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Abstract
Antiretroviral-based pre-exposure prophylaxis (PrEP) treatment offers a new opportu-
nity for protecting humans againstHIVanddisrupting currentHIVprevention systems.
However, implementing this preventive measure has been difficult due to its high cost.
In this paper, we propose an age-structured model that incorporates infection ages,
HAART (highly active antiretroviral therapy), and PrEP intervention. We investigate
the qualitative behavior of the model and find a threshold parameter (the basic repro-
duction number) that determines the asymptotic stability of equilibria. We validate the
model and estimate the parameters by confronting the actualHIV/AIDSdata from2004
to 2018 in China using MCMC (Markov Chain Monte Carlo) method. Furthermore,
we investigate the PrEP intervention strategy by using incremental cost-effectiveness
and average cost-effectiveness. Our work suggests that PrEP intervention based on
the infection characteristics of different age groups can be an effective strategy to
eradicate HIV/AIDS epidemics in China.

Keywords HIV/AIDS epidemics · Antiretroviral-based pre-exposure prophylaxis
(PrEP) · Age structure · Antiretroviral therapy · Markov Chain Monte Carlo
(MCMC)

1 Introduction

The HIV/AIDS epidemic has become a global pandemic and is one of the foremost
public health problems in the world today. In China, the first domestic outbreak of
HIV was deleted in 1989 in an extremely remote rural area in Yunnan province. The
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Fig. 1 a HIV prevalence per 100,000 individuals in 10 age groups from 15 to 64 years old. b HIV preva-
lence per 100,000 individuals in the 65+ age group; c AIDS prevalence per 100,000 individuals in 10
age groups from 15 to 64 years old. d AIDS prevalence per 100,000 individuals in the 65+ age group.

Prevalence of the i-th age group = Number of new cases of the i-th age group
The total population of the i-th age group × 100, 000

total number of HIV notifications in China has steadily increased in recent years. The
number of 146 reported cases in 1989 has grown to more than 1.25 million reported
cases as we entered 2019 (Wu et al. 2020a). HIV infection is well known for its long
incubation and infectious period, estimated at 8–10 years on average. The infectivity
of HIV-infected people varies depending on the time since infection (infection age).
For this reason, it is important to consider the infection-age structure when modeling
HIV infection at the population level. In Fig. 1, we can see that the prevalence of
HIV/AIDS continues to increase in different age groups, which motivates us to use
mathematical models with age structure to analyze the prevalence of HIV in China.

Over the past 20 years, many epidemiology compartment models have been formu-
lated to study the dynamics of HIV infection within the host and transmission among
the population. Nelson et al. (2004) developed and analyzed an age-structured model
of HIV-1 infection that allows for variations in the death rate of productively infected
T cells and the production rate of viral particles as a function of the length of time a
when T cell has been infected. Rong et al. (2007) presented an age-structured HIV-1
dynamics with the combination of antiretroviral therapy to study the influence of drug
therapy on the within-host viral fitness and the possible development of drug-resistant
strains. A structured novel Lyapunov function has been developed to investigate the
global stability of the age-structured HIV infection model (Gang et al. 2012). Guo
et al. (2021) established and analyzed a mathematical model that includes sequential
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cell-free virus infection and cell-to-cell transmission. Wang et al. studied the global
dynamics of an age-structured within-host HIV model with multiple target cells in
Wang et al. (2017). Manoj and Abbas (2022) investigated the threshold dynamics of
an age-structured model for HIV viral dynamics with latently infected T cells.

Due to the long infectious period of HIV epidemic, the age structure of a population
has been regarded as a crucial factor for epidemiology modeling. Stavros and Chavez
(1991) studied a general solution to the problem of mixing subpopulations and its
application to the risk and age-structured epidemic models for the spread of AIDS.
Afterward, some works investigated the threshold dynamics of the disease including
the basic reproduction number derivation and the stability of steady states of the sys-
tem. We refer readers to Martcheva and Crispino-O’Connell (2003), Webb (2008), Li
et al. (2020), Qiu and Feng (2010), Chavez and Feng (1998), Feng et al. (2005), and the
references therein. Another important research problem in age-structured infectious
disease modeling is numerical implementation. Different from the constant-valued
parameters of an ODE compartment model, an age-structured model contains some
age-dependent parameters (such asmortality, infection rate, treatment rate, etc.), which
brings great challenges to the numerical simulation of an age-structured model, espe-
cially how to combine model numerical simulation with actual epidemic data. In
view of this, Hethcote (2000) first provided a method that converts an age-structured
model into a demographic model and then uses actual data for numerical simulation.
Angulo et al. (2007) investigated the application of an age-structured model with
unbounded mortality to demography based on the data from 1990 to 2000 in the USA.
Afterward, Angulo et al. presented a numerical method for nonlinear age-structured
population models with finite maximum age in Angulo et al. (2010). Feng et al. (2020)
studied the influence of demographically realistic mortality schedules on vaccination
strategies in age-structured models. Based on Feng et al. (2020), Xue et al. (2022)
constructed an evaluating strategy for tuberculosis to achieve the goals of WHO in
China: a seasonal age-structured model study. Recently, Zhao et al. (2020) formulated
a three-age-class ordinary differential equations HIV/AIDS model to investigate the
transmission dynamics and optimal control strategy of HIV/AIDS in China. Since
HIV transmission is highly sensitive in certain age groups, we would like to study
HIV transmission in different age groups in detail.

The structure of this paper is organized as follows. In Sect. 2, we formulate the age-
structured HIV/AIDS model with PrEP intervention for the transmission dynamics of
HIV/AIDS. We obtain a non-dimensional form of the model in Sect. 3 and discuss
the existence of the positive solution in Sect. 4. We derive the basic reproduction
number and prove the stability of the disease-free steady state in Sect. 5. We show the
existence and stability of the endemic steady state of the system in Sect. 6. We derive
the demographic model corresponding to the age-structured model and conduct the
numerical simulations in Sect. 7. In Sect. 8, we present the numerical simulations and
PrEP intervention strategy. Finally, we close the paper with a discussion in Sect. 9.
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2 Model Formulation

We formulate an age-structured epidemiological model to study HIV/AIDS transmis-
sion dynamics assuming the population is stratified by age due to the age-dependent
force of infection. Moreover, we consider two treatment window periods for HIV
diagnosis: high-efficiency antiretroviral therapy (HAART) and pre-exposure ther-
apy (PrEP). The model divides the density of the total population N (t, a) into six
sub-compartments: susceptible individuals S(t, a), HIV-infected individuals who are
undiagnosed L(t, a), HIV-infected individuals who have been diagnosed I (t, a), HIV-
infected individuals under HAART treatment T (t, a), HIV-infected individuals with
clinical symptoms (AIDS) A(t, a) and susceptible individuals who take PrEP E(t, a).
We describe the disease dynamics using the following differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂a
+ ∂S

∂t
= −β(t, a)S(t, a) − (μ(a) + ψ(a))S(t, a) + θ(a)E(t, a),

∂L

∂a
+ ∂L

∂t
= β(t, a)S(t, a) − μ(a)L(t, a) − φ(a)L(t, a),

∂ I

∂a
+ ∂ I

∂t
= φ(a)L(t, a) − γ I (t, a) − μ(a)I (t, a),

∂T

∂a
+ ∂T

∂t
= ω(a)γ I (t, a) − μ(a)T (t, a) − α(a)T (t, a),

∂A

∂a
+ ∂A

∂t
= (1 − ω(a))γ I (t, a) + α(a)T (t, a) − (μ(a) + d(a))A(t, a),

∂E

∂a
+ ∂E

∂t
= ψ(a)S(t, a) − θ(a)E(t, a) − μ(a)E(t, a),

(1)

with boundary and initial conditions:

S(t, 0) = 
, L(t, 0) = 0, I (t, 0) = 0, T (t, 0) = 0,

A(t, 0) = 0, E(t, 0) = 0,

S(0, a) = S0(a), L(0, a) = L0(a), I (0, a) = I0(a), T (0, a) = T0(a),

A(0, a) = A0(a), E(0, a) = E0(a),

where

β(t, a) =
∫ a+

0
λ(a, a′)

(
ηL L(a′, t) + I (a′, t) + ηT T (a′, t) + ηA A(a′, t)

)

N (a′, t)
da′,

N (t, a) = S(t, a) + L(t, a) + I (t, a) + T (t, a) + A(t, a) + E(t, a),

λ(a, a′) = B(a)β̄(a′),

and a+ > 0 is the maximum age of an individual.

The details of the variables and parameters are given in Table 1.
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3 PreliminaryWork

In this section, we will nondimensionalize model (1) for further study. The total pop-
ulation N (a, t) satisfies the following equations

∂N

∂a
+ ∂N

∂t
= −μ(a)N (a, t) − d(a)A(a, t), (2)

with boundary and initial conditions

N (0, t) = S(0, t) + L(0, t) + I (0, t) + T (0, t) + A(0, t) + E(0, t) = 
,

N (a, 0) = N0(a) = S0(a) + L0(a) + I0(a) + T0(a) + A0(a) + E0(a).

Let

x(t, a) = S(t, a)

N (t, a)
, y(t, a) = L(t, a)

N (t, a)
, z(t, a) = I (t, a)

N (t, a)
,

u(t, a) = T (t, a)

N (t, a)
, v(t, a) = A(t, a)

N (t, a)
, w(t, a) = E(t, a)

N (t, a)
,

that gives

∂S

∂a
+ ∂S

∂t
=
(

∂x

∂a
+ ∂x

∂t

)

N (a, t) +
(

∂N

∂a
+ ∂N

∂t

)

x(a, t),

∂x

∂a
+ ∂x

∂t
= −(ψ(a) − d(a)v(a, t))x(a, t) − δ(a, t)x(a, t) + θ(a)w(a, t).

Similarly, apply this transformation to other variables of model (1); then, system (1)
can be rewritten as the following nondimensional form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x

∂a
+ ∂x

∂t
= −δ(a, t)x(a, t) − (ψ(a) − d(a)v(a, t))x(a, t) + θ(a)w(a, t),

∂ y

∂a
+ ∂ y

∂t
= δ(a, t)x(a, t) − (φ(a) − d(a)v(a, t))y(a, t),

∂z

∂a
+ ∂z

∂t
= φ(a)y(a, t) − (γ − d(a)v(a, t))z(a, t),

∂u

∂a
+ ∂u

∂t
= ω(a)γ z(a, t) − (α(a) − d(a)v(a, t))u(a, t),

∂v

∂a
+ ∂v

∂t
= (1 − ω(a))γ z(a, t) + α(a)u(a, t) − d(a)(1 − v(a, t))v(a, t),

∂w

∂a
+ ∂w

∂t
= ψ(a)x(a, t) − (θ(a) − d(a)v(a, t))w(a, t),

(3)

where δ(a, t) = ∫ a+
0 λ(a, a′)

(
ηL y(a′, t) + z(a′, t) + ηT u(a′, t) + ηAv(a′, t)

)
da′.
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Corresponding initial values and boundary conditions for system (3) are

x(0, t) = 1, y(0, t) = 0, z(0, t) = 0, u(0, t) = 0,

v(0, t) = 0, w(0, t) = 0,

x(a, 0) = x0(a), y(a, 0) = y0(a), z(a, 0) = z0(a),

u(a, 0) = u0(a), v(a, 0) = v0(a), w(a, 0) = w0(a).

4 Qualitative Study of theModel

In order to retain the biological validity of the model, in this section, we will show the
solutions to system (3) exist and they are positive for all values of the time.

Consider the Banach space

X = L1(0, a+) × L1(0, a+) × L1(0, a+) × L1(0, a+) × L1(0, a+) × L1(0, a+),

endowed with the norm

||Φ|| =
6∑

i=1

||Φi ||, Φ(a) = (Φ1(a), Φ2(a), Φ3(a), Φ4(a), Φ5(a), Φ6(a))T ∈ X .

Here ||.|| is the norm of space L1(0, a+). Denote

� := {(x, y, z, u, v, w) ∈ X+|0 ≤ x + y + z + u + v + w ≤ 1}

as the state space of system (3), where X+ = L1+(0, a+)× L1+(0, a+)× L1+(0, a+)×
L1+(0, a+)×L1+(0, a+)×L1+(0, a+), and the positive cone of L1(0, a+) is L1+(0, a+).
The linear operator A is given by

(A Φ) (a) = ¯A ,

where

¯A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− dx
da − ψ(a) 0 0 0 0 θ(a)

0 − dy
da − φ(a) 0 0 0 0

0 φ(a) − dz
da − r 0 0 0

0 0 ω(a)r − du
da − α(a) 0 0

0 0 (1 − ω(a))r α(a) − dv
da − d(a) 0

ψ(a) 0 0 0 0 − dw
da − θ(a)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(4)
and the domain D(A ) is given as

D(A ) = {Φ ∈ X |Φi ∈ BC[0, a+), Φ(0) = (1, 0, 0, 0, 0, 0)} ,
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where BC[0, a+) denotes the set of absolutely continuous functions on [0, a+). The
nonlinear operator F : X → X is given by

(FΦ) (a) = F̄ ,

where

F̄ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

d(a)Φ1Φ5 − (ηL (MΦ2)(a) + (MΦ3)(a) + ηT (MΦ4)(a) + ηA(MΦ5)(a))Φ1
(ηL (MΦ2)(a) + (MΦ3)(a) + ηT (MΦ4)(a) + ηA(MΦ5)(a))Φ1

d(a)Φ3Φ5
d(a)Φ4Φ5
d(a)(Φ5)

2

d(a)Φ6Φ5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(5)
where M is a bounded linear operator on L1(0, a+) given by

(M f )(a) =
∫ a+

0
λ(a, a′) f (a′)da′.

Denote m(t) = (x(., t), y(., t), z(., t), u(., t), v(., t), w(., t)), then system (3) can be
rewritten as follows

dm(t)

dt
= A m(t) + F (m(t)), m(0) = m0 ∈ X , (6)

where m0 = (x0(a), y0(a), z0(a), u0(a), v0(a), w0(a))T .
ForA andF , using results fromWebb (2008), we have the following conclusions:

Lemma 1 The space � is positively invariant associated with the semiflow defined by
eA t , where eA t is a C0-semigroup generated by the linear operator A .

Lemma 2 The operator F is continuously Frechet differentiable on X.

Theorem 4.1 There exists a maximal existence interval [0, t0) and a mild solution
m(t,m0) ∈ X+, t ∈ [0, t0) for system (6) such that

m(t) = eA tm0 +
∫ t

0
eA (t−τ)F (m(τ ))dτ for each m0 ∈ X+.

Thus, the solutions to system (3) exist for all t ∈ [0, t0].
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5 Basic Reproduction Number and Stability of the Disease-Free
Equilibrium

The positive steady state (x(a), y(a), z(a), u(a), v(a), w(a)) of system (3) satisfies
the following equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

da
= −δ(a)x(a) − (ψ(a) − d(a)v(a))x(a) + θ(a)w(a),

dy

da
= δ(a)x(a) − (φ(a) − d(a)v(a))y(a),

dz

da
= φ(a)y(a) − (r − d(a)v(a))z(a),

du

da
= ω(a)r z(a) − (α(a) − d(a)v(a))u(a),

dv

da
= (1 − ω(a))r z(a) + α(a)u(a) − d(a)(1 − v(a))v(a),

dw

da
= ψ(a)x(a) − (θ(a) − d(a)v(a))w(a),

(7)

where δ(a) = ∫ a+
0 λ(a′)

(
ηL y(a′) + z(a′) + ηT u(a′) + ηAv(a′)

)
da′ and initial con-

ditions are

x(0) = 1, y(0) = 0, z(0) = 0, u(0) = 0, v(0) = 0, q(0) = 0.

Denote thedisease-free equilibriumas E0 = (x0(a), y0(a), z0(a), u0(a), v0(a), w0(a)).
Because y0(a) = z0(a) = u0(a) = v0(a) = 0 andw0(a) = 1− x0(a), which implies
δ(a) = 0, from the first equation of system (7) we have

x0(a) = exp

{

−
∫ a

0
(ψ(ξ) + θ(ξ))dξ

}

+
∫ a

0
θ(η) exp

{

−
∫ a

η

(ψ(ξ) + θ(ξ))dξ

}

dη.

(8)

To study the stability of the disease-free equilibrium E0, we denote the perturbations
by x̃(a, t), ỹ(a, t), z̃(a, t), ũ(a, t), ṽ(a, t), w̃(a, t), respectively. Then, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ x̃

∂a
+ ∂ x̃

∂t
= − (d(a)̃v(a, t) + δ̃(a, t)

)
x0a − ψ(a)̃v(a, t))x(a, t) + θ(a)w̃(a, t),

∂ ỹ

∂a
+ ∂ ỹ

∂t
= δ̃(a, t)x0(a) − φ(a)ỹ(a, t),

∂ z̃

∂a
+ ∂ z̃

∂t
= φ(a)ỹ(a, t) − r z̃(a, t),

∂ ũ

∂a
+ ∂ ũ

∂t
= ω(a)r z̃(a, t) − α(a)̃u(a, t),

∂ṽ

∂a
+ ∂ṽ

∂t
= (1 − ω(a))r z̃(a, t) + α(a)̃u(a, t) − d(a)̃v(a, t),

∂w̃

∂a
+ ∂w̃

∂t
= ψ(a)̃x(a, t) − θ(a)w̃(a, t) + d(a)̃v(a, t)w0(a),

(9)
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where δ̃(a, t) = B(a)
∫ a+
0 β̄(a′) (ηL ỹ + z̃ + ηT ũ + ηAṽ) (a′, t)da′, with boundary

conditions:

x̃(0, t) = 1, ỹ(0, t) = 0, z̃(0, t) = 0, ũ(0, t) = 0, ṽ(0, t) = 0, w̃(0, t) = 0.

We set

x̃(a, t) = x̃(a)eσ t , ỹ(a, t) = ỹ(a)eσ t , z̃(a, t) = z̃(a)eσ t ,

ũ(a, t) = ũ(a)eσ t , ṽ(a, t) = ṽ(a)eσ t , w̃(a, t) = w̃(a)eσ t ,

where x̃(a), ỹ(a), z̃(a), ũ(a), ṽ(a), w̃(a), and the growth exponent σ satisfy the fol-
lowing equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̃

da
= −σ x̃(a) −

(
d(a)ṽ(a) + δ̃(a)

)
x0a − ψ(a)ṽ(a))x(a) + θ(a)w̃(a),

d ỹ

da
= −σ ỹ(a) + δ̃(a)x0(a) − φ(a)ỹ(a),

dz̃

da
= −σ z̃(a) + φ(a)ỹ(a) − r z̃(a),

dũ

da
= −σ ũ(a) + ω(a)r z̃(a) − α(a)ũ(a),

dṽ

da
= −σ ṽ(a) + (1 − ω(a))r z̃(a) + α(a)ũ(a) − d(a)ṽ(a),

dw̃

da
= −σw̃(a) + ψ(a)x̃(a) − θ(a)w̃(a) + d(a)ṽ(a)w0(a),

(10)

where λ̃(a) = B(a)
∫ a+
0 β̄(a) (ηL ỹ + z̃ + ηT ũ + ηAṽ) (a)da, with boundary condi-

tions:

x̃(0) = 0, ỹ(0) = 0, z̃(0) = 0, ũ(0) = 0, ṽ(0) = 0, w̃(0) = 0.

Let � = ∫ a+
0 β̄(a) (ηL ỹ + z̃ + ηT ũ + ηAṽ) (a)da, then λ̃(a) = B(a)�. From the

second equation of system (10), we obtain

ỹ′ + (σ + φ(a)) ỹ = B(a)�x0(a),

then

ỹ(a) = �

∫ a

0
B(η)x0(η) exp

{

−
∫ a

η

(σ + φ(ξ))dξ

}

dη.

Next, we obtain the expression of z̃(a) from the third equation of system (10) as

z̃(a) =
∫ a

0
φ(η)ỹ(η)e−(σ+r)(a−η)dη.
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Similarly, we have

ũ(a) =
∫ a

0
ω(η)r z̃(η) exp

{

−
∫ a

η

(α(ξ) + σ)dξ

}

dη,

ṽ(a) =
∫ a

0

[
(1 − ω(η))r z̃(η) + α(η)ũ(η)

]
exp

{

−
∫ a

η

(d(ξ) + σ)dξ

}

dη.

Define
∫ a
0 B(η)x0(η) exp

{
− ∫ a

η
(σ + φ(ξ))dξ

}
dη = �(a), then ỹ(a) = ��(a). The

expression of z̃(a) and ũ(a) can be rewritten as

z̃(a) = �

∫ a

0
φ(η)�(η)e−(σ+r)(a−η)dη = ��(a),

ũ(a) = �r
∫ a

0
ω(η)�(η) exp

{

−
∫ a

η

(α(ξ) + σ)

}

dη = r�Q(a),

(11)

where �(a) = ∫ a
0 φ(η)�(η)e−(σ+r)(a−η)dη, Q(a) = ∫ a

0 ω(η)�(η)

exp
{
− ∫ a

η
(α(ξ) + σ)

}
dη. Substituting (11) in the expression of ṽ(a) yields

ṽ(a) = r�
∫ a

0

[
(1 − ω(η))�(η) + α(η)Q(η)

]
exp

{

−
∫ a

η

(d(ξ) + σ)dξ

}

dη.

Consider the expression of �, substituting the ỹ, z̃, ũ, ṽ into �, then we obtain that

1 =
∫ a+

0
β̄(a)�(a)da + rηL

∫ a+

0
β̄(a)�(a)da + rηT

∫ a+

0
β̄(a)Q(a)da

+ rηA

∫ a+

0
β̄(a)

∫ a

0

(
(1 − ω(η))�(η) + α(η)Q(η)

)

exp

{

−
∫ a

η

(σ + d(ξ))dξ

}

dη.

(12)

Denote the right hand side of (12) by G(σ ), then the basic reproduction number
R(ψ, θ) = G(0) or can be explicitly written

R(ψ, θ) =
∫ a+

0
β̄(a)�̃(a)da + rηL

∫ a+

0
β̄(a)�̃(a)da + rηT

∫ a+

0
β̄(a)Q̃(a)da

+ rηA

∫ a+

0
β̄(a)

∫ a

0

(
(1 − ω(η))�̃(η) + α(η)Q̃(η)

)

exp

{

−
∫ a

η

d(ξ)dξ

}

dη,

(13)
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Fig. 2 a Function image of G(σ ) when G(0) < 1, b the function image of G(σ ) when G(0) > 1

where

�̃(a) =
∫ a

0
B(η)x0(η) exp

{

−
∫ a

η

φ(ξ)dξ

}

dη,

�̃(a) =
∫ a

0
φ(η)�̃(η)e−r(a−η)dη,

Q̃(a) =
∫ a

0
ω(η)�̃(η) exp

{

−
∫ a

η

α(ξ)

}

dη.

Now, we investigate the local stability of the disease-free equilibrium.

Theorem 5.1 There exists a maximal existence interval [0, t0) and a mild solution
m(t,m0) ∈ X+, t ∈ [0, t0) for system (6) such that the disease-free equilibrium E0 is
stable ifR(ψ, θ) < 1 and unstable ifR(ψ, θ) > 1.

Proof The function G(σ ) (the right hand side of (12)) is a decreasing and continuous
function of σ which approaches ∞ as σ → −∞ and zero when σ → ∞. Therefore,
the characteristic equation (12) has a unique real solution σ ∗. If G(0) < 1, i.e.,
R(ψ, θ) < 1, then the unique real eigenvalue is negative (see Fig. 2a). If G(0) >

1, R(ψ, θ) > 1, then the unique real solution of (12) is positive and E0 is unstable
(see Fig. 2b).
Furthermore, equation (12) has complex roots. Let σ = a+ bi , since Re(eσ ) ≤ eReσ ,
from (12) we know that ReG(σ ) = 1, ImG(σ ) = 0, and 1 ≤ G(Reσ). It follows that
Reσ ≤ σ ∗, since G(σ ) is a decreasing function of σ , that is, all complex solutions of
(12) have real parts smaller than σ ∗ (< 0). Thus, E0 is stable if R(ψ, θ) < 1. The
proof completes. �	

In order to understand the influence of PrEP, we compare the basic reproduction
number R(ψ, θ) with R0, which is the basic reproduction number without PrEP
treatment. We obtain the following expression for R0 without w equation by setting
ψ(a) = θ(a) = 0:
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R0 =
∫ a+

0
β̄(a)�̂(a)da + rηL

∫ a+

0
β̄(a)�̂(a)da + rηT

∫ a+

0
β̄(a)Q̂(a)da

+ rηA

∫ a+

0
β̄(a)

∫ a

0

(
(1 − ω(η))�̂(η) + α(η)Q̂(η)

)

exp

{

−
∫ a

η

d(ξ)dξ

}

dη,

(14)

�̂(a) =
∫ a

0
B(η) exp

{

−
∫ a

η

φ(ξ)dξ

}

dη, �̂(a) =
∫ a

0
φ(η)�̂(η)e−r(a−η)dη,

Q̂(a) =
∫ a

0
ω(η)�̂(η) exp

{

−
∫ a

η

α(ξ)

}

dη.

By equation (8), for all a > 0, x0(a) < 1 except that x0(a) = 1 whenψ(a) = θ(a) =
0, which implies �̂(a) > �̃(a). Hence, R(ψ, θ) < R0 (R(ψ, θ) is an increasing
function with respect to �̃(a)). When the reproductive number is greater than one in
the absence of PrEP treatment, i.e., R0 = R(0, 0) > 1, treatment programs can be
used to reduce the reproductive numberR(ψ, θ) to values below one and thereby can
be helpful in controlling or eliminating the disease.

6 Study of the Endemic Equilibrium

In this section, we investigate the existence and stability of the endemic steady-state
E∗ = (x∗(a), y∗(a), z∗(a), u∗(a), v∗(a), w∗(a)).

Theorem 6.1 If R(ψ, θ) > 1 and d(a)=0, then system (3) has a unique disease-
endemic steady state E∗.

Proof Wedenote δ∗(a) = B(a)
∫ a+
0 β̄(a)

(
ηL y∗(a)+z∗(a)+ηT u∗(a)+ηAv∗(a)

)
da =

�∗B(a). The coordinates of E∗ satisfy the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗(a) =
∫ a

0
θ(η)w∗(η) exp

{

−
∫ a

η

(
ψ(ξ) + �∗B(ξ)

)
dξ

}

dη

+ exp

{

−
∫ a

0

(
ψ(ξ) + �∗B(ξ)

)
dξ

}

,

y∗(a) =
∫ a

0
x∗(η)B(η)�∗ exp

{

−
∫ a

η

φ(ξ)dξ

}

dη,

z∗(a) =
∫ a

0
φ(η)y∗(η) exp

{

−
∫ a

η

rdξ

}

dη,

u∗(a) =
∫ a

0
ω(η)r z∗(η) exp

{

−
∫ a

η

α(ξ)dξ

}

dη,

v∗(a) =
∫ a

0

(
(1 − ω(η))r z∗(η) + α(η)u∗(η)

)
dη,

w∗(a) =
∫ a

0
ψ(η)x∗(η) exp

{

−
∫ a

η

θ(ξ)dξ

}

dη,

(15)
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where �∗ = ∫ a+
0 β̄(a)

(
ηL y∗(a) + z∗(a) + ηT u∗(a) + ηAv∗(a)

)
da. Substituting

w∗(a) into x∗(a), we obtain

x∗(a) =
∫ a

0
θ(η)

(∫ η

0
ψ(ξ)x∗(ξ) exp

{

−
∫ η

ξ

θ(τ )dτ

}

dξ

)

exp

{

−
∫ a

η

(
ψ(ξ) + �∗B(ξ)

)
dξ

}

dη

+ exp

{

−
∫ a

0

(
ψ(ξ) + �∗B(ξ)

)
dξ

}

.

Exchanging the order of multiple integrals, we obtain that

x∗(a) = P1(a) +
∫ a

0
P2(a, η,�∗)dη,

where

P1(a) = exp

{

−
∫ a

0

(
ψ(η) + �∗B(η)

)
dη

}

,

P2(a, η,�∗) = ψ(η)

∫ a

η

θ(ξ) exp

{

−
∫ a

ξ

(
ψ(τ) + �∗B(τ )

)
dτ −

∫ ξ

η

θ(τ )dτ

}

dξ.

Then, there is a unique solution x∗(a,�∗) which depends continuously on �∗ for
every �∗. Substituting y∗(a) into z∗(a) gives

z∗(a) =
∫ a

0
φ(η)y∗(η)e−r(a−η)dη

= �∗
∫ a

0

∫ η

0
φ(η)x∗(ξ)B(ξ) exp

{

−
∫ a

ξ

φ(τ )dτ

}

e−r(a−η)dξdη.

Thus, the expression of u∗(a) is given by

u∗(a) = r�∗
∫ a

0

∫ η

0

∫ ζ

0
ω(η) exp

{

−
∫ a

η

α(ξ)dξ

}

φ(ζ )x∗(g)B(g)

exp

{

−
∫ a

g
φ(ξ)dξ

}

e−r(a−g)dgdζdη.
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With u∗(a), z∗(a), we have

v∗(a) = r�∗
∫ a

0

{

(1 − ω(η))

∫ η

0

∫ ξ

0
φ(ξ)x∗(ζ )B(ζ )

exp

{

−
∫ a

ζ

φ(τ )dτ

}

e−r(a−ζ )dζdξ

+α(η)

∫ η

0

∫ ξ

0

∫ ρ

0
ω(ξ)

exp

{

−
∫ a

ξ

α(τ )dτ

}

x∗(g)B(g)

exp

{

−
∫ a

g
φ(τ)dτ

}

e−r(a−g)dgdρdξ

}

dη.

Substituting the expressions of y∗(a), z∗(a), u∗(a), v∗(a) into �∗ and canceling �∗,
we get

1 =
∫ a+

0
β̄(a)ηL

∫ a

0
x∗(η)B(η)

exp

{

−
∫ a

η

φ(ξ)dξ

}

dηda

+
∫ a+

0
η̄

∫ a

0

∫ η

0
φ(η)x∗(ξ)B(ξ)

exp

{

−
∫ a

ξ

φ(τ )dτ

}

e−r(a−ξ)dξdηda

+
∫ a+

0
rηT β̄(a)

∫ a

0

∫ η

0

∫ ζ

0
ω(η) exp

{

−
∫ a

η

α(ξ)dξ

}

φ(ζ )x∗(g)B(g)

exp

{

−
∫ a

g
φ(τ)dτ

}

e−r(a−g)dgdζdηda

+ ηA

∫ a+

0
β̄(a)

{

r
∫ a

0

{

(1 − ω(η))

∫ η

0

∫ ξ

0
φ(ξ)x∗(ζ )B(ζ )

exp

{

−
∫ a

ζ

φ(τ )dτ

}

e−r(a−ζ )dζdξ

+ α(η)

∫ η

0

∫ ξ

0

∫ ρ

0
ω(ξ) exp

{

−
∫ a

ξ

α(τ )dτ

}

x∗(g)B(g)

exp

{

−
∫ a

g
φ(τ)dτ

}

e−r(a−g)dgdρdξ

}

dη

}

da

(16)

Denote the right-hand side of (16) byH (�∗), thenH (�∗) is a continuous decreasing
function of �∗. Furthermore, x∗(a, 0) is x0, which is the disease-free equilibrium.
Therefore, H (0) = R(ψ, θ), that is, R(ψ, θ) > 1 implies H (0) > 1. On the other
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hand, based on �∗ > 0 and its expression we have

1 = 1

�∗

∫ a+

0
β̄(a)

[
ηL y

∗(a) + z∗(a) + ηT u
∗(a) + ηAv∗(a)

]
da = H (�∗).

Since ηL , ηT , ηA ∈ (0, 1), ηL y∗(a) + z∗(a) + ηT u∗(a) + ηAv∗(a) < 1, then we
have

H (�∗) = 1

�∗

∫ a+

0
β̄(a)

[
ηL y

∗(a) + z∗(a) + ηT u
∗(a) + ηAv∗(a)

]
da

≤
∫ a+
0 β̄(a)da

�∗ .

(17)

The right-hand side of (17) approaches zero as �∗ approaches infinity; therefore,
H (�∗) = 1 has a unique solution in (0, +∞). Furthermore, if �∗ ≥ ∫ a+

0 β̄(a)da,
then H (�∗) < 1, hence, (17) has a unique solution in (0,

∫ +
0 β̄(a)da). Thus, a

disease-endemic equilibrium exists. �	
Now, we study the stability of E∗ for system (3). Let x̂(a, t), ŷ(a, t), ẑ(a, t),

û(a, t), v̂(a, t), ŵ(a, t) be the perturbations of x∗(a), y∗(a), z∗(a), u∗(a), v∗(a),
w∗(a), respectively, and set

x̂(a, t) = x̂(a)e�t , ŷ(a, t) = ŷ(a)e�t , ẑ(a, t) = ẑ(a)e�t ,

û(a, t) = û(a)e�t , v̂(a, t) = v̂(a)e�t , ŵ(a, t) = ŵ(a)e�t .
(18)

We have the following equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̂

da
= −�x̂(a) + θ(a)ŵ(a) − ψ(a)x̂(a) − B(a)�̂x∗(a) − B(a)�∗ x̂(a),

d ŷ

da
= −�ŷ(a) + B(a)�̂x∗(a) + B(a)�∗ x̂(a) − φ(a)ŷ(a),

dẑ

da
= −�ẑ(a) + φ(a)ŷ(a) − r ẑ(a),

dû

da
= −�û(a) + ω(a)r ẑ(a) − α(a)û(a),

dv̂

da
= −�v̂(a) + (1 − ω(a))r ẑ(a) + α(a)û(a),

dŵ

da
= −�ŵ(a) + ψ(a)x̂(a) − θ(a)ŵ(a),

(19)

where �̂ = ∫ a+
0 β̄(a)

(
ηL ŷ(a)+ẑ(a)+ηT û(a)+ηAv̂(a)

)
da,with the initial conditions

x̂(0) = ŷ(0) = ẑ(0) = û(0) = v̂(0) = ŵ(0) = 0.
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Assume that �̂ �= 0 and let

x = x̂

�̂
, y = ŷ

�̂
, z = ẑ

�̂
, u = û

�̂
, v = v̂

�̂
, w = ŵ

�̂
,

then system (19) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

da
= −�x(a) + θ(a)w(a) − ψ(a)x(a) − B(a)x∗(a) − B(a)�∗x(a),

dy

da
= −�y(a) + B(a)x∗(a) + B(a)�∗x(a) − φ(a)y(a),

dz

da
= −�z(a) + φ(a)ŷ(a) − r ẑ(a),

du

da
= −�u(a) + ω(a)r z(a) − α(a)u(a),

dv

da
= −�v(a) + (1 − ω(a))r z(a) + α(a)u(a),

dw

da
= −�w(a) + ψ(a)x(a) − θ(a)w(a),

(20)

with the initial conditions

x(0) = y(0) = z(0) = u(0) = v(0) = w(0) = 0.

From (20), we obtain that

1 =
∫ a+

0
β̄(a)

(
ηL y(a) + z(a) + ηT u(a) + ηAv(a)

)
da. (21)

Denote the right-hand of (21) by L (�), then we have the following proposition:

Proposition 1 L (�) is a decreasing function of �, which approaches zero as � → ∞
and L (0) < 1.
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Proof From system (20), we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(a) =
∫ a

0

(
θ(η) − B(η)x∗(η)

)
exp

{

−
∫ a

η

(
� + ψ(ξ) + B(ξ)�∗)

}

dη,

y(a) =
∫ a

0

(
B(η)x∗(η) + B(η)�∗x(η)

)
exp

{

−
∫ a

η

(
� + φ(ξ)

)
dξ

}

dη,

z(a) =
∫ a

0
φ(η)y(η)e−(�+r)(a−η)dη,

u(a) =
∫ a

0
ω(η)r z(η) exp

{

−
∫ a

η

(� + α(ξ))dξ

}

dη,

v(a) =
∫ a

0

(
(1 − ω(η))r z(η) + α(η)u(η)

)
e−�(a−η)dη,

w(a) =
∫ a

0
ψ(η)x(η) exp

{

−
∫ a

η

(� + θ(ξ))dξ

}

dη,

(22)

that gives

L (�) =
∫ a+

0
β̄(a)

(
ηL y(a) + z(a) + ηT u(a) + ηAv(a)

)
da

=
∫ a+

0
β̄(a)

{

ηL y(a) +
∫ a

0
φ(η)y(η)e−(�+r)(a−η)dη

+ ηT

∫ a

0
ω(η)r z(η) exp

{

−
∫ a

η

(� + α(ξ))dξ

}

dη

+ ηA

∫ a

0
((1 − ω(η))r z(η) + α(η)u(η)) e−�(a−η)dη

}

da.

(23)

Consider y(a) > 0; therefore, from (23) we see that L (�) decreases in � and L (�)

approaches 0 as � approaches ∞.
Next, we prove L (0) < 1. We rewrite y(a) in system (22) as follows:

y(a) = y1(a) + y2(a),

where

y1(a) =
∫ a

0
B(η)x∗(η) exp

{

−
∫ a

η

(� + φ(ξ))dξ

}

dη,

y2(a) =
∫ a

0
B(η)�∗x(η) exp

{

−
∫ a

η

(� + φ(ξ))dξ

}

dη.
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Then,

zi (a) =
∫ a

0
φ(η)yi (η) exp

{

−
∫ a

η

(� + r)dξ

}

dη,

ui (a) =
∫ a

0
ω(η)r zi (η) exp

{

−
∫ a

η

(� + α(ξ))dξ

}

dη,

vi (a) =
∫ a

0

(
(1 − ω(η))r zi (η) + α(η)ui (η)

)
e−�(a−η)dη, i = 1, 2.

Hence, L can be written

L (�) = L1(�) + L2(�),

where

Li (�) =
∫ a+

0
β̄(a)

{

ηL yi (a) +
∫ a

0
φ(η)yi (η)e−(�+r)(a−η)dη

+ ηT

∫ a

0
ω(η)r zi (η) exp

{

−
∫ a

η

(� + α(ξ))dξ

}

dη

+ ηA

∫ a

0
((1 − ω(η))r zi (η) + α(η)ui (η)) e−�(a−η)dη

}

da, i = 1, 2.

(24)

Obviously, L1(0) + L2(0) = R(ψ, θ) + L2(0) = 1 + L2(0). Furthermore,
let q(a) = x(a) + y(a) + z(a) + u(a) + v(a). From (20), we have q(a) =
− ∫ a0 ω(η)z(η)e−�(a−η)dη < 0. Since ηL y(a)+ z(a)+ηT u(a)+ηAv(a) > 0, which
implies y(a) + z(a) + u(a) + v(a) > 0, we have x(a) < 0. Hence, from (20),
L2(0) < 0 is obtained. Finally, the proof of L (0) < 1 is complete. Hence, we have
the following result. �	

Theorem 6.2 If d(a) = 0 and R(ψ, θ) > 1, then the disease-endemic steady-state
E∗ of system (2) is stable.

7 The Demographic Model with Age Groups

In this section, we will study the demographic version of the model (1) without PrEP
interventions. First, we divide the population into n age groups. The subscript k rep-
resents the parts of the epidemiological classes in the i th age interval [ai−1, ai ], with
Wi (t) = ∫ ai

ai−1
W (a, t)da, whereW = S, L, I , T , A. Suppose the population is grow-

ing exponentially by ebt and apply the method mentioned in Hethcote (2000), then we
obtain the following system of differential equations
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Fig. 3 Schematic diagram of the demographic model (25)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1
dt

= 
 − f1(t)S1 − (μ1 + σ1)S1,

dSi
dt

= σi−1Si−1 − fi (t)Si − (μi + σi )Si , 2 ≤ i ≤ n,

dL1

dt
= f1(t)S1 − (μ1 + σ1 + φ1)L1,

dLi

dt
= fi (t)Si + σi−1Li−1 − (μi + σi + φi )Li , 2 ≤ i ≤ n,

dI1
dt

= φ1L1 − (μ1 + r1 + σ1)I1,

dIi
dt

= σi−1 Ii−1 + φi Li − (μi + ri + σi )Ii , 2 ≤ i ≤ n,

dT1
dt

= ω1r1 I1 − (μ1 + α1 + σ1)T1,

dTi
dt

= σi−1Ti−1 + ωi ri Ii − (μi + αi + σi )Ti , 2 ≤ i ≤ n,

dA1

dt
= α1T1 + (1 − ω1)r1 I1 − (μ1 + d1 + σ1)A1,

dAi

dt
= σi−1Ai−1 + αi Ti + (1 − ωi )ri Ii − (μi + di + σi )Ai , 2 ≤ i ≤ n,

(25)
where fi (t) = βi

∑n
k=1 ηki (ek Lk + Ik + bkTk + ck Ak)/Nk , i = 1, 2, ..., n. The

diagram of model (25) is shown in Fig. 3.
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7.1 The Basic Reproduction Number

In this subsection, we derive the basic reproduction number R0 of the system (25). In
fact, system (25) always has a disease-free equilibrium

E0 = (S0,L0, I0,T0,A0),

where

S01 = 


μ1 + σ1
, S0i = σi−1S0i−1

μi + σi
, L0

i = I 0i = T 0
i = A0

i = 0, 1 ≤ i ≤ n.

Thus, the linearized system with infection compartments around E0 is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dL1

dt
= β1

n∑

k=1

ηk1(ek Lk + Ik + bkTk + ck Ak) − (μ1 + σ1 + φ1)L1,

dLi

d t
= βi

n∑

k=1

ηki (ek Lk + Ik + bkTk + ck Ak) + σi−1Li−1 − (μi + σi + φi )Li ,

2 ≤ i ≤ n,

dI1
dt

= φ1L1 − (μ1 + r1 + σ1)I1,

dIi
dt

= σi−1 Ii−1 + φi Li − (μi + γi + σi )Ii , 2 ≤ i ≤ n,

dT1
dt

= ω1r1 I1 − (μ1 + α1 + σ1)T1,

dTi
dt

= σi−1Ti−1 + ωiγi Ii − (μi + αi + σi )Ti , 2 ≤ i ≤ n,

dA1

dt
= α1T1 + (1 − ω1)γ1 I1 − (μ1 + d1 + σ1)A1,

dAi

dt
= σi−1Ai−1 + αi Ti + (1 − ωi )γi Ii − (μi + di + σi )Ai , 2 ≤ i ≤ n.

(26)
Let x = (L, I,T,A)T , then system (26) can be rewritten as

dx

dt
= (F − V )x,

where

F =

⎡

⎢
⎢
⎣

H11 H12 H13 H14
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ ,V =

⎡

⎢
⎢
⎣

V11 0 0 0
V21 V22 0 0
0 V32 V33 0
0 V42 0 V44

⎤

⎥
⎥
⎦ ,
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with

H11 =

⎡

⎢
⎢
⎢
⎣

β1η11e1 β1η12e2 · · · β1η1nen
β2η21e1 β2η22e2 · · · β2η2nen

...
...

. . .
...

βnηn1e1 βnηn2e2 · · · βnηnnen

⎤

⎥
⎥
⎥
⎦

, H12 =

⎡

⎢
⎢
⎢
⎣

β1η11 β1η12 · · · β1η1n
β2η21 β2η22 · · · β2η2n

...
...

. . .
...

βnηn1 βnηn2 · · · βnηnn

⎤

⎥
⎥
⎥
⎦

,

H13 =

⎡

⎢
⎢
⎢
⎣

β1η11b1 β1η12b2 · · · β1η1nbn
β2η21b1 β2η22b2 · · · β2η2nbn

...
...

. . .
...

βnηn1b1 βnηn2b2 · · · βnηnnbn

⎤

⎥
⎥
⎥
⎦

, H14 =

⎡

⎢
⎢
⎢
⎣

β1η11c1 β1η12c2 · · · β1η1ncn
β2η21c1 β2η22c2 · · · β2η2ncn

...
...

. . .
...

βnηn1c1 βnηn2c2 · · · βnηnncn

⎤

⎥
⎥
⎥
⎦

,

V11 =

⎡

⎢
⎢
⎢
⎣

μ1 + σ1 + φ1 0 · · · 0 0
−σ1 μ2 + σ2 + φ2 · · · 0 0

...
...

. . .
...

...

0 0 · · · −σn−1 μn + σn + φn

⎤

⎥
⎥
⎥
⎦

,

V21 =

⎡

⎢
⎢
⎢
⎣

−φ1 0 · · · 0
0 −φ2 · · · 0
...

...
. . .

...

0 0 · · · −φn

⎤

⎥
⎥
⎥
⎦

,

V22 =

⎡

⎢
⎢
⎢
⎣

μ1 + σ1 + r1 0 · · · 0 0
−σ1 μ2 + σ2 + r2 · · · 0 0

...
...

. . .
...

...

0 0 · · · −σn−1 μn + σn + rn

⎤

⎥
⎥
⎥
⎦

,

V32 =

⎡

⎢
⎢
⎢
⎣

−ω1r1 0 · · · 0
0 −ω2r2 · · · 0
...

...
. . .

...

0 0 · · · −ωnrn

⎤

⎥
⎥
⎥
⎦

,

V33 =

⎡

⎢
⎢
⎢
⎣

μ1 + σ1 + α1 0 · · · 0 0
−σ1 μ2 + σ2 + α2 · · · 0 0

...
...

. . .
...

...

0 0 · · · −σn−1 μn + σn + αn

⎤

⎥
⎥
⎥
⎦

,

V42 =

⎡

⎢
⎢
⎢
⎣

−(1 − ω1)r1 0 · · · 0
0 −(1 − ω2)r2 · · · 0
...

...
. . .

...

0 0 · · · −(1 − ωn)rn

⎤

⎥
⎥
⎥
⎦

,

V44 =

⎡

⎢
⎢
⎢
⎣

μ1 + σ1 + d1 0 · · · 0 0
−σ1 μ2 + σ2 + d2 · · · 0 0

...
...

. . .
...

...

0 0 · · · −σn−1 μn + σn + dn

⎤

⎥
⎥
⎥
⎦

.
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From Feng et al. (2020), we can obtain the basic reproduction number R0 of system
(25) as follows:

R0 = ρ
(
FV −1

)
. (27)

7.2 FittingModel (25) to the HIV/AIDS Reported Data in China

In this subsection, applying the MCMC method mentioned in (Xue et al. 2022, sub-
section 3.2) we first estimate some model parameters and initial values of system (25)
based on the yearly number of newly reported HIV/AIDS cases for 11 age groups
from 2004 to 2018 in China. The corresponding collection of real data is given in
“Appendix A”.

7.2.1 Parameter Estimation

To simulate the number of HIV/AIDS reported cases inmainlandChina, the rationality
of the model is verified by the newly infected real cases. Here, the total population is
divided into 11 age groups and transmission only happened through sexual behaviors.
The values of some model parameters are estimated as follows:

1. Similar to Zheng et al. (2021), we assume that the recruitment rate of S1(t) is

 = N1 × μ1.

2. Since the maximum difference of age for each age group is five years, we choose

σi =
⎧
⎨

⎩

1

5
, 1 ≤ i ≤ 10,

0, i = 11.

3. Since the window period of HIV is generally 2–4 weeks, up to 6 months (Sweeting
and Angelis 2010), the value of φi is obtained by data fitting, i = 1, 2, ......., 11.

4. From literature (Wu et al. 2020b), we can estimate the proportion of HIV-infected
individuals who take ART treatment (ωi ) by data fitting, and we choose ART
treatment failure rate (αi ) as

αi =
{

[5%, 10%], 1 ≤ i ≤ 10,

[15%, 30%], i = 11.

5. From China Statistical Yearbook (National Bureau of Statistics 2021), we know
that the average lifetime of Chinese people is 76 years; then we can assume that
the natural death rate of [0–4] group is 1/76, under normal circumstances, and that
natural morality increases with age. Hence, we can further assume that the natural
death rates of [5–9] and [10–14] groups are 1/71 and 1/66, respectively (Xue et al.
2022). Thus, we can choose the average lifetime of Chinese as μ1 = 1/61, μ2 =
1/56, μ3 = 1/51, μ4 = 1/46, μ5 = 1/41, μ6 = 1/36, μ7 = 1/31, μ8 =
1/26, μ9 = 1/21, μ10 = 1/16, μ11 = 1/12.
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Table 2 Death rate due to AIDS in different age groups with data from Data-Center of China Public Health
Science (2021)

Age group 15–19 20–24 25–29 30–34 35–39 40–44

AIDS death rate 0.103 0.134 0.125 0.135 0.162 0.143

Age group 45–49 50–54 55–59 60–64 65+

AIDS death rate 0.152 0.169 0.183 0.219 0.305

6. Based on the statistical data in Data-Center of China Public Health Science (2021),
the average death rate di (i = 1, 2, · · ·, 11) due to AIDS in different age groups is
listed in Table 2.

7. We obtain the total population of the i-th age group as Ni . According to a recent
report, more than 1.05million people are infectedwithHIV inChina; therefore, we
can approximate the initial values as Li (0) = 1.05. Ii (0) = new cases, Ai (0) =
new cases, Ti (0) can be estimated by fitting with the data, and Si (0) = Ni −
Li (0) − Ii (0) − Ti (0) − Ai (0), i = 1, 2, ........, 11.

8. The values of γi and βi are obtained by fitting with the data, i = 1, 2, · · ·, 11.
9. The values of bi and ci , the coefficients that describe reduction in the transmission

rate due toART treatment, are obtained by fittingwith the data, i = 1, 2, ........, 11.
10. The contact matrix (i.e., (ηki )n×n): We aggregate it into 14 age groups by using

the method mentioned in Xue et al. (2022). Specifically, we set B̄ as the known
contact matrix, as displayed in Appendix B.4 in Xue et al. (2022), and b̄ig, i, g =
1, 2, . . . ,m, represents the elements in the contact matrix, where m is the number
of age groups and i, j , respectively, represent the rows and columns in the matrix.
We denote C=(ck j ), k, j = 1, 2, . . . , n, as the modified contact matrix, then we set
age group v̄ containing narrower age groups i = l(k) to g(k). Then the contact rate
between i group and g group can be given by d̄i, j = ∑v̄( j)

g=k( j) b̄ig . Furthermore, the

total number of contact from k to j and from j to k is given by Ȳk j = ∑v̄(k)
i=l(k) Ni d̄i j

and Ȳ jk = ∑v̄( j)
i=l( j) Ni d̄ik , respectively, where Ni represents the population in age

group i (see Appendix B.5 in Xue et al. 2022). To ensure that Ȳk j = Ȳ jk , we
set Wkj = Wjk = (Ȳk j + Ȳ jk)/2. Finally, the modified contact matrix elements

are given by ck j = Wkj
∑v̄(k)

i=l(k) Ni
, c jk = Wjk

∑v̄( j)
i=l( j) Ni

and the total contact rate on the

diagonal is given by ckk =
∑v̄(k)

i=l(k) Ni d̄ik
∑v̄(k)

i=l(k) Ni
. The modified contact matrix is shown in

Fig. 4. We use the modified contact matrix C to approximate the contact matrix
(ηki )n×n in the simulation.

Based on the parameter estimations mentioned above, the fitted curves of new and
cumulative HIV/AIDS cases for the 15–19 age group are presented in Fig. 5. The
collection of the other fitted curves is presented in “Appendix B”. It can be seen that
model (25) fits the new and cumulative cases in the 11 age groups reasonably well.
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Fig. 4 a Contact number of each individual in 14 age groups per day; b contact number of each individual
in 14 age groups per year

Fig. 5 Fitting curves of the new and cumulative HIV and AIDS reported cases for the 15–19 age group
from 2004 to 2018

7.3 The Sensitivity Analysis

From the fitting results, we can obtain the values of estimated parameters by the
MCMC method as shown in Table 3. Based on the estimated parameter values, the
mean of the basic reproduction number R0 is 1.7955 with 95% confidence interval
(1.791, 1.802), which is shown in Fig. 6.

To study the effects of the parameters on R0 of system (25), we perform sensitivity
analysis by Latin square sampling and partial rank correlation coefficient (PRCC)
methods. In the absence of available data on the distribution functions, we choose
a uniform distribution for all input parameters as shown in Table 3 and tested for
significant PRCCs for all parameters of R0. The corresponding outcome is given in
Fig. 7.

As can be seen from Fig. 7, R0 is positively and negatively correlated with param-
eters βi ,ωi ,bi ,ci ,ei (1 ≤ i ≤ 11) and γi , αi , φi , respectively. This shows that the
increase in the values of parameters βi , ωi , bi , ci , ei will significantly increase the
risk of disease transmission, and the increase in the values of parameters γi , αi , φi

will effectively reduce the risk of disease transmission. Furthermore, the parameters
in the older group have a less significant effect on R0, which means that the older age
groups have more severe HIV complications than the other age groups. Therefore, we
need to focus on more effective HIV transmission prevention and control measures
for adolescents (15–24) and adults (25–49).
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Table 3 Values of some
estimated parameters by the
MCMC method

φ1 0.108 β1 1.064 × 10−9 ω1 0.125 e1 0.377

φ2 0.398 β2 4.294 × 10−9 ω2 0.022 e2 0.023

φ3 0.194 β3 2.64 × 10−9 ω3 0.077 e3 0.344

φ4 0.643 β4 1.265 × 10−8 ω4 0.004 e4 0.002

φ5 0.528 β5 7.95 × 10−9 ω5 0.007 e5 0.003

φ6 0.607 β6 9.95 × 10−9 ω6 0.012 e6 0.007

φ7 0.310 β7 5.39 × 10−9 ω7 0.026 e7 0.030

φ8 0.612 β8 9.77 × 10−9 ω8 0.017 e8 0.007

φ9 0.549 β9 5.74 × 10−9 ω9 0.016 e9 0.340

φ10 0.239 β10 4.314 × 10−9 ω10 0.038 e10 0.018

φ11 0.850 β11 7.82 × 10−9 ω11 0.057 e11 0.016

b1 0.718 c1 0.495 α1 0.064 γ1 0.552

b2 0.738 c2 0.479 α2 0.074 γ2 0.350

b3 0.204 c3 0.408 α3 0.090 γ3 0.572

b4 0.804 c4 0.050 α4 0.069 γ4 0.546

b5 0.768 c5 0.121 α5 0.076 γ5 0.529

b6 0.170 c6 0.061 α6 0.091 γ6 0.424

b7 0.134 c7 0.174 α7 0.100 γ7 0.664

b8 0.024 c8 0.027 α8 0.050 γ8 0.407

b9 0.102 c9 0.206 α9 0.085 γ9 0.562

b10 0.109 c10 0.234 α10 0.095 γ10 0.649

b11 0.020 c11 0.089 α11 0.162 γ11 0.670

Fig. 6 Frequency of R0, the red curve is the probability density function curve of R0 (Color figure online)
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Fig. 7 PRCC of R0 for some model parameters
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Table 4 Values of the basic reproduction number Ri0 for the i-th group, i = 1, 2, · · · 11
Group 1 2 3 4 5 6 7 8 9 10 11

Ri0 1.430 1.572 1.509 1.412 1.504 1.390 1.422 1.494 1.544 1.486 2.11

Next, we discuss the different contribution to the disease from each age group. To
this end, according to Gao et al. (2022), we define the basic reproduction number of
group i as

Ri
0 = ρ(FiV

−1),

where σi = 0 in V and

Fi =

⎡

⎢
⎢
⎣

ei Hi Hi bi Hi ci Hi

0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ ,

with

H1 =

⎡

⎢
⎢
⎢
⎣

β1η11 0 · · · 0
β2η21 0 · · · 0

...
...

...
...

βnηn1 0 · · · 0

⎤

⎥
⎥
⎥
⎦

, Hk =

⎡

⎢
⎢
⎢
⎣

0 · · · β1η1k · · · 0
0 · · · β2η2k · · · 0
...

...
...

...
...

0 · · · βnηnk · · · 0

⎤

⎥
⎥
⎥
⎦

, Hn =

⎡

⎢
⎢
⎢
⎣

0 · · · 0 β1η1n
0 · · · 0 β2η2n
...

...
...

...

0 · · · 0 βnηnn

⎤

⎥
⎥
⎥
⎦

,

where 2 ≤ k ≤ n−1. Thus, based on the estimated values of parameters in subsection
7.2.1 and Table 3, after some calculations, we can obtain the values of the basic
reproduction number Ri

0 for the i-th group, which are all listed in Table 4.
From Table 4, we can see that there are significant differences in the values of the

basic reproduction number Ri
0 among different age groups. In particular, the value

of the basic reproduction number 1.430−1.572 of the young age group 20–29 and
the value of basic reproduction number 2.11 of the elder group 65+ are close to the
numerical results in Zhao et al. (2020) (the estimated values of the basic reproduction
number of these two age groups in Zhao et al. (2020) are 1.65 and 2.25, respectively).
Moreover, we can see from Table 4 that the values of the basic reproduction number
of the young group and the elder group are higher than those of the other age groups,
which reflects the current trend of AIDS transmission in China. This is in line with
(Zhao et al. 2020; Qiao and Xu 2019; Zhang and Cai 2020).

8 Numerical Results of System (1)

In this section, we explore model (1) to study the impact of PrEP intervention.
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Table 5 Fitting functions of parameters

ParametersForm c k1 k2 m

μ(a) c + k1e
ma + k2e

−ma 0.0191 3.84×10−4 −0.0136 0.0788

d(a) c + k1e
ma + k2e

−ma 0.1458 1.307×10−5−0.3653 0.1446

α(a) c + k1e
ma + k2e

−ma 0.0760 3.22×10−10−1.0191 0.2985

ω(a) c + k1e
ma + k2e

−ma 0.0183 2.83×10−9 4.6240 0.2535

φ(a) c + k1e
ma + k2e

−ma 0.5371 2.40×10−10−159.335 0.3928

β(a) c(k1(−(x − 40)2 + k2) + m) (Kuniya 2017)2.944×10−54.107×10−42.1935×1035.720×10−2

8.1 The Numerical Simulation of System (1)Without PrEP Intervention

In this subsection, we attempt to find the numerical simulation of the continuous
age-structured model (1) without PrEP intervention E(a, t). In fact, model (25) is
transformed fromModel (1) under the assumption that someage-dependent parameters
follow an exponential distribution. We try to use the fitting results of the model (25)
to estimate some age-dependent parameters in the model (1). Therefore, we choose
μ(a), d(a), α(a), ω(a), φ(a) as c + k1ema + k2e−ma , where a ∈ [0, a+] with a+ =
100. We give the fitting curves and the values of c, k1, k2,m in Fig. 8a–e and Table
5. Moreover, Fig. 4 shows that contact is more likely to occur between individuals
of similar age. Based on the values of βi

∑11
k=1 ηki (1 ≤ i ≤ 11) and the numerical

method mentioned in Kuniya (2017), we assume β(a) = c(k1(−(x −40)2 + k2)+m)

and we obtain the fitting curve and the estimated parameter values of c, k1, k2,m, as
shown in Fig. 8f and Table 5. For ηL , ηT , ηA, we choose the values of ηL , ηT , ηA as
the average values of ei , bi and ci (1 ≤ i ≤ 11), respectively. Thus, applying the
method mentioned in Kuniya (2017), Chang and Zhang (2022), Breda et al. (2021),
we can calculate the value of R0,m for each m, as shown in Fig. 9. It can been seen
that the error R+ − R0,m ( R+ represents the reference value of R0) converges to 0
as m increases, which implies that R0 ≈ 1.8022 > 1. This result is very close to the
value of R0 (1.7955) of system (25). Hence, we can claim that it is reliable to obtain
the value of R0 of model (1) by fitting the parameters of system (25).

To verify the rationality and validity of this estimation method, we use model (1)
to fit the cumulative HIV/AIDS reported cases from 2004 to 2018 in China. From
Fig. 10, we can see that the continuous age-structured model fits the actual reported
cases very well. This shows that it is very reasonable to obtain the parameter values
of the model by fitting the actual cases of different age groups to model (25) and then
estimate the functional form of the age-dependent parameters of model (1) with an
exponential distribution. This is also a problem ignored in previous related work: how
to use actual reported data to establish an age-structured infectious disease model that
can reflect the actual epidemic transmission situation. This numerical scheme can also
be extended to other infectious disease models.

We display the dynamical behaviors of the solution for system (1) when R0 =
R(ψ = 0, θ = 0) > 1 in Fig. 11. When we choose c = 1.2 × 10−6 in β(a), we can
obtain that R0 = R(ψ = 0, θ = 0) < 1. In Fig. 12, we can see that the populations
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Fig. 8 Fitting curve of some parameters of system (1)

Fig. 9 Value of R0: a Plot of the value of R0,m ; b error R+ − R0,m associated with the reference value
R+ with respect toR0
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Fig. 10 Fitting curves of the total cumulative HIV/AIDS reported cases from 2004 to 2018 by model (1) in
China

Fig. 11 Dynamical behaviors of the solutions for system (1) whenR0 > 1

of the infected compartments approach 0 as a and t increase, which implies that the
disease will eventually disappear.

8.2 The PrEP Intervention Strategies for HIV/AIDS Transmission

In this section, we investigate the impact of PrEP intervention on HIV/AIDS transmis-
sion in China. We choose ψ(a) = 0, 0.1, 0.2 in model (1), respectively. Figure13a
shows the changing trend of cumulative HIV and AIDS cases with respect to φ(a).
More specifically, the cumulative HIV cases will fall by 1.24× 105 by 2018 when we
take φ(a) = 0.1. These results indicate that PrEP treatment can effectively control the
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Fig. 12 Dynamical behaviors of the solutions for system (1) whenR0 < 1

transmission of HIV/AIDS. However, whenwe takeψ(a) = 0.1, it means that preven-
tive and controlmeasures need to be taken for all age groups, whichwill inevitably lead
to a waste of medical resources. To implement the cost-effectiveness analysis, we take
the following three age-dependent PrEP intervention functions ψ∗(a), ψ∗

1 (a), ψ∗
2 (a)

according to the characteristics of infection rate β(a) in Fig. 8f.

ψ∗(a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ a ≤ 15,

1

250
a, 15 < a ≤ 25,

0.1, 25 < a ≤ 55,

− 1

200
a + 3

8
, 55 < a ≤ 75,

0, 75 < a ≤ 100,

,

ψ∗
1 (a) =

⎧
⎪⎪⎨

⎪⎪⎩

0, 0 ≤ a ≤ 15,

− 1

9000
(a − 15)(a − 75), 15 < a ≤ 75,

0, 75 < a ≤ 100,

(28)
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Fig. 13 PrEP cover rate functions

Table 6 Proportion of the population of different age groups to the total population in China, with data
from National Bureau of Statistics (2014)

Age group 15–19 20–24 25–29 30–34 35–39 40–44

Proportion 5.16% 5.32% 6.52% 8.81% 7.02% 6.59%

Age group 45–49 50–54 55–59 60–64 65–69 70–74

Proportion 8.10% 8.59% 7.19% 5.21% 5.25% 3.52%

ψ∗
2 (a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ a ≤ 15,

0.01(a − 15), 15 < a ≤ 20,

0.05, 20 < a ≤ 30,

0.005a − 0.1, 30 < a ≤ 40,

0.1, 40 < a ≤ 50,

0.35 − 0.005a, 50 < a ≤ 60,

0.05, 60 < a ≤ 70,

− 0.01(a − 75), 70 < a ≤ 75,

0, 75 < a ≤ 100,

, (29)

and the diagrams of these three functions are shown in Fig. 13a–c, respectively.
In order to investigate the cost-effectiveness of the implementation of PrEP inter-

vention, we introduce two approaches: incremental cost-effectiveness (ICER) and
average cost-effectiveness (ACER). The definitions of ACER and ICER from Agusto
(2013) are as follows:

ACER =Total cost incurred on the implementation of PrEP intervention strategy

Total cases of HIV infected averted by the intervention strategy
,

ICER = Change in total costs in strategies i and j

Change in control benefits in strategies i and j
.

(30)

To calculate the total cost incurred on the implementation of the PrEP intervention
strategy in ACER corresponding to ψ(a), ψ∗(a), ψ∗

1 (a), ψ∗
2 (a), given by (28)–(29),

we list the proportion of the population of different age groups to the total population
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Fig. 14 Impact of different PrEP intervention strategies on HIV/AIDS transmission in China

in Table 6. Based on the data in Wang et al. (2022), we know that the PrEP cost for
a single person is 6500 USD per year. Thus, from Fig. 13a, we have the total cost of
PrEP with ψ(a) = 0.1, Cψ∗(a) as follows:

Cψ∗(a) = (0.5 × (5.16% + 5.32%) + 2.5

× (6.52% + 8.81% + 7.02% + 6.59% + 8.1%)

+ 1.25 × (8.59% + 7.19% + 5.21% + 5.25% + 3.52%))

× 6500N = 8.7646 × 103.

(31)

From Fig. 14b, we can obtain that the total HIV cases averted by the PrEP intervention
strategy are 6.32 × 104. Thus, we have

ACERψ∗(a) = 8.7646N

63.2
≈ 0.13868N ,

ICERψ∗(a) = −19822.4N

−5.68 × 104
≈ 0.34899N ,

where N represents the total population of China. Similarly, from Figs. 13b–c and 14,
we obtain the values of ACERψ(a),ACERψ∗

1 (a),ACERψ∗
2 (a), ICERψ∗

1 (a), ICERψ∗
2 (a)

which are listed in Table 7.
Applying theACER cost-effectiveness analysis method, we obtain that intervention

ψ(a) = 0.1 has the highest ACER value, followed by intervention ψ(a) = ψ∗
1 (a),
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Table 7 Values of ACER and ICER of ψ(a) = 0.1, ψ∗(a), ψ∗
1 (a), ψ∗

2 (a), which are shown in (28)–(29)

ψ(a) 0.1 ψ∗(a) ψ∗
1 (a) ψ∗

2 (a)

ACER 0.23336N 0.13868N 0.218595N 0.06399N

ICER for ψ(a) = 0.1 – 0.34899N 0.26814N 0.17434N

intervention ψ(a) = ψ∗(a) and intervention ψ(a) = ψ∗
2 (a) as shown in Table 7.

Therefore, the cost-effectiveness of the four PrEP intervention strategies, ranging
from the most cost-effective to the least cost-effective strategy, is given as interven-
tion ψ(a) = ψ∗

2 (a), intervention ψ(a) = ψ∗(a), intervention ψ(a) = ψ∗
1 (a), and

intervention ψ(a) = 0.1. The second row of Table 7 summarizes the calculated ICER
values for the intervention strategies. Accordingly, the ICER value of intervention
strategy ICERψ∗(a) is higher than that of PrEP intervention strategies ICERψ∗

1 (a) and
ICERψ∗

2 (a). This means that the intervention ψ(a) = ψ∗(a) is more costly and less
effective than the intervention ψ(a) = ψ∗

1 (a) or intervention ψ(a) = ψ∗
2 (a). Thus,

intervention ψ(a) = ψ∗
1 (a) should be eliminated from the list of intervention strate-

gies. Moreover, based on the numerical simulations about ACER and ICER, we can
verify that intervention ψ(a) = ψ∗

2 (a) is the most effective intervention strategy of
the four strategies.

9 Discussion

In this paper, we formulate a continuous age-structured HIV transmission model to
explore the cost-effectiveness of PrEP intervention to eradicate HIV transmission.
Previously, we tried to establish a three-age structure model to analyze the prevalence
of HIV/AIDS among adolescents (15–24), adults (25–49), and the elderly (≥ 50)
(Zhao et al. 2020). However, due to the lack of actual HIV/AIDS data and the limitation
of the ordinary differential equations model, we did not study HIV transmission in
different age groups in detail. Since HIV transmission is highly sensitive due to higher
social activity in certain age groups, in this paper, we tried to identify the age groups
to target for effectively slowing down the disease transmission. Our results suggest
that we need to take sufficient control strategies for adolescents (15–24) and adults
(25–49) in order to prevent further transmission. In addition, we derived the basic
reproduction number and showed the existence and stability of the disease-free and
endemic steady states of the system in terms of the basic reproduction number. We
examined the asymptotic behavior of the coupled system and find that if the basic
reproduction number under a PrEP campaign R(ψ, θ) < 1, then the disease-free
equilibrium is stable. If R(ψ, θ) > 1, the disease persists and the unique endemic
equilibrium is stable.

Based on the reported number of HIV/AIDS cases from 2004 to 2018 in China,
we estimated the model parameters of the demographic model by using the MCMC
method which eventually calculated the basic reproduction number R0 (1.7955 with
95% CI 1.791−1.802). Moreover, we obtained the probability density function curve
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and conducted the sensitivity analysis of R0 for the demographic model. It is worth
mentioning that it is very difficult to use theMCMCmethod tofit a demographicmodel.
Under the assumption that some age-dependent parameters follow an exponential
distribution,we obtained the function formof the age-dependent parameters in the age-
structure model from the estimated parameters of the demographic model. In addition,
the calculatedR0(1.8022) of the age-structured model is close to the value of the basic
reproduction number R0 of the demographic model. The above results show that the
age-structured model we developed is in line with the actual HIV/AIDS epidemic
situations. Finally, to study the cost-effectiveness of PrEP intervention strategies for
HIV/AIDS transmissionwe compared four different strategieswhere prevention varies
with respect to the age class. Stronger interventions are needed to substantially reduce
the number of infected individuals and the cost of implementing the strategy. We
introduce ICER and ACER approaches to determine the most cost-effective strategy.
After calculatingACER and ICER,we claim that the PrEP interventionψ(a) = ψ∗

2 (a)

is the most cost-effective intervention strategy among the four strategies. This shows
that taking different interventions based on the HIV epidemiological characteristics of
different age groups can effectively control the spread of the disease while achieving
the lowest cost.

In summary, we have used an age-structured model to explore the effect of PrEP
on controlling the spread of HIV and its cost-effectiveness and found that expanding
PrEP coverage would be highly effective to prevent disease transmission, but different
age-based interventions are necessary to control the disease spread cost-effectively.
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Appendix A: The Collection of Real Data

To parameterize the continuous age-structured model for HIV/AIDS transmission in
China, we first fit the reported cases from 2004–2018 (Data-Center of China Pub-
lic Health Science 2021) by the demographic model (25). The numbers of reported
HIV/AIDS cases for different age groups from 2004 to 2018 are displayed in Tables
8, 9 and 10.
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Table 8 HIV/AIDS reported cases from 2004 to 2008 in China. The data were collected from Data-Center
of China Public Health Science (2021)

Year 2004 2005 2006 2007 2008

Age HIV AIDS HIV AIDS HIV AIDS HIV AIDS HIV AIDS

15–19 376 17 627 67 771 56 813 110 1043 80

20–24 1690 125 3334 233 4415 301 4407 532 5765 473

25–29 2891 394 5940 775 7118 851 7155 1352 8636 1188

30–34 3119 632 6530 1163 7902 1348 7663 1830 8596 1776

35–39 2167 604 4135 1142 5291 1302 5736 1854 6731 1809

40–44 1269 500 2101 799 2753 1063 2848 1319 3844 1455

45–49 655 263 805 379 963 468 1241 687 1933 870

50–54 430 211 520 401 686 466 804 586 1299 688

55–59 191 107 321 104 448 293 562 447 974 569

60–64 102 65 204 140 328 142 410 366 697 389

65+ 72 31 124 71 223 109 339 194 568 285

Table 9 HIV/AIDS reported cases from 2009 to 2013 in China. The data were collected from Data-Center
of China Public Health Science (2021)

Year 2009 2010 2011 2012 2013

Age HIV AIDS HIV AIDS HIV AIDS HIV AIDS HIV AIDS

15–19 1094 105 1331 156 1545 225 1940 628 2286 581

20–24 6203 589 6795 888 7256 1143 8077 3211 8902 3274

25–29 8403 1361 8275 1796 8861 2048 9564 5431 10,275 5066

30–34 8285 2075 7452 2213 7813 2595 8435 5982 8578 5635

35–39 6870 2330 6586 2546 7128 3120 7440 6059 7382 5638

40–44 4421 1946 4550 2205 5273 2799 6120 5188 6542 5419

45–49 2502 1284 2733 1657 3742 2253 4389 4072 5013 4308

50–54 1484 921 1721 1136 2154 1382 2584 2469 3141 2837

55–59 1335 852 1687 1147 2340 1553 2835 2730 3275 2948

60–64 1044 650 1371 792 1978 1202 2247 2260 2761 2478

65+ 1852 950 2423 1272 3945 1941 4101 3436 4645 3743
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Table 10 HIV/AIDS reported cases from 2014 to 2018 in China. The data were collected fromData-Center
of China Public Health Science (2021)

Year 2014 2015 2016 2017 2018

Age HIV AIDS HIV AIDS HIV AIDS HIV AIDS HIV AIDS

15–19 2972 718 3377 539 3279 581 3283 566 3299 567

20–24 10,597 3383 11,345 2874 11,051 3065 10,758 2870 10,652 3041

25–29 12,135 5524 13,579 5679 13,655 6069 13,390 5807 13,321 5840

30–34 9485 5538 9698 5906 10,287 6193 10,545 6229 11,089 6720

35–39 7905 5627 8201 5851 8232 6085 8919 6036 9279 6818

40–44 7414 5570 8000 6633 8593 6909 9196 6731 9267 7056

45–49 3803 3186 4100 3508 4410 3605 5142 3886 6462 4816

50–54 3342 2881 4008 3508 4996 4037 5900 4590 7138 5422

55–59 2416 1968 2872 2470 3525 2922 4392 3372 5926 4237

60–64 1666 1270 2051 1648 2387 1755 2938 2186 3693 2676

65+ 5589 4150 6741 5378 8203 6127 10,249 7431 13,250 9283

Appendix B: Collection of Fitted Curves

The fitted curves of new and cumulative HIV/AIDS cases for different age groups are
presented in Figs. 15, 16, 17 and 18.

Fig. 15 Fitting curves of the new and cumulative HIV and AIDS reported cases from 2004 to 2018
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Fig. 16 Fitting curves of the new and cumulative HIV and AIDS reported cases from 2004 to 2018

Fig. 17 Fitting curves of the new and cumulative HIV and AIDS reported cases from 2004 to 2018
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Fig. 18 Fitting curves of the new and cumulative HIV and AIDS reported cases from 2004 to 2018
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