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Abstract
Due to global warming, interest in sequestering carbon by appropriately managing
soils has contributed to studying the dynamic exchange of carbon and nitrogen in soils
and atmospheric CO2. The priming effect, or the intensified CO2 emissions from soil
organic matter (SOM) decomposition in short periods by using labile substrates, has
been a topic of interest over the last decades. A combination of two experimentally
supported mechanisms explains the priming effect phenomenon, and for the first time,
we combine them in a novel stoichiometric model. The model considers the effects
of labile substrate utilization in soils during the SOM decomposition and how CO2
emissions rates are affected. Laboratory data and a local sensitivity analysis validate
the accuracy and robustness of the model. We find an optimized ratio of labile car-
bon and nitrogen that intensifies SOM decomposition for different soil features. The
priming effect is weakened as C/N in SOM increases for nutrient-poor soils and is
independent of C/N in SOM for nutrient-rich soils. The time required for microor-
ganisms to decompose SOM at its maximum rate is delayed only for labile carbon
treatments and poor-nutrient soils but remains constant otherwise. Finally, the SOM
degradation efficiency determines the priming effect’s acceleration or reduction under
different soil treatments.
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The potential effects of increased atmospheric carbon dioxide (CO2) on global
warming have been a matter of public interest since the industrial revolution (Lal and
Follett 2009; Sylvia et al. 2005; Falkowski et al. 2000). Carbon sequestration in plant
biomass and soil organic matter through appropriate management of cultivated soils
is a process that can mitigate the atmospheric CO2. By understanding the dynamical
exchange of carbon and nitrogen from the atmosphere into the terrestrial ecosystems,
carbon sequestration may be improved (Kuzyakov et al. 2000; Bhatti and Tarnocai
2009; Beeckman et al. 2018; Tate 1995). In particular, part of the soil scientists’ efforts
has been toward studying CO2 emissions from soils due to their potential contribution
to global warming. Different theories are being continuously developed to describe
the linked interactions between organic matter and labile compounds as soil microbial
activities (Kuzyakov et al. 2000; Blagodatskaya and Kuzyakov 2008; Kuzyakov 2010;
Chen et al. 2014).

Soil organic matter (SOM) is a significant carbon reservoir and principal nutrient
source for plant growth as it contributes to soil quality (Fontaine et al. 2003). SOM is
a complex biological residue formed over time due to the accumulation of undecayed,
recalcitrant organic matter (Lal and Follett 2009; Sylvia et al. 2005; Chen et al. 2014).
SOMcarbon pool is about two or three times that in the atmosphere. Thus, any changes
will significantly affect the atmospheric carbon concentration levels (Sylvia et al. 2005;
Manlay et al. 2007). The input of fertilizers, organic substances and plant residues
may increase the microbial activity in soils, enhancing the decomposition rate of
SOM in short periods. Consequently, a sudden and increased release of CO2 from soil
respiration would directly contribute to global warming (Lal and Follett 2009; Chen
et al. 2014; Blagodatskaya and Kuzyakov 2008).

The priming effect is defined as the sudden increased rate of SOM decomposi-
tion, caused by the input of substrates in soils (Kuzyakov et al. 2000). This natural
phenomenon and its mechanisms have been an important topic in several Euro-
pean countries over the last decades (Kuzyakov 2010). Despite many theories and
mechanisms proposed to describe the priming effect, in this work, we consider the
‘stoichiometric decomposition’ and ‘microbial nitrogenmining’ approach (Chen et al.
2014). These mechanisms relate the SOM decomposition rate depending on the avail-
ability of labile carbon (C) and nitrogen (N ) for different microbial communities. The
‘stoichiometric decomposition’ mechanism assumes that microbial SOM decomposi-
tion rate is at its highest when their demand ofC and N is satisfied and decreases when
the availability of N is limited (Hessen et al. 2004). On the other hand, the ‘micro-
bial nitrogen mining’ mechanism assumes increased harvesting for N from SOM
using labileC as an additional energy source to satisfy microbial growth requirements
(Moorhead and Sinsabaugh 2006; Craine et al. 2007).

Different microbial communities decompose SOM at different rates depending on
the availability of substrates. The linkage between the mechanisms mentioned above
is due to the dynamic interaction between these microbial communities, labile carbon
and nitrogen sources, and SOM (Chen et al. 2014). Soil microbial communities may
be separated into two main groups despite the vast number of microbes capable of
degrading SOM. Rapidly growing soil bacteria mainly involved in decomposing labile
substrates are termed zymogenous bacteria. Now, slow-growing organisms predomi-
nantly associated with the decomposition of SOM are classed as autochthonous (Tate
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1995). In this sense, the stoichiometric decomposition and microbial nitrogen mining
mechanisms can be related to zymogenous and autochthonous bacteria, respectively
(Chen et al. 2014; Hessen et al. 2004; Craine et al. 2007).

It is necessary to incorporate C and N dynamics into mathematical models to
study the priming effect as the interaction between microbial communities, labile
compounds, and SOM (Blagodatsky et al. 2010). To achieve this, we develop a
stoichiometrical mathematical model that simultaneously considers stoichiometric
decomposition and microbial nitrogen mining mechanisms. The stoichiometrical
framework for our system of ordinary differential equations allows us to incorporateC
and N dynamics from labile substrates as the carbon and nutrient dynamics contained
in the SOM. We validate our model using a laboratory data set adapted from (Chen
et al. 2014). Part of the complete laboratory data set shows howdifferent soil treatments
based on labileC and N may induce different CO2 emission rates from soils depending
on the strength of the priming effect. Including different pools to track carbon and nutri-
ent contents in SOM as labile substrates rely on the assumption that the priming effect
is governed by the availability of resources, microbial biomass and stoichiometric
constraints (Drake et al., 2013; Sterner and Elser, 2017; Chen et al., 2014).

Our approach considers the balance of soil substrates as their interactionwithmicro-
bial communities during the SOM decomposition process, i.e., using stoichiometry
theory (Sterner and Elser 2017). We determine the robustness of the model and the
crucial parameters for the priming effect with a sensitivity analysis. In this way, we
investigate how soil features, such as nutrient content in SOM, delimit an optimized
C/N of labile substrates to decompose SOM in terms of efficiency, the priming effect
strength and the time of maximum SOMdecomposition rate. Furthermore, we explore
the impact of the SOM degradation efficiency on the system and how the acceleration
or decrease of the priming effect is related. The model could provide insights into how
using substances rich in C and N , such as green manure, for example, in different lev-
els of nutrient richness in soils, may indirectly impact global warming by modifying
the SOM degradation rates in short periods.

1 Model Formulation

To study the decomposition of SOM under aerobic conditions, we propose the fol-
lowing stoichiometrical mathematical model. The ‘stoichiometric decomposition’ and
‘microbial N mining’ mechanisms are continuously subject to a system of nonlinear
differential equations and governed by the availability of labile compounds such as C
and N . Suchmechanisms are triggered implicitly by themicrobial biomass growth rate
and constrained by the availability of substrates. It is assumed that SOM decomposi-
tion rate increases with only adding labile C as the ‘microbial N mining’ mechanism
suggests. Moreover, it is at its highest when the microbial biomass demand of labileC
and N is satisfied as ‘stoichiometric decomposition’ mechanisms convey (Chen et al.,
2014; Fontaine et al., 2003). In natural soil ecosystems, N is the limiting nutrient for
microbial communities. To keep the model as simple as possible, we consider only
C , N found in organic substances as a necessary simplification (Lal and Follett 2009;
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Chen et al. 2014). Finally, the CO2 emissions from the decomposition of organic
matter are described in terms of the microbial respiration rate (Kuzyakov et al. 2000).

The microbial biomass rate of change depends on the availability of easily degrad-
able substrates as the ability to harvest the required nutrients from SOM (Chen et al.
2014). Both microbial communities such as zymogenous and autochthonous decom-
pose SOM at different efficiency levels, and their growth rates differ regarding the
availability of labile resources (Chen et al. 2014; Blagodatskaya et al. 2007). To math-
ematically consider this limitation, we consider Liebig’s law of the minimum, which
states that the microbial growth rate is limited by the most limiting resource (Sterner
and Elser 2017). To track the microbial biomass rate of change in terms of carbon
units, we make use of the following equation:

B ′ = (μc min{ f (N ), g(C)} + μs H(C)min{ fs(Ns), gs(Cs)}) B
︸ ︷︷ ︸

intrinsic growth

− εB
︸︷︷︸

death

− l B
︸︷︷︸

respiration

,

(1)

where H(C) is a dimensionless saturating function that modulates the impact of a
mechanism during the decomposition of SOM regarding the availability of labile C in
soils. The first two terms on the right-hand side of the above equation correspond to the
intrinsic microbial growth. In particular, the first term corresponds to the fast-growing
zymogenous bacteria, and the second term to the slow-growingautochthonous bacteria.
The minimum function is related to Liebig’s law which limits the maximal microbial
growth rate in terms of the available resources in the system. The dimensionless
functions f (N ) and g(C) (or simply f , and g) correspond to saturating functionswhich
represents the N and C uptake rate, respectively (Wang et al. 2009). For simplicity,
the SOM pool is divided into the amount of recalcitrant carbon Cs and nitrogen Ns ,
respectively. The dimensionless functions fs(Ns) and gs(Cs) (or simply fs and gs) are
saturating functions which represents the SOM compounds degradation rates. The last
two terms correspond to biomass loss by microbial death (ε) and respiration (l) rates.

The dynamics for the labile carbon pool are given by

C ′ = − μc

r1
min{ f (N ), g(C)}B

︸ ︷︷ ︸

labile carbon decomposition

+ εB
︸︷︷︸

carbon recycling

. (2)

In the above equation, the yield constant (r1) is the proportional conversion of C
to microbial biomass (Kong et al. 2018). It is also considered the immediate carbon
recycling in this model by the natural death of microorganisms at a rate (ε).

A simplified version of a more complex process for the nitrogen dynamics is
represented as follows:

N ′ = − θμc min{ f (N ), g(C)}B
︸ ︷︷ ︸

labile nutrient uptake

+ θ(ε + l)B
︸ ︷︷ ︸

nutrient recycling

+

(θs − θ) μs H(C)min{ fs(Ns), gs(Cs)}B
︸ ︷︷ ︸

nutrient exudation from SOM decomposition

, where θs > θ.
(3)
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The first term corresponds to the microbial labile nutrient uptake rate to satisfy sto-
ichiometric growth requirements. The second term represents nutrient recycling due
to mass-specific microbial respiration loss and death rate (Kong et al., 2018; Alijani
et al., 2015). The constant parameter (θ) corresponds to the microbial N/C ratio, and
it is assumed constant since we are assuming a strict homeostasis (Sterner and Elser,
2017; Wang et al., 2012, 2018). The last term represents the nutrient exudation from
SOM decomposition where (θs) is the N/C ratio for SOM, which is assumed constant
for simplicity (Stotzky 2000; Fontaine et al. 2011).

The dynamics for recalcitrant carbon in SOM are represented as

C ′
s = −μs

r2
H(C)min{ fs(Ns), gs(Cs)}B

︸ ︷︷ ︸

recalcitrant carbon decomposition

, (4)

where the yield constant r2 is the proportional conversion of Cs to microbial biomass.
Finally, the dynamics of the recalcitrant nutrients found in SOM are described as

N ′
s = −θsμs H(C)min{ fs(Ns), gs(Cs)}B

︸ ︷︷ ︸

nutrient uptake from SOM decomposition

. (5)

In this way, microbial harvest for SOM nutrients will increase the labile nutrients
availability in soils. This assumption is supported by the findings on plants allocating
rich labile C substrates to microbial communities through their roots in exchange for
nutrients found in SOM (Sylvia et al. 2005). Therefore, we propose the whole model
as

B ′ = (μc min{ f (N ), g(C)} + μs H(C)min{ fs(Ns), gs(Cs)}) B − εB − l B,

C ′ = − μc

r1
min{ f (N ), g(C)}B + εB,

N ′ = − θμc min{ f (N ), g(C)}B + θ(ε + l)B

+ (θs − θ) μs H(C)min{ fs(Ns), gs(Cs)}B,

C ′
s = − μs

r2
H(C)min{ fs(Ns), gs(Cs)}B,

N ′
s = − θsμs H(C)min{ fs(Ns), gs(Cs)}B,

(6)

where the saturating functions take the Monod form, i.e.,

f (N ) = N

N + K f
, g(C) = C

C + Kg
, fs(Ns) = Ns

Ns + K fs
gs(Cs) = Cs

Cs + Kgs
,

(7)

and H(C) we will propose it as

H(C) = 1 − C

C + Kh
. (8)
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The function H(C) modulates the ‘microbial N mining’ and ‘stoichiometric decom-
position’ mechanism depending on the availability of labile substrates. The microbial
growth will increase at high rates when the microbial stoichiometric constraints are
met, potentially increasing SOM decomposition. On the other hand, with sustained
utilization of labile C , the nutrient exudation from SOM decomposition is continu-
ously increasing and is proportional to the microbial biomass. Now, emissions of CO2
in this model are directly related to the microbial respiration rate. To model the CO2
rate of change, we will use the following equation:

CO′
2 = l B ′. (9)

Sinceweconsider themodel for short periods and the laboratory data usedwas basedon
a closed nutrient system, i.e., there is no loss or gain of N , we assume the conservation
of mass law for N . Then, the total nitrogen (TN ) dynamics present in model (6) is
given by

T ′
N = θB ′ + N ′ + N ′

s = 0, (10)

for some θs > θ . Therefore, the total nitrogen in the system is fixed and

N = TN − θB − Ns, (11)

where

TN = θB(0) + N (0) + Ns(0), (12)

which evidently results in a simplification of system (6) if required.

2 Material andMethods

The increased atmospheric CO2 derived from the heavy use of crop fields has led
soil scientists to study the priming effect over the last decades. Several mechanisms
and theories have been developed to explain this natural phenomenon. However, the
combination of stoichiometric decomposition as the microbial nitrogen mining mech-
anisms has been supported by laboratory experiments (Kuzyakov et al. 2000; Chen
et al. 2014). The laboratory experiment used to validate this model is summarized as
follows.

2.1 Laboratory Experiment

The combination of the stoichiometric decomposition and microbial nitrogen mining
mechanisms was experimentally supported to understand better the priming effect
(Chen et al. 2014). This experiment measured different microbial growth rates, extra-
cellular enzyme production and CO2 emissions derived from the decomposition of
labile substrates as from SOM. The experiment was based on adding different soil
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Table 1 Experimental design. Table adapted from (Chen et al. 2014)

Treatment Amount (μg C g soil −1) Applied N (μg N g soil−1)

Control 0 0

min-N 0 110

Suc-C 500 0

Suc-C+min-N 500 110

Fig. 1 Data adapted from (Chen et al. 2014). (Left panel): Cumulative CO2 emissions from four different
soil treatments in the ninth day. (Right panel): CumulativeCO2 emissions over nine days for each experiment

treatments to soil samples previously homogenized and stored in separated jars. Part
of the soil treatments was based on adding only labileC or N or a combination of both.
The CO2 emissions from SOM decomposition were directly measured, and different
priming effect intensities were identified depending on the soil treatment by the ninth
day.

For this work, we consider the control sample and three soil treatments: added
mineral N (min-N), sucrose (suc-C) and min-N with suc-C. A detailed description for
each treatment used in four different jars is given in Table 1. The data adapted from
(Chen et al. 2014) for these treatments are provided in Fig. 1.

Mathematically speaking, different experimental treatments will correspond to dif-
ferent initial conditions C(0), and N (0) for our model. The data points represented in
Fig. 1 were used to validate the model (6) with Eq. (9).

2.2 Data Fitting

The CO2 data emissions from the laboratory experiment found in (Chen et al. 2014)
were adapted using OriginPro 2020 software. The cumulative SOM degradation mea-
sured in terms of CO2 was differentiated in the laboratory from labile C degradation
using radioactive isotopes. Since our model tracks the cumulative CO2 directly from
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Fig. 2 Model validation using the data adapted from (Chen et al. 2014) and parameters from Tables 1, 2
and 3. Each panel represents a different soil treatment. It is shown when labile C or N limits the CO2
emissions. The system is mostly C-limited because it is not considered an external sink of labile nutrients
such as plants

microbial respiration, a discrepancy arises between the laboratory data set and the
model predictions. This discrepancy leads to the unavailability of parameters for the
system (1). However, some parameters are found in the literature, and the rest were
fit.

We split the data into four groups corresponding to each treatment as in Table
1. Then, we simultaneously fit Eqs. (6) and (9) for each group with different initial
conditions corresponding to each treatment.We predict the four data groups with fixed
parameters and different initial conditions. A full description of the parameters used,
and supporting references, can be found in Tables 2and 3. For this particular case, we
consider the death rate ε = 0 given the short period of the experiment.

To avoid over-fitting, the ratio #(data points)/#(free parameters) is 4.8. The free
parameters are estimated using a nonlinear regression function in MATLAB (nlinfit).
We determine the goodness of fitness from predictions given by Eq. (9) by using the
normalized mean square error (NMSE) function defined in MATLAB as

NMSE = 1 − ‖x0 − x1‖2
‖x0 − x0‖2 , (13)

where ‖.‖ is the Euclidean norm, x0 is a vector that contains data points, x1 is the
predictions from the model, and x0 is the mean of the experimental data points. The
function NMSE defined in MATLAB measures the goodness of fitness predicted in
the interval (−∞, 1] where the perfect fit is if the function is equal to one. The mini-
mum value we achieved using the NMSE function was about 0.9, and the numerical
simulation is shown in Fig. 2 . We estimated the 95% confidence intervals using the
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Table 3 Initial conditions

Initial condition Values Unit Reference 95% C.I

B(0) 3.63 µg C g soil−1 Fitted [2.89–4.37]

C(0) {0, 500} µg C g soil−1 Chen et al. (2014) –

N (0) {0, 110} μg N g soil−1 Chen et al. (2014) –

Cs (0) 1.47 × 104 µg C g soil−1 Chen et al. (2014) –

Ns (0) 980 µg N g soil−1 Chen et al. (2014) –

MATLAB function (nlparci) and the coefficient estimates, residuals and the estimated
covariance matrix from nlinfit.

The data fitting reveals that SOM decomposition dynamics are governed primarily
by Cs transients for this particular data set. The degradation efficiency for the nutrient
uptake in SOM (K fs ) determines if Cs or Ns dynamics govern SOM decomposition.
If K fs < Kgs Ns(t)/Cs(t), for some t , then SOM dynamics are governed by Cs ;
otherwise, it will be governed by Ns . By choosing K fs ≈ Kgs Ns(0)/Cs(0), we discard
the possibility that SOM decomposition is governed by Cs limitation only.

3 Numerical Simulations

We validate our model by comparing the predictions of CO2 from the model to the
adapted laboratory data set. However, the model predictions of the degradation of
SOM differ somewhat from reality. The first panel in Fig. 3 shows the cumulative
decomposed SOM on the ninth day of each experiment. The numerical simulation for
SOM decomposition is at least consistent with the experiment in Chen et al. (2014),
i.e., a combination of added labile substrates promotes a higher decomposition rate of
SOM rather than using only N and C separately.

Our simulations show that the system isC-limited predominantly for all treatments,
except when labile C is added. This is because we are not assuming other external
sinks of labile nutrients, such as plants’ N uptake for biomass formation. Adding
only labile N will not increase the SOM decomposition, and microbial N mining
mechanism strength remains weak, since there is no labile C to utilize. Adding labile
C increases themicrobial Nminingmechanism strength; consequently, more nutrients
fromSOMare released, increasingmicrobial biomass production. Adding labileC and
N will increase the SOMdecomposition at higher rates by rapidly increasingmicrobial
biomass and activities subject to the stoichiometric decomposition mechanism (see
Fig. 3).

Measuring the robustness of the model will provide insightful performance on the
model’s predictions on SOM decomposition as information on the sensitivity of the
parameters used. The reliability of SOM dynamics predictions with respect to the
availability of labile substrates can be measured, and we may track down those crucial
parameters during the priming effect with a sensitivity analysis.
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Fig. 3 Numerical simulations of the model (6) and (9) using Tables 2, 3 and 1. (First column): Cumula-
tive SOM decomposed and CO2 emissions. (Second column): CO2 production and percentage of SOM
decomposed with respect to time. (Third and fourth column): Simulated microorganisms biomass subject
to different SOM decomposition mechanisms

3.1 Sensitivity Analysis

We perform a local sensitivity analysis to understand how significantly the parameters
used in the model affect SOM decomposition. Each parameter sensitivity index can
measure the relative importance of the parameters influencing SOM degradation. The
definition of the normalized forward sensitivity index is

γ u
p := ∂u

∂ p
× p

u
, (14)

where u is the variable that depends differentiably on the parameter p. A forward
difference scheme is needed to compute the sensitivity index because of the absence
of an explicit solution of system (6). The numerical sensitivity index is

γ u
p = u(p + �p) − u(p)

�p
× p

u(p)
, (15)

where u(p) refers to the variable of interest dependent on the parameter p, and �p
should be a small quantity such as 1% of the default value of p. The sensitivity index
γ u
p is a real number by which we can measure the relative importance of a parameter,

and the sign of this value is the positive (or negative) relationship concerning the
variable u.
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Fig. 4 Sensitivity index (S.I.) for u = 1− �
j
i /Cs (0) for i = {0, 100} and j = {0, 500} of SOM decompo-

sition when different treatments are considered. (Left panel): S.I using parameters in Table 2. In this case,
the system is Cs -Limited (K fs < Kgs Ns (0)/Cs (0)). (Right panel): S.I. when the system is Ns -Limited,
i.e., we choose K fs such that K fs > Kgs Ns (0)/Cs (0)

Wedenote�
j
i asCs(9)with the parameters given inTable 2 and the initial conditions

given in Table 3 but with N (0) = i and C(0) = j . We consider the variable

u = 1 − �
j
i

Cs(0)
, (16)

to compute the sensitivity index for the percentage of SOM decomposed on the ninth
day for i = {0, 110} and j = {0, 500} to represent the different experimental treat-
ments. Thus, we can measure the importance of each parameter in our model for SOM
decomposition predictions. The parameter’s positive (negative) relationship strength
depends on each soil treatment. The sensitivity analysis reveals the model’s robust-
ness and the positive (negative) strength of SOM decomposition on the ninth day of
the experiment. From Fig. 4 , it may be surprising that the parameter μs , associated
with slow-growing bacteria but predominant in SOM degradation, is more beneficial
to SOM conservation. Based on the data fitting, the system is primarily Cs-limited,
but SOM decomposition under Ns-limitation was also investigated. We computed the
sensitivity index for these two circumstances, guaranteeing the model’s robustness for
different scenarios.

3.2 Numerical Experiment: Impact of Exogenous Labile C and N in SOM
Decomposition

The addition of a combination of labile substrates controls the strength of the priming
effect and, in consequence, increased atmospheric emissions of CO2 from soils in
short periods. The addition of only labile C increases SOM decomposition during the
laboratory experiment, and the decomposition is higher when exogenous labile C and
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Fig. 5 Impact of adding an initial single dose of labile N and C to soils during SOM decomposition. (Left
panel): Relative SOM decomposition increment when the combination of C(0) = j and N (0) = i is

considered and compared to when only C(0) = 500 is added as 1 − �
j
i /�500

0 . (Right panel): Different

curves generated by 1 − �
j
i /�500

0 when i =∈ [0, 30] and j = {0, 100, 200, . . . , 500}. The red line in
both panels is given by N (C) = C/25.83 and represents an optimal C/N initial ratio to maximize SOM
decomposition in terms of efficiency and is generated by a linear regression using the points (i, j) such that

|� j
i − �

j
30| < ε�500

0 for ε = 0.1 (Color figure online)

N are combined. We explore numerically how the combination of a single input of
C(0) ∈ [0, 500] and N (0) ∈ [0, 30] at t = 0 influences SOM decomposition.

From Fig. 5(left panel), we show the relative SOM decomposition increment when
the combination of C(0) = j and N (0) = i is considered and compared to when only
C(0) = 500 is added as 1 − �

j
i /�500

0 for i ∈ [0, 30] and j ∈ [0, 500]. Furthermore,
we show an optimal C/N ratio, represented by the red line in the same figure, initially
required to decompose SOM efficiently, minimizing the resources of labile substrates.
We also plot different curves generated by 1 − �

j
i /�500

0 on the right panel of the
same figure when i =∈ [0, 30] and j = {0, 100, 200, . . . , 500}. The red dots in each
curve generate an optimal C/N≈ 26 ratio to decompose SOM efficiently, and they are
represented by maximum (i, j) such that |� j

i −�
j
30| < ε�500

0 for ε = 0.1. We choose
the specified interval for N (0) ∈ [0, 30] because adding larger labile N inputs does
not change the results qualitatively, suggesting that low input of labile N may have
the same potential to greatly impact SOM decomposition as high inputs of labile N .

We extend our results regarding the optimal C/N ratio inputs to maximize SOM
by considering different SOM carbon-to-nutrient ratios (Cs /Ns). By fixing the total
amount of carbon in SOM (Cs(0)), we estimate the labile C/N ratios required as initial
amendments to decompose SOM efficiently in terms of the initial nutrient richness in
it (Ns(0)). In Fig. 6 , we can see that high (low) amounts of labile N will maximize
SOMdecomposition for nutrient-rich (nutrient-poor) soils. These results show that the
C/N ratio to maximize SOM decomposition will depend on the dynamics that govern
SOM decomposition, that is, when SOM is Cs or Ns limited. If SOM dynamics are
strictly governed by Cs transients, then the optimal C/N ratio remains constant, but if
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Fig. 6 Optimal initial C/N ratio to decompose SOM efficiently with respect to the SOM nutrient richness
ratio. The experimental reference is Cs (0)/Ns (0) = 15, and the labile C/N ratio for labile substrates in
the laboratory experiment was approximately 4.5. The optimal labile C/N ratio is constant for nutrient-rich
soils, and it increases linearly for nutrient-poor soils

Fig. 7 (Left panel): Time expected for the priming effect to occur, i.e., whenmicrobial communities decom-
pose SOM at its maximum rate. (Right panel): Percentage of decomposed SOM by different treatments by
the ninth day

Ns transients govern it, then the optimal C/N ratio will increase linearly with respect
to the initial carbon-nutrient content in SOM.

The expected time required for microbial communities to decompose SOM at its
highest rate (tM ) will depend on the initial amendments and initial Cs /Ns ratio. We
compared the predicted time tM for two different amendments. Specifically, we con-
sider only C(0) = 500, N (0) = 0 and when C(0) = 500, N (0) = 20 as an optimized
treatment. Also, we computed the percentage of SOM carbon decomposed relatively
to Cs(0)/Ns(0) ratios by the ninth day using the same amendments (see Fig. 7). By
adding labile C and N , the tM is constant because the stoichiometric decomposition
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Fig. 8 Difference of cumulative decomposed SOM between soil treated with C(0) = 500, N (0) = 0
(�500

0 ), and with C(0) = 500, N (0) = 20 (�500
20 ) varying K fs (left panel) and Kgs (right panel) on the

ninth day. The parameters are taken as in Table 2. The initial conditions for other variables are considered
as in Table 3. The model is capable to reproduce positive (negative) priming effects depending on the value
for the half-saturation constant for fs and gs

mechanism is immediately at its highest, independent of SOM nutrient content. In
contrast, adding only labile C will increase the tM for nutrient-poor soils and remains
constant for nutrient-rich soils. The microbial N mining mechanisms will predomi-
nate for larger periods in nutrient-poor soils until enough nutrients are released from
SOM decomposition. The percentage of decomposed carbon in SOM at ninth day is
constant for nutrient-rich soils and will decrease for nutrient-poor soils. These results
show that the soil’s nutrient richness determines the time and strength of the priming
effect.

3.3 Numerical Experiment: Positive and Negative Priming Effect

The results from the laboratory experiments in (Chen et al. 2014) showed a positive
priming effect when Suc-C and Suc-C+min-N were added to soil samples. However,
therewas not a significant statistical difference after addingmin-N. Positive or negative
priming effects, i.e., increase or reduction of SOM decomposition after adding labile
substrates, respectively, have been documented when N is added into soil samples
(Kuzyakov et al. 2000). For example, in Janssens et al. (2010) it is stated that nitrogen
depositions reduce SOM decomposition in temperate forests.

In our model, the SOM degradation efficiency of Kgs and K fs is highly related
relatively to the cumulative SOM decomposition (see Fig. 4). SOM priming depends
on the input of labile sources C and N , and microbial activities. However, microbial
activities also rely on their ability to uptake resources from SOM. To understand how
the SOM degradation efficiencies regulate the priming effect strength for two different
soil treatments, we propose the following numerical experiment by considering Kgs
and K fs as parameters.

We define SC = Cs(0) − �500
0 as our numerical experiment reference, and we

compute the differencewith SCN (K ) = Cs(0)−�500
20 but varying only K = K fs (K =

Kgs ) which is the half-saturation constant for fs (gs). In Fig. 8, the positive (negative)
value indicates a negative (positive) priming effect concerning the different values
of the half-saturation constants. We suggest that the half-saturation for recalcitrant
carbon and nitrogen saturating functions in SOM should not be considered a constant
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but a function of other physical properties. In this way, the system will potentially
show negative priming effects even if the soils are treated with a combination of labile
compounds.

4 Discussion

The CO2 emissions derived from soils have been a subject of interest in the last years
due to the potential effects of global warming. In particular, sudden increments of
SOM decomposition rates in short periods derived from using labile substrates such
as fertilizers have gained attention, and different mechanisms have been proposed to
explain these increments over the last decades (Lal and Follett 2009; Kuzyakov et al.
2000). Recently, a laboratory experiment has supported combining the ‘microbial N
mining’ and ‘stoichiometric decomposition’ mechanism to explain this natural phe-
nomenon named the priming effect (Chen et al. 2014). Various mathematical models
successfully model the priming effect without considering explicitly bothmechanisms
or only tracking carbon pools (Neill and Gignoux 2006; Lawrence et al. 2009). Incor-
porating thesemechanisms, as nitrogen dynamics, is needed to increase the accordance
between mathematical models and data measurements (Chen et al. 2014; Blagodatsky
et al. 2010). Therefore, we proposed for the first time the inclusion of bothmechanisms
to explain the priming effect as carbon and nitrogen dynamics in a novel stoichiometric
mathematical model.

Themathematicalmodel in this work encompassesmicrobial utilization of different
labile and recalcitrant carbon and nitrogen pools to predict the strength of the priming
effect in soils with diverse SOM carbon and nutrient contents. Based on the laboratory
data adapted to validate the model, we were required to estimate those parameters that
were not available in the literature with 95% confidence. Our results predicted that
the carbon dynamics in SOM principally governed the laboratory experiment results.
Under this assumption and considering that the model is nutrient closed, simplifying
the model by tracking only carbon dynamics in SOM would be possible. However,
SOMdegradationmaybe subject to nutrient content, andwe considered that possibility
in our model predictions.

We validated our results and showed model prediction robustness through a local
sensitivity analysis. The laboratory experiment used abundant soil treatments in labile
carbon and nitrogen to produce the priming effect.However,we predicted an optimized
labile C/N ratio of approximately 26 would have the same results compared to C/N
ratio of 4.54 used for the experiment. This prediction assumes that soil amendments
based on only labile carbon are enough to produce the priming effect and increase
by adding labile nitrogen. Furthermore, we found that the optimized ratio of labile
substrates to decompose SOM efficiently remained constant for nutrient-rich soils
and increased for nutrient-poor soils. This result is comparable with the prediction in
(Fontaine et al. 2003),which predicted that nutrient-poor soils aremore often subject to
the priming effect than nutrient-rich soils. Our results showed that less labile nitrogen
input is needed to maximize SOM decomposition in nutrient-poor soils. Studying how
nutrient richness in soils affects the model predictions, we found that in nutrient-rich
soils, the priming effect is likely to happen in short periods. Still, depending on the soil
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treatment, it may be delayed and weakened in nutrient-poor soils. Finally, given the
sensitivity analysis, we determined that the SOM degradation efficiency determines
the increase or reduction of the priming effect on this model, which can be correlated
with other physical properties like temperature (Eppley et al. 1969), for example.

Thismodel still has limitations. First, the assumption for the function thatmodulates
SOM decomposition mechanisms is heuristic, and predictions could improve by using
mechanistic fundamentals. Second, the CO2 emissions, when only carbon is used as
a soil treatment, still present inaccuracies at the beginning of the simulation. The
heuristic function that modulates both mechanisms may still be improved to produce
better results without compromising its use to modulate the mechanisms behind the
priming effect. The model also suggests that the SOM degradation efficiencies should
be considered parameters, not constants, for general situations. Otherwise, the model
may not accurately represent the negative priming effect. Another limitation is that the
model is robust for short periods and is basedon the assumption that it is nutrient closed.
However, these issues will open more research directions, for example, considering
the nutrient uptake by plants, SOM decomposition for larger periods and continuous
or periodic inputs of labile substrates.

Acknowledgements P Venegas Garcia was partially supported by El Consejo Nacional de Ciencia y Tec-
nologia (CONACYT #709985) and University of Alberta. H Wang was partially supported by Natural
Sciences and Engineering Research Council of Canada (Collaborative Research and Development Grant,
Individual Discovery Grant RGPIN-2020-03911, Discovery Accelerator Supplement Award RGPAS-2020-
00090). This project was partially supported by Natural Sciences and Engineering Research Council of
Canada (Collaborative Research and Development Grant).

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Alijani MK, Wang H, Elser JJ (2015) Modeling the bacterial contribution to planktonic community
respiration in the regulation of solar energy and nutrient availability. Ecol Complex 23:25–33

Beeckman F, Motte H, Beeckman T (2018) Nitrification in agricultural soils: impact, actors and mitigation.
Current Opin Biotechnol 50:166–173

Bhatti J, Tarnocai C (2009) Influence of climate and land use change on carbon in agriculture, forest, and
peatland ecosystems across Canada. Soil Carbon Sequestration Greenh Effect 57:47–70

BlagodatskayaE,KuzyakovY (2008)Mechanismsof real and apparent priming effects and their dependence
on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45(2):115–131

Blagodatskaya E, Blagodatsky SA, Anderson TH et al (2007) Priming effects in chernozem induced by
glucose and n in relation to microbial growth strategies. Appl Soil Ecol 37(1–2):95–105

Blagodatsky S,BlagodatskayaE,YuyukinaT et al (2010)Model of apparent and real priming effects: linking
microbial activity with soil organic matter decomposition. Soil Biol Biochem 42(8):1275–1283

Chen R, Senbayram M, Blagodatsky S et al (2014) Soil C and N availability determine the priming effect:
microbial Nmining and stoichiometric decomposition theories. Global Change Biol 20(7):2356–2367

Craine JM, Morrow C, Fierer N (2007) Microbial nitrogen limitation increases decomposition. Ecology
88(8):2105–2113

Drake JE, Darby B, GiassonMA et al (2013) Stoichiometry constrainsmicrobial response to root exudation-
insights from a model and a field experiment in a temperate forest. Biogeosciences 10(2):821–838

Eppley RW, Rogers JN, McCarthy JJ (1969) Half-saturation constants for uptake of nitrate and ammonium
by marine phytoplankton 1. Limnol Oceanogr 14(6):912–920

123



   53 Page 18 of 18 P. Venegas Garcia, H. Wang

Falkowski P, Scholes R, Boyle E et al (2000) The global carbon cycle: a test of our knowledge of earth as
a system. Science 290(5490):291–296

Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial
competition? Soil Biol Biochem 35(6):837–843

Fontaine S, Hénault C, Aamor A et al (2011) Fungi mediate long term sequestration of carbon and nitrogen
in soil through their priming effect. Soil Biol Biochem 43(1):86–96

Hessen DO, Ågren GI, Anderson TR et al (2004) Carbon sequestration in ecosystems: the role of
stoichiometry. Ecology 85(5):1179–1192

Janssens I, DielemanW, Luyssaert S et al (2010) Reduction of forest soil respiration in response to nitrogen
deposition. Nature Geosci 3(5):315–322

Kong JD, Salceanu P, Wang H (2018) A stoichiometric organic matter decomposition model in a chemostat
culture. J Math Biol 76(3):609–644

KuzyakovY (2010) Priming effects: interactions between living and dead organicmatter. Soil Biol Biochem
42(9):1363–1371

Kuzyakov Y, Friedel J, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil
Biol Biochem 32(11–12):1485–1498

Lal R, Follett RF (2009) Soil carbon sequestration and the greenhouse effect, vol 57. ASA-CSSA-SSSA
Lawrence CR, Neff JC, Schimel JP (2009) Does adding microbial mechanisms of decomposition improve

soil organic matter models? A comparison of four models using data from a pulsed rewetting
experiment. Soil Biol Biochem 41(9):1923–1934

Manlay RJ, Feller C, Swift M (2007) Historical evolution of soil organic matter concepts and their
relationships with the fertility and sustainability of cropping systems. Agric Ecosyst Environ
119(3–4):217–233

Martin JP (1971) Decomposition and binding action of polysaccharides in soil. Soil Biol Biochem 3(1):33–
41

Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol
Monogr 76(2):151–174

Neill C, Gignoux J (2006) Soil organic matter decomposition driven by microbial growth: a simple model
for a complex network of interactions. Soil Biol Biochem 38(4):803–811

Smith OL (1982) Soil microbiology: a model of decomposition and nutrient cycling. CRC Press, Inc., Boca
Raton

Sterner RW, Elser JJ (2017) Ecological stoichiometry. Princeton University Press, Princeton
StotzkyG (2000) Soil Biochemistry. In: Books in soils, plants, and the environment. CRCPress, 200, https://

books.google.ca/books?id=VI9N7b16CRoC
Sylvia DM, Fuhrmann JJ, Hartel PG, et al (2005) Principles and applications of soil microbiology. QR111

S674 2005, Pearson
Tate RL (1995) Soil microbiology. Wiley, New York
Wang H, Jiang L, Weitz JS (2009) Bacterivorous grazers facilitate organic matter decomposition: a

stoichiometric modeling approach. FEMS Microbiol Ecol 69(2):170–179
Wang H, Sterner RW, Elser JJ (2012) On the strict homeostasis assumption in ecological stoichiometry.

Ecol Modell 243:81–88
Wang H, Lu Z, Raghavan A (2018) Weak dynamical threshold for the strict homeostasis assumption in

ecological stoichiometry. Ecol Modell 384:233–240

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://books.google.ca/books?id=VI9N7b16CRoC
https://books.google.ca/books?id=VI9N7b16CRoC

	A Data-Validated Stoichiometric Model for the Priming Effect
	Abstract
	1 Model Formulation
	2 Material and Methods
	2.1 Laboratory Experiment
	2.2 Data Fitting

	3 Numerical Simulations
	3.1 Sensitivity Analysis
	3.2 Numerical Experiment: Impact of Exogenous Labile C and N in SOM Decomposition
	3.3 Numerical Experiment: Positive and Negative Priming Effect

	4 Discussion
	Acknowledgements
	References


