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An Organizing Center of Codimension Four in a Predator-Prey Model with
Generalist Predator: From Tristability and Quadristability to Transients in a
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Abstract. In this paper, we take the Rosenzweig--MacArthur (RM) model with generalist predator as an
example in a constant or changing environment. When the environment is fixed, we provide a more
easily verifiable classification, in terms of the coefficients of the system with nilpotent linear part and
general higher terms, to determine the types and codimension of nilpotent singularities in a general
planar system. Second, by using the existing classification and some algebraic methods, we show
that the highest codimension of a nilpotent focus is 4 and the sample RM model with generalist
predator can exhibit nilpotent focus bifurcation of codimension 4. Our results indicate that generalist
predation can cause not only richer bifurcations and dynamics (such as multitype tristability and
quadristability, a figure-eight loop) but also the possible extirpation of prey. When the environment
is changing, we study the impact of the rate \mu and intensity \beta of a nonlinear environmental change
on dynamics. The key observations on the asymptotic and transient dynamics include (i) transient
tracking on unstable steady states or oscillations, and transient-related regime shifts; (ii) slow and
fast regime shifts; (iii) regulation of transient dynamics by the environmental change parameters | \mu | 
and \beta ; (iv) slow negative or fast positive environmental change can delay or even avoid population
extirpation.
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regime shifts, quadristability
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1. Introduction. Using the long-term dynamics from bifurcation analysis in a constant
environment to understand the response and transient dynamics of populations to environ-
mental fluctuations is a cutting-edge area of ecology. Ecosystems are undergoing environmen-
tal changes, such as extreme climate events, land-use change, disease outbreaks, and other
environmental perturbations. Understanding and predicting the response of populations to
environmental fluctuations is a major challenge in ecology. Mathematical models can provide
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A NOVEL CLASSIFICATION OF NILPOTENT SINGULARITIES 695

useful insights into this topic. From the pioneering work of Lotka [23] and Volterra [32] in the
1920s to the seminal one of May [26] in the 1970s, most of the efforts have been focused on
the asymptotic behaviors to predict the population persistence or extinction. However, there
is an increasing recognition that the asymptotic dynamics may or may not reflect realistic
observations (see [19] and references therein). In contrast, transient dynamics, i.e., dynamics
on ecological time scales, normally gives us more relevant information about the response
of populations to environmental changes. There have been some important reviews and ex-
plorations about transients, especially long transients, in ecology (see [19, 27] and references
therein), where a classification of transient dynamics and several main mechanisms leading
to the emergence of long transients were revealed in different models. However, systems with
explicit time dependence (i.e., nonautonomous systems) describing interacting species in a
changing environment have not been emphasized in [19, 27] due to the lack of equilibria and
great mathematical challenges related to the broader area of the nonequilibrium concept in
ecological systems. In the most recent works [3, 4], Arumugam, Guichard, and Lutscher
assumed that the prey's carrying capacity is a linear function of time t and used the bifur-
cation diagrams in a constant environment together with transients to explore the response
of populations to linear environmental changes. They found that the species in a changing
environment can track unstable states in a constant environment before shifting to stable
states. Xiang, Huang, and Wang [34] linked bifurcation analysis of the Holling--Tanner model
with generalist predator to a changing environment, and used the asymptotic dynamics from
bifurcation analysis in a constant environment to understand and predict the response of pop-
ulations to environmental fluctuations. Especially, they studied theoretically the response in
a periodic environment and found that the populations converge to a periodic solution or an
invariant torus depending on the initial environmental capacity and the amplitude of periodic
fluctuation. To the best of our knowledge, all existing works focused on linear environmental
changes, hence we are the first to explore the impact of nonlinear environmental changes on
transient dynamics here.

In order to explore the response and transient dynamics of populations to nonlinear envi-
ronmental fluctuations, we formulate the following Rosenzweig--MacArthur model with gen-
eralist predation and nonlinear environmental change,

dN

dt
=RN

\biggl( 
1 - N

K

\biggr) 
 - \alpha NP

A+N
,

dP

dt
=

\gamma NP

A+N
+

CP

1 +QP
 - MP,

K(t) = (K0 + \mu t)\beta ,(1.1)

where N and P denote densities of the prey and predator population, respectively, at time t
with nonnegative initial conditions N(0)\geq 0 and P (0)\geq 0. R and K are the intrinsic growth
rate and the environmental carrying capacity of the prey, \alpha is the maximum consumption rate
of prey by the predator, A is the half-saturation constant, and \gamma is the conversion efficiency
from prey to predator. In the absence of the focal prey N , the predator population grows
with a logistic-like function (i.e., a Beverton--Holt-like function) CP

1+QP  - MP , where M is
the mortality rate of the predator, C is the maximum per capita reproduction rate of the
predator in the absence of the focal prey, and Q is the strength of density dependence. All
parameters are naturally positive. We assume that the predator is a generalist predator , which
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696 MIN LU, JICAI HUANG, AND HAO WANG

has several alternative prey species for food and can persist by switching to other food sources
even when the focal prey is scarce. Thus we always assume C >M . In the third equation of
system (1.1), K0 > 0 denotes the initial carrying capacity. \beta > 0 represents the intensity of
nonlinear environmental change; the larger \beta is, the stronger the intensity of environmental
change. When \beta = 1, the rate of environmental change is a linear function; otherwise that is a
nonlinear function: convex if 0<\beta < 1; concave if \beta > 1. \mu represents the speed and direction
of environmental change; the larger the | \mu | , the faster the environmental change. The prey's
carrying capacity K(t) increases over time if \mu > 0 and decreases if \mu < 0.

When \mu = 0 and C = 0, i.e., the environment does not change and the predator is a
specialist , system (1.1) becomes the classical Rosenzweig--Macarthur (RM) model [29, 30],
whose long-term asymptotic dynamics are well understood. Two boundary equilibria always
exist, the coextinction saddle E0(0,0) and prey-only steady state EK(K,0), and there exists at
most one coexistence steady state E1. There are two thresholds K1 and K2 (K1 <K2) for the
prey's carrying capacity: when K <K1, EK is globally asymptotically stable and the predator
goes extinct for all positive initial densities; when K =K1, a transcritical bifurcation occurs;
when K1 <K <K2, the predator can invade and coexist with the prey, EK becomes unstable,
and E1 is globally asymptotically stable; when K = K2, a supercritical Hopf bifurcation
occurs; when K > K2, E1 becomes unstable, and a stable and unique periodic oscillation
arises. It is worth noting that the prey always persists for all positive initial densities and all
admissible parameter values.

When \mu = 0 and C > M , then the environment does not change and the predator is a
generalist , and system (1.1) becomes the following RM model with generalist predator [16,
28]:

dN

dt
=RN

\biggl( 
1 - N

K

\biggr) 
 - \alpha NP

A+N
,

dP

dt
=

\gamma NP

A+N
+

CP

1 +QP
 - MP.(1.2)

Sen et al. [28] showed, mainly by numerical simulations, that system (1.2) exhibits rich and
complex dynamics like bistability, tristability along with some local and global bifurcations like
Bogdanov--Takens bifurcation, homoclinic bifurcation, etc. However, the detailed classification
of equilibria, especially the types and codimension of nilpotent singularities and the high
codimension bifurcations, were not theoretically analyzed in any work.

There are 8 parameters in system (1.2), and as parameters vary, the dynamics will often
change. Thus, in order to understand the local or global dynamics of system (1.2), we need
to know which parameters are the main ones to affect the asymptotic dynamics, what are
the sensitive values of the main parameters to cause the dynamical changes, and what are
the dynamical patterns when the main parameters vary around their sensitive values. These
are related to the bifurcation theory of dynamical systems. The main parameters and their
sensitive values are called bifurcation parameters and bifurcation values, respectively. If the
qualitative structure of a system changes when parameters vary, the vector field at a param-
eter value where a qualitative change occurs is called structurally unstable. One of the main
tasks in bifurcation theory is to deal with so-called universal problems, i.e., finding the versal
unfoldings of structurally unstable vector fields. Roughly speaking, finding the versal unfold-
ing is to find a special perturbation system which contains all different dynamics ``near"" a
given structurally unstable vector field. If there exists a versal unfolding, then it is usually not
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A NOVEL CLASSIFICATION OF NILPOTENT SINGULARITIES 697

unique, and the least number of parameters within versal unfoldings is called the codimen-
sion of this bifurcation, which can be used to measure the degree of bifurcation complexity.
Many bifurcations of system (1.2) have been shown numerically such as local bifurcations:
saddle-node bifurcation, Hopf bifurcation, and global bifurcations: homoclinic bifurcation,
saddle-node bifurcation of limit cycles. Can we rigorously prove the existence of these bi-
furcations? How are these bifurcations organized in parameter space? Are there some high
codimension bifurcations serving as organizing centers that locally (and often semiglobally)
determine the geometry of the bifurcation set? High codimension nilpotent bifurcations can
often take the role. In the 8-parameter family of vector field (1.2), the highest codimension of
bifurcations is generically not larger than the number 8 of parameters, say m (m \leq 8); then
the codimension m bifurcations are isolated points in m-dimensional parameter space, from
which a series of bifurcations with lower codimension originate. In other words, the bifurca-
tions of codimension less than m are subordinate to one or more codimension m equilibria [9],
which act as organizing centers for the bifurcation diagram. For instance, Bogdanov--Takens
bifurcation is a codimension 2 bifurcation, which contains a series of codimension 1 bifurca-
tions: saddle-node, Hopf, and homoclinic bifurcations. The codimension 2 cusp serves as the
organizing center of the Bogdanov--Takens bifurcation diagram. Recently, some researchers
have concentrated on searching for nilpotent bifurcations with highest codimension in many
mathematical models (see [1, 2, 5, 8, 9, 10, 22, 24, 25, 33, 35, 40, 42] and reference therein).

In this paper, we will first revisit the asymptotic dynamics of system (1.2) (i.e., system
(1.1) in a constant environment) by rigorous bifurcation analysis, especially high codimension
nilpotent bifurcations. Next, based on the bifurcation results for system (1.2), we will explore
the response of populations to environmental fluctuations for system (1.1) in a changing
environment.

In a constant environment, all parameters do not change over time in system (1.2). We
will provide a more easily verifiable classification compared with that in [10], in terms of the
coefficients of the system with nilpotent linear part and general higher terms, to determine
the types and codimension of nilpotent singularities in a general planar system. Based on
the previous classification and using some algebraic methods (including resultant elimination
[17], Sturm's theorem, complete discrimination system for polynomials [39], and a real root
isolation algorithm) to solve the semialgebraic varieties of normal form coefficients, we will
provide a complete classification about the types of equilibria for system (1.2), especially the
types and codimension of nilpotent singularities, and show that the highest codimension of a
nilpotent focus is 4 and system (1.2) can exhibit nilpotent focus bifurcation of codimension
4, which implies that the codimension 4 nilpotent focus serves as the potential organizing
center of the bifurcation set. Our results indicate that generalist predation can cause not only
richer bifurcations and dynamics, such as multitype tristability, multitype quadristability
(two positive equilibria and two big limit cycles; two positive equilibria, one small limit cycle,
and one big limit cycle), and figure-eight loop, but also the extirpation of prey for some
positive initial densities. To the best of our knowledge, it is the first time that multitype
quadristability and nilpotent focus bifurcation of codimension 4 are rigorously shown in a
predator-prey system.

In a changing environment, we assume that the habitat quality (i.e., carrying capacity)
undergoes a nonlinear environmental change in system (1.1). Due to a general and direct time
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698 MIN LU, JICAI HUANG, AND HAO WANG

dependence and the lack of equilibria in system (1.1) when \mu \not = 0, we will study the dynamics
of system (1.1) mainly by numerical methods, compare dynamics under environmental change
with bifurcation results under constant environment, and predict the response and transient
dynamics of populations to nonlinear environmental fluctuations. We will find some impor-
tant characteristics, such as (i) transient tracking (unstable steady states or oscillations) and
transient-related regime shifts (positive stable steady states to oscillations and vice versa; one
positive stable steady state to another positive stable steady state; one positive stable steady
state to one boundary stable steady state); (ii) slow and fast regime shifts (shifting to stable
oscillations slower than to stable steady states); (iii) different values of speed | \mu | or intensity \beta 
induce different transient dynamics; (iv) slow negative or fast positive environmental change
can delay or avoid population extirpation. To the best of our knowledge, this is the first
exploration to consider nonlinear environmental changes in an ecosystem.

The rest of the paper is organized as follows. In section 2, we provide a complete bifurcation
analysis, especially nilpotent bifurcations with high codimension, for system (1.2). In section
3, we explore the impact of a nonlinear environmental change on the transient dynamics in
system (1.1). A brief summary is given in the last section. Most detailed proofs are presented
in the appendices.

2. Constant environment. In this section, under constant environment \mu = 0, we will
give a complete bifurcation analysis, especially nilpotent bifurcations with high codimension,
for system (1.2).

Before going into details, we rescale system (1.2) by N = Kx, P = RK
\alpha y, dt

d\tau = 1
R ; then

system (1.2) becomes (still denote \tau by t)

dx

dt
= x

\biggl( 
1 - x - y

a+ x

\biggr) 
,

dy

dt
= y

\biggl( 
bx

a+ x
+

c+m

1 + qy
 - m

\biggr) 
,(2.1)

where a= A
K , b= \gamma 

R , c=
C - M
R , q= QRK

\alpha , m= M
R , and a, b, c, q,m are all positive parameters.

From the biological point of view, we consider system (2.1) in \BbbR 2
+ = \{ (x, y) | x\geq 0, y \geq 0\} .

Moreover, it is not difficult to see that

\Omega =

\biggl\{ 
(x, y)| 0\leq x\leq 1, y\geq 0, bx+ y\leq b+

qb+ c+m

qm

\biggr\} 
is a positive invariant and attracting region for the semiflows of system (2.1) in \BbbR 2

+.

2.1. Boundary equilibria and their types. System (2.1) always has three boundary equi-
libria A1(0,0), A2(1,0), and A3(0,

c
qm) for all admissible parameters. By using Theorem 7.1

in chapter 2 of [41], we obtain the following results.

Lemma 2.1. System (2.1) always has three boundary equilibria A1(0,0), A2(1,0), and
A3(0,

c
qm). Moreover, A1(0,0) is always a hyperbolic unstable node, A2(1,0) is always a hy-

perbolic saddle, and
(I) if c < qma, then A3(0,

c
qm) is a hyperbolic saddle;

(II) if c > qma, then A3(0,
c
qm) is a hyperbolic stable node;

(III) if c= qma and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A NOVEL CLASSIFICATION OF NILPOTENT SINGULARITIES 699

(i) b > (1 - a)amq
1+aq , then A3(0,

c
qm) is a saddle node of codimension 1 which includes a stable

parabolic sector in the right half-plane;
(ii) b < (1 - a)amq

1+aq and 0 < a < 1, then A3(0,
c
qm) is a saddle-node of codimension 1 which

includes a stable parabolic sector in the left half-plane;
(iii) b= (1 - a)amq

1+aq , and
(a) q > 1 - 2a

a3 , then A3(0,
c
qm) is a stable node of codimension 2;

(b) q < 1 - 2a
a3 , then A3(0,

c
qm) is a saddle of codimension 2;

(c) q= 1 - 2a
a3 , then A3(0,

c
qm) is a saddle node of codimension 3 which includes a stable

parabolic sector in the right half-plane.

2.2. Nilpotent equilibria and nilpotent bifurcations. In order to study positive equilibria
and their types in system (2.1), we first provide some criteria, in terms of the coefficients of
the system with nilpotent linear part and general higher terms, to determine the types and
codimension of nilpotent equilibria in a general planar system.

Consider a family of planar vector fields

dx

dt
= F (x, y, \epsilon ),

dy

dt
=G(x, y, \epsilon ),(2.2)

where x, y \in \BbbR 1, \epsilon = (\epsilon 1, \epsilon 2, . . . , \epsilon m)\in \BbbR m,m\geq 2, and F,G\in C\infty (x, y, \epsilon ).
We suppose, for \epsilon = \epsilon 0, that (0,0) is a nilpotent equilibrium of system (2.2), and the

Jacobian matrix of system (2.2)| \epsilon =\epsilon 0 at (0,0) is as follows:

J(E) =

\biggl( 
0 1
0 0

\biggr) 
.(2.3)

Then, the Taylor expansion of system (2.2)| \epsilon =\epsilon 0 around the origin takes the form

\.x= y+
\sum 

2\leq i+j\leq 5
aijx

iyj + o(| x, y| 5),

\.y=
\sum 

2\leq i+j\leq 5
bijx

iyj + o(| x, y| 5).(2.4)

Let x=X + a11+b02
2 X2, y= Y  - a20X

2 + b02XY  - a02Y
2; then system (2.4) becomes

\.x= y+
\sum 

3\leq i+j\leq 5
cijx

iyj + o(| x, y| 5),

\.y= d20x
2 + d11xy+

\sum 
3\leq i+j\leq 5

dijx
iyj + o(| x, y| 5),(2.5)

where cij and dij , expressed by aij and bij , are given in Appendix I.
(i) If d20d11 \not = 0 in (2.5), then (0,0) of system (2.2)| \epsilon =\epsilon 0 is a nilpotent cusp of codimension

2 (see [6, 7, 31]).

Lemma 2.2. If \epsilon = \epsilon 0 and d20d11 \not = 0 given in system (2.5) hold, then (0,0) of system (2.2)
is a cusp of codimension 2 (i.e., Bogdanov--Takens singularity).

When d20d11 = 0, we need the following simpler normal form to classify further the types
and codimension of (0,0); the proof is shown in Appendix II.
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700 MIN LU, JICAI HUANG, AND HAO WANG

Lemma 2.3. For \epsilon = \epsilon 0, system (2.5) is locally topologically equivalent to

\.x= y+ o(| x, y| 5),
\.y= j20x

2 + j11xy+ j30x
3 + j21x

2y+ j40x
4 + j31x

3y+ j50x
5 + j41x

4y+ o(| x, y| 5),(2.6)

where jij can be expressed by cij and dij.

(ii) If d11 = 0 and d20 \not = 0 in (2.5), then (0,0) of system (2.2) is a nilpotent cusp of
codimension at least 3 (see [11, 13, 21]). We have the following results; the detailed proof is
shown in Appendix II.

Lemma 2.4. If \epsilon = \epsilon 0, d20 \not = 0, and d11 = 0 given in system (2.5) hold, then system (2.2) is
locally topologically equivalent to

\.x= y,
\.y= x2 + \=Mx3y+ \=Nx4y+ o(| x, y| 5),(2.7)

where \=M and \=N , expressed by cij and dij, are given in Appendix II.
Moreover, (0,0) of system (2.7) is a codimension 3 cusp if \=M \not = 0, a codimension 4 cusp

if \=M = 0 and \=N \not = 0, and a cusp of codimension at least 5 if \=M = 0 and \=N = 0.

(iii) If d20 = 0 in (2.5), then (0,0) of system (2.2) is a nilpotent saddle (or focus or elliptic
singularity) of codimension at least 3 (see [12, 14, 15, 18, 20, 36, 43]). We have the following
results; the detailed proof is shown in Appendix II.

Lemma 2.5. When \epsilon = \epsilon 0, d20 = 0, d30 \not = 0, and 3c30(d
2
11 + 5d30) + 5d21d30  - 3d11d40 \not = 0

hold, then system (2.2) is locally topologically equivalent to

\.x= y,
\.y=M2xy+ \epsilon 1x

3 + \epsilon 2x
2y+N2x

3y+ o(| x, y| 4),(2.8)

where

\epsilon 1 = sign(d30), \epsilon 2 = sign(3c30(d
2
11+5d30)+5d21d30 - 3d11d40

5d30
), M2 =

d11\surd 
\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(d30)d30

,(2.9)

and N2 is given in Appendix II. Moreover,
(I) if d11 \not = 0, the equilibrium (0,0) of system (2.8) is

(a) a nilpotent saddle of codimension 3 if d30 > 0;
(b) a nilpotent focus of codimension 3 if d30 < 0 and d211 + 8d30 < 0;
(c) a nilpotent elliptic equilibrium of codimension 3 if d30 < 0 and d211 + 8d30 > 0;

(II) the equilibrium (0,0) of system (2.8) is
(a) a nilpotent saddle of codimension 4 if d30 > 0 and d11 = 0;
(b) a nilpotent focus of codimension 4 if d30 < 0 and d11 = 0;
(c) a nilpotent elliptic equilibrium of codimension at least 4 if d30 < 0 and d211+8d30 = 0.

If d20 = 0, d11 = 0, d30 = 0, 3c30 + d21 \not = 0, d40 > 0, and 4c40 + d31 \not = 0 in (2.5), then (0,0)
of system (2.2) is a nilpotent cusp of codimension 5 [37].
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A NOVEL CLASSIFICATION OF NILPOTENT SINGULARITIES 701

2.3. Positive equilibria and their types. Next, we study the positive equilibria of system
(2.1). If E(x, y) is a positive equilibrium of system (2.1), then y = (1 - x)(a+ x), and x is a
real root of the third-order algebraic equation

F (x)\triangleq a3x
3 + a2x

2 + a1x+ a0 = 0(2.10)

in the interval (0,1), where

a3 = q(m - b), a2 = q(a - 1)(m - b) + amq,

a1 = b+ qa2m+ qa(b - m) + c - amq, a0 = a(c - qam).(2.11)

Let

f(x) =
dF (x)

dx
= 3a3x

2 + 2a2x+ a1.(2.12)

The Jacobian matrix of system (2.1) at any positive equilibrium E(x, y) takes the form

J(E) =

\Biggl( 
x(1 - a - 2x)

a+x  - x
a+x

ab(1 - x)
a+x  - q(c+m)(1 - x)(a+x)

(1+q(1 - x)(a+x))2

\Biggr) 
.

From F (x) = 0, we have

b=
(a+ x)(mq(x - 1)(a+ x) + c)

x(aq(x - 1) + qx(x - 1) - 1)
;

then the determinant Det(J(E)) and f(x) have the following relationship:

Det(J(E)) =
(1 - x)x

(a+ x)(q(a+ x)(1 - x) + 1)
f(x).(2.13)

Thus, the positive equilibrium E(x, y) is an elementary equilibrium if f(x) \not = 0, a hyperbolic
saddle if f(x)< 0, and a degenerate equilibrium if f(x) = 0.

According to the Cardano formula of roots of third-order algebraic equations, we let

\^A= a22  - 3a1a3, \^B = 27a23a0  - 9a1a2a3 + 2a32, \Delta = \^B2  - 4 \^A3;(2.14)

then system (2.1) has at most three positive equilibria, denoted by E1(x1, y1),E2(x2, y2), and
E3(x3, y3) (x1 < x2 < x3). Two of them may coalesce into a double positive equilibrium
E\ast (x\ast , y\ast ), and all of them may coalesce into a unique triple positive equilibrium E\ast (x\ast , y\ast );
the number and types of positive equilibria are described in Table 1.

2.3.1. A double positive equilibrium \bfitE \ast (\bfitx \ast , \bfity \ast ). In this subsection, we consider the
detailed type of a double positive equilibrium E\ast (x\ast , y\ast ) in Table 1, where y\ast = (1 - x\ast )(a+x\ast ),
0<x\ast < 1, F (x\ast ) = 0, F \prime (x\ast ) = 0, and F \prime \prime (x\ast ) \not = 0.

Define

b= b\ast \triangleq 
x\ast (1 - a - 2x\ast )

2

a(1 - x\ast )
, m=m\ast \triangleq 

x\ast (1 - a - 2x\ast )

aq(1 - x\ast )(a+ x\ast )2

\Bigl[ 
a+ q(a+ x\ast )

2(1 - 2x\ast )
\Bigr] 
,

c= c\ast \triangleq 
x\ast (1 - a - 2x\ast )

a(1 - x\ast )(a+ x\ast )

\Bigl[ 
a+ x\ast (2x\ast  - 1) + qa(a+ x\ast )(x\ast  - 1)2

\Bigr] 
,(2.15)
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702 MIN LU, JICAI HUANG, AND HAO WANG

Table 1
Number and types of positive equilibria in system (2.1). Notation (resp., , ) denotes antisaddle

(resp., saddle, degenerate).

which come from F (x\ast ) = 0, F \prime (x\ast ) = 0, and Tr(J(E\ast )) = 0. Then

F \prime \prime (x\ast ) =
2x\ast (1 - a - 2x\ast )( - 1 + 2a+ 3x\ast + q(a+ x\ast )

3)

(1 - x\ast )(a+ x\ast )2
.

Let

q1 =
1 - 2a - 3x\ast 
(a+ x\ast )3

, q2 =
x\ast (1 - 2x\ast ) - a

a(1 - x\ast )2(a+ x\ast )
,(2.16)

where q = q1 and q = q2 come from F \prime \prime (x\ast ) = 0 and c\ast = 0, respectively. Then from the
positivity of b\ast , m\ast , c\ast , and F \prime \prime (x\ast ) \not = 0, we have the following range about parameters x\ast , a,
and q:

\Omega 1 =
\Bigl\{ 
(x\ast , a, q) | 0<x\ast <

1

2
, 0<a< 1 - 2x\ast , max\{ 0, q2\} < q \not = q1

\Bigr\} 
.

Moreover, define

q\ast =
a2  - a(1 - 3x\ast ) + x\ast (1 - 2x\ast + 2x2\ast )

(1 - x\ast )(a+ x\ast )2(1 - 6x\ast + 6x2\ast  - a(1 - 2x\ast ))
;(2.17)

then we have the following results. The detailed proof is given in Appendix III.
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A NOVEL CLASSIFICATION OF NILPOTENT SINGULARITIES 703

Theorem 2.6. If (x\ast , a, q) \in \Omega 1 and the conditions in (2.15) hold, then system (2.1) has
a double positive equilibrium E\ast (x\ast , y\ast ). Moreover, E\ast is a cusp of codimension 2 if q \not = q\ast ;
otherwise, it is a cusp of codimension 3.

2.3.2. One triple positive equilibrium \bfitE \ast (\bfitx \ast ,\bfity \ast ). In this subsection, we consider the
detailed type of the triple positive equilibrium E\ast (x\ast , y\ast ) in Table 1, where y\ast = (1 - x\ast )(a+x\ast ),
F (x\ast ) = 0, F \prime (x\ast ) = 0, and F \prime \prime (x\ast ) = 0.

From F (x\ast ) = 0, F \prime (x\ast ) = 0, and F \prime \prime (x\ast ) = 0, we can express c, m, and q by a, b, and x\ast 

as

c= c\ast \triangleq 
b( - a2  - 3ax\ast + a - x\ast 3)

(a+ x\ast )3
, m=m\ast \triangleq 

b(1 - a - 3x\ast )

1 - 2a - 3x\ast 
, q= q\ast \triangleq 

1 - 2a - 3x\ast 

(a+ x\ast )3
,

(2.18)

and c\ast , m\ast , q\ast > 0 imply

0<x\ast <
1

4
, a1\ast <a< a2\ast ,(2.19)

where

a1\ast =
1 - 3x\ast  - (1 - x\ast )

\surd 
1 - 4x\ast 

2
> 0, a2\ast =

1 - 3x\ast 

2
> 0.(2.20)

Moreover, define

b\ast =
x\ast (1 - a - 2x\ast )2

a(1 - x\ast )
, a\ast 1 = 1 - 6x\ast + 4x\ast 2, a\ast 2 = a\ast 1  - 2

\surd 
2(1 - x\ast )x\ast ,(2.21)

where b = b\ast comes from Tr(J(E\ast )) = 0; then we have the following results. The detailed
proof is given in Appendix IV.

Theorem 2.7. If the conditions in (2.18) and (2.19) hold, then system (2.1) has a unique
positive equilibrium E\ast (x\ast , y\ast ), which is an unstable (or a stable) degenerate node if 0< b< b\ast 

(or b > b\ast ). Moreover, if b= b\ast , then E\ast is (see Table 2)

(I) a nilpotent focus of codimension 3 if one of the following conditions holds:
(i) x\ast = 1

8 or 3
16 \leq x\ast < 1

4 ;
(ii) 1

8 <x\ast < 3
16 and a \not = a\ast 1;

(iii) 2 - 
\surd 
2

8 <x\ast < 1
8 and a> a\ast 2;

(II) a nilpotent elliptic of codimension 3 if 0<x\ast \leq 2 - 
\surd 
2

8 , or 2 - 
\surd 
2

8 <x\ast < 1
8 and a< a\ast 2;

(III) a nilpotent focus of codimension 4 if a= a\ast 1 and 1
8 <x\ast < 3

16 ;

(IV) a nilpotent elliptic of codimension 4 if a= a\ast 2 and 2 - 
\surd 
2

8 <x\ast < 1
8 .

2.4. Bifurcations of system (2.1). From Theorem 2.6, we know that system (2.1) may
exhibit a degenerate Bogdanov--Takens bifurcation of codimension 3 around the double posi-
tive equilibrium E\ast . From Theorem 2.7, we can see that system (2.1) may exhibit nilpotent
focus or elliptic bifurcations of codimension 3 or 4 around the triple positive equilibrium E\ast .
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704 MIN LU, JICAI HUANG, AND HAO WANG

Table 2
Types of a triple positive equilibrium E\ast of system (2.1).

x∗ a d30 d11 d211 + 8d30 Types

[ 3
16 ,

1
4 ) (a1∗, a2∗) < 0 < 0 < 0 Nilpotent focus of codimension 3

( 18 ,
3
16 )

(a∗1, a
2∗) < 0 < 0 < 0 Nilpotent focus of codimension 3

a∗1 < 0 = 0 < 0 Nilpotent focus of codimension 4
(a1∗, a∗1) < 0 > 0 < 0 Nilpotent focus of codimension 3

1
8 (a1∗, a2∗) < 0 > 0 < 0 Nilpotent focus of codimension 3

( 2−
√
2

8 , 1
8 )

(a∗2, a
2∗) < 0 > 0 < 0 Nilpotent focus of codimension 3

a∗2 < 0 > 0 = 0 Nilpotent elliptic of codimension 4
(a1∗, a∗2) < 0 > 0 > 0 Nilpotent elliptic of codimension 3

(0, 2−
√
2

8 ] (a1∗, a2∗) < 0 > 0 > 0 Nilpotent elliptic of codimension 3

The degenerate Bogdanov--Takens bifurcation of codimension 3, nilpotent focus, or elliptic
bifurcation of codimension 3 can be shown according to [2, 10, 24, 33, 38, 42]. Thus, we only
investigate rigorously if the nilpotent focus bifurcation of codimension 4 can be fully unfolded
inside the class of system (2.1).

2.4.1. Nilpotent focus bifurcation of codimension 4. From Theorem 2.7, we know that
the unique positive equilibrium E\ast (x\ast , y\ast ) of system (2.1) is a nilpotent focus of codimension
4 if c= c\ast , m=m\ast , q = q\ast , b= b\ast , a= a\ast 1, and

1
8 < x\ast < 3

16 , where c\ast , m\ast , q\ast , b\ast , a\ast 1 are given
in (2.18) and (2.21). Next we show that a nilpotent focus bifurcation of codimension 4 can
be fully unfolded inside the class of system (2.1) as (c,m, b, a) vary in the small neighborhood
of (c\ast ,m\ast , b\ast , a\ast 1), i.e., we next show that the unfolding system

dx

dt
= x

\biggl( 
1 - x - y

a\ast 1 + \lambda 4 + x

\biggr) 
,

dy

dt
= y
\Bigl[ (b\ast + \lambda 3)x

a\ast 1 + \lambda 4 + x
+

c\ast + \lambda 1 +m\ast + \lambda 2

1 + q\ast y
 - (m\ast + \lambda 2)

\Bigr] 
,(2.22)

where \lambda = (\lambda 1, \lambda 2, \lambda 3, \lambda 4)\sim (0,0,0,0), can be transformed into the following form:

dx

dt
= y,

dy

dt
= \mu 1(\lambda ) + \mu 2(\lambda )x+ \mu 3(\lambda )y+ \mu 4(\lambda )xy - x3  - x2y+R(x, y,\lambda ),(2.23)

where R(x, y,\lambda )=O(| x, y| 4)+O(\lambda )(O(y2)+O(| x, y| 3))+O(\lambda 2)O(| x, y| ) and | \partial (\mu 1,\mu 2,\mu 3,\mu 4)
\partial (\lambda 1,\lambda 2,\lambda 3,\lambda 4)

| \lambda =0

\not = 0.
It is worth noting that Dangelmayr and Guckenheimer [18] and Khibnik, Krauskopf, and

Rousseau [20] partially studied the 4-parameter generic unfolding of codimension 4 nilpotent
focus, which was called a doubly degenerate Bogdanov--Takens point in [20]. Here, according
to [12, 41], we call it a nilpotent focus of codimension 4. According to [18, 20], we have the
following results about system (2.1); the detailed proofs are given in Appendix V.
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A NOVEL CLASSIFICATION OF NILPOTENT SINGULARITIES 705

Figure 2.1. (a) Bifurcation diagram of system (2.23) when \mu 4 = 0; (b) bifurcation diagram of system (2.23)
when \mu 4 \gg 0.

Theorem 2.8. When q = q\ast and 1
8 < x\ast < 3

16 , system (2.1) undergoes a nilpotent fo-
cus bifurcation of codimension 4 around E\ast as (c,m, b, a) vary in the small neighborhood of
(c\ast ,m\ast , b\ast , a\ast 1), where c\ast , m\ast , b\ast , a\ast 1 are given in (2.18) and (2.21).

Dangelmayr and Guckenheimer [18] and Khibnik, Krauskipt, and Rousseau [20] partially
studied the 4-parameter generic unfolding of codimension 4 nilpotent focus. Although there
are still some conjectures remaining open, Khibnik, Krauskopf, and Rousseau provided 12
two-dimensional bifurcation diagrams (slices) in Figures 4--5 and 21 structurally stable phase
portraits in Figures 1 and 5 in [20] by varying \mu 4 from \mu 4 = 0 to \mu 4 sufficiently large in system
(2.23). Moreover, they conjectured the unfolding in (\mu 1, \mu 2, \mu 3, \mu 4)-space of (2.23) is given by
the transition of the bifurcation set in hyperplanes \mu 4 = h from h= 0 to h (sufficiently) large,
and it has a conic structure for small values of the parameters.

We plot two of a series of bifurcation sets for system (2.23) in hyperplanes \mu 4 = 0 and
\mu 4 sufficiently large in Figures 2.1(a) and (b), respectively; the 21 structurally stable phase
portraits are given in Figure 2.2, where red (resp., blue) dots represent stable (resp., unstable)
equilibria, and red (resp., blue) color curves denote stable (resp., unstable) limit cycles (see
[20]).

2.4.2. Numerical bifurcation diagrams and phase portraits. In this subsection, we nu-
merically show several biparametric bifurcation diagrams (slices) of system (2.22) (i.e., system
(2.1)) by using the Matcont program, and plot phase portraits by choosing different parameter
values in the subregion of the bifurcation diagram to illustrate the theoretical results about
nilpotent focus bifurcation of codimension 4.

For system (2.22), we take (c\ast ,m\ast , q\ast , b\ast , a\ast 1) = ( 625
1107 ,

11875
20992 ,

131072
19683 ,

3375
10496 ,

41
256

), under which

system (2.22) has a unique positive equilibrium E\ast ( 5
32 ,

2187
8192) which is a nilpotent focus of

codimension 4 when (\lambda 1, \lambda 2, \lambda 3, \lambda 4) = (0,0,0,0). Notice that there are always three unstable

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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706 MIN LU, JICAI HUANG, AND HAO WANG

Figure 2.2. The 21 phase portraits appearing in the transition between Figures 2.1(a) and (b).

boundary equilibria A1(0,0), A2(1,0), and A3(0,
c\ast +\lambda 1

q\ast (m\ast +\lambda 2)
) and at most three different positive

equilibria E1(x1, y1), E2(x2, y2), E3(x3, y3) (x1 < x2 < x3) of system (2.22). We give the
corresponding biparametric bifurcation diagrams in the (\lambda 4, \lambda 3) plane with different \lambda \prime 

1s and
\lambda \prime 
2s; the bifurcation curves divide the (\lambda 4, \lambda 3) plane into several regions; system (2.22) will

undergo a series of bifurcations and exhibit abundant dynamics when parameters vary in these
regions. Notice that there is always a transcritical bifurcation curve \lambda 4 =

c\ast +\lambda 1

q\ast (m\ast +\lambda 2)
 - a\ast 1 in the

(\lambda 4, \lambda 3) plane, which is parallel to the vertical axis. A3 changes from a saddle to a stable node
and E1 disappears when parameter \lambda 4 decreases and crosses the transcritical bifurcation curve.

In Figures 2.3(a)--(b) (resp., Figures 2.3(c)--(d)), we give biparametric bifurcation dia-
grams of system (2.22) in the (\lambda 4, \lambda 3) plane with (\lambda 1, \lambda 2) = ( - 0.5, - 0.1) (resp., (\lambda 1, \lambda 2) =
( - 0.1, - 0.1)). CP denotes the cusp point, at which the three positive equilibria Ei (i= 1,2,3)
coincide. BTi (i = l,r) denotes the Bogdanov--Takens bifurcation point, where BT\mathrm{l} (resp.,
BT\mathrm{r}) corresponds to the Bogdanov--Takens bifurcation which begins at E1 and E2 (resp., E2

and E3). GHi (i = 1,2) represents the degenerate Hopf bifurcation point. The saddle-node
bifurcation curve SN (the red solid curve) can be divided into two parts by the cusp point CP:
the lower part corresponds to the appearance or disappearance of E1 and E2 and the upper
part corresponds to the appearance or disappearance of E2 and E3. The Hopf bifurcation
curve H (the green solid curve) tangentially meets the saddle-node bifurcation curve at two
points BT\mathrm{l} and BT\mathrm{r}. The bifurcation curve of the saddle-node bifurcation of limit cycles (the
solid blue curve) begins at GH1. The homoclinic bifurcations L\mathrm{l} (the magenta dashed curve),
L\mathrm{r} (the black dashed curve), L\mathrm{b} (the cyan dashed curve), and L\mathrm{t} (the brown dashed curve)
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(a) (λ1, λ2) = (−0.5,−0.1) (b) Local amplified portrait of (a) on CP point
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(c) (λ1, λ2) = (−0.1,−0.1) (d) Local amplified portrait of (c)

Figure 2.3. Bifurcation diagram of system (2.22) in (\lambda 4, \lambda 3) plane with (c\ast ,m\ast , q\ast , b\ast , a\ast 
1) = ( 625

1107
,

11875
20992

, 131072
19683

, 3375
10496

, 41
256

) and different \lambda 1 and \lambda 2. BTi (i = l,r), GHi (i = 1,2), and CP denote respectively
Bogdanov--Takens bifurcation point, degenerate Hopf bifurcation point, and cusp point. The red, green, and
blue solid curves denote respectively saddle-node bifurcation SN, Hopf bifurcation H, and saddle-node bifurca-
tion of limit cycles. The magenta, black, cyan, and brown dashed curves denote homoclinic bifurcations L\mathrm{l}, L\mathrm{r},
L\mathrm{b}, and L\mathrm{t}, respectively.

correspond to a hyperbolic saddle with a homoclinic connection connecting from the left,
right, below, and top of the hyperbolic saddle to itself, respectively. The bifurcation curves
above divide the (\lambda 4, \lambda 3)-plane into 14 regions.

Table 3 shows the detailed dynamical behaviors of system (2.22) in the subregions 1--14
of Figure 2.3. Adding or removing a prime corresponds to a rotation of the phase portrait by
\pi . In Figure 2.4 (resp., Figure 2.5), the corresponding phase portraits for system (2.22) when
(\lambda 1, \lambda 2) = ( - 0.5, - 0.1) (resp., (\lambda 1, \lambda 2) = ( - 0.1, - 0.1)) and (\lambda 4, \lambda 3) located in different regions
of Figures 2.3(a) and (b) (resp., Figures 2.3(c) and (d)) are given.

3. Changing environment. In this section, we let K(t) = (K0+\mu t)\beta and study the effect
of the rate \mu and intensity \beta of nonlinear environmental change on the dynamics of system
(1.1).

Since system (1.1) does not have any equilibrium if \mu \not = 0, we study the effect by numerical
simulations. We first use the bifurcation software Matcont to plot one-parameter bifurcation
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708 MIN LU, JICAI HUANG, AND HAO WANG

Table 3
The dynamic behaviors of system (2.22) in different subregions of Figure 2.3. Notation s (resp., u )

represents stable (resp., unstable) positive equilibrium or limit cycle.

Region: phase portrait Equilibrium
Limit cycle

Number Big Left Right

1: Figure 2.4(a) E3: s© 0
2: Figure 2.4(b) E3: u© 1 s©
12: Figure 2.4(c) E3: s© 2 outer: s© inner: u©
3: Figure 2.4(d) E1: u© E2: u© E3: u© 1 s©
4: Figure 2.5(a) E1: s© E2: u© E3: s© 3 s© u© u©
5: Figure 2.5(b) E1: s© E2: u© E3: s© 2 outer: s© inner: u©
6: Figure 2.5(c) E1: s© E2: u© E3: s© 0
7: Figure 2.4(e) E1: u© E2: u© E3: s© 2 s© u©
8: Figure 2.4(f) E1: u© E2: u© E3: s© 1 s©
9: Figure 2.5(d) E1: s© E2: u© E3: s© 2 s© u©
10: Figure 2.5(e) E1: s© E2: u© E3: s© 3 outer: s© inner: u© u©
11: Figure 2.5(f) E1: u© E2: u© E3: s© 2 outer: s© inner: u©
13: Figure 2.4(g) E1: u© E2: u© E3: s© 0
14: Figure 2.4(h) E1: s© E2: u© E3: s© 1 u©

diagrams in the K-P plane (or K-N -P space) for system (1.2) (constant environment); then
we plot and include some ``representative"" trajectories (``time series"" or projection of integral
curves) of system (1.1) (changing environment) into the bifurcation diagrams. The stable and
unstable steady states (or small oscillations) for system (1.2) are denoted, respectively, by
solid and dashed curves, and the maximum and minimum values of stable and unstable big
oscillations are indicated by black filled and open circles, respectively.

According to the bifurcations and dynamics of system (1.2) given in the previous sections,
we focus on the following three interesting bifurcation diagrams (Figures 3.1, 3.2, and 3.8).

The bifurcation diagram in Figure 3.1 shows that system (1.2) undergoes successively
supercritical Hopf bifurcation (H1), subcritical Hopf bifurcation (H2), and saddle-node bi-
furcation of limit cycles (LPC) as K increases. The dynamical behaviors of system (1.2)
correspond to those in regions 1, 2, 12, 1 of Figure 2.3 as K increases (see Table 3). In
this case, three boundary equilibria A1(0,0), A2(K,0), and A3(0,

C - M
QM ) are always unstable.

Therefore, system (1.2) exhibits monostability (a stable equilibrium before H1 or after LPC,
a stable oscillation between H1 and H2) and bistability (a stable equilibrium and a stable
oscillation between H2 and LPC).

In Figure 3.2, system (1.2) undergoes successively saddle-node bifurcation LP1, saddle-
node bifurcation of limit cycles L\mathrm{t}, homoclinic bifurcation L\mathrm{t}, and subcritical Hopf bifurcation
H1, homoclinic bifurcations L\mathrm{l}, L\mathrm{r}, L\mathrm{b}, saddle-node bifurcation of limit cycles LPC2, and
subcritical Hopf bifurcation H2 as K increases. The dynamical behaviors of system (1.2)
correspond to those in regions 1, 13', 11', 8', 9', 4, 9, 10, 14, 13, 1 of Figure 2.3 (see Table 3).
Moreover, three boundary equilibria A1(0,0), A2(K,0), and A3(0,

C - M
QM ) are always unstable.

Therefore, system (1.2) exhibits monostability (a stable equilibrium before LP1 or after LP2),
bistability (a stable equilibrium and a stable big oscillation between L\mathrm{t} and H1, two stable
equilibria between LPC2 and H2), and tristability (two stable equilibria and a stable big
oscillation between H1 and LPC2).
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Figure 2.4. Phase portraits of system (2.22) with (c\ast ,m\ast , q\ast , b\ast , a\ast 
1) = ( 625

1107
, 11875
20992

, 131072
19683

, 3375
10496

, 41
256

),
(\lambda 1, \lambda 2) = ( - 0.5, - 0.1), and (\lambda 4, \lambda 3) located in different regions of Figures 2.3(a) and (b). Red (resp., blue)
dots represent stable (resp., unstable) equilibria, and red (resp., blue) color curves denote stable (resp., unstable)
limit cycles. The detailed dynamical behaviors are described in Table 3.

A one-parameter bifurcation diagram (black curves) in the K-N -P plane for system (1.2)
is given in Figure 3.8. In this case, there exist three boundary equilibria: A1(0,0) and A2(K,0)
are unstable, and A3(0,

C - M
QM ) is stable. System (1.2) undergoes saddle-node bifurcation at
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Figure 2.5. Phase portraits of system (2.22) with (c\ast ,m\ast , q\ast , b\ast , a\ast 
1) = ( 625

1107
, 11875
20992

, 131072
19683

, 3375
10496

, 41
256

),
(\lambda 1, \lambda 2) = ( - 0.1, - 0.1), and (\lambda 4, \lambda 3) located in different regions of Figures 2.3(c) and (d).

K =K\mathrm{L}\mathrm{P}, the predator-only steady stateA3(0,
C - M
QM ) is globally stable, and the prey undergoes

extinction when K <K\mathrm{L}\mathrm{P}. (System (2.1) has no positive equilibrium if K <KLP , and has a
positive invariant, attracting, and bounded region \Omega . Thus, A3 is globally stable if K <KLP

since the other two boundary equilibria A1(0,0) and A2(1,0) are unstable.) Two positive
equilibria occur as K >K\mathrm{L}\mathrm{P}.

Comparing some representative trajectories (or projections of the integral curves) of sys-
tem (1.1) with the asymptotic behaviors of system (1.2) predicted by bifurcation diagrams, we
observe multiple important characteristics of the asymptotic behaviors and transient dynamics
of system (1.1) with environmental changes, such as (a) tracking unstable steady states; (b)
slow and fast regime shifts; (c) rate (| \mu | ) or intensity (\beta ) induced different transient dynamics;
(d) tracking unstable oscillations; and (e) delay or avoid (evade) extinctions.

\bfT \bfr \bfa \bfc \bfk \bfi \bfn \bfg \bfu \bfn \bfs \bft \bfa \bfb \bfl \bfe \bfs \bft \bfe \bfa \bfd \bfy \bfs \bft \bfa \bft \bfe \bfs . When we choose \mu > 0 and initial densities near
the stable steady state in Figures 3.3(a), (c), (e), we observe that the solution of system (1.1)
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Figure 3.1. Bifurcation diagram in K-P plane for system (1.2). H1, H2, and LPC denote supercritical
Hopf bifurcation, subcritical Hopf bifurcation, and saddle-node bifurcation of limit cycles, respectively, where
A= 1, \gamma = 1

2
, \alpha = 1, R= 3280000

1703967
, M = 2036625

2271956
, C = 329542625

184028436
, Q= 2271956

4100625
.

4.653.63.652.62.651.6
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unstable equilibrium or small oscillation
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stable big oscillation ( max-min )
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Figure 3.2. Bifurcation diagram in K-P plane for system (1.2). LP1(LP2), L\mathrm{t}(LPC2), L\mathrm{t}(L\mathrm{l},L\mathrm{r},L\mathrm{b}),
H1(H2) denote saddle-node bifurcation, saddle-node bifurcation of limit cycles, homoclinic bifurcations, sub-
critical Hopf bifurcation, respectively, where A = 1, \gamma = 1

2
, \alpha = 1, R = 3280000

1698063
, M = 2036625

2264084
, C = 329542625

183390804
,

Q= 57147744244
105078515625

.

tracks the unstable coexistence steady state after Hopf bifurcation H1, then switches to the
stable oscillation, and takes some time after LPC before it switches to the stable coexistence
steady state. Similarly, when \mu < 0 in Figures 3.3(b), (d), (f), the solution of system (1.1)
tracks the unstable coexistence steady state after Hopf bifurcation H2 before it switches to
the stable oscillation, and takes some time after H1 before it switches to the stable coexistence
steady state. Moreover, the tracking appears to last longer for the same \beta and the higher
value of | \mu | , where populations switch to the stable oscillations or stable state only when K is
much larger (\mu > 0) or much smaller (\mu < 0). From Figures 3.3(a), (c), (e) or Figures 3.3(b),
(d), (f), we can see that, for the same \mu and different \beta , the tracking for unstable steady
states appears to last longer for the higher value of \beta . And stronger \beta is needed to achieve
the same tracking effect for smaller | \mu | .
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Figure 3.3. Time series of system (1.1) for different \beta and \mu . Initial population densities are near the stable
steady state. (a), (c), (e) (N0, P0,K(0)) = (0.5394,2.676,5.574); (b), (d), (f) (N0, P0,K(0)) = (1.65,3.719,6.09).
Other parameters are the same as those in Figure 3.1.

The above analyses indicate that the regime shifts in a changing environment tend to
occur at points that are not the bifurcation points of bifurcation diagrams, the direction of
environmental changes can alter the shifting points, and the process is irreversible. Therefore,
results here demonstrate the importance of \mu , \beta , and the unstable states when describing the
rate dependent transient dynamics in a changing environment.

\bfS \bfl \bfo \bfw \bfa \bfn \bfd \bff \bfa \bfs \bft \bfr \bfe \bfg \bfi \bfm \bfe \bfs \bfh \bfi \bff \bft \bfs . For the same \mu , \beta and initial conditions in Figure 3.3,
the shift to the stable oscillation takes a relatively longer time than that to the stable steady
state. The reason is that there is an unstable steady state that the solution of system (1.1)
can and does follow before the shift to the stable oscillation. But when the shift to the stable
steady state occurs, the solution of system (1.1) is far away from the boundary unstable states
and is much more strongly attracted to the stable steady state.

In Figure 3.4, the initial population densities are close to the stable steady state. The
solution of system (1.1) with the same fixed \mu and \beta will take a longer time to the stable
oscillation when the initial carrying capacity K0 is farther away from the bifurcation point
H\mathrm{i}, and eventually synchronizes.
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Figure 3.4. Time series of system (1.1) for different initial conditions. (a) \beta = 1, \mu = 0.0001,
(N0, P0,K(0)) = (0.5394,2.676,5.574) (red solid curve), (N0, P0,K(0)) = (0.5046,2.63,5.495) (yellow solid
curve); (b) \beta = 1, \mu =  - 0.0001, (N0, P0,K(0)) = (1.65,3.719,6.09) (red solid curve), (N0, P0,K(0)) =
(1.727,3.77,6.128) (yellow solid curve). Other parameters are given in Figure 3.1.
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Figure 3.5. Time series of system (1.1) for different \beta and \mu . Initial population densities are not close
to the stable steady state. (a) (N0, P0,K(0)) = (0.5046,3,5.495); (b) (N0, P0,K(0)) = (1.727,4,6.128). Other
parameters are given in Figure 3.1.

Hence, the existence and location of unstable steady states in bifurcation diagrams and
the initial conditions are crucial for predicting the dynamical behaviors and regime shifts of
system (1.1) in a changing environment.

\bfD \bfi ff\bfe \bfr \bfe \bfn \bft \bfv \bfa \bfl \bfu \bfe \bfs \bfo \bff \bfs \bfp \bfe \bfe \bfd (| \bfitmu | ) \bfo \bfr \bfi \bfn \bft \bfe \bfn \bfs \bfi \bft \bfy (\bfitbeta ) \bfi \bfn \bfd \bfu \bfc \bfe \bfd \bfi ff\bfe \bfr \bfe \bfn \bft \bft \bfr \bfa \bfn \bfs \bfi \bfe \bfn \bft \bfd \bfy -
\bfn \bfa \bfm \bfi \bfc \bfs . In Figure 3.5 the initial population densities are not close to the stable steady state.
When the change of K is slow, i.e., | \mu | or \beta is small, the solution (blue solid curves) first tracks
the stable steady state for some time. When the change of K is fast, i.e., | \mu | or \beta is large,
there is no time for the solution to track the stable steady state; instead the solution (green
solid curves) directly tracks the stable oscillation. When the change of K is intermediate (red
solid curves), the time for the solution to approach the stable steady state is short enough so
that the downturn along the stable steady state does not happen. Instead, the solution tracks
the oscillation with a small amplitude before it switches to the stable big oscillation, which is
a regime that does not occur in a constant environment.

Figure 3.6 shows that although the final state for all curves of system (1.1) is the same,
the transient states of the solutions will be very different for the same \beta and different \mu . There
are at most five different transient dynamics with the change of \mu . For example, the solution
finally approaches the lower coexistence steady state but has five different transient dynamics
in Figure 3.6(b) with the increase of | \mu | : (i) tracking first the higher stable coexistence steady
state (the blue solid curve); (ii) tracking first the lower unstable small oscillation and then
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Figure 3.6. Time series of system (1.1) for \beta = 1 and different \mu . Initial population densities are near one
of the unstable steady states. (a) (N0, P0,K(0)) = (1.4,3.597,6.246); (b) (N0, P0,K(0)) = (0.494,2.666,6.358).
Other parameters are the same as those in Figure 3.2.
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Figure 3.7. Time series of system (1.1) for different \beta , where initial population densities are near one of the
unstable steady states. (a) \mu = 0.00015, (N0, P0,K(0)) = (1.4,3.597, 6.246); (b) \mu = - 0.00015, (N0, P0,K(0)) =
(0.494,2.666,6.358). Other parameters are given in Figure 3.2.

the higher stable coexistence steady state (the red solid curve); (iii) tracking first the lower
unstable small oscillation and then the stable big oscillation (the green solid curve); (iv)
tracking first the lower unstable small oscillation and then the lower stable coexistence steady
state (the magenta solid curve); (v) tracking directly the lower coexistence steady state (the
cyan solid curve). Figure 3.7 shows similar phenomena for the same \mu but different \beta .

Hence, the results here again indicate the importance of the rate \mu and intensity \beta of
environmental change to induce different transient dynamics.

\bfT \bfr \bfa \bfc \bfk \bfi \bfn \bfg \bfu \bfn \bfs \bft \bfa \bfb \bfl \bfe \bfo \bfs \bfc \bfi \bfl \bfl \bfa \bft \bfi \bfo \bfn \bfs . From Figures 3.6 and 3.7, we can see that the so-
lutions of system (1.1) can track not only the unstable steady states but also the unstable
oscillations, such as the red, green, and magenta curves in Figure 3.6(b). Figure 3.7 shows
similar phenomena with fixed \mu but different \beta .

\bfD \bfe \bfl \bfa \bfy \bfo \bfr \bfa \bfv \bfo \bfi \bfd \bfe \bfx \bft \bfi \bfr \bfp \bfa \bft \bfi \bfo \bfn . When we initialize conditions near the stable coexistence
steady state, and choose \mu < 0, then we can observe that the larger | \mu | or \beta the farther the
shift point is from the H2 point (Figures 3.3(b), (d), (f)). While when we initialize conditions
close to the unstable coexistence steady state, and choose \mu < 0 in Figures 3.8(a), (c), then we
can observe that for small | \mu | or \beta , the solutions (the blue solid curves) first follow the stable
coexistence steady state and then approach the predator-only steady state after the LP point.
For an intermediate | \mu | or \beta , the solutions (the red solid curves) immediately follow the stable
predator-only steady state. For large | \mu | or \beta , there is no time for the solutions (the green
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Figure 3.8. One-parameter bifurcation diagrams (black color curves) in K-N-P space for system (1.2).
Integral curves of system (1.1) for different \mu and \beta are colored curves. (a), (b) \beta = 1; (c) \mu = - 0.01; (d) \mu = 0.1.
Initial conditions: (a), (c) (N0, P0,K(0)) = (0.5112,3.397,5.075); (b), (d) (N0, P0,K(0)) = (0.9139,3.767,3).
LP denotes saddle-node bifurcation. A= 1, \gamma = 1

2
, \alpha = 1, R= 5

2
, M = 6

5
, C = 605

196
, Q= 587

1000
.

solid curves) to approach the stable coexistence steady state or predator-only steady state.
In fact, in the limiting case of very fast change of K, the population density would remain
constant.

Letting \mu > 0 and initial population densities not be close to the steady state, and in
Figures 3.8(b), (d), we can see that, for small | \mu | or \beta , the solution (the blue solid curve)
immediately follows the stable predator-only steady state that one would have predicted from
the bifurcation diagram in a constant environment; thus the populations quickly tend to
extinction. For an intermediate rate of change, the solution (the red solid curve) tracks first
the unstable coexistence steady state and then switches to the predator-only steady state;
thus the populations delay extinctions. When the change of K is fast, i.e., | \mu | or \beta is large,
the solution (the green solid curve) tracks first the unstable coexistence steady state and then
switches quickly to the stable coexistence steady state; thus the populations avoid extirpation.

Hence, slow negative or fast positive environmental change can be beneficial to the popu-
lation by avoiding or delaying extirpation.

4. Concluding remarks. We studied the impact of nonlinear environmental change on
the Rosenzweig--MacArthur model with generalist predator, where the predator can persist
by switching to other food sources in the absence of the focal prey, and the prey's carrying
capacity is a nonlinear function of time t.

In a constant environment \mu = 0, system (1.1) becomes system (1.2), which always has
three boundary equilibria and at most three positive equilibria. By using some algebraic
methods including resultant elimination, complete discrimination system for polynomials in
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716 MIN LU, JICAI HUANG, AND HAO WANG

Yang [39], the realroot isolation algorithm, and Sturm's theorem to solve the semialgebraic
varieties of normal form coefficients, we show that the highest codimension of a nilpotent focus
is 4 and system (1.2) can exhibit nilpotent focus bifurcation of codimension 4, which includes
a series of bifurcations with lower codimension [18, 20], such as codimension 1: saddle-node,
Hopf, homoclinic, saddle-node of limit cycle, pitchfork bifurcations; codimension 2: degen-
erate Hopf, Bogdanov--Takens, degenerate homoclinic, saddle-node homoclinic, triple loop,
double homoclinic, Hopf-Hopf, Hopf-saddle node, Hopf-homoclinic, symmetric nilpotent, cus-
pidal bifurcations; codimension 3: saddle-node bifurcation of limit cycle simultaneously with
Bogdanov--Takens bifurcation, cuspidal loop bifurcation, limit cycle bifurcation of multiplic-
ity four, Hopf bifurcation simultaneously with Bogdanov--Takens bifurcation, degenerate Hopf
bifurcation simultaneously with saddle-node bifurcation, degenerate Bogdanov--Takens, a bot-
tom homoclinic loop bifurcation of order three, nilpotent focus bifurcation. Our results indi-
cate that codimension 4 nilpotent focus is the potential organizing center of the bifurcation
set in system (1.2).

Comparing our results in Lemma 2.1 and Theorems 2.6, 2.7, and 2.8 about the Rosenzweig--
Macarthur model (1.2) with generalist predator to the dynamics in the Rosenzweig--Macarthur
model with specialist predator, we can see that generalist predation can cause richer bifurca-
tions and dynamics, such as nilpotent focus bifurcation of codimension 4, multitype tristability
(two positive equilibria and one big limit cycle; a positive equilibrium, one small limit cycle,
and one big limit cycle; a positive equilibrium and two big limit cycles; two positive equi-
libria and one small limit cycle), multitype four stable states (two positive equilibria and
two big limit cycles; two positive equilibria, one small limit cycle and one big limit cycle),
and a figure-eight loop. Moreover, generalist predation can induce the persistence of preda-
tors for all positive initial densities and the extinction of the prey for some positive initial
densities.

Compared with that in [10], we provided a more easily verifiable classification, in terms
of the coefficients of the system with nilpotent linear part and general higher terms, to de-
termine the types and codimension of nilpotent singularities in a general planar system. Our
classification can be easily applied to other mathematical models with nilpotent singularities.

In a changing environment, i.e., \mu \not = 0 in system (1.1), we studied the effect of the rate \mu and
intensity \beta of nonlinear environmental change, and found multiple important characteristics
about the asymptotic behaviors and transient dynamics for interacting species. Arumugam,
Guichard, and Lutscher [3, 4] considered a linear environmental change (i.e., \beta = 1) in the
carrying capacity, while here we consider a general environmental change (i.e., \beta > 0) including
linear and nonlinear cases. Tracking unstable states was originally explored by Arumugam,
Lutscher, and Guichard [4] in a single patch model, and extensively observed by Arumugam,
Guichard, and Lutscher [3] in a two patch model. Arumugam, Guichard, and Lutscher [3]
also investigated the rate induced extinction in a single patch. However, phenomena (b),
(c), and (d) in section 3 were observed by Arumugam, Lutscher, and Guichard [4] or [3]
only in a two patch model. Our results indicate that, for fixed environmental change rate
\mu , increasing or decreasing the intensity \beta of environmental change can achieve the same
effects, i.e., phenomena (a)--(d) can be observed in our single patch model. Moreover, we
found that slow negative or fast positive environmental change can delay or avoid population
extirpation.
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A NOVEL CLASSIFICATION OF NILPOTENT SINGULARITIES 717

Appendix I. The coefficients in (2.5).

c30 = a30 + a20b02, c21 =
1
2(a

2
11  - 4a02a20 + 2a21 + 3a11b02), c12 = - a02a11 + a12 + 2a02b02,

c40 =
1
4(2a11(a30  - 2a20b02) - 3a20b

2
02 + 2a30b02 + 4a02a

2
20  - a211a20  - 4a20a21 + 4a40),

c22 =
1
2

\Bigl[ 
a02
\bigl( 
 - 3a11b02  - 2(a21 + b202) + a211

\bigr) 
+ 3a12b02 + 4a20a

2
02  - a11a12  - 6a03a20 + 2a22

\Bigr] 
,

c50 =
1
4

\Bigl[ 
a211(5a20b02 + a30) + a11(7a20b

2
02 + 2a30b02  - 4a02a

2
20 + 4a40) + 3a20b

3
02 + a30b

2
02

 - 4a02a
2
20b02 + 4a40b02 + a20a

3
11 + 4a12a

2
20  - 4a20a31 + 4a50

\Bigr] 
,

d20 = b20, d11 = 2a20 + b11, d12 = a02 (4a20 + b11) + 2b202 + b12, d03 = b03  - 2a02b02,

d30 = - a20b11 + a11b20 + b30, d21 =
1
2( - 8a20b02 + a11b11 + b02b11 + 4a02b20 + 2b21),

d31 = a11(3a20b02 + 2a02b20 + b21) + a20b
2
02  - a30b02  - 2a20b12  - 2a02(a20b11 + 2a220

+b02b20  - b30) + a20a
2
11 + 2a20a21 + b02b21 + b31,

d13 = 2a202(2a20 + b11) + a02b02(a11 + 2b02) - a12b02 + 2a03a20 + 2b02b03 + b13,

d40 =
1
4

\Bigl[ 
12a220b02 + a211b20  - 2a11b02b20 + b202b20 + 2a20(4a30  - a11b11 + b02b11  - 2b21)

+6a11b30 + 2b02b30 + 4b40

\Bigr] 
,

d41 =
1
4

\Bigl[ 
a211( - 15a20b02 + 2a02b20 + b21) + 2a11( - 8a20b

2
02  - a30b02  - 2a20b12

+a02( - 2a20b11 + 8a220  - 6b02b20 + 6b30) + b21b02 + 3b31) - a20b
3
02 + 2a30b

2
02

+36a02a
2
20b02 + 4a20a21b02  - 4a40b02 + 12a220b03 + 12a02a20b02b11  - 4a20b02b12

+10a02b
2
02b20  - 8a02a20b21  - 8a20b22  - 4a02b02b30 + 8a02b40  - 4a20a

3
11

 - 16a12a
2
20 + 16a02a20a30 + 8a20a31 + b202b21 + 6b02b31 + 4b41

\Bigr] 
.

Appendix II. The proofs of Lemmas 2.3--2.5.

(A). The proof of Lemma 2.3. In general, we can use the method of normal form (see
Chapter 2 of [11]) and the method of undetermined coefficients to get the normal forms. We
just describe the methods as follows.

Assume the terms with order less than k (k \geq 3) of system (2.5) are already in normal
form. We next simplify the kth terms, where the form of the kth terms is known but with
undetermined coefficients. By the normal form theory (Chapter 2 of [11]), there exists a
sequence of near identity transformations,

(x, y) = (X,Y ) + (h1k(X,Y ), h2k(X,Y )),

where hik(X,Y ) (i= 1,2) is a homogeneous polynomial of order k in (X,Y ) with undetermined
coefficients. Then differentiating the two sides of the above transformation with respect to t,
substituting the old system and the above transformation into the left side, and equating the
coefficients of the similar terms on the two sides, we can get the coefficients of the transfor-
mation and the new system. With k = 3, 4, 5, we can transform system (2.5) into system
(2.6), where jij can be expressed by cij and dij ; we omit them for brevity.

(B). The proof of Lemma 2.4.

Step 1. Notice that j20 = d20 \not = 0; we let x=X+ j21
3j20

XY + 5j221
54j20

X4, y= Y + j21
3j20

Y 2+ j21
3 X3+

j21j30
3j20

X4 + 10j221
27j20

X3Y . Then the system (2.6) is changed into
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718 MIN LU, JICAI HUANG, AND HAO WANG

\.X = Y + l50X
5 + l41X

4Y + o(| X,Y | 5),
(A.1)

\.Y = p20X
2 + p30X

3 + p40X
4 + p31X

3Y + p50X
5 + p41X

4Y + p32X
3Y 2 + p23X

2Y 3 + o(| X,Y | 5).

Step 2. Let X = x+ 4l41+p32

20 x5 + p23

12 x
4y, Y = y  - l50x

5 + p32

4 x4y + p23

3 x3y2. Then system
(A.1) becomes

\.x= y+ o(| x, y| 5),
\.y= r20x

2 + r30x
3 + r40x

4 + r31x
3y+ r50x

5 + r41x
4y+ o(| x, y| 5).(A.2)

Step 3. Notice that r20 = d20 \not = 0; let

x=X  - r30
4r20

X2 + 15r230 - 16r20r40
80r220

X3 +  - 175r330+336r20r40r30 - 160r220r50
960r320

X4,

y= Y, dt
d\tau = (1 - r30

2r20
X + 3(15r230 - 16r20r40)

80r220
X2 +  - 175r330+336r20r40r30 - 160r220r50

240r320
X3).

Then system (A.2) becomes

\.X = Y + o(| X,Y | 5),
\.Y = s20X

2 + s31X
3Y + s41X

4Y + o(| X,Y | 5).(A.3)

Step 4. Notice that s20 = d20 \not = 0; letting

X = sign(s20)x, Y = sign(s20)
\sqrt{} 

sign(s20)s20 y,
d\tau 
dt =

1\surd 
\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(s20)s20

,

we have

\.x= y+ o(| x, y| 5),
\.y= x2 + \=Mx3y+ \=Nx4y+ o(| x, y| 5),(A.4)

where

\=M = M1

(\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(d20)d20)
3
2
, \=N = N1

4(\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(d20)d20)
5
2

(A.5)

with

M1 = - c12d
2
20 + 4c40d20  - 3c30d30  - 3d03d

2
20 + d31d20  - d21d30,

N1 = - 4c22d
3
20  - 8c21c30d

2
20 + 20c50d

2
20  - 2c30d12d

2
20 + c12d30d

2
20  - 20c40d30d20

 - 12c30d40d20 + 15c30d
2
30  - 6d13d

3
20 + 2d12d21d

2
20 + 3d03d30d

2
20 + 4d41d

2
20

 - 5d30d31d20  - 4d21d40d20 + 5d21d
2
30,(A.6)

and cij and dij , expressed by aij and bij , are given in Appendix I.
Last we set x= x, y= y+o(| x, y| 5) and then obtain the system (2.7). By Zhang et al. [41],

Chow, Li, and Wang [11], Dumortier, Roussarie, and Sotomayor [13], and Li and Rousseau
[21], we obtain the conclusions.
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A NOVEL CLASSIFICATION OF NILPOTENT SINGULARITIES 719

(C). The proof of Lemma 2.5.
Step 1. Notice that j30 = d30 \not = 0; we let

x=X  - j40
5j30

X2, y= Y, dt
d\tau = 1 - 2j40

5j30
X.

Then system (2.6) becomes

\.X = Y + o(| X,Y | 4),
\.Y = q11XY + q30X

3 + q21X
2Y + q31X

3Y + o(| X,Y | 4)(A.7)

with

q11 = d11, q30 = d30, q21 =
3c30(d2

11+5d30)+5d21d30 - 3d11d40

5d30
,

q31 =
2c230(d

3
11+30d30d11)
25d2

30
 - 4c30(d40d2

11 - 5d21d30d11+15d30d40)
25d2

30
+ c21d11

3 + 4c40 +
2d11d2

40

25d2
30

+ d11d12

6

+d31  - 4d21d40

5d30
.

(A.8)

Step 2. Notice that q30 \not = 0, q21 \not = 0; we let

X = sign(q30q21)

\surd 
\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(q30)q30

q21
x, Y =

q30
\surd 

\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(q30)q30
q221

y, d\tau 
dt = sign(q30q21)

q21
q30

,

and set x= x, y= y+ o(| x, y| 4); then obtain the system (2.8) from system (4.8), where

N2 =
\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(d30)

\surd 
\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(d30)d30

6(3c30d2
11+15c30d30 - 3d40d11+5d21d30)2

(12c230d
3
11  - 24c30d40d

2
11 + 50c21d

2
30d11

+360c230d30d11 + 120c30d21d30d11 + 600c40d
2
30  - 360c30d30d40 + 25d12d

2
30d11

+12d240d11 + 150d230d31  - 120d21d30d40).

(A.9)

By Lemma 3.1 in [10], Dumortier et al. [15], Dumortier, Fiddelaers, and Li [12], Khibnik,
Krauskopf, and Rousseau [20], and Dangelmayr and Guckenheimer [18], we get the results.

Appendix III. The proof of Theorem 2.6.
Step 1. When the conditions in (2.15) are satisfied and (x\ast , a, q) \in \Omega 1, we make the

following transformations successively,

x= \^x+ x\ast , y= \^y+ y\ast ,

\^x=
1

1 - a - 2x\ast 
X +

a+ x\ast 
x\ast (1 - a - 2x\ast )2

Y, \^y=X,(A.10)

and following (2.5) and Appendix I, we have

d20 =
x2\ast (1 - 2a - 3x\ast  - q(a+ x\ast )

3)

(a+ x\ast )3(1 + aq(1 - x\ast ) + qx\ast (1 - x\ast ))
,

d11 =
 - a2 + a(1 - 3x\ast ) - x\ast (1 - 2x\ast + 2x2\ast ) + q(1 - x\ast )(a+ x\ast )

2(1 - 6x\ast + 6x2\ast  - a(1 - 2x\ast ))

(1 - x\ast )(a+ x\ast )2(1 - a - 2x\ast )(1 + aq(1 - x\ast ) + qx\ast (1 - x\ast ))
,

where d20 \not = 0 since q \not = q1 in \Omega 1. Solving d11 = 0, we have q = q\ast . Therefore, E\ast is a cusp of
codimension 2 if q \not = q\ast from Lemma 2.2.
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720 MIN LU, JICAI HUANG, AND HAO WANG

Step 2. When q= q\ast , we derive conditions for E\ast , which is a cusp of codimension at least
3. It is easy to get

d20 =
x\ast (1 - 6x\ast + 4x2\ast  - a)

2(a+ x\ast )2(1 - x\ast )
, q\ast  - q1 =

(1 - a - 2x\ast )
2(a - 1 + 6x\ast  - 4x2\ast )

(1 - x\ast )(a+ x\ast )3(1 - 6x\ast + 6x2\ast  - a(1 - 2x\ast ))
,

q\ast  - q2 =
x\ast (1 - a - 2x\ast )( - a2  - a(4x2\ast  - x\ast  - 1) - x\ast (6x

2
\ast  - 6x\ast + 1))

a(x\ast  - 1)2(a+ x\ast )2(1 - 6x\ast + 6x2\ast  - a(1 - 2x\ast ))
,

and let

a1\ast =
1 - 6x\ast + 6x2\ast 

1 - 2x\ast 
, a2\ast =

1+ x\ast  - 4x2\ast  - (1 - x\ast )
\sqrt{} 

1 + 16x2\ast 
2

,

a3\ast =
1+ x\ast  - 4x2\ast + (1 - x\ast )

\sqrt{} 
1 + 16x2\ast 

2
, a4\ast =

1 - 3x\ast  - (1 - x\ast )
\surd 
1 - 8x\ast 

2
,

a5\ast =
1 - 3x\ast + (1 - x\ast )

\surd 
1 - 8x\ast 

2
, a6\ast = 1 - 6x\ast + 4x2\ast ,(A.11)

where a = a1\ast (resp., a = a4\ast and a = a5\ast ) come from the real root of the denominator
(numerator) of q\ast , a= a2\ast and a= a3\ast come from q\ast = q2, a= a6\ast comes from q\ast = q1.

Notice that 0 < a2\ast < a1\ast < 1 - 2x\ast < a3\ast if 1
8 < x\ast <

3 - 
\surd 
3

6 ; 0 < a2\ast < a4\ast \leq a6\ast \leq a5\ast <
a1\ast < 1 - 2x\ast <a3\ast if 0<x\ast \leq 1

8 .
Then, we have the following conditions for x\ast and a:

\Omega 2 =\Omega 21 \cup \Omega 22 \cup \Omega 23,

where

\Omega 21 =
\Bigl\{ 
(x\ast , a) | 

1

8
<x\ast <

3 - 
\surd 
3

6
, a2\ast <a< a1\ast , a \not = a6\ast 

\Bigr\} 
,

\Omega 22 =
\Bigl\{ 
(x\ast , a) | 0<x\ast \leq 

1

8
, a2\ast <a< a4\ast 

\Bigr\} 
,

\Omega 23 =
\Bigl\{ 
(x\ast , a) | 0<x\ast \leq 

1

8
, a5\ast <a< a1\ast 

\Bigr\} 
.(A.12)

Step 3. Next, we prove that E\ast is a cusp of codimension at most 4. Following Lemma 2.4,
(4.6), and (4.7), we have

M1 =
M1\ast 

16x\ast (1 - a - 2x\ast )5(a+ x\ast )5(x\ast  - 1)4
, N1 =

N1\ast 
64x\ast (1 - a - 2x\ast )7(a+ x\ast )8(x\ast  - 1)6

,

where

M1\ast =a6(2x\ast  - 1)+2a5(1 - 4x\ast )(x
2
\ast  - 4x\ast + 2) + a4(24x5\ast  - 132x4\ast + 278x3\ast  - 207x2\ast + 58x\ast  - 6)

 - 2a3(16x7\ast  - 124x6\ast + 372x5\ast  - 561x4\ast + 403x3\ast  - 139x2\ast + 25x\ast  - 2)

+ a2( - 112x8\ast + 632x7\ast  - 1456x6\ast + 1748x5\ast  - 1082x4\ast + 346x3\ast  - 72x2\ast + 12x\ast  - 1)

 - 2ax\ast (2x
2
\ast  - 4x\ast + 1)(32x6\ast  - 82x5\ast + 66x4\ast + 13x3\ast  - 37x2\ast + 12x\ast  - 1)

 - x2\ast (112x
8
\ast  - 592x7\ast + 1304x6\ast  - 1552x5\ast + 1080x4\ast  - 452x3\ast + 114x2\ast  - 16x\ast + 1),
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A NOVEL CLASSIFICATION OF NILPOTENT SINGULARITIES 721

N1\ast =a9( - 8x2\ast + 14x\ast  - 5) + a8(64x4\ast  - 304x3\ast + 428x2\ast  - 209x\ast + 30) + a7( - 224x6\ast + 1728x5\ast 

 - 4792x4\ast + 5896x3\ast  - 3319x2\ast + 822x\ast  - 75) + a6(512x8\ast  - 4704x7\ast + 18912x6\ast  - 39512x5\ast 

+ 44560x4\ast  - 27133x3\ast + 8814x2\ast  - 1465x\ast + 100) + a5( - 512x10\ast + 6560x9\ast  - 34016x8\ast 

+ 99440x7\ast  - 174996x6\ast + 186130x5\ast  - 118776x4\ast + 45398x3\ast  - 10357x2\ast + 1330x\ast  - 75)

+ a4( - 2944x11\ast + 26176x10\ast  - 104000x9\ast + 248032x8\ast  - 382204x7\ast + 381932x6\ast  - 245366x5\ast 

+ 101980x4\ast  - 28067x3\ast + 5136x2\ast  - 579x\ast + 30) + a3( - 6720x12\ast + 48192x11\ast  - 151056x10\ast 

+ 278384x9\ast  - 331728x8\ast + 256368x7\ast  - 121960x6\ast + 33076x5\ast  - 5240x4\ast + 1084x3\ast  - 385x2\ast 

+ 74x\ast  - 5) + a2( - 9664x13\ast + 64256x12\ast  - 180560x11\ast + 277280x10\ast  - 239232x9\ast +83104x8\ast 

+ 50488x7\ast  - 78920x6\ast + 45628x5\ast  - 14920x4\ast + 2861x3\ast  - 298x2\ast + 13x\ast ) + a( - 9664x14\ast 

+ 71840x13\ast  - 239808x12\ast + 479200x11\ast  - 641744x10\ast + 607472x9\ast  - 415728x8\ast + 206144x7\ast 

 - 72868x6\ast + 17722x5\ast  - 2808x4\ast + 262x3\ast  - 11x2\ast ) - 2240x15\ast + 15680x14\ast  - 47904x13\ast 

+ 83648x12\ast  - 90832x11\ast + 60864x10\ast  - 20928x9\ast  - 1632x8\ast + 5380x7\ast  - 2564x6\ast + 594x5\ast 

 - 68x4\ast + 3x3\ast ,

and the signs of M1 and N1 are decided by M1\ast and N1\ast , respectively.
Note that the leading coefficient of the polynomialM1\ast with respect to x\ast is lcoeff(M1\ast , x\ast ) =

 - 112 \not = 0. Furthermore, using the ``resultant(M1\ast , N1\ast , x\ast )"" command in Maple, we have

res(M1\ast ,N1\ast , x\ast ) = 135399691796838467567091712(a - 1)27a10(a+ 1)59(4a+ 1)6(64a+ 71)2

(4096a5 + 7872a4 + 6528a3 + 2288a2 + 400a+ 17) \not = 0,

since 0 < a < 1 from conditions in \Omega 2, where res(f, g, x) denotes the Sylvester resultant of f
and g with respect to x. Then from Gelfand, Kapranov, and Zelevinsky [17], M1\ast and N1\ast 
have no common roots, which implies that N1\ast \not = 0 if M1\ast = 0. Then, according to Lemma
2.4, E\ast is a cusp of codimension at most 4.

Step 4. Letting

D0 =
\Bigl\{ 
(x\ast , a) | 0<x\ast <

3 - 
\surd 
3

6
, 0<a< a1\ast 

\Bigr\} 
\supseteq \Omega 2,

we next use four steps to prove that M1\ast < 0 when (x\ast , a)\in D0.
Step 4.1. First, by applying Sturm's theorem, we have

M1\ast | a=0 = x2\ast 
\bigl( 
 - 112x8\ast + 592x7\ast  - 1304x6\ast + 1552x5\ast  - 1080x4\ast + 452x3\ast  - 114x2\ast + 16x\ast  - 1

\bigr) 
< 0,

M1\ast | a=a1\ast = - 128(1 - x\ast )x
5
\ast (1 - 4x\ast )

2

(1 - 2x\ast )4
< 0

with 0 < x\ast <
3 - 

\surd 
3

6 . Thus, Lemma 3.1 of [39] indicates that the number of roots for M1\ast in

the interval (0, a1\ast ) with 0<x\ast <
3 - 

\surd 
3

6 is equal to that of positive roots for

\Phi =(1 - 2x\ast )
5(1 + a)6M1\ast 

\Bigl( a1\ast 
1 + a

\Bigr) 
=\Phi 6a

6 +\Phi 5a
5 +\Phi 4a

4 +\Phi 3a
3 +\Phi 2a

2 +\Phi 1a+\Phi 0,
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722 MIN LU, JICAI HUANG, AND HAO WANG

where

\Phi 6 = x2\ast (1 - 2x\ast )
5( - 112x8\ast + 592x7\ast  - 1304x6\ast + 1552x5\ast  - 1080x4\ast + 452x3\ast  - 114x2\ast + 16x\ast  - 1),

\Phi 5 = - 2(1 - x\ast )x\ast (1 - 2x\ast )
4(288x9\ast  - 1464x8\ast + 3368x7\ast  - 4692x6\ast + 4392x5\ast  - 2710x4\ast + 1022x3\ast 

 - 219x2\ast + 24x\ast  - 1),

\Phi 4 = - (1 - x\ast )
2(1 - 2x\ast )

3(3072x10\ast  - 20352x9\ast + 58240x8\ast  - 91888x7\ast + 85176x6\ast  - 47808x5\ast 

+ 16580x4\ast  - 3548x3\ast + 454x2\ast  - 32x\ast + 1),

\Phi 3 = - 2(1 - x\ast )
3x\ast (1 - 2x\ast )

2(6272x9\ast  - 35360x8\ast + 79200x7\ast  - 90152x6\ast + 58120x5\ast  - 22540x4\ast 

+ 5320x3\ast  - 730x2\ast + 50x\ast  - 1),

\Phi 2 = - 4(1 - x\ast )
4x2\ast (1 - 2x\ast )(5184x

8
\ast  - 19968x7\ast + 28448x6\ast  - 21024x5\ast + 9660x4\ast  - 3024x3\ast 

+ 644x2\ast  - 84x\ast + 5),

\Phi 1 = 32(1 - x\ast )
5x3\ast (1 - 4x\ast )(48x

6
\ast  - 122x4\ast + 120x3\ast  - 51x2\ast + 11x\ast  - 1),

\Phi 0 = - 128(1 - x\ast )
7x5\ast (1 - 2x\ast )(1 - 4x\ast )

2.

Thus, we only need to prove that \Phi < 0 for (a,x\ast )\in (0,\infty )\times (0, 3 - 
\surd 
3

6 ).
Step 4.2. Second, by applying Sturm's theorem, we have \Phi 6 < 0 and \Phi 0 < 0 for 0< x\ast <

3 - 
\surd 
3

6 . And, by direct computation, we have

\Phi | x\ast =0 = - a4 \leq 0, \Phi | 
x\ast =

3 - 
\surd 

3

6

= - 2( - 3 + 2
\surd 
3)(a+ 1)6

6561
< 0, \Phi | a=0 =\Phi 0 \leq 0,

where \Phi | a=0 = 0 (resp., \Phi | x\ast =0) if and only if x\ast = 0 (resp., a= 0). The leading coefficient of
the polynomial \Phi with respect to a is lcoeff(\Phi , a) =\Phi 6 < 0 if x\ast > 0, or lcoef(\Phi , a) =\Phi 4| x\ast =0 =
 - 1 < 0 if x\ast = 0. Thus, there exists a sufficiently large N(x\ast ) such that \Phi < 0 if a \geq N(x\ast )

for any fixed 0\leq x\ast \leq 3 - 
\surd 
3

6 . Letting Nx\ast =max
0\leq x\ast \leq 3 - 

\surd 
3

6

\{ N(x\ast )\} , then \Phi < 0 if a\geq Nx\ast for

any 0\leq x\ast \leq 3 - 
\surd 
3

6 . Therefore, \Phi \leq 0 at the boundary of the rectangular area

D1 =
\Bigl\{ 
(a,x\ast )| 0\leq a\leq Nx\ast , 0\leq x\ast \leq 

3 - 
\surd 
3

6

\Bigr\} 
,

and the equal sign is only taken at the point (0,0). Thus, we just need to prove that \Phi < 0 at
the interior of the domain D1.

Step 4.3. Third, we look for a possible domain where stationary points of \Phi exist. By
calculating the first-order partial derivatives of \Phi with respect to a and x\ast , respectively, we
can get the expressions of \partial \Phi 

\partial a and \partial \Phi 
\partial x\ast 

, which are all 20-order polynomials of a and x\ast ; we
omit them for brevity.

Then, eliminating the variable a (resp., x\ast ) by computing the resultant \~R1(x\ast ) (resp.,
\~R2(a)) between

\partial \Phi 
\partial a and \partial \Phi 

\partial x\ast 
, we obtain that

\~R1(x\ast ) = 134217728x13\ast (1 - 4x\ast )(1 - 2x\ast )
20(1 - x\ast )

25(6x2\ast  - 6x\ast + 1)25 \~R11(x\ast ),

\~R2(a) = 124615124604835863084731911901282304a35(a+ 1)56 \~R21(a),

where \~R11(x\ast ) and \~R21(a) are 45-order polynomials of x\ast and a, respectively; we omit them.
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A NOVEL CLASSIFICATION OF NILPOTENT SINGULARITIES 723

Notice that the signs of \~R1(x\ast ) and \~R2(a) are the same as \~R11(x\ast ) and \~R21(a), respectively.
Through isolating the real roots of \~R21(a) by using the function ``realroot"" wirh accuracy 1

1000
in Maple, we can prove that the root is in the closed subinterval

I11 =
\Bigl[ 1975659
8388608

,
987831

4194304

\Bigr] 
\triangleq 
\Bigl[ 
I11, I11

\Bigr] 
contained in (0,Nx\ast ).

Similarly, the root of \~R11(x\ast ) is in the closed subinterval

I21 =
\Bigl[ 1491421

16777216
,
46607

524288

\Bigr] 
\triangleq 
\Bigl[ 
I21, I21

\Bigr] 
, I22 =

\Bigl[ 50189

262144
,
200759

1048576

\Bigr] 
\triangleq 
\Bigl[ 
I22, I22

\Bigr] 
contained in (0, 3 - 

\surd 
3

6 ).

Therefore, if the polynomials \~R11(x\ast ) and \~R21(a) have one common root (a,x\ast )\in D1, the
point must be in the following two domains:

D2 =
\Bigl\{ 
(a,x\ast ) | I11 \leq a\leq I11, I21 \leq x\ast \leq I21

\Bigr\} 
and

D3 =
\Bigl\{ 
(a,x\ast ) | I11 \leq a\leq I11, I22 \leq x\ast \leq I22

\Bigr\} 
.

Hence, the stationary points of polynomial \Phi can only be achieved at the interior of D2

and D3; then extremal value of polynomial \Phi can only be achieved at the boundary of D1 and
the interior of D2 and D3.

Step 4.4. At last, we prove that \Phi < 0 for all (a,x\ast ) \in D2 \cup D3. By direct computation,
we obtain that the values of the function \Phi at the four vertices of the rectangular domain D2

are negative. By applying Sturm's theorem, we have that on one pair of opposite sides of D2,

\Phi 
\Bigl( 
a= I11, x\ast 

\Bigr) 
< 0, \Phi 

\Bigl( 
a= I11, x\ast 

\Bigr) 
< 0

for I21 \leq x\ast \leq I21.
With the same techniques, we can assert that on the other pair of opposite sides of D1,

\Phi 
\Bigl( 
a,x\ast = I21

\Bigr) 
< 0, \Phi 

\Bigl( 
a,x\ast = I21

\Bigr) 
< 0

for I11 \leq a\leq I11. Hence the above arguments imply that \Phi < 0 on the boundary of the domain
D2. Thus, Lemma 3.1 of [39] indicates that the number of the roots for \Phi in the domain D2

is equal to that of roots in (0,\infty )\times (0,\infty ) for

\Phi \ast =(1+ x\ast )
15\Phi \ast 

\Bigl( 
a,

I21 + I21x\ast 
1 + x\ast 

\Bigr) 
,

where

\Phi \ast (a,x\ast ) =(1 + a)6\Phi 
\Bigl( I11 + I11a

1 + a
,x\ast 

\Bigr) 
.
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724 MIN LU, JICAI HUANG, AND HAO WANG

From the expression of \Phi \ast , it is easy to see that \Phi \ast < 0 in (0,\infty )\times (0,\infty ), which implies
\Phi < 0 on the domain D2. Similarly, we can assert that \Phi < 0 for all (a,x\ast )\in D3.

Summarizing the above results, based on the eliminating theory by resultant and the
algorithm of real root isolation, it follows that \Phi \leq 0 on domain D1, and \Phi = 0 if and only
if (a,x\ast ) = (0,0). Thus, \Phi < 0 on the interior of the domain D1. Then M1\ast < 0 when
(x\ast , a) \in D0, which implies M1\ast < 0 when (x\ast , a) \in \Omega 2, i.e., E\ast is a cusp of codimension 3 by
Lemma 2.4.

Appendix IV. The proof of Theorem 2.7.
Step 1. From (2.13), we have Det(J(E\ast )) = 0. When b \not = b\ast by Theorem 7.1 in chapter 2

of [41], E\ast is an unstable degenerate node if 0< b< b\ast and a stable degenerate node if b > b\ast .
Step 2. When b= b\ast , we make the following transformations successively:

x= \^x+ x\ast , y= \^y+ y\ast ,

\^x=
1

1 - a - 2x\ast 
X +

a+ x\ast 

x\ast (1 - a - 2x\ast )2
Y, \^y=X.(A.13)

Then system (2.1) becomes

\.X = Y +
\sum 

2\leq i+j\leq 4
aijX

iY j + o(| X,Y | 4),
\.Y =

\sum 
2\leq i+j\leq 4

bijX
iY j + o(| X,Y | 4);(A.14)

we omit expressions of aij , bij for brevity.
Then following (2.5) and Appendix I, system (A.15) becomes

dX

dt
= Y +

\sum 
3\leq i+j\leq 4

cijX
iY j + o(| X,Y | 4),

dY

dt
= d11XY +

\sum 
3\leq i+j\leq 5

dijX
iY j + o(| X,Y | 4),(A.15)

where

c30 =
a - 2ax\ast  - x\ast 2

(1 - a - 2x\ast )2(a+ x\ast )2(x\ast  - 1)
, d11 =

1 - a - 6x\ast + 4x\ast 2

(1 - a - 2x\ast )(a+ x\ast )(1 - x\ast )
,

d30 = - x\ast 2

(1 - a - 2x\ast )2(a+ x\ast )2
,

d21 =
1

2(x\ast  - 1)2x\ast (a+ x\ast )2(a+ 2x\ast  - 1)3

\Bigl( 
a3(2x\ast  - 1) + a2( - 4x\ast 3 + 12x\ast 2  - 7x\ast + 2)

 - a(x\ast 3  - 2x\ast 2  - 3x\ast + 1) + x\ast (10x\ast 4  - 32x\ast 3 + 35x\ast 2  - 14x\ast + 2)
\Bigr) 
,

d40 =
1

2(x\ast  - 1)2(a+ x\ast )3(a+ 2x\ast  - 1)4

\Bigl( 
a3(4x\ast  - 2) + a2( - 10x\ast 3 + 33x\ast 2  - 21x\ast + 4)

+ a( - 30x\ast 4 + 79x\ast 3  - 58x\ast 2 + 17x\ast  - 2) + x\ast 2( - 17x\ast 3 + 39x\ast 2  - 24x\ast + 4)
\Bigr) 
,

and we omit other expressions of cij , dij . It is easy to see that d30 < 0 since conditions in
(2.19) are satisfied.
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A NOVEL CLASSIFICATION OF NILPOTENT SINGULARITIES 725

By direct computation, we have

d211 + 8d30 =
S1

(x\ast  - 1)2(a+ x\ast )2(a+ 2x\ast  - 1)2
,

3c30(d
2
11 + 5d30) + 5d21d30  - 3d11d40 =

x\ast S2

(x\ast  - 1)2(a+ x\ast )3(1 - a - 2x\ast )5
,

where

S1 = a2  - 8ax\ast 2 + 12ax\ast  - 2a+ 8x\ast 4  - 32x\ast 3 + 36x\ast 2  - 12x\ast + 1,(A.16)

S2 = 2a2(1 - 2x\ast ) - 4a(x\ast 3 + 2x\ast 2  - 3x\ast + 1) - 11x\ast 4 + 10x\ast 3 + 5x\ast 2  - 8x\ast + 2.(A.17)

Notice that the signs of d211 + 8d30 and 3c30(d
2
11 + 5d30) + 5d21d30  - 3d11d40 are the same

as S1 and S2, respectively.
From S2| a=a2\ast > 0 and a2\ast  - x\ast 3+2x\ast 2 - 3x\ast +1

1 - 2x\ast =  - (1 - x\ast )(1 - 2x2
\ast )

2(1 - 2x\ast ) < 0, we have S2 > 0, i.e.,

3c30(d
2
11 + 5d30) + 5d21d30  - 3d11d40 > 0 as conditions in (2.19) are satisfied.

Step 3. Next, we analyze the sign of d11 and S1 to determine the types of E\ast . The
discriminant of S1 with respect to a is 32x\ast 2(1 - x\ast )2 > 0. Solving d11 = 0 (resp., S1 = 0), we
have a= a\ast 1(resp., a= a\ast 2 and a= a\ast 1 + 2

\surd 
2(1 - x\ast )x\ast \triangleq a\ast 2), respectively, where a\ast 1 and a\ast 2 are

given in (2.21). And direct computation gives

a\ast 1  - a1\ast =
1

2
(1 - x\ast )(1 - 8x\ast +

\surd 
1 - 4x\ast ), a\ast 1  - a2\ast =

1

2
(1 - x\ast )(1 - 8x\ast ),

a\ast 2  - a1\ast =
1

2
(1 - x\ast )(1 - 8x\ast  - 4

\surd 
2x\ast +

\surd 
1 - 4x\ast ), a\ast 2  - a2\ast =

1

2
(1 - x\ast )(1 - 8x\ast  - 4

\surd 
2x\ast ),

a\ast 2  - a2\ast =
1

2
(1 - x\ast )(1 - 4(2 - 

\surd 
2)x\ast ).

Notice that a\ast 2 > a2\ast since 0 < x\ast < 1
4 . And, we obtain a\ast 1 \leq a1\ast (resp., a\ast 1 \geq a2\ast ) if and only

if x\ast \geq 3
16 (resp., x\ast \leq 1

8); a
\ast 
2 \leq a1\ast (resp., a\ast 2 \geq a2\ast ) if and only if x\ast \geq 1

8 (resp., x\ast \leq 2 - 
\surd 
2

8 ).
Thus, we have (i) a\ast 2 < a\ast 1 \leq a1\ast if 3

16 \leq x\ast <
1
4 ; (ii) a\ast 2 < a1\ast < a\ast 1 < a2\ast if 1

8 < x\ast <
3
16 ; (iii)

a\ast 2 = a1\ast < a2\ast = a\ast 1 if x\ast =
1
8 ; (iv) a1\ast < a\ast 2 < a2\ast < a\ast 1 if 2 - 

\surd 
2

8 < x\ast <
1
8 ; (v) a2\ast \leq a\ast 2 < a\ast 1 if

0<x\ast \leq 2 - 
\surd 
2

8 .
Combining conditions in (2.19) and analyzing the sign of d11, S1, we have the results in

Table 2 by Lemma 2.5. Therefore, we have completed the proof.

Appendix V. The proof of Theorem 2.8. Consider the following unfolding system:

dx

dt
= x(1 - x - y

a\ast 1 + \lambda 4 + x
),

dy

dt
= y
\Bigl[ (b\ast + \lambda 3)x

a\ast 1 + \lambda 4 + x
+

c\ast + \lambda 1 +m\ast + \lambda 2

1 + q\ast y
 - (m\ast + \lambda 2)

\Bigr] 
,(A.18)

where \lambda = (\lambda 1, \lambda 2, \lambda 3, \lambda 4) \triangleq (c  - c\ast ,m  - m\ast , b  - b\ast , a  - a\ast 1) is a parameter vector in a small
neighborhood of (0,0,0,0).
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726 MIN LU, JICAI HUANG, AND HAO WANG

Next we want to transform the unfolding system (2.22) into the versal unfolding of codi-
mension 4 nilpotent focus by a series of near-identity transformations.

First, we make the following transformations successively:

(I) x= \^x+ x\ast , y= \^y+ y\ast ,

(II) \^x=
1

1 - a - 2x\ast 
X +

a+ x\ast 

x\ast (1 - a - 2x\ast )2
Y, \^y=X.

Then system (2.22) becomes

dX

dt
=

\sum 
0\leq i+j\leq 5

aij(\lambda )X
iY j + o(| X,Y | 5),

dY

dt
=

\sum 
0\leq i+j\leq 5

bij(\lambda )X
iY j + o(| X,Y | 5),(A.19)

where aij(\lambda ) and bij(\lambda ) are smooth functions whose long expressions are omitted here for the
sake of brevity.

Second, letting

(III) X = x+
a11(\lambda ) + b02(\lambda )

2
x2, Y = y - a20(\lambda )x

2 + b02(\lambda )xy - a02(\lambda )y
2,

system (A.19) becomes

dx

dt
=

\sum 
0\leq i+j\leq 3

cij(\lambda )x
iyj + o(| x, y| 3),

dy

dt
=

\sum 
0\leq i+j\leq 3

dij(\lambda )x
iyj + o(| x, y| 3),(A.20)

where cij(\lambda ) and dij(\lambda ) are smooth functions whose long expressions are omitted here.
Third, we make

(\bfI \bfV )

\Biggl\{ 
x=X + 2c21(\lambda )+d12(\lambda )

6 X3 + c12(\lambda )+d03(\lambda )
2 X2Y + c03(\lambda )XY 2,

y= Y  - c30(\lambda )X
3 + d12(\lambda )

2 X2Y + d03(\lambda )XY 2.

System (A.20) then becomes

dX

dt
= Y +

\sum 
0\leq i+j\leq 3

eij(\lambda )X
iY j + o(| X,Y | 3),

dY

dt
=

\sum 
0\leq i+j\leq 3

fij(\lambda )X
iY j + o(| X,Y | 3),(A.21)

where eij(\lambda ) and fij(\lambda ) are smooth functions whose long expressions are omitted here.
Fourth, we make the smooth coordinate transformation

(V) x1 =X, y1 =
dX

dt
;
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then system (A.21) becomes

dx1
dt

= y1,

dy1
dt

=
\sum 

0\leq i+j\leq 3

\=fij(\lambda )x
i
1y

j
1 + o(| x1, y1| 3),(A.22)

where \=fij(\lambda ) can be expressed by \lambda 1, \lambda 2, \lambda 3, \lambda 4, and x\ast ; we omit their expressions.
Fifth, notice that \=fij(0) = 0 (0\leq i+ j \leq 2), \=f12(0) = \=f03(0) = 0, and

\=f30(0) = d30 =
 - 1

16(1 - 4x\ast )2(1 - x\ast )4
< 0, \=f21(0) = 3c30+d21 = - 9 - 16x\ast 

64(1 - x\ast )4x\ast 2(1 - 4x\ast )
< 0

since 1
8 < x\ast < 3

16 . We continue to make the following smooth coordinate transformations
successively:

(VI) x1 = x2  - 
\=f20(\lambda )

3 \=f30(\lambda )
, y1 = y2;

(VII) x2 =

\sqrt{} 
 - \=f30(\lambda )
\=f21(\lambda )

x, y2 =
\=f30
\sqrt{} 

 - \=f30(\lambda )
\=f2
21(\lambda )

y,
dt

d\tau 
=

\=f21(\lambda )
\=f30(\lambda )

.(A.23)

Then system (A.22) becomes as system (2.23) (still denoting \tau by t), where \mu i(\lambda )(i= 1,2,3,4)
can be expressed by \lambda 1, \lambda 2, \lambda 3, \lambda 4, and x\ast ; we omit their detailed expressions.

Since \bigm| \bigm| \bigm| \bigm| \partial (\mu 1(\lambda ), \mu 2(\lambda ), \mu 3(\lambda ), \mu 4(\lambda ))

\partial (\lambda 1, \lambda 2, \lambda 3, \lambda 4)

\bigm| \bigm| \bigm| \bigm| 
\lambda =0

(A.24)

=
(9 - 16x\ast )6(1 - 4x\ast )5(1 - 6x\ast + 4x\ast 2)(1 - 8x\ast )(3 - 46x\ast + 64x\ast 2)

6291456(1 - x\ast )2x\ast 15
> 0

for 1
8 < x\ast < 3

16 , the parameter transformation (\lambda 1, \lambda 2, \lambda 3, \lambda 4) \rightarrow (\mu 1, \mu 2, \mu 3, \mu 4) is a homeo-
morphism in a small neighborhood of the origin, and \mu 1, \mu 2, \mu 3, and \mu 4 are independent
parameters. By the results in [18, 20], we know that system (2.23) is a 4-parameter fam-
ily versal unfolding of codimension 4 nilpotent focus. Hence, system (2.22) can undergo a
nilpotent focus bifurcation of codimension 4 around E\ast .
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