−2, we obtain RS
2,ε = 2.2290 and RS

3,ε = 2.2252. In view of (⊗-2), 

�ε(Sε, xε, Uε) (resp., LN3(ln(S
∗
ε , x

∗
ε , U

∗
ε )

�, �ε)) is a good global fit for �ε(Sε, xε, Uε) (resp., 
με ). To verify this, the relevant MDs of �ε(Sε, xε, Uε) are first presented in Table 2, where 
(S

∗
ε , x

∗
ε , U

∗
ε ) = (0.3511, 0.3472, 0.5556).

Below by a similar argument in Example 5.1, we provide the empirical MMs μ∂ε (T0, Sε), 
μ∂ε (T0, xε) and μ∂ε (T0, Uε) at T0 = 20000; see the right-hand column of Fig. 4. Obviously, it 
is quite possible to use some log-normal or normal distributions to approximate the theoretical 
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Table 2
List of some MDs �∂ε (·) of �ε(Sε, xε, Uε) in Example 5.2.

MDs Mean Variance Correlation coefficient

�∂ε (Sε, xε) (ln 0.3511, ln 0.3472) (0.8799,0.3914)× 10−3 −0.0976 × 10−3

�∂ε (Sε) ln 0.3511 0.8799 × 10−3 −−
�∂ε (xε) ln 0.3472 0.3914 × 10−3 −−
�∂ε (Uε) ln 0.5556 0.6093 × 10−3 −−

Fig. 4. The left-hand column shows the sample paths of Sε(t), xε(t) and Uε(t) of (5.7), and of its deterministic system 
on t ∈ [0, 1000]. The right-hand column presents the empirical MMs μ∂ε (20000, Sε), μ∂ε (20000, xε) and μ∂ε (20000, Uε)
of (5.7). All the iteration step sizes are �t = 10−3.

MDs of �∂
ε (Sε, xε, Uε). Fig. 5(a)-(c) depicts the empirical MD �

∂

ε (T0, Sε, xε) of (5.7) (or equiv-
alently, the empirical density �ε(T0, Sε, xε) of (5.4)) in 2D setting at iteration time T0 equals 
to 5000, 10000 and 20000, respectively, and the function �∂

ε(Sε, xε) in 2D setting is shown in 
Fig. 5(d). Clearly, the four density pictures are very similar. [In fact, Uε(t) is only an accompa-
niment to the transformed equation (5.7), our main focus is the dynamics of Sε(t) and xε(t) in 
(5.4), and that is why we only study �

∂

ε (T0, Sε, xε) and �∂
ε (Sε, xε). Such idea is also adopted in 

Example 5.4 later.] Furthermore, Fig. 6 presents the empirical MDs �
∂

ε (T0, Sε), �
∂

ε (T0, xε) and 

�
∂

ε (T0, Uε)) at T0 = 10000, 20000 and 30000, each in a different color. It is clear that �∂
ε(Sε), 

�∂
ε (xε) and �∂

ε (Uε) in Table 2 all almost coincide with the corresponding three density curves. 
Using the Kolmogorov–Smirnov test, for any T0 ∈ {10000, 20000, 30000} and � ∈ {Sε, xε, Uε}, 
we determine that the null hypothesis that �∂

ε(�) and �
∂

ε (T0, �) are from the same distribution 
will be accepted at 2% significance level.

To summarize, the similarity between �ε(Sε, xε, Uε) and the IPDF �ε(Sε, xε, Uε) is signifi-
cant. Thus, (⊗-2) is well verified.
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Fig. 5. (a)-(c) The empirical MD �∂ε (T0, Sε, xε) of (5.7) in 2D setting at iteration time T0 = 5000, 10000 and 20000; 
(d) The function �∂ε (Sε, xε) in 2D setting. All of the parameter values and step size are the same as in Fig. 4.

Fig. 6. The blue, green and black lines represent the empirical MDs �∂ε (T0, Sε), �
∂
ε (T0, xε) and �∂ε (T0, Uε) of (5.7) at 

iteration time T0 equals to 5000, 10000 and 20000, respectively. The purple lines denote the one-dimensional MDs of 
�ε(Sε, xε, Uε). All of the parameter values and iteration step size are the same as in Fig. 4.

Remark 9. Combining Sections 5.1 and 5.2 yields that, if rank(ΘεΘ
�
ε ) = 1, i.e., ξ = 1, then the 

unique approach for verifying �ε � O is to obtain η1 = n, which means {ν1(1), ..., ν1(n)} = S0
n. 

According to (3.6) and the expression of Qφ1,i , a feasible practice to choose ν1(i) is to ensure 
that the form of Aφ1,i+1 is close to S (n). Thus, we present the first rule for the word ‘suitable” 
mentioned in Algorithm 1.

Rule 1: If ξ = 1, for any i ≥ 1, the choice of ν1(i) can maximize the following formula

∑
j∈Sn−2−i

1{�(j)k,n−2−i=0},

where 1(·) is the indicator function.
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To proceed, we will introduce the other two rules for the word ‘suitable” in Algorithm 1. Let-
ting X��εX = 0, we easily deduce from (3.6) that (Yk)k∈φ = 0. Combining this with Remark 3, 
an equivalent result of �ε � O is that (Yl)l∈S0

n\φ = 0. In view of the sequence {Hφk,i}ηki=1 and the 
definition of �k,n−1−i , we have

H(i+1)
φk,i+1 = Y[0∼νk(i)] +

∑
j∈S0

n−1−i

�
(j)

k,n−1−iY[j∼νk(i)], ∀ i ∈ S0
ηk−1, (5.10)

where [j ∼ νk(i)] denotes the subscript value dependent on νk(i). Then we conclude:
Rule 2: If ξ ∈ ( n2 , n], i.e., there are many random fluctuations, for any i ∈ S0

ηk−1, the choice of 

νk(i) is based on two restrictions including (i) [0 ∼ νk(i)] ∈ S0
n \ φ, and (ii) the following formula∑

[j∼νk(i+1)]∈S0
n\φ

1{�(j)k,n−2−i=0}

should be small.
In the case of ξ ∈ (1, n2 ], based on the relationship among the components of Xε(t) of (1.2) in 

practical terms, and the one-to-one match between Yl and Xε,l , ∀ l ∈ S0
n, we first divide (Yi)i∈S0

n

into ξ chains “(Yφk , 
∨asso
φk

Y•)”, ∀ k ∈ S0
ξ , where 

∨asso
φk

denotes a index set dependent on φk , 
satisfying: (i) every Yj (j ∈∨asso

φk
) is strongly associated with Yφk , and (ii) {∨asso

φk
}k∈S0

ξ
is a 

finite covering of S0
n \ φ. Then,

Rule 3: If ξ ∈ (1, n2 ], for any chain (Yφk , 
∨asso
φk

Y•) and i ∈ S0
ηk−1, the choice of νk(i) requires 

the condition [0 ∼ νk(c)] ∈ (S0
n \ φ) ∩∨asso

φk
, ∀ c= i, i + 1.

5.3. Stochastic Lotka–Volterra predator–prey models

Competition, predation and cooperation, as three primary interactions among species in 
ecosystems, affect largely the structure of animal and plant communities, as well as the evo-
lution process of population dynamics. Traditionally, these interactions are modeled by a class of 
systems of ordinary differential equations known as the Lotka–Volterra models. To better char-
acterize the underlying asymptotic dynamics of interacting species, the impact of some abiotic 
factors (e.g., random noise, seasonal variation, age structure) on the original systems has been
widely studied [87,89,91,92]. This section, together with the next one, will further derive explicit 
approximations for the IPDFs of Lotka–Volterra models. Consider a stochastic Lotka–Volterra 
prey-predator system with one prey and two competing predators:⎧⎪⎨⎪⎩
dXε,1(t)=Xε,1(t)

[
r1 − b11Xε,1(t)− b12Xε,2(t)− b13Xε,3(t)

]
dt,

dXε,2(t)=Xε,2(t)
[−r2 + b21Xε,1(t)− b22Xε,2(t)− b23Xε,3(t)

]
dt + √

εσ1Xε,2(t)dW1(t),

dXε,3(t)=Xε,3(t)
[−r3 + b31Xε,1(t)− b32Xε,2(t)− b33Xε,3(t)

]
dt + √

εσ2Xε,3(t)dW2(t),

(5.11)
where Xε,j (t) (j ∈ S0

3) denotes the population density of prey and two predators, respectively, 
at time t . r1 > 0 is the growth rate of prey Xε,1, and bii > 0 is the intraspecific competition 
coefficient, ∀ i ∈ S0

3. rl, b1l , bl1 > 0 are the natural death rate, capture rate and food conversion 
rate of predator Xε,l , respectively, l = 2, 3. b23, b32 ≥ 0 depict the interspecific competitions 
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of two predators. According to Connell [93], we assume that the intraspecific competitions are 
stronger than the interactions among different species, i.e.,

bii >
∑
j �=i

bij , ∀ i ∈ S0
3. (5.12)

Unlike the similar model in [53], (5.11) is established under the degenerate setting whereby the 
intensity of random fluctuations of prey is 0. The motivation stems from the argument in Benaim 
et al. [76]. Biologically, this assumption implies that the sources of environmental randomness 
have negligible effects on the prey population under strong competition between predators.

For simplicity, let

∇4 = b21r1 − b11r2, ∇5 = b31r1 − b11r3, ∇6 = b21b33 − b23b31, ∇7 = b21b32 − b22b31,

∇0 =
∣∣∣∣∣∣
b11 b12 b13

−b21 b22 b23
−b31 b32 b33

∣∣∣∣∣∣ , ∇8 =

∣∣∣∣∣∣∣
b11 r1 0

−b21 −r2 εσ 2
1

2

−b31 −r3 εσ 2
2

2

∣∣∣∣∣∣∣ .
Moreover, ∇i (resp., ∇̃i ) is defined by only replacing the ith column of ∇0 with vector 

(r1, −r2, −r3)� (resp., (0, 
εσ 2

1
2 , 

εσ 2
2

2 )�), ∀ i ∈ S0
3. Next, by a similar procedure in Assump-

tion 2.2(a) and (3.1)-(3.3), we first define an equilibrium X
∗
ε = (X

∗
ε,1, X

∗
ε,2, X

∗
ε,3)

�, which satis-
fies: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r1 − b11X
∗
ε,1 − b12X

∗
ε,2 − b13X

∗
ε,3 = 0,

−
(
r2 + εσ 2

1

2

)
+ b21X

∗
ε,1 − b22X

∗
ε,2 − b23X

∗
ε,3 = 0,

−
(
r3 + εσ 2

2

2

)
+ b31X

∗
ε,1 − b32X

∗
ε,2 − b33X

∗
ε,3 = 0.

(5.13)

It follows from Cramer’s rule that Eq. (5.13) has a unique positive solution X
∗
ε = (∇1−∇̃1∇0

, ∇2−∇̃2∇0
,

∇3−∇̃3∇0
) if ∇0 > 0 and ∇i > ∇̃i , ∀ı ∈ S0

3. Then we have

ΘεΘ
�
ε =
⎛⎝ 0 0 0

0 σ 2
1 0

0 0 σ 2
2

⎞⎠ , Aε = Bε =
⎛⎝−a11 −a12 −a13

a21 −a22 −a23
a31 −a32 −a33

⎞⎠ ,
where aij = bijX

∗
ε,j , ∀ i, j ∈ S0

3. By calculation,

ψBε (λ)=λ3 + (a11 + a22 + a33)λ
2 + [a11(a22 + a33)+ a12a21 + a13a31 + (a22a33 − a23a32)]λ

+ a11(a22a33 − a23a32)+ a21(a12a33 − a13a32)+ a31(a13a22 − a12a23)

:=λ3 + a1λ
2 + a2λ+ a3.

Clearly, |H (1)
3,Bε

| = a1 > 0 and a3 =X
∗
ε,1X

∗
ε,2X

∗
ε,3 > 0. By (5.12), we obtain a22a33 − a23a32 =

(b22b33 − b23b32)X
∗
ε,2X

∗
ε,3 > 0. Thus,
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|H (2)
3,Bε

|> a13a21a32 + a12a23a31 > 0, |H3,Bε | = a3|H (2)
3,Bε

|> 0,

implying that Bε ∈ RH(3).
Below we will study two algebraic equations 
c(�i,ε, Aε, �3,i ) = O, i = 2, 3. In view of

Rule 2 and Gε = I3, an equivalent result of �ε � O is that X��εX = 0 holds if and only if 
X1 = 0. Thus, we need to choose a νi(2) such that [0 ∼ νi(2)] = 1. In other words, the position of 
X1 should be transformed to before Xj by similarity transformation when solving the equation 

c(�i,ε, Aε, �3,i ) = O, where {i, j} = S0

2. More specifically,
Step 1. For the Lyapunov equation


c(�2,ε ,Aε,�3,2)= O.

According to Algorithm 1 and the form of Bε , we let ν1(1) = 2, and

J2 =
⎛⎝ 0 1 0

1 0 0
0 0 1

⎞⎠ , Q2,1 =
⎛⎝ 1 0 0

0 1 0
0 − a32

a12
1

⎞⎠ .
Obviously, H(1)

2,1 =X2 and H(2)
2,2 =X1 + a32

a12
X3. Hence, η1 ≥ 2.

Step 2. Consider the Lyapunov equation


c(�3,ε ,Aε,�3,3)= O.

By the similar argument in Step 1, we choose ν2(1) = 2 and

J3 =
⎛⎝ 0 0 1

1 0 0
0 1 0

⎞⎠ , Q3,1 =
⎛⎝ 1 0 0

0 1 0
0 − a23

a13
1

⎞⎠ .
Then, H(1)

3,1 =X3, H(2)
3,2 =X1 + a23

a13
X2 and η2 ≥ 2. Using Theorem 3.1, we determine that

X��εX =ρε
2∑

k=1

ηk∑
j=1

(
H(j)
φk,j

)2
≥ρε
[
X2

2 + (H(2)
2,2)

2 +X2
3 + (H(2)

3,2)
2
]

=ρε
[
X2

2 +X2
3 +
(
X1 + a32

a12
X3

)2 +
(
X1 + a23

a13
X2

)2]
.

It is clear that {X ∈R3|X��εX = 0} = {0}. Thus, �ε � O. The special expression of �ε can be 
obtained by further analysis in Steps 1 and 2, and is then omitted.

By slightly modifying the proofs of [53, Theorem 2.1 (iv), Lemma 3.11] and [62, Theorem 
5.1], we have if (5.12) and the following conditions are satisfied,

(i) ∇i > 0, ∀ i ∈ S−1
8 , (ii)

∇3˜ > 1, and (iii) bkk >
εσ 2

k−1
, k = 2,3, (5.14)
∇3 2
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then Assumptions 2.1 and 2.2(b) corresponding to system (5.11) hold, and its solution 
(Xε,1(t), Xε,2(t), Xε,3(t))

� is globally attractive. Combining Theorems 3.1 and 3.3 yields that,

(⊗-3) Under (5.14), �ε(Xε,1, Xε,2, Xε,3) (resp., LN3(ln(X
∗
ε,1, X

∗
ε,2, X

∗
ε,3)

�, �ε)) is a local 
approximation for the IPDF �ε(Xε,1, Xε,2, Xε,3) (resp., IPM με) of (5.11) around 
(X

∗
ε,1, X

∗
ε,2, X

∗
ε,3)

�, where �ε � O. Such approximation has a significant global fitting 
effect for sufficiently small ε.

We present a numerical example for verification.

Example 5.3. Consider (5.11) with the same initial values and parameters as in [53], i.e.,

(Xε,1(0),Xε,2(0),Xε,3(0))= (0.6,0.1,0.05), r1 = 1.2, r2 = 0.15, r3 = 0.01, b11 = 1.6,

b12 = 1.2,

b13 = 0.3, b21 = 0.85, b22 = 1.9, b23 = 0.6, b31 = 0.4, b32 = 1, b33 = 2.1, σ1 = 0.2, σ2 = 0.2.

We choose ε = 2 × 10−2. Direct calculation shows that ∇0 = 7.251, ∇1 = 4.3995, ∇2 =
1.3441, ∇3 = 0.1634, ∇4 = 0.78, ∇5 = 0.464, ∇6 = 1.545, ∇7 = 0.09, ∇8 = 1.264 ×
10−4, ∇3

∇̃3
= 206.3131, b22 − εσ 2

1
2 = 1.8996, b33 − εσ 2

2
2 = 2.0996 and (X

∗
ε,1, X

∗
ε,2, X

∗
ε,3) =

(0.6069, 0.1852, 0.0224). Condition (5.14) holds and hence, �ε(Xε,1, Xε,2, Xε,3) has a global 
approximation for the IPDF �ε(Xε,1, Xε,2, Xε,3). To support this deeply, we first provide in 
Table 3 the MDs of �ε(Xε,1, Xε,2, Xε,3). Inspired by the ideas in Examples 5.1 and 5.2, 
Fig. 7 presents all the empirical MMs μ∂ε (30000, Xε,i) of (5.11). Furthermore, all the MDs 
of �ε(Xε,1, Xε,2, Xε,3) and �ε(T0, Xε,1, Xε,2, Xε,3) under different large iteration time T0
are shown in Figs. 8 and 9. Obviously, the similarity between the corresponding MDs (or 
MMs) is significant. Based on the Kolmogorov–Smirnov test, for each i ∈ S0

3 and T0 ∈
{10000, 20000, 30000}, we further consider the hypothesis testing problem with its null hy-

pothesis H 0
i that �∂

ε (Xε,i) and �
∂

ε (T0, Xε,i) are from the same distribution. It is shown that the 
hypothesis H 0

i cannot be rejected with 2% significance level, ∀ i ∈ S0
3. More quantitative results 

are shown in Table 3. Hence, these greatly verify (⊗-3) and Theorem 3.3 from the side.

5.4. Stochastic delayed Lotka–Volterra cooperative models

Our aim in this section is to keep studying the Lotka–Volterra models, with a focus on co-
operative interactions in ecosystems. Let Xε,1(t) and Xε,2(t) be the population size of two 
cooperation species at time t , which satisfy the following delayed equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dXε,1(t)=Xε,1(t)
[
r1 + a12

∫ t
−∞#1(t − s)Xε,2(s)ds − a11Xε,1(t)

]
dt

+√
εXε,1(t)

2∑
i=1

σ1idWi(t),

dXε,2(t)=Xε,2(t)
[
r2 + a21

∫ t
−∞#2(t − s)Xε,1(s)ds − a22Xε,2(t)

]
dt

+√
εXε,2(t)

2∑
σ2idWi(t),

(5.15)
i=1
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Table 3
List of the MDs of �ε(Xε,1, Xε,2, Xε,3) in Example 5.3.

MDs Mean Variance Correlation coefficient

�∂ε (Xε,1,Xε,2) (ln 0.6069, ln 0.1852) (0.32329,9.5390)× 10−4 −1.4497 × 10−4

�∂ε (Xε,1,Xε,3) (ln 0.6069, ln 0.0224) (3.2329 × 10−5,0.0122) 1.2419 × 10−4

�∂ε (Xε,2,Xε,3) (ln 0.1852, ln 0.0224) (9.5390 × 10−4,0.0122) −7.8217 × 10−4

�∂ε (Xε,1)
a ln 0.6069 3.2329 × 10−5 −−

�∂ε (Xε,2)
a ln 0.1852 9.5390 × 10−4 −−

�∂ε (Xε,3)
a ln 0.0224 0.0122 −−

a Let pH
i,T0

be the minimum significance level that can reject the above hypothesis H 0
i

at iteration 
time T0. In fact, the hypothesis H 0

i
is equivalent to the one that there is no difference between the 

distributions μ∂ε (T0, Xε,i ) and LN(lnX
∗
ε,i , �ε(i, i)). Using several Kolmogorov–Smirnov tests, we 

have pH1,T0
≤ 1.51%, pH2,T0

≤ 0.69%, pH3,T0
≤ 1.72%, ∀ T0 ∈ {10000, 20000, 30000}. The relevant 

analysis of other numerical examples in Section 5 is exactly carried out along this line.

Fig. 7. The left-hand column depicts the variation trends of Xε,i (t) (i ∈ S0
3) of (5.11), and of its deterministic system 

on t ∈ [0, 1000]. The right-hand column shows the empirical MMs μ∂ε (30000, Xε,j ) (j ∈S0
3) of (5.11). All the iteration 

step sizes are �t = 10−3.

where ri > 0 and aii > 0 are the growth rate and intraspecific competition rate of species Xε,i , 
respectively, i = 1, 2; a12, a21 ≥ 0 represent the natural interspecific cooperation rates. As stated 
before in Section 5.2, the cumulative cooperation effect of the past state of Xε,j on the current 
species Xε,i(t) is described by the distributed delay function 

∫ t
−∞#i(t − s)Xε,j (s)ds, where 

{i, j} = S0
2, and the response kernel #i(·) is simulated by the general Gamma distribution, which 

has the same form as (5.5) by replacing (m, α) with (mi, αi), i.e.,
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Fig. 8. (a), (c), (e): The empirical MDs �∂ε (T0, Xε,1, Xε,2), �
∂
ε (T0, Xε,1, Xε,3) and �∂ε (T0, Xε,2, Xε,3) of (5.11) in 2D 

setting at iteration time T0 = 30000; (b), (d), (f): The functions �∂ε (Xε,1, Xε,2), �∂ε (Xε,1, Xε,3) and �∂ε (Xε,2, Xε,3) in 
2D setting. All of the parameter values and step size are the same as in Fig. 7.

Fig. 9. The blue, green and black lines represent the empirical MDs �∂ε (T0, Xε,i ) (i ∈ S0
3) of (5.11) at iteration time 

T0 = 10000, 20000 and 30000, respectively. The purple lines denote the one-dimensional MDs of �ε(Xε,1, Xε,2, Xε,3). 
All of the parameter values and iteration step size are the same as in Fig. 7.

#i(t)= tmi α
mi+1
i e−αi t

, t ≥ 0.

mi !
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To the best of our knowledge, no studies concerning the impact of generally distributed delay on 
cooperative interactions have been reported yet. To this end, we will do some work to fill this 
gap. It is worth noting that (5.15) does not fall into our general setting (1.2). By letting

uε,k(t)=
t∫

−∞

(t − s)k−1αk2e
−α2(t−s)

(k − 1)! Xε,1(s)ds, ∀ k ∈ S0
m2+1,

vε,l(t)=
t∫

−∞

(t − s)l−1αl1e
−α1(t−s)

(l − 1)! Xε,2(s)ds, ∀ k ∈ S0
m1+1,

system (5.15) can then be transformed into the following equivalent (m1 +m2 + 4)-dimensional 
equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXε,1(t)=Xε,1(t)
[
r1 − a11Xε,1(t)+ a12vε,m1+1(t)

]
dt + √

εXε,1(t)
2∑
i=1

σ1idWi(t),

duε,1(t)= α1
(
Xε,1(t)− uε,1(t)

)
dt,

duε,j (t)= α1
(
uε,j−1(t)− uε,j (t)

)
dt, ∀ j ∈ S1

m2+1,

dXε,2(t)=Xε,2(t)
[
r2 − a22Xε,2(t)+ a21uε,m2+1(t)

]
dt + √

εXε,2(t)
2∑
i=1

σ2idWi(t),

dvε,1(t)= α2
(
Xε,2(t)− vε,1(t)

)
dt,

dvε,j (t)= α2
(
vε,j−1(t)− vε,j (t)

)
dt, ∀ j ∈ S1

m1+1.

(5.16)
In this sense, we mainly analyze the IPM and IPDF of (5.16). Consider the following conditions

a11a22 > a12a21, r1 >
ε(σ 2

11 + σ 2
12)

2
, r2 >

ε(σ 2
21 + σ 2

22)

2
. (5.17)

It is shown that Assumptions 2.1 and 2.2(b) corresponding to (5.16) are satisfied under (5.17). 
The proof can refer to [94, Theorems 2.1 and 2.4] and [51, Lemmas 3.2 and 4.5] with a slight 
modification, and is thus omitted.

Repeating the procedures in Assumption 2.2(a) and (3.1)-(3.3), we define an equilibrium 
(X

∗
1,ε , u

∗
ε , X

∗
2,ε, v

∗
ε ) by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
r1 − ε(σ 2

11 + σ 2
12)

2

)
− a11X

∗
ε,1 + a12v

∗
ε,m1+1 = 0,

α1
(
X

∗
ε,1 − u∗

ε,1

)= 0,

α1
(
u∗
ε,j−1 − u∗

ε,j

)= 0, ∀ j ∈ S1
m2+1,(

r2 − ε(σ 2
21 + σ 2

22)

2

)
− a22X

∗
ε,2 + a21u

∗
ε,m2+1 = 0,

α2
(
X

∗
ε,2 − v∗

ε,1

)= 0,

α2
(
v∗
ε,j−1 − v∗

ε,j

)= 0, ∀ j ∈ S1
m1+1,

(5.18)

where u∗
ε = (u∗

ε,1, ..., u
∗
ε,m2+1) and v∗

ε = (v∗
ε,1, ..., v

∗
ε,m1+1). In fact, if (5.17) holds, the solution 

of Eq. (5.18) is unique, positive, and it is
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u∗
ε,i =X

∗
ε,1 = a22(r1 − ε(σ 2

11+σ 2
12)

2 )+ a12(r2 − ε(σ 2
21+σ 2

22)

2 )

a11a22 − a12a21
, ∀ i ∈ S0

m2+1,

v∗
ε,j =X

∗
ε,2 = a11(r2 − ε(σ 2

21+σ 2
22)

2 )+ a21(r1 − ε(σ 2
11+σ 2

12)

2 )

a11a22 − a12a21
, ∀ j ∈ S0

m1+1.

Then we have

Aε = Bε :=
(
K11 K12
K21 K22

)
, (5.19)

where

Kij =
(
aijX

∗
ε,jβmi+2
O

)
, Kii =

⎛⎜⎜⎜⎜⎜⎝
−aiiX∗

ε,i

σi −σi
σi −σi

. . .
. . .

σi −σi

⎞⎟⎟⎟⎟⎟⎠
with {i, j} = S0

2. Clearly, Kii ∈ Uq(mj + 2). By calculation,

ψBε (λ)=
2∏
i=1

(λ+ aiiX
∗
ε,i)(λ+ αi)

mi+1 − a12a21

2∏
i=1

X
∗
ε,iα

mi+1
i . (5.20)

Below we prove Bε ∈ RH(m1 + m2 + 4). Using the contradiction method, it is assumed that 
Bε has at least an eigenvalue λ0 with positive real component, i.e., λ0 := a + bi (a > 0). By 
fundamental theorem of algebra, λ0 = a − bi is a root of equation ψBε (λ) = 0 (if b = 0, then 
λ0 = λ0). As a consequence of (5.20),

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2∏
i=1

(
1 + λ0

aiiX
∗
ε,i

)(
1 + λ0

αi

)mi+1 = a12a21

a11a22
,

2∏
i=1

(
1 + λ0

aiiX
∗
ε,i

)(
1 + λ0

αi

)mi+1 = a12a21

a11a22
.

This leads to the contradiction

(a12a21

a11a22

)2 =
2∏
i=1

(
1 + λ0

aiiX
∗
ε,i

)(
1 + λ0

aiiX
∗
ε,i

)(
1 + λ0

αi

)mi+1(
1 + λ0

αi

)mi+1

>

2∏
i=1

(
1 + 2a

aiiX
∗
ε,i

)(
1 + 2a

αi

)mi+1
> 1.

Hence, Bε ∈ RH(m1 +m2 + 4).
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Based on the LNA method, we need to obtain the special expression and positive definiteness 
of �ε in Eq. (3.8) corresponding to (5.16). The former can be derived by Algorithm 1. Then for 
the latter, let λ+

0 be the minimal eigenvalue of the following matrix(
σ 2

11 + σ 2
12 σ11σ21 + σ12σ22

σ11σ21 + σ12σ22 σ 2
21 + σ 2

22

)
:=ϒ0.

If σ11σ22 > σ12σ21, then ϒ0 � O, which implies λ+
0 > 0 and

ΘεΘ
�
ε � λ+

0

(�m1+m2+4,1 + �m1+m2+4,m2+3
)
.

By virtue of Algorithm 2, we consider the following algebraic equations:{

c(�◦

1,ε,Bε,�2m+4,1)= O,


c(�◦
m2+3,ε,Bε,�m1+m2+4,m2+3)= O.

As in (5.19), one has Bε ∈ Uq(m1 +m2 + 4). Note that φ◦
1 = 1, we obtain ν◦

1(i) = i+ 1 and J 1 =
Q

1,i
= Im1+m2+4, ∀ i ∈ S0

m1+m2+3. That is, η◦
1 =m1 +m2 + 4 and H(j)

1,j =Xj , ∀ j ∈ S0
m1+m2+4. 

Applying Theorem 3.2 and η◦
2 ≥ 1 leads to

X��εX ≥ ρ◦
ε

(
X2
φ◦

1
+X2

φ◦
2
+

η◦
1∑

j=2

(H(j)

φ◦
1 ,j
)2
)

≥ ρ◦
ε

2m+4∑
j=1

X2
j ,

where ρ◦
ε > 0 is a constant dependent on λ+

0 . Thus, �ε �O.
To summarize, using Theorems 3.1-3.3, we have the following result:

(⊗-4) Under (5.17) and σ11σ22 > σ12σ21, �ε(Xε,1, uε, Xε,2, vε) (resp., LNm1+m2+2(ln(X
∗
1,ε,

u∗
ε , X

∗
2,ε, v

∗
ε )

�, �ε)) is a local approximation for the unique IPDF �ε(·) (resp., IPM με ) of 
(5.16) around (X

∗
1,ε, u

∗
ε , X

∗
2,ε, v

∗
ε )

�, where �ε � O, uε(t) = (uε,1(t), ..., uε,m2+1(t))t≥0
and vε(t) = (vε,1(t), ..., vε,m1+1(t))t≥0. In addition, the fitting effect of such approxima-
tion is global for sufficiently small ε.

To demonstrate this, we present a numerical example. We adopt the weak kernels to describe the 
cumulative cooperation effect in (5.15) for simplicity, i.e., mi = 0, ∀ i = 1, 2.

Example 5.4. Let the initial value (Xε,1(0), uε,1(0), Xε,2(0), vε,1(0)) = (0.5, 0.4, 0.6, 0.5). Fol-
lowing Qi et al. [51], we consider

r1 = 0.295, r2 = 0.3, a11 = 0.75, a12 = 0.05, a21 = 0.05, a22 = 0.65,

α1 = 0.1, α2 = 0.2, (σ11, σ12, σ21, σ22)= (0.3,0.2,0.1,0.2).

By choosing ε = 2 × 10−2, we compute σ11σ22 − σ12σ21 = 0.4, a11a22 − a12a21 = 0.485, r1 −
ε(σ 2

11+σ 2
12) = 0.2937, r2 − ε(σ 2

21+σ 2
22) = 0.2995, (X

∗
ε,1, X

∗
ε,2) = (0.4245, 0.4934), and
2 2

193



Fig. 10. The left-hand column presents the sample paths of Xε,1(t), uε,1(t), Xε,2(t) and vε,1(t) of (5.16), 
and of its deterministic model on t ∈ [0, 1000]. The right-hand column shows all the one-dimensional MMs of 
με(40000, Xε,1, uε,1, Xε,2, vε,1). All the iteration step sizes are �t = 10−3.

�ε =

⎛⎜⎜⎝
0.0042 0.0010 0.0022 8.9853 × 10−4

0.0010 0.0010 5.8685 × 10−4 6.9074 × 10−4

0.0022 5.8685 × 10−4 0.0016 6.4184 × 10−4

8.9853 × 10−4 6.9074 × 10−4 6.4184 × 10−4 6.4184 × 10−4

⎞⎟⎟⎠ .
According to (⊗-4), the IPDF �ε(Xε,1, uε,1, Xε,2, vε,1) can be globally approximated by 
�ε(Xε,1, uε,1, Xε,2, vε,1). To verify this, by a standard argument in Example 5.2, we mainly 

focus on the similarities between: (i) �
∂

ε (T0, Xε,1, Xε,2) and �∂
ε (Xε,1, Xε,2), (ii) all the corre-

sponding one-dimensional MDs of �ε(·) and �
∂

ε (T0, ·), at large iteration time T0. As shown 
in Figs. 10–12, these corresponding density curves are very similar. Moreover, using several 
Kolmogorov–Smirnov tests with 5% significance level, the similarities regarding (ii) are signifi-
cant. Thus, (⊗-4) and Theorem 3.3 are well verified.

5.5. Stochastic HIV/AIDS infection models

In Sections 5.1-5.4, we use the LNA method to approximate the IPDFs of some common 
biomathematical models with small diffusion in the literature. Certainly, the relevant analysis of 
B. Zhou, H. Wang, T. Wang et al. Journal of Differential Equations 382 (2024) 141–210
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Fig. 11. (a), (b): The empirical MD �∂ε (T0, Xε,1, Xε,2) of (5.16) (or equivalently, the empirical density 
�ε(T0, Xε,1, Xε,2) of (5.15)) in 2D and 3D settings at iteration time T0 = 40000; (c), (d): The function �∂ε (Xε,1, Xε,2)
in 2D and 3D settings. All of the parameter values and step size are the same as in Fig. 10.

Fig. 12. The blue, green and black lines represent the empirical MDs �∂ε (T0, Xε,1), �
∂
ε (T0, uε,1), �

∂
ε (T0, Xε,2) and 

�
∂
ε (T0, vε,1) of (5.16) at iteration time T0 = 10000, 20000 and 40000, respectively. The purple lines denote the one-

dimensional MDs of �ε(Xε,1, uε,1, Xε,2, vε,1). All of the parameter values and iteration step size are the same as in 
Fig. 10.
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the uNA method can be similarly carried out. To supplement, we provide a new application of 
the uNA method in this section, where a detailed account of how to use Algorithm 3 and (4.4) to 
study the normal approximation is mainly presented.

Similar to [67], we focus on a high-dimensional stochastic HIV/AIDS infection model that 
takes into account virus carrier screening and the active search for treatment by infected in-
dividuals. Inspired by the idea of the SIR model, the population at time t is divided into six 
compartments, which include susceptible individuals Sε(t), infectious and symptomatic primary 
HIV-infected individuals Iε(t), asymptomatic and disease carriers Cε(t), randomly screened dis-
ease carriers Cs,ε(t), individuals under treatment Tε(t) and individuals with full-blown AIDS 
Lε(t). The corresponding infection dynamics can be described by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSε(t)=[Λ− k0(a1Iε(t)+ a2Cε(t)+ a3Tε(t)+ a4Lε(t))Sε(t)− pSε(t)]dt
+ √

εσ1Sε(t)dW1(t),

dIε(t)= [k0(a1Iε(t)+ a2Cε(t)+ a3Tε(t)+ a4Lε(t))Sε(t)− (p+ σ + ϑ1 + γ1)Iε(t)]dt,
dCε(t)= [σIε(t)− (p+ ϑ2 + αs)Cε(t)]dt,
dCs,ε(t)= [αsCε(t)− (p+ ϑ3 + γ2)Cs,ε(t)]dt,
dTε(t)= [γ1Iε(t)+ γ2Cs,ε(t)− (p+ ϑ4)Tε(t)]dt + √

εσ2Tε(t)dW2(t),

dLε(t)= [ϑ1Iε(t)+ ϑ2Cε(t)+ ϑ3Cs,ε(t)+ ϑ4Tε(t)− (p+ γ3 + p1)Lε(t)]dt,
(5.21)

where Λ is the recruitment rate, and the average number of sexual partners k0 measures risk 
behavior. p and p1 are the natural death rate and disease-induced mortality rate, respectively. 
The infection probabilities for different infectious individuals Iε(t), Cε(t), Tε(t) and Lε(t) are 
ai (i ∈ S0

4) in sequence. The individuals Iε(t), Cε(t), Cs,ε(t) and Tε(t) become AIDS patients 
Lε(t) at the rate of ϑi (i ∈ S0

4), respectively. γj (j ∈ S0
3) are the rates at which the infected 

seek treatment, σ stands for the rate from the infected individuals Iε(t) to carriers Cε(t), and 
αs is the rate at which carriers are screened. Similar to the idea of (5.11), it is assumed that the 
environmental randomness mainly affects the individuals Sε(t) and Tε(t).

Taking steps along the procedures in Assumption 2.2(c) and (4.1), we first consider the pos-
itive equilibrium X∗

hiv = (S∗, I ∗, C∗, C∗
s , T

∗, L∗)� of the deterministic counterpart of (5.21), 
which satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ− k0(a1I
∗ + a2C

∗ + a3T
∗ + a4L

∗)S∗ − pS∗ = 0,

k0(a1I
∗ + a2C

∗ + a3T
∗ + a4L

∗)S∗ − (p+ σ + ϑ1 + γ1)I
∗ = 0,

σ I ∗ − (p+ ϑ2 + αs)C
∗ = 0,

αsC
∗ − (p+ ϑ3 + γ2)C

∗
s = 0,

γ1I
∗ + γ2C

∗
s − (p+ ϑ4)T

∗,
ϑ1I

∗ + ϑ2C
∗ + ϑ3C

∗
s + ϑ4T

∗ − (p+ γ3 + p1)L
∗ = 0.

Denote

R0 = Λk0(a1 + a2w1 + a3w3 + a4w4)

p(p+ σ + ϑ1 + γ1)
, RS

4,ε = Λk0(a1 + a2w1 + a3w̃3 + a4w̃4)

(p+ εσ 2
1

2 )(p+ σ + ϑ1 + γ1)

,

where
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w1 = σ

p+ ϑ2 + αs
, w2 = αsw1

p+ γ2 + ϑ3
, w3 = γ1 + γ2w2

p+ ϑ4
, w4 = ϑ1 + ϑ2w1 + ϑ3w2 + ϑ4w3

p+ γ3 + p1
.

w̃3 = γ1 + γ2w2

p+ ϑ4 + εσ 2
2

2

, w̃4 = ϑ1 + ϑ2w1 + ϑ3w2 + ϑ4w̃3

p+ γ3 + p1
.

We have the following Lemma.

Lemma 5.1. For any initial value (Sε(0), Iε(0), Cε(0), Cs,ε(0), Tε(0), Lε(0))� := Xε,h(0) ∈
R6+,

• If R0 > 1, then the equilibrium X∗
hiv = (S∗, I ∗, C∗, C∗

s , T
∗, L∗)� exists and is unique on 

R6+, where S∗ = Λ
pR0

, I ∗ = Λ(R0−1)
R0(p+σ+ϑ1+γ1)

, C∗ =w1I
∗, C∗

s =w2I
∗, T ∗ =w3I

∗ and L∗ =
w4I

∗. Moreover, A[o] ∈ RH(6), where

A[o] = C[o] =

⎛⎜⎜⎜⎜⎜⎜⎝
−a11 −a12 −a13 0 −a15 −a16
a21 −a22 a23 0 a25 a26
0 a32 −a33 0 0 0
0 0 a43 −a44 0 0
0 a52 0 a54 −a55 0
0 a62 a63 a64 a65 −a66

⎞⎟⎟⎟⎟⎟⎟⎠ ,

with a11 = p+k0(a1I
∗ +a2C

∗ +a3T
∗ +a4L

∗), a12 = k0a1S
∗, a13 = k0a2S

∗, a15 = k0a3S
∗, 

a16 = k0a4S
∗, a21 = k0(a1I

∗ + a2C
∗ + a3T

∗ + a4L
∗), a22 = p + σ + ϑ1 + γ1 − k0a1S

∗, 
a2i = a1i (i = 3, 5, 6), a32 = σ , a33 = p+ ϑ2 + αs , a43 = αs , a44 = p+ ϑ3 + γ2, a52 = γ1, 
a54 = γ2, a55 = p+ ϑ4, a62 = ϑ1, a63 = ϑ2, a64 = ϑ3, a65 = ϑ4 and a66 = p+ γ3 + p1.

• System (5.21) has a unique solution Xε,h(t) on t ≥ 0 and it will remain in R6+ a.s. If RS
4,ε > 1, 

then (5.21) has at least one IPM με,h(·) supported on R6+.

The proof can completely refer to [67, Section 2.2 and Theorem 4.1] with a slight modifica-
tion.
We consider the linearized system of (5.21) around X∗

hiv :

{
dZε,s(t)=A[o]Zε,s(t)dt + √

εΓsdWs(t),

Zε,s(0)= Xε,h(0)− X∗
hiv,

(5.22)

where ΓsΓ �
s = diag{(σ1S

∗)2, 0, 0, (σ2T
∗)2, 0, 0} and Ws(t) = (W1(t), W2(t))

�. In view of 
Lemma 5.1, (5.22) has a unique IPM N6(0, �[o]ε) if R0 > 1, where �[o]ε is determined by 
equation 
c(�[o]ε, A[o], εΓsΓ �

s ) = O. Although Assumption 2.1(2) corresponding to (5.21) is 
difficult to verify currently, Algorithm 3 and (4.4) can be still used to treat �[o]ε . Clearly, ξ = 2
and φ = {1, 5}. Using Rule 3, we choose 

∨asso
1 = {1, 2, 3, 4} and 

∨asso
1 = {5, 6, 1}. Then,

Step 1. Consider the algebraic equation


c(�[o]1,ε ,A[o],�6,1)= O.
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By Algorithm 3 and the chain (Y1, 
∨asso

1 Y•), we determine ν1(1) = 2 and Q[o]1,1 = I6. Thus, 
G(2)

1,2 =X2. Moreover, we select ν1(2) = 3 and

Q[o]1,2 =
⎛⎝ I2 O O
O 1 O
O �[o]1,3 I3

⎞⎠ ,
where �[o]1,3 = (0, − a52

a32
, − a62

a32
)�. In this sense,

G(3)
1,3 =X3 + a52

a32
X5 + a62

a32
X6.

By further letting ν1(3) = 4 and �[o]1,4 = (− a52(a33−a55)
a32a43

, − a62(a33+a66)+a52a65+a32a63
a32a43

)�, then

G(4)
1,4 =X4 + a52(a33 − a55)

a32a43
X5 + a62(a33 + a66)+ a52a65 + a32a63

a32a43
X6,

which implies η1 ≥ 4.
Step 2. Consider the algebraic equation


c(�[o]5,ε ,A[o],�6,5)= O.

In view of the chain (Y5, 
∨asso

5 Y•), we let ν2(1) = 6 and �[o]2,4 = (
a15
a65
, − a25

a65
, 0, 0)�. That means

G(2)
5,2 =X6 − a15

a65
X1 + a25

a65
X2.

Hence, η2 ≥ 2.
Combining the above two steps with (4.4), we obtain

X��[o]εX ≥!ε
2∑

k=1

(
X2
φk

+
ηk∑
j=1

(G(j)

φk,j
)2
)

≥!ε
[(
X2

1 +
4∑

j=2

(G(j)
1,j )

2
)

+
(
X2

5 + (G(2)
5,2)

2
)]

=!ε
{
X2

1 +X2
2 +X2

5 +
(
X3 + a52

a32
X5 + a62

a32
X6

)2 +
(
X6 − a15

a65
X1 + a25

a65
X2

)2
+
[
X4 + a52(a33 − a55)

a32a43
X5 + a62(a33 + a66)+ a52a65 + a32a63

a32a43
X6

]2}
.

Clearly, {X ∈R6|X��εX = 0} = {0}. Thus, �[o]ε � O. The explicit form of �[o]ε can be further 
derived by Algorithm 3 and (4.3).

For convenience, let �[o]ε,s(·) and �[o]ε,h(·) be the density functions of the distributions 
N6(0, �[o]ε) and N6(X∗

hiv, �[o]ε), respectively. Then by Theorem 4.1 and Remark 6, we de-
termine:
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Table 4
List of values of biological parameters of (5.21).

Parameters Value (Unit: year−1) Source Parameters Value (Unit: year−1) Source

Λ 25000 people [67,95] γ1 0.2 [67,95]
k0 1.2 [67,95] ϑ2 0.09 [67,95]
a1 0.8 × 10−5 [67] α 0.2 [67,95]
a2 0.6 × 10−5 [67] ϑ3 0.4 [67,95]
a3 0.4 × 10−5 [67] γ2 0.15 [67,95]
a4 0.7 × 10−5 [67] ϑ4 0.2 [95]
p 0.015 [67], CSZ data γ3 0.3 [67,95]
σ 0.2 [95] p1 0.33 [67,95]
ϑ1 0.001 Estimated σi (i = 1,2) 0.5 [67]

(⊗-5) If R0 > 1, system (5.22) has a unique IPDF �[o]ε,s(Zε,s). Moreover, the probability den-
sity of με,h(·) of (5.21) around X∗

hiv can be approximated by �[o]ε,h(Xε,h), which is given 
by

�[o]ε,h(Xε,h)= (2π)−3|�[o]ε |− 1
2 e

− 1
2 (Xε,h−X∗

hiv)
��−1

[o]ε(Xε,h−X∗
hiv).

Although the uniqueness of με,h(·) is unknown, we can numerically study whether the distri-
bution N6(X∗

hiv, �[o]ε) (resp., �[o]ε,h(Xε,h)) limited on R6+ can well approximate the empirical 
probability measure (resp., density function) of (5.21) under small diffusion and large iteration 
time.

Example 5.5. Based on the actual data from [67,95] and the Central Statistical Office of Zim-
babwe (CSZ), the corresponding values of the biological parameters in (5.21) are shown in Ta-
ble 4. We choose ε = 10−3 and initial value Xε,h(0) = (350000, 6000, 7500, 8500, 12000, 7500)�
(unit: people), it is calculated that RS

4,ε = 96.927, X∗
hiv = 104 ×(1.7050, 5.9481, 3.9004, 1.3807,

6.4964, 3.4241)� and

�[o]ε = 106 ×

⎛⎜⎜⎜⎜⎜⎜⎝
0.04117 0.004262 −0.007024 −0.002498 −0.18918 −0.058545
0.004262 0.081447 0.026892 0.005528 0.096841 0.021921

−0.007024 0.026892 0.017634 0.005325 0.049126 0.018898
−0.002498 0.005528 0.005325 0.001885 0.014376 0.006524
−0.18918 0.096841 0.049126 0.014376 2.5538 0.61208
−0.058545 0.021921 0.018898 0.006524 0.61208 0.19651

⎞⎟⎟⎟⎟⎟⎟⎠ .

For simplicity, the empirical marginal measure and density function of (5.21) at large itera-
tion time T0 are denoted by eMMε(T0, ·) and eMDε(T0, ·), respectively. Fig. 13 shows the six 
one-dimensional eMMε(T0, ·) at T0 = 6 years. Furthermore, we plot the curves eMDε(T0, ·) of 
different types of individuals at iteration time T0 = 4, 6 and 8 years, each in a different color. It 
is clear that every one-dimensional function �∂[o]ε,h(·) almost coincides with the corresponding 
three density curves; see Fig. 14. Such significant similarity can be quantitatively verified by 
several Kolmogorov–Smirnov tests with 5% significance level, where the null hypothesis is set
the same as in Examples 5.1-5.4. Thus, the function �[o]ε,h(Xε,h) limited on R6+ is a good global 
fit for the eMDε(T0, ·) of (5.21) under large iteration time.
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Fig. 13. The diagrams represent the eMMε(T0, ·) of different types of individuals in (5.21) at T0 = 6 years. The iteration 
step size is �t = 10−3 years.

Remark 10. Based on Figs. 13 and 14, we propose a conjecture that the IPM με,h(·) is unique. To 
investigate this conjecture, we performed several computer simulations of the one-dimensional 
eMMε(T0, ·) using MATLAB R2022b software, varying the initial values and iteration times. The 
numerical results obtained provide support for this conjecture. However, to establish it rigorously, 
we plan to explore more theoretical approaches in future work.

Data availability

No data was used for the research described in the article.
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Fig. 14. The blue, green and black lines represent the curves eMDε(T0, Sε), eMDε(T0, Iε), eMDε(T0, Cε), 
eMDε(T0, Cs,ε), eMDε(T0, Tε) and eMDε(T0, Lε) of (5.21) at iteration time T0 = 4, 6 and 8 years, respectively. The 
purple lines denote the one-dimensional MDs of �[o]ε,h(Xε,h). All of the parameter values and iteration step size are 
the same as in Fig. 13.

Appendix A. Proof of Proposition 2.1

Throughout this appendix, let ψA(λ) =∑l
i=0 aiλ

l−i (a0 = 1). Using Definition 2.1, Lem-
ma 2.1 and A ∈ S (l), we determine that (a1, ..., al)� := a� ∈ Rl+ and

A=
(−a〈l−1〉 −al

Il−1 O

)
. (A.1)

Moreover, let λi (i ∈ S0
l ) be the roots of equation ψA(λ) = 0. Below we divide the proof of 

Proposition 2.1 into three steps.
Step 1. (Proof of (i) in Proposition 2.1): It is clear that Re(λj ) < 0 and λj + λk �= 0 for any 

j, k ∈ S0
l . This together with Lemma 2.2 yields that 
l is unique. We define two matrices C and 

D by

C =
∞∫

0

eAt �l,1 e
A�t dt, D =

(
�l,1,A�l,1, ...,A

l−1�l,1

)
.

Note that C = C� and
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AC +CA� =
∞∫

0

(
AeAt �l,1 e

A�t + eAt �l,1 e
A�tA�)dt

= −
∞∫

0

d

dt

(
eAt �l,1 e

A�t)dt = − �l,1 . (A.2)

Thus, 
l =
∫∞

0 eAt �l,1 e
A�t dt . By direct calculation, we have D = (ζ 1,Ol,l−1, ζ 2,Ol,l−1, ...,

ζ l ,Ol,l−1
)
, where the Rl×1-valued vectors ζ j (j ∈ S0

l ) satisfy

(
ζ 1, ζ 2, ..., ζ l

)=
⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 α1 α2 α3 · · · αl−1
0 1 α1 α2 · · · αl−2
0 0 1 α1 · · · αl−3
0 0 0 1 · · · αl−4
...

...
...

... . .
. ...

0 0 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

with αk (k ∈ S0
l−1) determined by the iterative scheme αk = − 

∑k
i=1 aiαk−i (α0 = 1). Clearly, 

| (ζ 1, ζ 2, ..., ζ l
) | = 1, then rank(D) = l.

For any X ∈Rl , by �l,1 = ��
l,1�l,1, one has

X�
lX =
∞∫

0

X�eAt �l,1 ��
l,1e

A�tXdt

=
∞∫

0

∣∣��
l,1e

A�tX
∣∣2dt ≥ 0. (A.3)

Thus, 
l � O. Below we verify 
l � O by a contradiction argument. Suppose that there is a 
Xφ ∈ Rl \ {0} such that X�

φ 
lXφ = 0, then

��
l,1e

A�tXφ = 0, ∀ t ≥ 0. (A.4)

Consider a function Sφ(t) = ��
l,1e

A�tXφ defined on [0, ∞). Using (A.4), we determine

dkSφ(0)
dtk

= (Ak�l,1)
�Xφ = 0, ∀ k = 0,1, ... (A.5)

By Cayley–Hamilton theorem [98], (A.5) is equivalent to

X�
φ (A

k�l,1)= 0�, ∀ k ∈ S−1
l−1,

i.e., X�
φ D = 0�. Using rank(D) = l yields Xφ = 0, which leads to a contradiction. Hence, 
l �

O.
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Step 2. (Proof of (ii) in Proposition 2.1): Let 
l = (σij )l×l , combining (A.1) and Eq. (2.1), 
we obtain the following l(l−1)

2 equalities:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − 2
∑l

k=1 aiσi1 = 0,

σk,k+1 = 0, ∀ k ∈ S0
l−1,

σi−1,1 −∑l
j=1 ajσji = 0, ∀ i ∈ S1

l ,

σp,q = σq−1,p+1, ∀ q > p+ 1.

(A.6)

Consider an algebraic equation

Hl,Aθ = 1

2
el , (A.7)

where θ = (θ1, −θ2, ..., (−1)l−1θl)
�. Applying the first and third sets of equalities in (A.6) to 

the second and fourth sets of equalities yields that σii = θi for any i ∈ S0
l , and 
l takes the form 

as (2.2).
To summarize, all the properties of 
l are determined by θ . To this end, some results of θ are 

shown below. By Lemma 2.1 and Cramer’s rule, we have |Hl,A| > 0 and

θj = |H ξ
l,A(1, j)|

2|Hl,A| , ∀ j ∈ S0
l ,

where H ξ
l,A(1, j) is the matrix obtained by crossing out the first row and j -th column of Hl,A. 

By a standard argument in [97, Theorem 2], we can obtain |H ξ
l,A(1, k)| > 0 for any k ∈ S0

l . Thus, 
θk > 0.

Furthermore, if all the roots of equation ψA(λ) = 0 are simple, i.e., λp �= λj , ∀ p �= j , we 
consider a closed path #R in the complex plane:

#R � [LR +CR],

where LR is the directed segment from (0, −Ri) to (0, Ri), and CR is a semicircle line with 
analytical formula z=Reit , t ∈ [π2 , 3π2 ], see Fig. 15 in detail.

Since Re(λj ) < 0, ∀ j ∈ S0
l , we can determine a sufficiently large R0 such that each λj lies 

in the interior of #R when R >R0. Now we construct some complex integrals by

ωk = 1

2π i

∫
#R

zkdz

ψA(z)ψA(−z) , k ∈ S−1
2l−1;R >R0. (A.8)

Clearly, ψA(−λj ) �= 0, ∀ j ∈ S0
l . Combining Cauchy’s residue theorem,

ωk = 1

2π i
× 2π i

l∑
Resλj
( zk

ψA(z)ψA(−z)
)

j=1
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Fig. 15. The graph of closed path #R .

=
l∑

j=1

lim
z→λj

zk

ψA(z)ψA(−z) =
l∑

j=1

λkj

ψ ′
A(λj )ψA(−λj )

, ∀ k ∈ S−1
2l−1. (A.9)

Furthermore, applying Cauchy integral theorem to (A.8) yields

ω2p+1 = 1

2π i

∫
LR

z2p+1dz

ψA(z)ψA(−z) + 1

2π i

∫
CR

z2p+1dz

ψA(z)ψA(−z)

= 1

2π i
lim
R→∞

∫
CR

z2p+1dz

ψA(z)ψA(−z)

= 1

2π i

3π
2∫

π
2

lim
R→∞

(Reit )2p+1Rieit

ψA(Reit )ψA(−Reit )
dt, ∀ p ∈ S−1

l−1. (A.10)

Note that

lim
R→∞

(Reit )2p+1Rieit

ψA(Reit )ψA(−Reit )
=
{
(−1)l i, for p = l − 1,

0, for p ∈ S−1
l−2.

This together with (A.10) leads to

ω2p+1 =
⎧⎨⎩
(−1)l

2
, for p = l − 1,

0, for p ∈ S−1
l−2.

(A.11)

Using (A.9) and ψA(λj ) = 0 (∀ j ∈ S0), we obtain
l
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0 =
l∑

j=1

λkjψA(λj )

ψ ′
A(λj )ψA(−λj )

=
l∑

j=1

λkj
∑l

i=0 aiλ
l−i
j

ψ ′
A(λj )ψA(−λj )

=
l∑

j=0

ajωn+k−j , ∀ k ∈ S−1
l−1. (A.12)

Let ω = (ω2l−2, ω2l−4, ..., ω0)
�. It follows from (A.11) and (A.12) that ω satisfies the following 

equation

Hl,Aω = (−1)l

2
el . (A.13)

Combining (A.7) and (A.13),

θk = (−1)l−kω2(l−k) = (−1)l−k
l∑

j=1

λ
2(l−k)
j

ψ ′
A(λj )ψA(−λj )

, ∀ k ∈ S0
l .

Hence, (2.3) is verified.
Step 3. (Proof of (iii) in Proposition 2.1): We only discuss the case where l is odd, and the 

even l case can be similarly analyzed. Without loss of generality, we assume that l = 2k + 1. 
Denote

I1,k =

∣∣∣∣∣∣∣
θ1 · · · (−1)k+2θk+1
...

. . .
...

(−1)k+2θk+1 · · · (−1)2k+2θ2k+1

∣∣∣∣∣∣∣ , I2,k =

∣∣∣∣∣∣∣
θ2 · · · (−1)k+1θk+1
...

. . .
...

(−1)k+1θk+1 · · · (−1)2kθ2k

∣∣∣∣∣∣∣ .
As in (2.2), an application of Laplace theorem for the (2i+ 1)-th (i ∈ S−1

k ) rows and columns of 

l lead to

|
l | = I1,kI2,k. (A.14)

Combining (2.2) and (A.6), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(−1)k+1+j θk+j = − 1

a2k+1

k∑
i=1

(−1)j+iθj+i−1a2i−1, ∀ j ∈ S1
k+1,

(−1)k+1θk+1 = 1

a2k+1

[1
2

−
k∑
i=1

(−1)i+1θia2i−1

]
,

(−1)k+1+j θk+j = − 1

a2k

m∑
i=1

(−1)j+iθj+i−1a2i−2, ∀ j ∈ S0
k .

(A.15)

Applying the first two sets of equality in (A.15) to the last row of I1,k , we compute

I1,k = (−1)k

2a2k+1
×

∣∣∣∣∣∣∣
−θ2 · · · (−1)k+2θk+1
...

. . .
...

(−1)k+2θ · · · (−1)2k+1θ

∣∣∣∣∣∣∣=
I2,k

2a2k+1
. (A.16)
k+1 2k
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Substituting the third set of equality of (A.15) into the last row of I2,k , by the notation [ l−1
2 ] = k, 

one similarly has I2,k = (−1)k

a2k
ϕol . This together with (A.14) and (A.16) yields the desired result.

Appendix B. Proof of Proposition 2.2

Using Remark 1, Proposition 2.2 is evidently true when l = 1. Below we only discuss the 
case of l ≥ 2. Suppose that the vector X(t) = (X1(t), ..., Xl(t))

� is determined by equation 
dX =CXdt . We construct a vector Y(t) = (Y1(t), ..., Yl(t))� which satisfies:

Yl(t)=Xl(t), and Yj (t)= Y ′
j+1(t), ∀ j ∈ S0

l−1. (B.1)

To proceed, we stipulate that c1,0 = 1. An application of recursion method coupled with (B.1), 
Definition 2.2 and C ∈ Uq(l) yields that

Yj = β lC
l−jX, ∀ j ∈ S0

l ,

and ⎧⎪⎨⎪⎩
(β lC

j )〈l−j−1〉 = 0, ∀ j ∈ S0
l−2,

(β lC
j )(l−j) =∏l−1

i=l−j ci+1,i �= 0, ∀ j ∈ S0
l−2,

(β lC
l−1)(1) =∏l−1

i=0 ci+1,i �= 0,

(B.2)

where C = (cij )l×l . Thus,

Y(t)=

⎛⎜⎜⎝
β lC

l−1

β lC
l−2

· · ·
β l

⎞⎟⎟⎠X(t)=MX(t). (B.3)

Moreover, M is an upper triangular matrix. Note that |M| =∏l−1
j=1(β lC

l−j )(j) �= 0, then M ∈
U(l). Using (B.2), we obtain that X(t) =M−1Y(t) and dY =MCM−1Ydt . Then by (B.1), we 
have

dY =
(−c〈l−1〉 −cl

Il−1 O

)
Ydt,

where c = (c1, ..., cl). Combining Definition 2.1, one gets MCM−1 ∈ S (l). This completes the 
proof.
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