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Spatio-temporal Dynamics in a Reaction-Diffusion Equation with Nonlocal
Spatial Memory\ast 

Shuyang Xue\dagger , Yongli Song\ddagger , and Hao Wang\S 

Abstract. To model a single-species cognitive movement, we formulate a reaction-diffusion equation with non-
local spatial memory and investigate its dynamics. We explore the influence of the perceptual scale
on the stability and Turing bifurcation. When the random diffusion is dominant, the perceptual scale
does not affect the stability, but when the memory-based diffusion is dominant, there exist Turing
bifurcations induced by the perceptual scale. Then the joint effect of the perceptual scale and the
memory delay on the stability and spatio-temporal dynamics is investigated to show rich spatio-
temporal dynamics via Turing--Hopf bifurcation and double Hopf bifurcation. Finally, we apply our
analysis to an application and illustrate our theoretical results with numerical simulations.
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1. Introduction. Recently, there has been an increasing activity and interest in the study
of reaction-diffusion equations with nonlocal advection. Nonlocal advection is a key process
in a range of biological systems and is often used to describe biological aggregations such
as fish schools, bird flocks, bacterial colonies, and insect swarms [2]. Mathematically, the
nonlocal sensing of neighboring individuals leads to nonlocal advection terms [3, 9]. For the
single population, the following nonlocal advection-diffusion model is often used to model the
movement of individuals in response to the presence of others:

\partial u

\partial t
= d1

\partial 2u

\partial x2
+ d2

\partial 

\partial x

\biggl( 
u
\partial 

\partial x
(K \ast u)

\biggr) 
+ f(u), x\in \Omega , t > 0,(1.1)

where \Omega is a spatial habitat of the population, and u(x, t) is locational density of population u
at location x and time t. The first term on the right-hand side of (1.1) describes the random
motion of the population, and d1 > 0 is the corresponding diffusion coefficient (also known
as the random diffusion rate). The second term on the right-hand side of (1.1) describes the
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directional motion (gradient following movement) of the population. d2 \in \BbbR is the advection
rate. K \ast u is the convolution of u with a spatial kernel. The third term f(u) on the right-
hand side of (1.1) describes the evolution of the population such as the growth and the death.
Equation (1.1) appears in the mathematical modeling of cell population dynamics [18, 3] and
has also been introduced in crowd dynamics [2]. We also refer the reader to Morale, Capasso,
and Oelschlager [17] and Mogilner and Edelstein-Keshet [16] for the derivation of the nonlocal
advection terms. Depending on the kernel function, the stability and instability of the unique
homogeneous positive steady state of (1.1) have been investigated in [6]. For d1 = 0 the global
asymptotic behavior of (1.1) for kernels with positive Fourier transform has been dealt with
in [7]. For the case of the discrete space, the asymptotically stable steady states of (1.1) have
been studied via an energy functional approach [20]. For more significant mathematical results
of this kind of nonlocal advection-diffusion equation such as classical questions of existence
and uniqueness, pattern formation properties, and bifurcations, see [4, 11, 12, 31] and the
good recent reviews [3, 5, 33].

A multispecies system with nonlocal advection diffusion has been recently proposed by
Potts and Lewis [19] and slightly generalized by Giunta et al. [9]. In [9], the existence
theorems for a class of nonlocal multispecies advection-diffusion models, with an arbitrary
number of coexistent species, has been investigated, and global existence has been shown
for models in n = 1 spatial dimension and local existence for n > 1. In [10], Giunta et al.
developed methods for determining the qualitative structure of local minimum energy states
of a multispecies nonlocal advection-diffusion models proposed in [9].

More recently, in order to describe the influence of spatial memory and cognition on
animal movements, Shi et al. [24] incorporated cognition and memory of ``clever"" animals
in the simplest and self-contained way and proposed the following so-called memory-based
diffusion model to describe the diffusive spatial movement of the population with memory:\Biggl\{ 

\partial u
\partial t = d1

\partial 2u
\partial x2 + d2

\partial 
\partial x

\bigl( 
u \partial 
\partial x (u\tau )

\bigr) 
+ f (u) , x\in \Omega , t > 0,

\partial u
\partial \bfn = 0, x\in \partial \Omega , t > 0,

(1.2)

where u\tau = u(x, t - \tau ), the delay \tau \geq 0 represents the averaged memory period, and \partial u
\partial \bfn is the

outer normal derivative of u at x\in \partial \Omega . After the pioneering work by Shi et al. [24], there has
been plenty of interest in studying the role of the spatial memory in animal movements (see,
e.g., [1, 13, 14, 22, 23, 26, 28, 29, 32]). Among all of the above-mentioned research works, the
memory-based diffusion is only related to the memory of a past particular moment t - \tau at
location x, which induces local discrete delay. Intuitively, this assumption is not reasonable
since the spatial memories are often decaying in the animal's brains over time. In [15, 21],
the memory-based diffusion is described by the so-called temporally distributed delay, which
reflects the memory decay at past time at location x. However, it is more realistic to use a
nonlocal distributed average of spatial memory because the temporal and spatial distributed
delay reflects that the decay of spatial memory depends on time and the distance of past animal
distributions from the decision-making individual [25]. In [25, 30], based on the assumption
that the spatial memory is related to the memorized information during all the past times
and the spatial distribution of the species, the spatio-temporal delay is introduced to describe
the memory-based diffusion.
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PDE WITH NONLOCAL SPATIAL MEMORY 643

Since highly developed animals can acquire knowledge from individuals in their neighbor-
ing range, the spatial memory should reflect this spatial nonlocality. Motivated by this idea
and the above works on memory-based diffusion, we consider a model in one periodic interval
( - L,L) with the following periodic boundary conditions:\Biggl\{ 

\partial u
\partial t = d1

\partial 2u
\partial x2 + d2

\partial 
\partial x

\bigl( 
u \partial 
\partial x(Kr \ast u\tau )

\bigr) 
+ f(u), x\in ( - L,L), t > 0,

u( - L, t) = u(L, t), ux( - L, t) = ux(L, t), t > 0,
(1.3)

where

Kr \ast u\tau =
\int L

 - L
Kr(x - y)u(y, t - \tau )dy,(1.4)

and Kr is chosen as the top-hat function as follows:

Kr(x) =

\Biggl\{ 
1
2r ,  - r\leq x\leq r,

0 otherwise.
(1.5)

In model (1.3), we assume that animals collect information from their adjacent individuals
at a particular past time and their current position, and the gradient of the past accumulated
weighted spatial information of the population serves as the velocity in the advection term.
The top-hat function (1.4) means that the animal can collect information equally a fixed
distance r away from its current location and cannot collect beyond that fixed distance.
We call r the animal's perceptual scale, which reflects the extent to which the animals can
obtain information from the adjacent individuals. We would also like to mention that this
kernel function (1.4) has often been used to characterize the nonlocal resource perception for
another subject [8, 33].

In what follows, we refer the reader to \tau and d2 as the memory delay and memory diffusion
rate, respectively. According to the periodic boundary conditions, in order for Kr \ast u\tau as
defined by (1.4) to have reasonable definition for any x\in ( - L,L), we supplement the definition
of u(x, t) for x\in [ - L - r, - L]\cup [L,L+ r] as follows:\biggl\{ 

u(x, t) = u(x+ 2L, t) for x\in [ - L - r, - L], t\geq 0,
u(x, t) = u(x - 2L, t) for x\in [L,L+ r], t\geq 0.

(1.6)

Notice that

lim
r\rightarrow 0+

(Kr \ast u\tau ) = u(x, t - \tau ).

Thus, if we allow r= 0 and set (K0 \ast u\tau ) = u(x, t - \tau ), then (1.3) becomes the memory-based
diffusion equation (1.2). If \tau = 0, then (1.3) becomes (1.1). Therefore, model (1.3) can be
considered as the bridge between models (1.1) and (1.2). In this paper, we will investigate
the influence of the forager's perceptual scale r and the memory delay \tau on the stability and
the spatio-temporal dynamics of model (1.3).

In addition, noticing that x - y \in [ - r, r] for y \in [x - r,x+ r], it follows from (1.5) that

Kr \ast u\tau =
\int L

 - L
Kr(x - y)u(y, t - \tau )dy=

1

2r

\int x+r

x - r
u(y, t - \tau )dy.(1.7)
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644 SHUYANG XUE, YONGLI SONG, AND HAO WANG

For r=L and x\in ( - L,L), it follows from (1.6) that
\int L+x
L u(y, t)dy=

\int  - L+x
 - L u(y, t)dy for any

t > 0. And then, by (1.7), we have

KL \ast u\tau =
1

2L

\int x+L

x - L
u(y, t - \tau )dy

=
1

2L

\biggl( \int L

x - L
u(y, t - \tau )dy+

\int L+x

L
u(y, t - \tau )dy

\biggr) 
=

1

2L

\biggl( \int L

 - L+x
u(y, t - \tau )dy+

\int  - L+x

 - L
u(y, t - \tau )dy

\biggr) 
=

1

2L

\int L

 - L
u(y, t - \tau )dy.

(1.8)

Obviously, from (1.8), KL \ast u\tau is independent of x, which is the average value of u(x, t - \tau )

on the space [ - L,L]. Thus, \partial (KL\ast u\tau )
\partial x = 0, and (1.3) becomes the classical reaction-diffusion

equation \partial u
\partial t = d1

\partial 2u
\partial x2 + f(u).

Thus, in this paper, we focus on the case of r \in (0,L) and \tau \geq 0 and investigate the
influence of r and \tau on the stability of (1.3) and the spatio-temporal patterns. For d2 < 0,
r and \tau do not affect stability. For d2 > 0, there are complex dynamics induced by the
perceptual scale and the memory delay. Our main findings are summarized as follows:

(i) If a memory delay does not exist (i.e., \tau = 0), then when the random diffusion is
dominant, the perceptual scale r does not affect the stability, but when the memory-
based diffusion is dominant, the perceptual scale r can lead to Turing bifurcation such
that the positive constant steady state is unstable for small perceptual scale (no matter
how small it is) and asymptotically stable for large perceptual scale;

(ii) If a memory delay exists (i.e., \tau > 0), then when the random diffusion is dominant, the
perceptual scale r and the memory delay \tau also do not affect the stability; however,
when the random diffusion rate and the memory-based diffusion rate satisfy certain
relationships, Turing bifurcation, Hopf bifurcation, and Turing--Hopf bifurcation can
occur with spatial patterns, periodic patterns, and spatio-temporal patterns and more
complex dynamics.

The rest of the paper is organized as follows. In section 2, we study the well-posedness
of solutions. In section 3, we first study the spectral properties of the linear operator, then
investigate the influence of the forager's perceptual scale r on the stability of (1.3) and the
Turing bifurcation, and finally we study the joint effect of the forager's perceptual scale r and
memory delay \tau on the stability of (1.3) and the Hopf bifurcation and Turing--Hopf bifurcation.
In section 4, we apply the theoretical results to investigate the spatio-temporal dynamics of
(1.3) with logistic growth and make some numerical simulations to illustrate the patterns.
Finally, we summarize our paper with a discussion in section 5.

Throughout the paper, \BbbN represents the set of all positive integers, \BbbN 0 =\BbbN \cup \{ 0\} represents
the set of all nonnegative integers, and \BbbZ represents the set of all integers.

2. Well-posedness of solutions. In this section, we first consider the well-posedness of
solutions of (1.3) for appropriate initial function \varphi (x, t), (x, t)\in ( - L,L)\times [ - \tau ,0]. Assume that
the initial function \varphi (x, t) satisfies

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PDE WITH NONLOCAL SPATIAL MEMORY 645

\varphi (x, t)\in C2,\alpha ([ - L,L]\times [ - \tau ,0]) , \alpha \in (0,1),(2.1)

and

\varphi ( - L, t) =\varphi (L, t), \varphi x( - L, t) =\varphi x(L, t), t\in [ - \tau ,0].(2.2)

The growth function f(u) is assumed to satisfy

f(u)\in C1 ([0,\infty ),\BbbR ) , f(0) = f(1) = 0, f(u)< 0 for u> 1.(2.3)

For the kernel function defined by (1.7), if u(x, t)\in C ([ - L,L]\times [ - \tau ,0]), then by (1.7) we
have

\partial Kr \ast u\tau 
\partial x

=
1

2r
(u(x+ r, t) - u(x - r, t))\in C ([ - L,L]\times [ - \tau ,0]) ,

which implies that the smoothness of the convolutionKr\ast u\tau is better than the smoothness of u.
In addition, notice that for t\in [0, \tau ], u\tau coincides with the initial function \varphi (x, t - \tau ). Therefore,
if \varphi (x, t)\in C2,\alpha ([ - L,L]\times [ - \tau ,0]), then for t\in [0, \tau ], v(x, t) =Kr \ast u\tau \in C2,\alpha ([ - L,L]\times [0, \tau ]) .
Then, following the proof for Proposition 2.1 in [24], we have the following results for the
well-posedness.

Proposition 2.1. Assume that d1 > 0, d2 \in \BbbR and f(u) satisfies (2.3). Then, for the
initial function \varphi (x, t) satisfying (2.1) and (2.2) and the kernel function defined by (1.7),
equation (1.3) possesses a unique solution u(x, t) for (x, t) \in [ - L,L] \times [0,\infty ), and u(x, t) \in 
C2,1 ([ - L,L]\times [ - \tau ,0]). Moreover, if \varphi (x, t) \geq 0(\not \equiv 0) for (x, t) \in [ - L,L] \times [ - \tau ,0], then
u(x, t)> 0 for (x, t)\in [ - L,L]\times [0,\infty ).

3. Spectral analysis, stability, and bifurcation analysis. Assume that u\ast is a positive
constant such that f(u\ast ) = 0. Then, by (1.4) and (1.5), u\ast is a positive constant steady state
of (1.3). The linearized equation of (1.3) at u= u\ast is\Biggl\{ 

\partial u
\partial t = d1

\partial 2u
\partial x2 + \~d2

\partial 2

\partial x2 (Kr \ast u\tau ) +Au, t > 0, x\in ( - L,L),
u( - L, t) = u(L, t), ux( - L, t) = ux(L, t), t\geq 0,

(3.1)

where \~d2 = d2u\ast , A= f \prime (u\ast ).

3.1. Spectral analysis. In this subsection, we first study some spectral properties of the
linearized problem (3.1). Let

\scrC L =C
\bigl( 
[ - \tau ,0],L2(\Omega );\BbbC 

\bigr) 
, \scrC H =C

\bigl( 
[ - \tau ,0],H2(\Omega );\BbbC 

\bigr) 
\subset \scrC L.

We can rewrite (3.1) as the abstract ODE

d\phi 

dt
=\scrL (\phi ),(3.2)

where

\scrL (\phi )(\theta ) =
\biggl\{ 

\scrA \phi +A\phi (0), \theta = 0,
\.\phi (\theta ), \theta \in [ - \tau ,0),(3.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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646 SHUYANG XUE, YONGLI SONG, AND HAO WANG

with

\scrA \phi = d1\phi 
\prime \prime (0) + \~d2(Kr \ast \phi ( - \tau ))\prime \prime , Dom\scrA = \scrC H ,(3.4)

where \phi \prime \prime = \partial 2\phi 
\partial x2 , \.\phi = \partial \phi 

\partial t .
The domain of the operator \scrL is determined by

Dom(\scrL ) =
\Bigl\{ 
\.\phi \in \scrC L : \phi \in \scrC H , \.\phi (0) =\scrA \phi +A\phi (0)

\Bigr\} 
.

Lemma 3.1. For \Omega = ( - L,L), the spectrum of the linear operator \scrL , denoted by \sigma (\scrL ), only
consists of the point spectrum \sigma P (\scrL ), the set of eigenvalues of \scrL , and one has

\sigma (\scrL ) = \sigma P (\scrL ) = \{ \lambda n : E(n, \tau ,\lambda ) = 0, n\in \BbbZ \} ,

where

E(n, \tau ,\lambda ) = \lambda +
\Bigl( n\pi 
L

\Bigr) 2 \Bigl( 
d1 + \~d2e

 - \lambda \tau H(r,n\pi /L)
\Bigr) 
 - A(3.5)

with

H(r,n\pi /L) =

\Biggl\{ 
\mathrm{s}\mathrm{i}\mathrm{n}(n\pi r/L)

n\pi r/L , n \not = 0,

1, n= 0.
(3.6)

Proof. For \Omega = ( - L,L), introduce the inner product in L2(\Omega ) as follows:

\langle \varphi ,\psi \rangle = 1

2L

\int L

 - L
\varphi (x)\psi (x)dx \forall \varphi ,\psi \in L2(\Omega ).

Then the corresponding norm on L2(\Omega ) is induced by \| \cdot \| 0 and L2(\Omega ) becomes the Hilbert
space. The Hilbert bases for L2(\Omega ) can be chosen as\Bigl\{ 

en(x) = e
in\pi x

L , n\in \BbbZ 
\Bigr\} 
.

For each function \varphi \in L1(\Omega ), its Fourier expansion is

\varphi =
\sum 
n\in \BbbZ 

cn(\varphi )en(x),

where cn(\varphi ) = \langle en(x),\varphi \rangle .
For given \lambda \in \BbbC and g(\theta )\in \scrC L, assume that there exists \phi (\theta )\in Dom(\scrL ) such that

(\lambda I  - \scrL )\phi (\theta ) = g(\theta ).(3.7)

It follows from (3.3) that for \theta \in [ - \tau ,0), \scrL \phi (\theta ) = \.\phi (\theta ), and then (3.7) becomes the
following linear differential equation:

\.\phi (\theta ) = \lambda \phi (\theta ) + g(\theta ).(3.8)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PDE WITH NONLOCAL SPATIAL MEMORY 647

Solving (3.7) for the initial value \phi (0) = b\in H2(\Omega ), we have

\phi (\theta ) = e\lambda \theta b+

\int \theta 

0
e\lambda (\theta  - \xi )g(\xi )d\xi ,(3.9)

where b is a function to be determined such that it satisfies the equality

\.\phi (0) =\scrA \phi +A\phi (0)(3.10)

such that \phi \in Dom(\scrL ). In terms of (1.4), we have

Kr \ast (en(x)) =H(r,n\pi /L)en(x).(3.11)

For g(\theta )\equiv 0 and b= en(x), it is easy to see that the equation (\lambda I  - \scrL )e\lambda \theta en(x) = 0 if and
only if there exists \lambda \in \BbbC such that E(n, \tau ,\lambda ) = 0. And, obviously, \phi (\theta ) = e\lambda \theta en(x) satisfies
(3.10). This implies that

\{ \lambda n : E(n, \tau ,\lambda ) = 0, n\in \BbbZ \} \subset \sigma P (\scrL ).(3.12)

For g(\theta )\in \scrC H and g(\theta ) \not = 0, it follows from (3.9) that

\.\phi (0) = \lambda \phi (0) + g(0).(3.13)

Let \eta (\theta ) =
\int \theta 
0 e

\lambda (\theta  - \xi )g(\xi )d\xi and notice that \eta (0) = 0. Then, from (3.4) and (3.11), we have

\scrA \eta (\theta ) =
\sum 
n\in \BbbZ 

cn(\eta ( - \tau ))H(r,n\pi /L)en(x).(3.14)

According to (3.4), (3.9), (3.10), and (3.14), we have

\lambda cn(b) + cn(g(0)) = - n2
\Bigl( 
d1 + \~d2e

 - \lambda \tau H(r,n\pi /L)
\Bigr) 
cn(b) +Acn(b) + cn(\eta ( - \tau ))H(r,n\pi /L).

(3.15)

Therefore, for \lambda \in \BbbC \setminus \{ \lambda n, n\in \BbbZ \} , we have \lambda  - \lambda n \not = 0 and

cn(b) =
 - cn(g(0)) + cn(\eta ( - \tau ))H(r, \tau )

\lambda  - \lambda n
.

Letting b=
\sum 

n\in \BbbZ cn(b)en(x), then \phi (\theta ) defined by (3.9) is a unique solution of (3.7), provided
that \lambda \in \BbbC \setminus \{ \lambda n, n\in \BbbZ \} . This means that

\BbbC \setminus \{ \lambda n, n\in \BbbZ \} \subset \rho (\scrL ),

which, together with the fact that \rho (\scrL ) =\BbbC \setminus \sigma (\scrL ), implies

\sigma P (\lambda )\subset \sigma (\scrL )\subset \{ \lambda n, n\in \BbbZ \} .(3.16)

Combining (3.12) and (3.16), the proof is complete.

Notice the fact that for the kernel function defined by (1.7), the smoothness of the con-
volution Kr \ast u\tau is better than the smoothness of u. Then, using arguments similar to those
in [24], one can show that the solution operator defined by (3.2) possesses some compactness
property. Therefore, the stability of the positive constant steady state u = u\ast is determined
by the point spectrum \sigma P (\scrL ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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648 SHUYANG XUE, YONGLI SONG, AND HAO WANG

3.2. Stability and bifurcation analysis. From subsection 3.1, we know that the stability
of the positive constant steady state u= u\ast of (1.3) is determined by the distribution of roots
of the following characteristic equation:

\lambda +
\Bigl( n\pi 
L

\Bigr) 2 \Bigl( 
d1 + \~d2e

 - \lambda \tau H(r,n\pi /L)
\Bigr) 
 - A= 0, n\in \BbbZ .(3.17)

For convenience of analysis, we set k= n\pi /L in (3.17) and consider the equation

\lambda + d1k
2 + \~d2k

2H(r, k)e - \lambda \tau  - A= 0, k \in \BbbR ,(3.18)

where

H(r, k) =

\biggl\{ 
\mathrm{s}\mathrm{i}\mathrm{n}(kr)

kr , k \not = 0,
1, k= 0.

(3.19)

Remark 3.2. Eq. (3.18) is the characteristic equation of the linearized equation (3.1) for
the infinite interval \Omega = ( - \infty ,+\infty ) and can also be obtained by substituting u= e\lambda t+ikx into
(3.1). If the distribution of roots of (3.18) is clear, the distribution of roots of (3.17) is also
easily revealed by the relationship k= n\pi /L.

Throughout this paper, we always assume the condition

(C1) A= f \prime (u\ast )< 0, d1 \geq  - \~d2

holds. The condition A = f \prime (u\ast ) < 0 implies that the positive equilibrium u\ast of the corre-
sponding ordinary differential equation u\prime (t) = f(u) is locally asymptotically stable. If we set
H(0, k) = 1, then it is easy to verify that for r = 0 and \tau = 0, all roots of (3.18) are negative,
provided that condition (C1) holds. This implies that the positive steady state of (1.3) is
locally asymptotically stable when there is no delay (i.e., \tau = 0) and no nonlocal perception
(i.e., r = 0). In what follows, we take \tau and r as bifurcation parameters to investigate the
influence of both memory delay and nonlocal perception range on the stability of the positive
steady state u\ast and the possible bifurcations under the basic assumption (C1).

3.2.1. Stability and Turing bifurcation for the case of \bfittau = \bfzero and \bfitr > \bfzero . In this subsec-
tion, we consider the influence of the perception range r on the stability of the positive steady
state u\ast and the possible bifurcation for the case of \tau = 0. For fixed k, denote the root of
(3.18) by \lambda k(r). Then when \tau = 0, the root of (3.18) is determined by

\lambda k(r) = - d1k2  - \~d2k
2H(r, k) +A,

which, together with (3.19), implies that \lambda 0(r) =A< 0 and for k \not = 0, \lambda k(r)< 0 is equivalent to

\~d2
sin(kr)

kr
> - d1 +

A

k2
,(3.20)

and \lambda k(r) = 0 is equivalent to

H(r, k) = - d1
\~d2

+
A
\~d2k2

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

1/
24

 to
 1

37
.1

86
.1

45
.7

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



PDE WITH NONLOCAL SPATIAL MEMORY 649

Figure 1. The graph of the function f1(z) and its local extremum points.

Letting f1(z) = sin(z)/z, it is easy to verify that

df1(z)

dz
=
z cos(z) - sin(z)

z2
.(3.21)

Denote the countable number of nonnegative roots of the equation tan(z) = z by zj \geq 0
satisfying z0 = 0 and zj < zj+1, j \in \BbbN 0. Notice that limz\rightarrow 0+ f1(z) = 1. Assuming that
f1(0) = 1, the graph of the function f1(z) is shown in Figure 1. Then by (3.21) and Figure 1,
we have the following results on the local extremum of f1(z).

Proposition 3.3. f1(z) obtains its local extremum at z = zj. More specifically, we have
(i) f1(z) obtains its local minimum at z = zj , j = 2(m - 1) + 1, and

f1(z2m - 1)< f1(z2m+1)< 0, m\in \BbbN ;

(ii) f1(z) obtains its local maximum at z = zj , j = 2m, and

f1(z2m)> f1(z2(m+1))> 0, m\in \BbbN 0.

Letting

fT2 (k) = - d1
\~d2

+
A
\~d2k2

,(3.22)

it is easy to see that for fixed r, the curves H = H (r, k) and f2 = fT2 (k) are tangent at k if
and only if (r, k) satisfy the following two equations:

H(r, k) = fT2 (k),
\partial H(r, k)

\partial k
=
dfT2 (k)

dk
.(3.23)

By Proposition 3.3, the following results follow immediately.

Proposition 3.4.
(i) For \~d2 > 0, if  - \mathrm{s}\mathrm{i}\mathrm{n}(z2m+1)

z2m+1

\~d2 \leq d1 <  - \mathrm{s}\mathrm{i}\mathrm{n}(z2m - 1)
z2m - 1

\~d2,m = 1,2, . . ., then there exist m

critical values r
(1)
T , . . . , r

(m)
T of r and k

(1)
T , . . . , k

(m)
T of k such that (r, k) = (r

(j)
T , k

(j)
T ),

j = 1, . . . ,m, satisfy (3.23).

(ii) For \~d2 < 0, if
\mathrm{s}\mathrm{i}\mathrm{n}(z2(m+1))

z2(m+1)
| \~d2| \leq d1 <

\mathrm{s}\mathrm{i}\mathrm{n}(z2m)
z2m

| \~d2| ,m= 0,1, . . . , and we set \mathrm{s}\mathrm{i}\mathrm{n}(z2m)
z2m

= 1 for

m = 0, then there exist m+ 1 critical values r
(1)
T , . . . , r

(m+1)
T of r and k

(1)
T , . . . , k

(m+1)
T

of k such that (r, k) = (r
(j)
T , k

(j)
T ), j = 1, . . . ,m+ 1, satisfy (3.23).
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650 SHUYANG XUE, YONGLI SONG, AND HAO WANG

(a) (b)

Figure 2. (a) The graph of H(r, k) for different values of r. (b) The graph of fT
2 (k) for d1 = 1.5, \~d2 =

0.1,A =  - 1 such that f1(z1) <  - d1
\~d2

\leq f1(z3). There exists a unique r = r
(1)
T \.=0.3742 such that H(r

(1)
T , k) is

tangent to the curve fT
2 (k) at k= k

(1)
T \.=12.4.

Proof. Notice that zj and local extremum f1(zj) are independent of r. Thus the local
extremum f1(zj) (the red and blue dashed lines) of the function H =H(r, k) remain constant
as r varies (as shown in Figure 2(a)). Setting zj = kjr, then, for fixed zj , kj decreases as r
increases, and limr\rightarrow +\infty kj = 0. This implies that the curve H(r, k) is compressed along the
k-axis as r increases; otherwise it will be stretched as r decreases (as shown in Figure 2(a)).

From (3.22), fT2 (k) is independent of r. Thus the graph of the function f2 = fT2 (k) is not
affected by the change in r.

It follows from (3.22) that when \~d2 > 0, the function f2 = fT2 (k) is monotonically increasing
with respect to k since A < 0 and \~d2 > 0, and limk\rightarrow \infty fT2 (k) =  - d1/ \~d2 < 0. For  - d1/ \~d2 >
f1(z1), if there exists a positive integer m\in \BbbN such that

f1(z2m - 1)< - d1
\~d2

\leq f1(z2m+1),

then when r is changed from large to small, the curveH(r, k) is tangent to the curve f2 = fT2 (k)
for m times. Figure 2(b) illustrates this fact for m= 1. This confirms conclusion (i) for \~d2 > 0.

For \~d2 < 0, the function f2 = fT2 (k) is monotonically decreasing with respect to k, and
limk\rightarrow \infty fT2 (k) = - d1/ \~d2 > 0. The rest of the proof is similar to the case of \~d2 > 0, so we omit
it here.

By Proposition 3.4, we can prove the following results on the distribution of roots of (3.18).

Lemma 3.5. For \tau = 0 and \~d2 > 0, we have the following results on the roots of (3.18):
(I) If d1 \geq  - \mathrm{s}\mathrm{i}\mathrm{n}z1

z1
\~d2, then \lambda k(r)< 0 for any r\geq 0 and k\geq 0.

(II) If  - \mathrm{s}\mathrm{i}\mathrm{n}z2m+1

z2m+1

\~d2 \leq d1 <  - \mathrm{s}\mathrm{i}\mathrm{n}z2m - 1

z2m - 1

\~d2, m = 1,2, . . . , then there exists a threshold r\ast T of r
and k\ast T > 0 such that
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PDE WITH NONLOCAL SPATIAL MEMORY 651

(i) for r > r\ast T , \lambda k(r)< 0 for any k\geq 0;
(ii) for r= r\ast T , \lambda k\ast 

T
(r\ast T ) = 0 and \lambda k(r

\ast 
T )< 0 for k \not = k\ast T ;

(iii) for 0< r < r\ast T , we have

\lambda k(r)

\left\{     
< 0, k \in I - r (k),

= 0, k \in I0r (k),
> 0, k \in I+r (k),

where, for fixed r \in (0, r\ast T ), I
0
r (k) =

\bigl\{ 
k| H(r, k) = fT2 (k), k\geq 0

\bigr\} 
and

I - r (k) =
\bigl\{ 
k| H(r, k)> fT2 (k), k\geq 0

\bigr\} 
, I+r (k) =

\bigl\{ 
k| H(r, k)< fT2 (k), k\geq 0

\bigr\} 
.

Proof. It follows from (3.20) that for \~d2 > 0, \lambda k(r)< 0 is equivalent to

H(r, k)> fT2 (k).

Notice that for \~d2 > 0, fT2 (k)< 0 since d1 > 0 and A< 0. In addition, it is easy to verify
that fT2 (k) is monotonically increasing with respect to k and

lim
k\rightarrow +\infty 

fT2 (k) = - d1
\~d2
, lim

k\rightarrow 0+
fT2 (k) = - \infty .

From (i) of Proposition 3.3, we have

min
k>0,r>0

H(r, k) =
sinz1
z1

.

Thus, for d2 > 0, \lambda k(r)< 0, provided that  - d1

\~d2

\leq \mathrm{s}\mathrm{i}\mathrm{n}z1
z1

. This completes the proof of (I).

In what follows, we first prove conclusion (II) for m = 1. Notice that  - \mathrm{s}\mathrm{i}\mathrm{n}z3
z3

\~d2 \leq d1 <

 - \mathrm{s}\mathrm{i}\mathrm{n}z1
z1

\~d2 is equivalent to

sinz1
z1

< - d1
\~d2

\leq sinz3
z3

and limr\rightarrow +\infty z1/r= 0. Therefore, when r is large enough, we have

H(r, k)> fT2 (k), k\geq 0.

With the decreasing of r and r > r
(1)
T , we still have H(r, k) > fT2 (k). This implies that

\lambda k(r) < 0 for r > r
(1)
T and any k \geq 0. In terms of (i) of Proposition 3.4, when r = r

(1)
T , the

curves H =H
\Bigl( 
r
(1)
T , k

\Bigr) 
and f2 = fT2 (k) are tangent at k= k

(1)
T . When 0< r < r

(1)
T , the curves

H =H(r, k) and f2 = fT2 (k) intersect at k= k
(1)
c and k= k

(2)
c , and\left\{         

H(r, k)> fT2 (k), k \in 
\Bigl[ 
0, k

(1)
c

\Bigr) 
\cup 
\Bigl( 
k
(2)
c ,+\infty 

\Bigr) 
,

H(r, k) = fT2 (k), k= k
(1)
c , k

(2)
c ,

H(r, k)< fT2 (k), k \in 
\Bigl( 
k
(1)
c , k

(2)
c

\Bigr) 
.
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652 SHUYANG XUE, YONGLI SONG, AND HAO WANG

Letting r\ast T = r
(1)
T and k\ast T = k

(1)
T and

I0r (k) =
\Bigl\{ 
k(1)c , k(2)c

\Bigr\} 
, I - r (k) =

\Bigl[ 
0, k(1)c

\Bigr) 
\cup 
\Bigl( 
k(2)c ,+\infty 

\Bigr) 
, I+r (k) =

\Bigl( 
k(1)c , k(2)c

\Bigr) 
,

the proof of (II) is complete for m= 1. For m= 2,3, . . . , letting

r\ast T =max
\Bigl\{ 
r
(1)
T , . . . , r

(m)
T

\Bigr\} 
= r

(j)
T , j \in \{ 1, . . . ,m\} ,(3.24)

and k\ast T = k
(j)
T , similar to the proof for m= 1, it is easy to confirm (II).

For d2 < 0, it follows from (3.20) that \lambda k(r) < 0 is equivalent to H(r, k) < fT2 (k). Then,
employing (ii) of Propositions 3.3 and 3.4 and using a proof similar to that for d2 > 0, we can
similarly prove the following lemma for d2 < 0.

Lemma 3.6. For \tau = 0 and \~d2 < 0, we have the following results on the roots of (3.18):
(I) If d1 \geq 

\bigm| \bigm| \bigm| \~d2\bigm| \bigm| \bigm| , then \lambda k(r)< 0 for any r\geq 0 and k\geq 0.

(II) If
\mathrm{s}\mathrm{i}\mathrm{n}z2(m+1)

z2(m+1)

\bigm| \bigm| \bigm| \~d2\bigm| \bigm| \bigm| \leq d1 <
\mathrm{s}\mathrm{i}\mathrm{n}z2m
z2m

| \~d2| ,m= 0,1, . . . , then there exists a threshold r\ast T of r and

k\ast T > 0 such that
(i) for r > r\ast T , \lambda k(r)< 0 for any k\geq 0;
(ii) for r= r\ast T , \lambda k\ast 

T
(r\ast T ) = 0 and \lambda k(r

\ast 
T )< 0 for k \not = k\ast T ;

(iii) for 0< r < r\ast T , we have

\lambda k(r)

\left\{     
< 0, k \in I+r (k),

= 0, k \in I0r (k),
> 0, k \in I - r (k).

From Lemma 3.5 and noticing that the condition d1 \geq  - \~d2 in condition (C1) naturally
holds for d2 > 0, we have the following theorem.

Theorem 3.7. Assume that d2 > 0 and f \prime (u\ast ) < 0. When \tau = 0, we have the following
results on the stability and bifurcation of the positive steady state u\ast of (1.3):

(I) If d1 \geq  - \mathrm{s}\mathrm{i}\mathrm{n}z1
z1

\~d2, then u\ast is asymptotically stable for any r > 0.

(II) If d1 < - \mathrm{s}\mathrm{i}\mathrm{n}z1
z1

\~d2, then there exists a threshold r\ast T of r such that
(i) for r > r\ast T , u\ast is asymptotically stable;
(ii) for 0< r < r\ast T , u\ast is unstable;
(iii) (1.3) undergoes Turing bifurcation at r= r\ast T .

Remark 3.8. If there exist multiple j1, j2, . . . , jN \in \{ 1, . . . ,m\} in (3.24) such that r\ast T =

r
(jk)
T , then \lambda 

k
(jk)

T

\Bigl( 
r
(jk)
T

\Bigr) 
= 0, k = 1, . . . ,N . In this case, (1.3) may undergo multiple Turing

bifurcations at r= r\ast T . However, for  - 
\mathrm{s}\mathrm{i}\mathrm{n}z3
z3

\~d2 \leq d1 < - \mathrm{s}\mathrm{i}\mathrm{n}z1
z1

\~d2, we have r
\ast 
T = r

(1)
T and k\ast T = k

(1)
T ,

and thus (1.3) undergoes single Turing bifurcation at r= r\ast T .

Notice that when condition (C1) holds, we have d1 \geq  - \~d2. From Lemma 3.6(I), all roots
of the characteristic equation (3.18) are negative for all r > 0 and k \in \BbbR . Then we have the
following theorem.

Theorem 3.9. Assume that d2 < 0 and condition (C1) holds. When \tau = 0, the positive
steady state u\ast of (1.3) is asymptotically stable for any r > 0.
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PDE WITH NONLOCAL SPATIAL MEMORY 653

3.2.2. Hopf bifurcation and Turing--Hopf bifurcation for the case of \bfittau > \bfzero and \bfitr > \bfzero .
In the following, under the assumption that u\ast is asymptotically stable for \tau = 0, we further
investigate the distribution of the purely imaginary roots of (3.18) for \tau > 0. Letting \lambda =
\eta + i\omega (\omega > 0) be the root of (3.18), substituting it into (3.18), and then separating the real
and imaginary parts, we have\Biggl\{ 

\eta + d1k
2 + \~d2k

2H(r, k)e - \eta \tau cos(\omega \tau ) - A= 0,

\omega  - \~d2k
2H(r, k)e - \eta \tau sin(\omega \tau ) = 0.

(3.25)

From the first equation of (3.25), we have

\eta e\eta \tau +
\bigl( 
d1k

2  - A
\bigr) 
e\eta \tau = - \~d2k

2H(r, k) cos(\omega \tau ).

Notice that limr\rightarrow +\infty H(r, k) = 0. Thus, if \eta \geq 0, we get a contradiction since \eta e\eta \tau +\bigl( 
d1k

2  - A
\bigr) 
e\eta \tau \geq d1k

2  - A> 0. Therefore, we can deduce that for any fixed k \in \BbbR and \tau > 0,
all roots of (3.18) have negative real parts, provided that r is large enough. In the following,
we investigate whether or not (3.18) has purely imaginary roots when r is decreasing.

Substituting \eta = 0 into (3.25), we have\Biggl\{ 
\~d2k

2H(r, k) cos(\omega \tau ) =A - d1k
2,

\~d2k
2H(r, k) sin(\omega \tau ) = \omega ,

(3.26)

which yields to

\omega 2 =
\Bigl( 
\~d2k

2H(r, k) + d1k
2  - A

\Bigr) \Bigl( 
\~d2k

2H(r, k) - d1k
2 +A

\Bigr) 
.(3.27)

Assume that there exists \omega k > 0 defined by

\omega k =

\sqrt{} \Bigl( 
\~d2k2H(r, k) + d1k2  - A

\Bigr) \Bigl( 
\~d2k2H(r, k) - d1k2 +A

\Bigr) 
(3.28)

such that (3.27) holds. Then we can solve (3.26) for \tau . It follows from the second equation of
(3.26) that sin(\omega \tau )> 0 for \~d2H(r, k)> 0 and sin(\omega \tau )< 0 for \~d2H(r, k)< 0, which implies that
\omega \tau is in the first and second quadrants for \~d2H(r, k) > 0 and \omega \tau is in the third and fourth
quadrants for \~d2H(r, k)< 0. Thus, if we define

\tau k,j =

\left\{   
1
\omega k

\Bigl\{ 
arccos A - d1k2

\~d2k2H(r,k)
+ 2j\pi 

\Bigr\} 
, \~d2H(r, k)> 0,

1
\omega k

\Bigl\{ 
2\pi  - arccos A - d1k2

\~d2k2H(r,k)
+ 2j\pi 

\Bigr\} 
, \~d2H(r, k)< 0,

(3.29)

then (3.18) has a pair of purely imaginary roots \pm i\omega k at \tau = \tau k,j , j \in \BbbN 0.
Setting

fH2 (k) =
d1
\~d2

 - A
\~d2k2

,(3.30)

by (3.28) it is easy to verify the following results on the existence of \omega k > 0.
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654 SHUYANG XUE, YONGLI SONG, AND HAO WANG

Proposition 3.10. Assume that fT2 (k) and fH2 (k) are defined by (3.22) and (3.30), respec-
tively.

(i) For \~d2 > 0, \omega k > 0 if and only if there are r and k such that either H(r, k)> fH2 (k) or
H(r, k)< fT2 (k) holds.

(ii) For \~d2 < 0, \omega k > 0 if and only if there are r and k such that either H(r, k)< fH2 (k) or
H(r, k)> fT2 (k) holds.

Taking \tau as the bifurcation parameter and letting \lambda = \lambda (\tau ) be the root of (3.18) satisfying
Re\lambda (\tau k,j) = 0 and Im\lambda (\tau k,j) = \omega k, it follows from (3.18) that

d\lambda (\tau )

d\tau 
=

\lambda \~d2k
2H(r, k)e - \lambda \tau 

1 - \tau \~d2k2H(r, k)e - \lambda \tau 
.(3.31)

By (3.18) and (3.31), we have\biggl( 
d\lambda (\tau )

d\tau 

\biggr)  - 1

=
1

\lambda ( - \lambda  - d1k2 +A)
 - \tau 

\lambda 
.

Noticing that Re\lambda (\tau k,j) = 0 and Im\lambda (\tau k,j) = \omega k, we have

Re

\left(  \biggl( 
d\lambda (\tau )

d\tau 

\biggr)  - 1
\bigm| \bigm| \bigm| \bigm| \bigm| 
\tau =\tau k,j

\right)  =
1

\omega 2
k + (A - d1k2)

2 > 0.

In addition, according to the fact that dRe\lambda (\tau )/d\tau =Re(d\lambda (\tau )/d\tau ) and the signs of Re(d\lambda (\tau )/
d\tau ) and Re((d\lambda (\tau )/d\tau ) - 1) are the same, we have the following transversality condition for
Hopf bifurcation:

dRe\lambda (\tau k,j)

d\tau 
> 0.(3.32)

Similarly, taking r as the bifurcation parameter and letting \lambda = \lambda (r) be the real root of
(3.18) with k= k\ast T satisfying \lambda (r\ast T ) = 0, from (3.18) we have

d\lambda (r)

dr
=

 - \~d2k
2Hr(r, k)e

 - \lambda \tau 

1 - \tau \~d2k2H(r, k)e - \lambda \tau 
,(3.33)

where the partial derivative Hr(r, k) of H(r, k) with respect to r is

Hr(r, k) =
cos(kr)(kr - tan(kr))

kr2
.

This, together with the fact that \lambda = 0 is a root of (3.18) for k = k\ast T , r = r\ast T , and \pi < z1 <
k\ast T r

\ast 
T <

3\pi 
2 , implies that Hr(r

\ast 
T , k

\ast 
T )> 0. Thus, by (3.33), we have

d\lambda (r)

dr

\bigm| \bigm| \bigm| \bigm| 
r=r\ast T ,k=k\ast 

T

=
 - \~d2(k

\ast 
T )

2Hr(r
\ast 
T , k

\ast 
T )

1 + \tau d1(k\ast T )
2  - \tau A

=

\biggl\{ 
< 0, \~d2 > 0,

> 0, \~d2 < 0.
(3.34)

By Lemmas 3.5 and 3.6, Proposition 3.10, and (3.32) and (3.34), we can prove the follow-
ing theorem on the stability of u\ast and bifurcation due to the joint effect of the perception
range r and memory delay \tau .
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PDE WITH NONLOCAL SPATIAL MEMORY 655

Theorem 3.11. Assume that d2 > 0 and f \prime (u\ast )< 0. We have the following results:
1. If d1 \geq \~d2, then u\ast is asymptotically stable for any r\geq 0 and \tau \geq 0.
2. If | \mathrm{s}\mathrm{i}\mathrm{n}z1z1

\~d2| \leq d1 < \~d2, then there exists a threshold r\ast H of r such that
(i) when r\geq r\ast H , u\ast is asymptotically stable for any \tau \geq 0;
(ii) when 0 < r < r\ast H , there exists a critical value \tau \ast such that u\ast is asymptotically

stable for 0\leq \tau < \tau \ast and unstable for \tau > \tau \ast , and (1.3) undergoes Hopf bifurcation
at \tau = \tau \ast .

3. If | \mathrm{s}\mathrm{i}\mathrm{n}zj+1

zj+1

\~d2| \leq d1 < | \mathrm{s}\mathrm{i}\mathrm{n}zjzj
\~d2| , j \in \BbbN , then we have the following results:

(1) When r\ast T \geq r\ast H , u\ast is asymptotically stable for r > r\ast T and any \tau \geq 0 and unstable
for 0< r < r\ast T and any \tau \geq 0, and (1.3) undergoes Turing bifurcation at r= r\ast T .

(2) When r\ast T < r\ast H , delay-induced Hopf bifurcations and Turing--Hopf bifurcation ap-
pear. More specifically,
(i) for r\geq r\ast H , u\ast is asymptotically stable for any \tau \geq 0;
(ii) for r\ast T < r < r\ast H , there exists a critical value \tau \ast such that u\ast is asymptotically

stable for 0 \leq \tau < \tau \ast and unstable for \tau > \tau \ast , and (1.3) undergoes Hopf
bifurcation at \tau = \tau \ast ;

(iii) for r < r\ast T , u\ast is unstable stable for any \tau \geq 0;
(iv) (1.3) undergoes Turing--Hopf bifurcation at (r, \tau ) = (r\ast T , \tau \ast ).

Proof. In what follows, keep in mind the fact that if \lambda = 0 is a root of (3.18) for \tau = 0,
then it is still a root of (3.18) for \tau > 0.

1. For d1 \geq \~d2, it follows from Lemma 3.5 that for \tau = 0, all roots of (3.18) are negative
since d1 \geq \~d2 > - \mathrm{s}\mathrm{i}\mathrm{n}z1

z1
\~d2, and it is easy to verify that for any r > 0, k > 0,

H(r, k)\leq 1\leq d1
\~d2
< fH2 (k)

and

fT2 (k)< - d1
\~d2

\leq  - 1<H(r, k).

This, together with (i) of Proposition 3.10, implies that for \tau > 0, (3.18) has no purely
imaginary roots for d1 \geq \~d2. Therefore, all roots of (3.18) have negative real parts for
d1 \geq \~d2. This completes the proof for d2 > 0.

2. For  - \mathrm{s}\mathrm{i}\mathrm{n}z1
z1

\~d2 \leq d1 < \~d2 and \tau = 0, all roots of (3.18) are negative from Lemma 3.5. In
this case, it is easy to verify that for any r > 0, k > 0,

fT2 (k)< - d1
\~d2

\leq sinz1
z1

<H(r, k).

For \~d2 > 0, it is easy to verify that fH2 (k) is monotonically decreasing with respect to
k and

lim
k\rightarrow +\infty 

fH2 (k) =
d1
\~d2
> 0, lim

k\rightarrow 0+
fH2 (k) =+\infty .

Notice that

d1
\~d2
< 1, lim

z\rightarrow 0

sinz

z
= 1, lim

z\rightarrow +\infty 

sinz

z
= 0, z = rk,
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656 SHUYANG XUE, YONGLI SONG, AND HAO WANG

and fH2 (k) is independent of r. Thus, we can conclude that there exists a threshold
r\ast H such that

(i) for r > r\ast H , H(r, k)< fH2 (k) for any k > 0;
(ii) for r= r\ast H , the curves H =H(r\ast H , k) and f2 = fH2 (k) are tangent at k= k\ast H ;

(iii) for 0< r < r\ast H , there exist two values k
(1)
c , k

(2)
c > 0 such that the curves H =H(r, k)

and f2 = fH2 (k) intersect at k = k
(1)
c and k = k

(2)
c , and H(r, k) > fH2 (k) for k \in 

(k
(1)
c , k

(2)
c ) and H(r, k)< fH2 (k) for k \in (0, k

(1)
c )\cup (k

(2)
c ,+\infty ).

This, together with (i) of Proposition 3.10, implies that when 0 < r < r\ast H , \omega k exists

for any fixed k \in (k
(1)
c , k

(2)
c ). Furthermore, by the transversality condition (3.32) and

Lemma 3.5, we have the following results:
(i) When r\geq r\ast H , all roots of (3.18) have negative real parts for any \tau \geq 0.
(ii) When 0 < r < r\ast H , there exists a critical value \tau \ast such that all roots of (3.18) have

negative real parts for 0 \leq \tau < \tau \ast and (3.18) has a pair of purely imaginary roots
\pm i\omega k at \tau = \tau \ast , where

\tau \ast = min
k\in (k(1)

c ,k
(2)
c )

\{ \tau k,0\} .

This, together with transversality condition (3.32), complete the proof for \~d2 > 0.
3. We first prove this conclusion for j = 1, i.e.,

sinz2
z2

\~d2 \leq d1 < - sinz1
z1

\~d2.

For this case, we have

sinz2
z2

\leq d1
\~d2
< 1,  - 1<

sinz1
z1

< - d1
\~d2

\leq sinz3
z3

.

Then, by the properties of the functions f2 = fT2 (k), f2 = fH2 (k), and H =H(r, k), we

can conclude that there exist critical values r
(1)
H and r

(1)
T such that H =H(r

(1)
H , k) and

f2 = fH2 (k) are tangent at k = k
(1)
H , and H = H(r

(1)
T , k) and f2 = fT2 (k) are tangent

at k = k
(1)
T , and for r > max\{ r(1)T , r

(1)
H \} , we have fT2 (k) < H(r, k) < fH2 (k), which,

together with (i) of Proposition 3.10, implies that (3.18) has no purely imaginary
roots for \tau > 0. Furthermore, the discussion is divided into two cases according to

whether r
(1)
T is larger than r

(1)
H or not.

(1) For r
(1)
T \geq r

(1)
H ,

(i) when r > r
(1)
T , all roots of (3.18) have negative real parts for any \tau \geq 0;

(ii) when r = r
(1)
T , we have \lambda k(1)

T
(r

(1)
T ) = 0, and \lambda k(r

(1)
T ) < 0 for k \not = k

(1)
T . And (3.18)

has at least one positive root for 0 < r < r
(1)
T and \tau \geq 0 under the transversality

condition (3.34).

(2) For r
(1)
T < r

(1)
H ,

(i) when r\geq r
(1)
H , all roots of (3.18) have negative real parts for any \tau \geq 0;

(ii) when 0 < r < r
(1)
H , there exist two values k

(1)
c , k

(2)
c > 0 such that the curves

H =H(r, k) and f2 = fH2 (k) intersect at k= k
(1)
c and k= k

(2)
c , and H(r, k)> fH2 (k)

for k \in (k
(1)
c , k

(2)
c ) and H(r, k)< fH2 (k) for k \in (0, k

(1)
c )\cup (k

(2)
c ,+\infty ). This, together
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PDE WITH NONLOCAL SPATIAL MEMORY 657

with (i) of Proposition 3.10, implies that \omega k exists for any fixed k \in (k
(1)
c , k

(2)
c ) and

(3.18) has a pair of purely imaginary roots \pm i\omega k at \tau = \tau k,j ;

(iii) when r = r
(1)
T < r

(1)
H , \lambda k(1)

T
(r

(1)
T ) = 0 for any \tau \geq 0. This, together with (ii) in this

case, implies that for (r, \tau ) = (r\ast T , \tau k,j), (3.18) has a pair of purely imaginary roots
\pm i\omega k and a zero root and all other roots have negative real parts.

Then, letting r\ast T = r
(1)
T , r\ast H = r

(1)
H , \tau \ast = mink\in (k(1)

c ,k
(2)
c ) \{ \tau k,0\} , by Lemma 3.5 and

transversality conditions (3.32) and (3.34), the conclusion is confirmed for j = 1.

For j \in \BbbN and j > 1, assume that there exist (r, k) = (r
(j)
H , k

(j)
H ), j = 1, . . . , j1, satisfying

H(r, k) = fH2 (k),
\partial H(r, k)

\partial k
=
dfH2 (k)

dk
,(3.35)

and there exist (r, k) = (r
(j)
T , k

(j)
T ), j = 1, . . . , j2, satisfying (3.23).

Letting

r\ast T =max
\Bigl\{ 
r
(1)
T , . . . , r

(j1)
T

\Bigr\} 
, r\ast H =max

\Bigl\{ 
r
(1)
H , . . . , r

(j2)
H

\Bigr\} 
,

then the rest of the proof is very similar to the case of j = 1, and we omit it here.

Remark 3.12. For case (1) of result 3 in Theorem (3.11), when r < r\ast T , the positive real root
of the corresponding characteristic equation always exists. Therefore, when r < r\ast T , the positive
constant steady state u\ast is always unstable for any \tau > 0. For r\ast H < r < r\ast T or 0 < r < r\ast H ,
delay-induced Hopf bifurcation is possible, which occurs after u\ast loses its stability. Here we
only focus on the stability of u\ast and the bifurcation occurring at the stability boundaries.

For d2 < 0, it follows from (3.22) and (3.30) that fH2 (k) is monotonically increasing with
respect to k and

lim
k\rightarrow +\infty 

fH2 (k) =
d1
\~d2
< 0, lim

k\rightarrow 0+
fH2 (k) = - \infty ,(3.36)

and fT2 (k) is monotonically decreasing with respect to k and

lim
k\rightarrow +\infty 

fT2 (k) = - d1
\~d2
> 0, lim

k\rightarrow 0+
fT2 (k) =+\infty .(3.37)

Notice that if condition (C1) holds, we have

d1
\~d2

\leq  - 1,  - d1
\~d2

\geq 1,

which, together with (3.36) and (3.37), implies that for any r > 0 and k > 0,

fH2 (k)<H(r, k)< fT2 (k).(3.38)

From Proposition (3.10) and (3.38), the following theorem is easily confirmed.

Theorem 3.13. Assume that d2 < 0 and condition (C1) holds. Then when \tau > 0, the positive
constant steady state u\ast of (1.3) is asymptotically stable for any r > 0.

Remark 3.14. Although the theoretical results shown in section 3.2 are proved for the
infinite interval \Omega = ( - \infty ,+\infty ), it is still applicable for the finite interval \Omega = ( - L,L) with
periodic boundary condition by choosing n such that n\pi /L satisfies the requirements for k as
shown in subsection 3.2.
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658 SHUYANG XUE, YONGLI SONG, AND HAO WANG

4. Application to the logistic growth model. In this section, we employ the MATLAB
software to illustrate the influence of the perceptual scale r and memory delay \tau on the
stability of the positive constant steady state u\ast and pattern formation for d2 > 0. For this
purpose, we choose the reaction term f(u) = gu(1  - u) (logistic growth) and consider the
following problem:\Biggl\{ 

\partial u
\partial t = d1

\partial 2u
\partial x2 + d2

\partial 
\partial x

\bigl( 
u \partial 
\partial x(Kr \ast u\tau 

\bigr) 
+ gu(1 - u), - L<x<L,

u( - L, t) = u(L, t), ux( - L, t) = ux(L, t) = 0,
(4.1)

where g is the per-capita growth rate and we choose g = 0.8 for the following analysis and
numerical simulations. Equation (4.1) has the positive constant steady state u\ast = 1 and
\~d2 = d2u\ast = d2.

Notice that for the periodic boundary problem (4.1), the results in subsection 3.2 are
satisfied by setting k = n\pi /L and we denote the Hopf bifurcation values \tau k,j by \tau n,j with
n \in \BbbN 0. In addition, in order for Kr \ast u\tau as defined by (1.4) to have reasonable definition
for any x \in ( - L,L), the supplement condition (1.6) is used in the numerical calculation and
numerical simulations.

By the definition zj in Proposition 3.3, we have

sinz1
z1

.
= - 0.2172< 0,

sinz2
z2

.
= 0.1283> 0,

sinz3
z3

.
= - 0.0913< 0,

sinz4
z4

.
= 0.0709> 0,

which will be used in the following numerical analysis.

4.1. For | \bfs \bfi \bfn \bfitz \bfone 

\bfitz \bfone 
| \~\bfitd \bftwo <\bfitd \bfone < \~\bfitd \bftwo : memory-delay-induced Hopf bifurcation. In this subsec-

tion, we choose d1 = 0.4, d2 = 1 such that | \mathrm{s}\mathrm{i}\mathrm{n}z1z1
| \~d2 < d1 < \~d2. Then, when \tau = 0, it follows

from Theorem 3.7 that the positive constant steady state u\ast = 1 is asymptotically stable for
any r\geq 0. By (3.22) and (3.30), we have

fT2 (k) = - 4

5k2
 - 2

5
, fH2 (k) =

4

5k2
+

2

5
.

When \tau > 0, there exists a threshold r\ast H such that the curves h = H(r\ast H , k) and f2 = fH2 (k)
are tangent at k = k\ast H and fT2 (k)<H(r, k) for any r > 0 and k > 0, as shown in Figure 3(a),
where r\ast H can be calculated by the following procedure.

From fH2 (k) =H(r, k), we have

4

5k2
+

2

5
=

sin(z)

z
,(4.2)

where z = kr > 0. From (4.2), we have

sin(z)

z
 - 2

5
> 0,(4.3)

which implies 0< z < 1.982. From dfH
2 (k)
dk = \partial H(r,k)

\partial k , we have

 - 8

5k3
=
r(z cos(z) - sin(z))

z2
.(4.4)
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PDE WITH NONLOCAL SPATIAL MEMORY 659

(a) (b)

Figure 3. (a) For d1 = 0.4, d2 = 1 such that | \mathrm{s}\mathrm{i}\mathrm{n}z1
z1

| \~d2 < d1 < \~d2, the bifurcation curves h = H(r, k), f2 =

fT
2 (k), f2 = fH

2 (k). The curves h=H(r, k) and f2 = fH
2 (k) are tangent at r= r\ast H \.=0.8649, k= k\ast 

H \.=1.6808. (b)
For fixed r= 0.7, the critical values \tau n,0 of delay-induced Hopf bifurcations and \tau \ast = \tau 14,0.

Removing k by (4.2) and (4.4), we have

sin(z)

z
+ cos(z) =

4

5
.(4.5)

Solving (4.5) for 0 < z < 1.982, we have z\ast 
.
= 1.4537 and then, substituting it into (4.2), we

obtain the critical value k\ast H
.
= 1.6808. We then have

r\ast H =
z\ast 
k\ast H

.
= 0.8649.

From Theorem 3.11, when r < r\ast H
.
= 0.8649, there exist delay-induced Hopf bifurcations

for (4.1). For fixed r = 0.7 < r\ast H
.
= 0.8649, the curves h =H(0.7, k) and f2 = fH2 (k) intersect

at k= k1, k2, where k1
.
= 1.3110 and k2

.
= 2.664.

In the rest of this subsection, we take L = 20 for numerical analysis and simulations.
For L = 20 and by k1 < n\pi /L < k2, we have n = 9,10, . . . ,16, and the corresponding Hopf
bifurcation values \tau n,0 are plotted in Figure 3(b). From Figure 3(b), we have

\tau \ast = min
n\in \{ 9,10,...,16\} 

\{ \tau n,0\} = \tau 14,0
.
= 1.7023.

Thus, the positive constant steady state u\ast is asymptotically stable for \tau < \tau \ast , as shown
in Figure 4(a) for \tau = 1.5 < \tau \ast , and unstable for \tau > \tau \ast . \tau = \tau \ast is the first delay-induced
Hopf bifurcation value for (4.1). For \tau = 1.72 being larger than and close to the first Hopf
bifurcation value \tau \ast , Figure 4(b) illustrates the delay-induced periodic spot patterns. For \tau = 8
far from the first Hopf bifurcation value \tau \ast , Figure 4(c) shows the existence of ladder-shaped
periodic patterns.

4.2. For | \bfs \bfi \bfn \bfitz \bftwo 

\bfitz \bftwo 

\~\bfitd \bftwo | \leq \bfitd \bfone < | \bfs \bfi \bfn \bfitz \bfone 

\bfitz \bfone 

\~\bfitd \bftwo | : perceptual-scale-induced Turing bifurcation,
memory-delay-induced Hopf bifurcation, and their interaction. Choosing d1 = 0.2, d2 = 1
such that | \mathrm{s}\mathrm{i}\mathrm{n}z2z2

\~d2| \leq d1 < | \mathrm{s}\mathrm{i}\mathrm{n}z1z1
\~d2| , by (3.22) we then have

fT2 (k) = - 4

5k2
 - 1

5
.
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660 SHUYANG XUE, YONGLI SONG, AND HAO WANG

(a) (b) (c)

Figure 4. For d1 = 0.4, d2 = 1, and r = 0.7 < r\ast H , delay-induced periodic patterns of (4.1) for different
delays. (a) \tau = 1.5. (b) \tau = 1.72. (c) \tau = 8. The initial function is u(x, t) = u\ast + 0.2cos(2x) for t\in [ - \tau ,0].

(a) (b)

Figure 5. For d1 = 0.2 and d2 = 1 > 0 such that | \mathrm{s}\mathrm{i}\mathrm{n}z2
z2

\~d2| \leq d1 < | \mathrm{s}\mathrm{i}\mathrm{n}z1
z1

\~d2| , the bifurcation curves h =

H(r, k), f2 = fT
2 (k), f2 = fH

2 (k). (a) For \tau = 0, the curves h=H(r\ast T , k) and f2 = fT
2 (k) are tangent and Turing

bifurcation occurs for (4.1), where r\ast T \.=0.8128. (b) For \tau > 0, the curves H = H(r\ast T , k) and f2 = fT
2 (k) are

tangent and the curves H = H(r\ast H , k) and f2 = fH
2 (k) are tangent, where r\ast T \.=0.8128, r\ast H \.=1.1896, and there

exist delay-induced Hopf bifurcations for r\ast T < r < r\ast H and Turing-Hopf bifurcation for (4.1) at r= r\ast T and \tau = \tau \ast .

The curve f2 = fT2 (k) is tangent to the curve h=H(r\ast T , k) with r
\ast 
T
.
= 0.8128 at k= k\ast T

.
= 5.5612

as shown in Figure 5(a) for \tau = 0 and Figure 5(b) for \tau > 0. And when r > r\ast T
.
= 0.8128,

H(r, k) > fT2 (k) for any k \geq 0. The calculation of r\ast T is very similar to that of r\ast H , and we
omit it here.

In what follows, we numerically illustrate the patterns induced by perceptual scale r and
memory delay \tau .

4.2.1. Perceptual-scale-induced Turing bifurcation. We first consider the case of \tau = 0.
Noticing the periodic boundary condition and r = r\ast T

.
= 0.8128, we should choose L such

that there exists an n \in \BbbN satisfying n\pi 
L = k\ast T . For this purpose, we choose n = 18 and

L= n\pi /k\ast T
.
= 10, which is used in the following numerical calculations and simulations. From

Theorem 3.7, (4.1) undergoes mode-18 Turing bifurcation at r= r\ast T
.
= 0.8128 when \tau = 0.

For r = 0.9 > r\ast T , Figure 6(a) shows the stability of the positive constant steady state
u\ast = 1. When r is decreasing across the Turing bifurcation value r\ast T , the nonconstant steady
state (vertical stripe pattern) appears as shown in Figure 6(b) for r = 0.8 smaller than and
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PDE WITH NONLOCAL SPATIAL MEMORY 661

(a) (b) (c)

Figure 6. For d1 = 0.2, d2 = 1, and \tau = 0, the dynamical evolution of the solutions of (4.1) with the
decreasing of r. (a) r = 0.9 > r\ast T . (b) r = 0.8 < r\ast T . (c) r = 0.68 < r\ast T . The initial function is chosen as
u(x,0) = u\ast + 0.1cos(4x).

close to the Turing bifurcation value r\ast T
.
= 0.8128. When r= 0.68 is smaller than and far away

from the Turing bifurcation value r\ast T , the diagonal stripe pattern with ladder pattern near the
boundaries is observed as shown in Figure 6(c).

4.2.2. Memory-delay-induced Hopf bifurcation. For the delay \tau > 0, it follows from
Theorem 3.11 that delay-induced Hopf bifurcations appear when r < r\ast H . For d1 = 0.2, d2 = 1,
we have r\ast T

.
= 0.8128, r\ast H

.
= 1.1896,

fH2 (k) =
4

5k2
+

1

5
,

and the curves f2 = fH2 (k) and H = H(r\ast H , k) are tangent at k\ast H
.
= 1.4450, and the curves

f2 = fT2 (k) and H =H(r\ast T , k) are tangent at k\ast T
.
= 5.5612.

Notice that r\ast T < r
\ast 
H . It follows from Theorem 3.11 that when r > r\ast H

.
= 1.1896, the steady

state u\ast of (4.1) is always asymptotically stable for any \tau \geq 0.
When r\ast T < r < r\ast H , there exist delay-induced Hopf bifurcations. For r = 1 \in (r\ast T , r

\ast 
H), the

curves h=H(1, k) and f2 = fH2 (k) intersect at k= k1, k2, where k1
.
= 1.1662 and k2

.
= 2.2078.

For L = 10, it follows from k1 < n\pi /L < k2 that n = 4,5,6,7, and the corresponding Hopf
bifurcation values \tau n,0 are plotted in Figure 7(a). From Figure 7(a), we have

\tau \ast = min
n\in \{ 4,5,6,7\} 

\{ \tau n,0\} = \tau 6,0
.
= 2.6654.

Equation (4.1) undergoes mode-6 Hopf bifurcation at \tau = \tau 6,0, and the constant steady state
u\ast = 1 is asymptotically stable for \tau < \tau 6,0 and unstable for \tau > \tau 6,0. For \tau = 3 larger
than and close to the Hopf bifurcation value \tau 6,0, the Hopf bifurcation periodic solution is
shown in Figure 8(a). When the memory delay \tau is larger than and far away from the
Hopf bifurcation value \tau 6,0, the numerical simulations have also shown that the spatially
inhomogeneous periodic solutions still exist, as shown in Figures 8(b) and 8(c) for \tau = 30 and
\tau = 40, respectively.

4.2.3. Turing--Hopf bifurcation and double Hopf bifurcation induced by the joint action
of the perceptual scale and the memory delay. In this subsection, we investigate the Turing-
Hopf bifurcation and double Hopf bifurcation induced by the joint action of the perceptual
scale r and the memory delay \tau .
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(a) (b)

Figure 7. For d1 = 0.2 and d2 = 1 > 0 such that | \mathrm{s}\mathrm{i}\mathrm{n}z2
z2

\~d2| \leq d1 < | \mathrm{s}\mathrm{i}\mathrm{n}z1
z1

\~d2| , the critical values \tau n,0 of
delay-induced Hopf bifurcations for r\ast T \leq r < r\ast H . (a) r= 1> r\ast T , \tau \ast = \tau 6,0. (b) r= r\ast T \.=0.8128, \tau \ast = \tau 7,0.

(a) (b) (c)

Figure 8. For d1 = 0.2, d2 = 1, and r = 1 \in (r\ast T , r
\ast 
H), delay-induced periodic patterns of (4.1) for different

delays. (a) \tau = 3. (b) \tau = 30. (c) \tau = 40. The initial function is chosen as u(x, t) = u\ast + 0.1cos(4x) for
t\in [ - \tau ,0].

For r = r\ast T
.
= 0.8128, the curves h = H(r\ast T , k) and f2 = fH2 (k) intersect at k = k1, k2,

where k1
.
= 1.089 and k2

.
= 2.9163, as shown in Figure 5(b). For L = 10, it follows from

k1 < n\pi /L < k2 that n = 4,5,6,7,8, and the corresponding Hopf bifurcation values \tau n,0 are
plotted in Figure 7(b). From Figure 7(b), it is easy to see that

\tau \ast = min
n\in \{ 4,5,6,7,8\} 

\{ \tau n,0\} = \tau 7,0
.
= 1.1726.

From Theorem 3.11, (4.1) undergoes Turing--Hopf bifurcation at (r, \tau ) = (r\ast T , \tau \ast ) arising from
the interaction of mode-18 Turing bifurcation and mode-7 Hopf bifurcation. The dotted region
in Figure 9 depicts the stable region for the positive constant steady state u= u\ast of (4.1).

For r \in [0.76,0.92] and \tau \in [0.9,1.8], Figure 9 illustrates the stability region and the
critical bifurcation curves. Mode-18 Turing bifurcation (straight line) r = r\ast T and mode-7
Hopf bifurcation (curve line) \tau = \tau 7,0 intersect at the Turing--Hopf bifurcation pointM1(r

\ast 
T , \tau \ast ),

Mode-7 Hopf bifurcation curve \tau = \tau 7,0 and mode-6 Hopf bifurcation curve \tau = \tau 6,0 intersect

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PDE WITH NONLOCAL SPATIAL MEMORY 663

Figure 9. When d1 = 0.2 and d2 = 1, the stable region and the critical bifurcation diagrams of (4.1) in
the r  - \tau plane for r \in [0.76,0.92] and \tau \in [0.9,1.8]. r = r\ast T is the mode-18 Turing bifurcation line, \tau = \tau 6,0
and \tau = \tau 7,0 are mode-6 and mode-7 Hopf bifurcation curves, respectively. The points are chosen for the
numerical simulations; they are P1(0.83,1.2), P2(0.83,1.3), P3(0.8,1.4), P4(0.8,1), Q1(0.893,1.7), Q2(0.84,1.7),
Q3(0.85,1.6), and Q4(0.87,1.6).

at the double Hopf bifurcation point M2(0.8724,1.5279). In the following, we choose different
points Pj and Qj , j = 1,2,3,4, in Figure 9 to illustrate the spatio-temporal patterns for
Turing--Hopf bifurcation and double Hopf bifurcation, respectively.

Figure 10 illustrates the spatio-temporal dynamics of (4.1) for different points Pj , j =
1,2,3,4, in the neighborhood of the Turing--Hopf bifurcation point M1. For the point P1, u\ast 
is asymptotically stable, as shown in Figure 10(a). When \tau is increasing across the mode-7
Hopf bifurcation curve \tau = \tau 7,0, the spatially inhomogeneous periodic solution emerges with
spot patterns, as shown in Figure 10(b) for the point P2. For the point P3, Figure 10(c) shows
the existence of a spot-stripe pattern. Figure 10(d) illustrates the vertical strip pattern arising
from mode-18 Turing bifurcation.

Figure 11 illustrates the spatio-temporal dynamics of (4.1) for different points Qj , j =
1,2,3,4, in the neighbourhood of the double Hopf bifurcation point M2. For the point
Q1, Figure 11(a) illustrates the spot patterns arising from the mode-6 Hopf bifurcation.
Figures 11(b), 11(c), and 11(d) illustrate the existence of other periodic patterns for the points
Q2, Q3, and Q4, respectively.

In what follows, we also numerically investigate the spatio-temporal dynamics of (4.1)
when the parameters \tau and r are far away from the boundary of the stable region. For fixed
\tau = 2.5, Figures 12(a), 12(b), and 12(c) illustrate the dynamics evolution of (4.1) with the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) (b) (c) (d)

Figure 10. For d1 = 0.2, d2 = 1, the spatio-temporal dynamics of the solutions of (4.1) for the points Pj,
j = 1,2,3,4, near the neighborhood of Turing--Hopf bifurcation point M1. (a) P1(0.83,1.2). (b) P2(0.83,1.3).
(c) P3(0.78,1.4). (d) P4(0.8,1). The initial function is chosen as u(x, t) = u\ast + 0.1cos(2x) for t\in [ - \tau ,0].

(a) (b) (c) (d)

Figure 11. For d1 = 0.2, d2 = 1, the spatio-temporal dynamics of the solutions of (4.1) for the points Qj,
j = 1,2,3,4, near the neighborhood of the double Hopf bifurcation pointM2. (a)Q1(0.893,1.7). (b)Q2(0.84,1.7).
(c) Q3(0.85,1.6). (d) Q4(0.87,1.6). The initial function is chosen as u(x, t) = u\ast + 0.1cos(2x) for t\in [ - \tau ,0].

(a) (b) (c) (d)

Figure 12. For d1 = 0.2, d2 = 1, the spatio-temporal dynamics of (4.1) when the parameters \tau and r are far
away from the boundary of the stable region. (a) r= 0.65, \tau = 2.5. (b) r= 0.64, \tau = 2.5. (c) r= 0.4, \tau = 2.5. (d)
r= 0.8, \tau = 20. The initial function is chosen as u(x, t) = u\ast + 0.1cos(2x) for t\in [ - \tau ,0].

decreasing of r. For r = 0.65, Figure 12(a) shows the spot stripe pattern with the stripes
leaning to the right. But when r is decreasing to 0.64, a stripe pattern leaning to the left
appears, as shown in Figure 12(b). This stripe pattern stays when r is decreasing, as shown in
Figure 12(c) for r= 0.4. For r= 0.8 and large delay \tau = 20, a herringbone stripe is observed,
as shown in Figure 12(d).

5. Discussion. In this paper, we investigate the spatio-temporal dynamics of a reaction-
diffusion equation with nonlocal spatial memory. We focus on the influence of nonlocal per-
ceptual scale r and memory delay \tau on the spatially homogeneous positive steady state of (1.3)
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PDE WITH NONLOCAL SPATIAL MEMORY 665

and investigate the possible mechanisms driving pattern formation. For the negative memory
diffusion rate (d2 < 0), the perceptual scale r and memory delay \tau do not affect the stability of
the spatially homogeneous positive steady state. However, for the positive memory diffusion
rate (d2 > 0), the perceptual scale r and memory delay \tau can lead to complex dynamics and
the appearance of rich patterns. In the following, we conclude our main results and give some
discussions for the positive memory diffusion rate.

Without memory (i.e., \tau = 0), the influence of the perceptual scale r on the stability of the
spatially homogeneous positive steady state depends on the relationship between the random
diffusion rate and the memory diffusion rate. When the random diffusion is dominant (i.e.,
d1 \geq | \mathrm{s}\mathrm{i}\mathrm{n}z1z1

| \~d2), the perceptual scale r does not affect the stability of the spatially homogeneous

positive steady state. When the memory diffusion is dominant (i.e., d1 < | \mathrm{s}\mathrm{i}\mathrm{n}z1z1
| \~d2), there exists

a threshold r\ast T of the perceptual scale such that the spatially homogeneous positive steady
state is stable for r > r\ast T and unstable for 0 < r < r\ast T , and Turing bifurcation occurs at
r = r\ast T with the emergence of the spatially inhomogeneous steady state. This implies that
when the memory diffusion is dominant, the nonlocal perception is the trigger of the pattern
formation. It is surprising that the large perceptual scale does not affect the stability of the
spatially homogeneous positive steady state. Our intuitive reason is that a population with
a large perceptual radius r has vague information (a small detection function Kr(x) =

1
2r )

over a wide spatial region ( - r\leq x\leq r), which causes weak perception such that the spatially
homogeneous positive steady state is stable. This result also occurs in the other extreme,
when the perceptual radius is zero (resulting in no perception over space beyond an animal's
own location).

When memory is involved (i.e., \tau > 0), the combination of a nonlocal perceptual scale
and memory delay can lead to the emergence of complex patterns. When random diffusion
is dominant (d1 \geq | \~d2| ), the nonlocal perceptual scale and memory delay do not affect the
stability of the spatially homogeneous positive steady state. When | \mathrm{s}\mathrm{i}\mathrm{n}z1z1

\~d2| \leq d1 < | \~d2| , the
memory delay-induced Hopf bifurcation is possible for small perceptual scales (r < r\ast H). When

d1 < | \mathrm{s}\mathrm{i}\mathrm{n}zjzj
\~d2| , the combination of a nonlocal perceptual scale and memory delay can lead to

Turing--Hopf bifurcation, yielding the existence of spatially inhomogeneous and time-periodic
solutions, and to double Hopf bifurcation, yielding more complex patterns. In [6], it has been
shown that the occurrence of Turing--Hopf bifurcation is due to symmetry breaking via shifting
the step function. In this paper, we show a new mechanism of the occurrence of Turing--Hopf
bifurcation by combining a nonlocal perceptual scale and memory delay for the symmetric
top-hat function.

Finally, we would also like to mention some challenging problems. It is well known that the
normal form theory is an efficient technique to investigate the dynamical classification near
the bifurcation point. The algorithms of normal form for Hopf, double Hopf, and Turing--
Hopf bifurcations for the reaction-diffusion system with memory-based diffusion have been
developed in [29, 27, 26], but we do not know how to calculate the corresponding normal
forms taking the perceptual scale r as the bifurcation parameter.

Data availability. Data sharing is not applicable to this article as no datasets were gen-
erated or analyzed during the current study.
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