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Abstract
Nutritional constraints are common as food resources are rarely optimally suited for
grazing species. Elemental mismatches between trophic levels can influence popula-
tion growth and foraging behaviors. Grazing species, such as Daphnia, utilize optimal
foraging techniques, such as compensatory feeding.Here,wedevelop two stoichiomet-
ric producer–grazer models, a base model that incorporates a fixed energetic foraging
cost and an optimal foraging model where energetic foraging costs depend on food
nutritional content. A variable energetic foraging cost results in cell quota-dependent
predation behaviors. Analyzing and comparing these two models allows us to inves-
tigate the potential benefits of stoichiometric compensatory foraging behaviors on
grazer populations. Optimal foraging strategies depend on environmental conditions,
such as light and nutrient availability. In low-light conditions, fixed energetic foraging
appears optimal regardless of the nutrient loads. However, in higher light conditions
and intermediate nutrient loads, grazers utilizing compensatory foraging strategies
gain an advantage. Overall, grazers can benefit from compensatory feeding behaviors
when the food nutrient content of their prey becomes low or high.

Keywords Ecological stoichiometry · Predator–prey · Foraging strategies

1 Introduction

Optimal foraging theory employs models that aim to predict animal behaviors that
maximize their fitness (Pyke et al. 1977). In many cases, the intake of energy or food
quantity is used as a measure of fitness; however, maximizing energy intake does
not always correlate to maximizing fitness. As organisms are composed of multiple
chemical elements, foraging strategies also incorporate regulation ofmultiple nutrients
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(Simpson et al. 2004). Elemental mismatches between grazers and their food resources
can have significant consequences on their growth and reproduction (Sterner and Elser
2002). Ingesting nutritionally imbalanced diets leads to trade-offs between the costs
of foraging efforts and filling nutrient deficits while also dealing with the ingestion of
excess nutrients. There is growing evidence that animals employ foraging strategies
based on the nutritional content of their food (Simpson et al. 2004). These foraging
strategies depend on food quality rather than food quantity.

In order to investigate the effects of stoichiometry-dependent foraging strategies
under nutrient constraints, we develop producer–grazer models under the framework
of Ecological Stoichiometry (Sterner and Elser 2002). Models developed under the
theory of Ecological Stoichiometry consider multiple chemical elements and their
ratios across trophic levels, in order to incorporate food quantity and quality into a
single framework. Andersen (1997) introduced stoichiometric effects into the clas-
sical Rosenzweig MacArthur equations with the incorporation of nutrient-deficient
growth by modifying the density dependence of the producer’s growth rate and the
grazer’s growth efficiency. Introduction of these stoichiometric constraints signifi-
cantly affects the population dynamics and stability properties of the systemAndersen
(1997), Andersen et al. (2004). Following Andersen’s approach, Loladze et al. (2000)
formulated a producer–grazer model (LKE model) of the first two trophic levels of
an aquatic food chain (algae-Daphnia) incorporating the fact that both producers and
grazers are chemically heterogeneous organisms composed of two essential elements,
carbon (C) and phosphorus (P). Themodel allows the phosphorus to carbon ratio (P:C)
of the producer to vary above aminimum value. This variable P:C ratio of the producer
brings food quality into the model.

Grazer ingestion rates of most stoichiometric models consider Holling type II
functional responses (Holling 1965, 1966) that depend on producer quantity, but not
quality (Loladze et al. 2000; Wang et al. 2008; Peace et al. 2013, 2014; Peace 2015).
There are some complex computer simulations models that do consider stoichio-
metric foraging strategies (Darchambeau 2005; Mitra and Flynn 2007; Acheampong
et al. 2014). These complex models consider varying ingestion, assimilation, and
metabolism rates and efficiencies that depend on gut passage time (Darchambeau
2005; Mitra and Flynn 2007), and temperature (Acheampong et al. 2014). However,
the complexities of these models are difficult to incorporate into dynamic population
models.

Suzuki-Ohno et al. (2012) developed a simple model of compensatory feeding by
incorporating optimal foraging rates into a grazer functional response as filter feeders
Daphnia have limited ability to distinguish different food items and may benefit from
compensatory feeding behaviors (Suzuki-Ohno et al. 2012). They describe a forager’s
growth rate in terms of carbon as a function of the prey density (x) with the following
expression:

G(x) = (α − β) f (x) − (ξB + δ + ξ f ) (1)

where α and β are the carbon (C) assimilation efficiency and cost of assimilation,
respectively, ξB is the basal energetic cost for survivorship and δ is the biomass loss.
Parameter ξ f is the cost of feeding effort, which is the amount of C consumed a day to
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generate energy necessary for feeding behaviors. The feeding rate f (x) is represented
as

f (x) = μξ f x

1 + μξ f τ x
(2)

whereμξ f is the encounter rate with the prey and τ is the handling time. Suzuki-Ohno
et al. (2012) describeμ as the amount of water per unit of C invested to generate energy
for feeding behaviors and τ as the minimum amount of gut passage time for diges-
tion. They use the above foraging behaviors in a simple steady-state model to show
that optimal feeding rate increased by using excess C when the producer’s relative P
content was less than a critical level known as the threshold elemental ratio (TER).
Additionally, they found that the TER depended on the producer’s density. Here, we
follow the approach utilized by Suzuki-Ohno et al. (2012) to describe stoichiometric
foraging behavior and incorporate it into dynamic population models.

We first develop a base model by modifying the functional form of the grazer
ingestion rate and incorporating a fixed energetic cost for foraging efforts to the sto-
ichiometric producer–grazer model (WKL model) developed by Wang et al. (2008).
We then develop an optimal foraging model where the energetic cost for foraging
depends on producer nutritional composition parameterized with empirical data from
Elser et al. (2016). Analyzing and comparing these two models allows us to inves-
tigate the potential benefits of stoichiometric compensatory foraging behaviors on
grazer populations.

2 Model Formulation

We formulate models of the first two trophic levels of an aquatic food chain, with
primary producer x (algae, mg C/L) and grazer y (Daphnia, mg C/L). It is well docu-
mented that the elemental composition of algae varies widely when compared to that
of aquatic herbivores (Sterner and Elser 2002). Additionally, since Daphnia have high
nutrient demands, they are often limited by the quantity of mineral elements in their
food, rather than the amount of food or energy available (Sterner and Hessen 1994).
In order to incorporate such stoichiometric constraints, we assume that the producer
has a variable P:C ratio Q and the grazer has a constant P:C ratio θ . The amount of
free P in the environment is explicitly tracked and denoted as resource R.

The models assume that the grazer has a Holling type II functional response and
directly incorporate the carbon cost of feeding effort. First, we present a base model
(Sect. 2.1) where foraging behavior depends on available producer quantity, then
we develop an optimal foraging model (Sect. 2.2) where foraging behavior depends
on available producer quantity and quality. Finally, we employ quasi-steady-state
assumptions to reduce the models from four- to two-dimensional systems of ordi-
nary differential equations (Sect. 2.3).
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2.1 Base Model

The base model takes the following form:

dx

dt
︸︷︷︸

algae density

over time

= bmin

{

1 − x

K
, 1 − q

Q

}

x
︸ ︷︷ ︸

gain from

growth

− f (x)y
︸ ︷︷ ︸

loss from

predation

(3a)

dy

dt
︸︷︷︸

Daphnia density

over time

= emin

{

1,
Q

θ

}

f (x)y
︸ ︷︷ ︸

gain from

growth

−ξ y
︸︷︷︸

C cost of

feeding effort

−δy
︸︷︷︸

loss from

death

(3b)

dQ

dt
︸︷︷︸

algal P:C

over time

= v(Q, R)
︸ ︷︷ ︸

uptake from

environment

−bmin

{

1 − x

K
, 1 − q

Q

}

Q
︸ ︷︷ ︸

loss due to

growth

(3c)

dR

dt
︸︷︷︸

free P

over time

= − v(Q, R)x
︸ ︷︷ ︸

algal

uptake

+ θ y(δ + ξ)
︸ ︷︷ ︸

Daphnia

loss

+
(

Q − emin

{

1,
Q

θ

}

θ

)

f (x)y
︸ ︷︷ ︸

Daphnia

recycling

(3d)

where b is the maximum producer growth rate, K is the producer carrying capacity
in terms of light, q is the producer minimum P:C ratio needed for survival, e is the
grazer maximum conversion efficiency, δ is the grazer loss rate, and ξ is the feeding
cost.

Similar to previous models developed under the framework of Ecological Stoi-
chiometry (Andersen et al. 2004; Loladze et al. 2000), our models employ nonsmooth
minimum function in the growth rate expressions. The use of these functions follows
from Justin Leibig’s law of the minimum, which states that an organism’s growth will
be limited by whichever single resource is in the lowest supply relative to the organ-
ism’s needs (Sterner and Elser 2002). Here, we assume the growth rates are limited
either by C or P. This results in the minimum functions with two inputs seen in the
expressions for growth in model (3).

The uptake of a resource depends on the amount of that resource available, as well
as the amount of the resource that an organism currently has. Following Andersen
(1997) and Diehl (2007a), we assume that algal P uptake is an increasing function of
environmental nutrient concentration (R) and a decreasing function of internal nutrient
stores (Q). This uptake function takes the following form:

v(Q, R) =
[

v̂R

α + R

]
[

Q̂ − Q

Q̂ − q

]

(4)
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where v̂ is the prey maximum P:C uptake rate and α is the P half saturation constant.
The maximum algal P:C ratio is Q̂, and its minimum P:C ratio is q. f (x, Q) is the
grazer’s functional response, which depends on food quantity (x) and quality (Q).

Compensatory feeding can play an important role in maintaining herbivore popula-
tions as the quality of their food varies (Cruz-Rivera andHay 2000). Here, we associate
compensatory feeding into the functional response that incorporates a cost of feeding
effort. First, we assume the grazer’s ingestion rate, f (x), a Holling type II functional
response. Following Suzuki-Ohno et al. (2012), we assume the encounter rate with the
producer increases linearly with feeding effort and f (x) takes the following form:

f (x) = μξ x

1 + μξτ x
(5)

where ξ is the feeding effort, τ is the handling time, and μ is the amount of water
cleared per mg C invested to generate energy for filtering behavior. The base model
(3) is similar to the WKL model developed by Wang et al. (2008) with the addition of
the grazer’s feeding cost, ξ , and a modified functional response f (x) given in Eq. (5).

While ξ is the C cost of the feeding effort, it is important to note our assumption
that the Daphnia maintain a constant P:C ratio, θ . In order to maintain this homeostatic
assumption, the Daphnia release P into the environment at a ratio proportional to this
feeding effort, θξ ; see the second term in Eq. (3d).

2.2 Optimal ForagingModel

The optimal foraging model has the same structure as the base model (3) except that
the grazer functional response f (x) and the feeding effort ξ depend on food quality:
f (x, Q), ξ(Q). The optimal foraging functional response can be written as

f (x, Q) = μξ(Q)x

1 + μξ(Q)τ x
. (6)

Schatz and McCauley (2007) empirically investigated Daphnia foraging rates in
spatial stoichiometric gradients of food quality (algal P:C ratios). They found that
adult and juvenile Daphnia quickly locate regions of high-quality food and adjust
their ingestion rates for algae of varying stoichiometric ratios. Their empirical data
on Daphnia feeding behaviors, estimated from the depletion of algae densities over
time, suggest that maximum ingestion rates decrease linearly with decreasing P:C
ratio. However, Plath and Boersma (2001) monitored Daphnia feeding activity via
measuring the beat rate of the filtering appendage and found that feeding activity
decreases as algal P:C increases. These different results may be caused by different
acclimation procedures as Daphnia acclimated under poor food quality will increase
ingestion when given high-quality food (Schatz and McCauley 2007). Furthermore,
Elser et al. (2016) found nonmonotonic responses of Daphnia ingestion rates to algal
P:C by monitoring C14-labeled algae in the grazer and the media. Here, we assume
the feeding effort is quadratically related to food quality:
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(a) (b)

Fig. 1 Parameterization of Daphnia functional response for varying algal P:C ratios. Data (dots) from Elser
et al. (2016) were used to fit Eq. (6) (solid curve) assuming ξ(Q) can be described as the quadratic function
given in Eq. (7). The data were also used to fit Eq. (5) assuming ξ is constant (dashed line). Parameter
values obtained are listed in Table 1 with x = 0.25 mg C/L

ξ(Q) = a1Q
2 + a2Q + a3 (7)

and parameterize the optimal foraging functional response, Eq. (6) to the data for
Daphnia magna (Elser et al. 2016). Figure 1 shows the data and functional response
fits.

2.3 Model Reduction

The total amount of phosphorus in the system P = R + Qx + θ y is conserved, that
is, dP/dt = dR/dt + Qdx/dt + xdQ/dt + θdy/dt = 0 according to the equations
in model (3). The free nutrients can be expressed as

R = P − Qx − θ y, (8)

then the optimal foraging model can be reduced down to a system of three equations:

dx

dt
︸︷︷︸

algae density

over time

= bmin

{

1 − x

K
, 1 − q

Q

}

x
︸ ︷︷ ︸

gain from

growth

− f (x, Q)y
︸ ︷︷ ︸

loss from

predation

(9a)

dy

dt
︸︷︷︸

Daphnia density

over time

= emin

{

1,
Q

θ

}

f (x, Q)y
︸ ︷︷ ︸

gain from

growth

−ξ(Q)y
︸ ︷︷ ︸

C cost of

feeding effort

−δy
︸︷︷︸

loss from

death

(9b)

123



4938 A. Peace, H. Wang

dQ

dt
︸︷︷︸

algal P:C

over time

= v(Q, P − Qx − θ y)
︸ ︷︷ ︸

uptake from

environment

−bmin

{

1 − x

K
, 1 − q

Q

}

Q
︸ ︷︷ ︸

loss due to

growth

(9c)

Additional assumptions on the efficiency of the producer nutrient uptake can further
reduce the models. Here, we assume the producer is extremely efficient at nutrient
uptake and allow the maximum uptake to go to infinity v̂ → ∞. Allowing v̂ → ∞
removes the upper bound on the producer P:C ratio, Q̂, and we allow Q̂ → P−θ y

x . The
dynamics of the nutrients in the producer, Q, and the media, R, are much faster than
the population growth dynamics of x and y. We apply quasi-steady-state assumptions
on Eq. (9c) to obtain

Q =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

v̂RQ̂
v̂R−b(1− x

K )(α+R)(Q̂−q)
for 1 − x

K < 1 − q
Q

v̂RQ̂−q(α+R)(Q̂−q)

v̂R−b(α+R)(Q̂−q)
for 1 − x

K > 1 − q
Q

where R is given by Eq. (8). For sufficiently fast nutrient processes, v̂ is large. Taking
v̂ → ∞ in the above equation yields Q → Q̂ = P−θ y

x . Under these quasi-steady-state
assumptions, the models can be reduced to two dimensions. The reduced base model
takes the following form:

dx

dt
︸︷︷︸

algae density

over time

= bmin

{

1 − x

K
, 1 − q

Q

}

x
︸ ︷︷ ︸

gain from

growth

− μξ x

1 + μξτ x
y

︸ ︷︷ ︸

loss from

predation

(10a)

dy

dt
︸︷︷︸

Daphnia density

over time

= emin

{

1,
Q

θ

}

μξ x

1 + μξτ x
y

︸ ︷︷ ︸

gain from

growth

−ξ y
︸︷︷︸

C cost of

feeding effort

−δy
︸︷︷︸

loss from

death

(10b)

where

Q = P − θ y

x
, (11)

and ξ is a constant. The reduced optimal foraging model takes the following form:

dx

dt
︸︷︷︸

algae density

over time

= bmin

{

1 − x

K
, 1 − q

Q

}

x
︸ ︷︷ ︸

gain from

growth

− μξ(Q)x

1 + μξ(Q)τ x
y

︸ ︷︷ ︸

loss from

predation

(12a)
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dy

dt
︸︷︷︸

Daphnia density

over time

= emin

{

1,
Q

θ

}

μξ(Q)x

1 + μξ(Q)τ x
y

︸ ︷︷ ︸

gain from

growth

−ξ(Q)y
︸ ︷︷ ︸

C cost of

feeding effort

−δy
︸︷︷︸

loss from

death

(12b)

where

Q = P − θ y

x
and ξ(Q) = a1Q

2 + a2Q + a3. (13)

3 Model Analysis

This section includes analysis of the reduced models [Systems (10) and (12)]. We
determine the local stability of boundary equilibria, investigate the existence and sta-
bility of interior equilibria with a phase plane analysis, numerically observe periodic
orbits, and conduct single- and two-parameter bifurcation analysis.

3.1 Boundary Equilibria

The boundary equilibria of the reduced models [Systems (10) and (12)] have the
same form. There exists the trivial equilibrium E0 = (0, 0) with zero population
densities. Additionally, there is a boundary equilibrium with grazer only extinction,
E1 = (min{K , P/q}, 0). In order to investigate the local stability of the boundary
equilibrium, we first rewrite the base and optimal foraging models as follows:

dx

dt
= xF(x, y) (14a)

dy

dt
= yG(x, y) (14b)

where

F(x, y) = bmin

{

1 − x

K
, 1 − q

Q

}

− μξ

1 + μξτ x
y (15a)

G(x, y) = emin

{

1,
Q

θ

}

μξ x

1 + μξτ x
− ξ − δ (15b)

for the base model (10), and

F(x, y) = bmin

{

1 − x

K
, 1 − q

Q

}

− μξ(Q)

1 + μξ(Q)τ x
y (16a)

G(x, y) = emin

{

1,
Q

θ

}

μξ(Q)x

1 + μξ(Q)τ x
− ξ(Q) − δ (16b)
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for the optimal foraging model (12). Then, the Jacobian can be written as

J =
∣

∣

∣

∣

F(x, y) + xFx (x, y) xFy(x, y)
yGx (x, y) G(x, y) + yGy(x, y)

∣

∣

∣

∣
.

The Jacobian for both models evaluated at E0 becomes

J (E0) =
∣

∣

∣

∣

b 0
0 G(0, 0)

∣

∣

∣

∣
.

Therefore, E0 is unstable. The Jacobian for both models evaluated at E1 becomes

J (E1) =
∣

∣

∣

∣

−b ∗
0 G(min{K , P/q}, 0)

∣

∣

∣

∣
.

The local stability of E1 depends on the sign of G(min{K , P/q}, 0). If G(min{K ,

P/q}, 0) < 0, then E1 is a stable node, and if G(min{K , P/q}, 0) > 0 then E1 is an
unstable saddle.

While the use of minimum functions is a convenient approach to incorporate sto-
ichiometric constraints and allow organismal growth to be either limited by C or P,
it does introduce nonsmooth functions into the models. These nonsmooth operators
appear in elements of the Jacobian matrices. We note that these are derivatives of non-
differentiable functions.We utilize the Jacobian to show local stability of the boundary
equilibria and verified the results via numerical simulations.

3.2 Interior Equilibria

Phase plane analyses for the reduced base model (10) for varying K values are pre-
sented in Fig. 2, and those for the reduced optimal foraging model (12) are in Fig. 3.
We note that the nonsmooth minimum functions cause fragmentation to the phase
plane and partitions parameter space, similar to previous works (Andersen et al. 2004;
Loladze et al. 2000; Peace et al. 2013). Interior equilibria are located at the intersec-
tions of the producer and grazer nullclines. The stability of the interior equilibria was
observed numerically and is denoted in Figs. 2 and 3 with solid (stable) and open
(unstable) circles. The existence of periodic solutions was also observed numerically.

Under a low light intensity with K = 0.25 mg C/L, the base model has a stable
interior equilibrium (Fig. 2a), whereas the optimal foraging model has a stable limit
cycle (Fig. 3a). As the light intensity increases to K = 0.75 mg C/L, the base model
exhibits a Hopf bifurcation and limit cycles emerge as the interior equilibrium loses
its stability (Fig. 2b). Under this light intensity, the optimal foraging model exhibits a
limit cycle with very large amplitude (Fig. 3b). As the light intensity further increases
to K = 1.25 mg C/L, the base model has similar dynamics (Fig. 2c) but the limit
cycles in the optimal foraging model collapse as two additional equilibria emerge,
one stable and one unstable (Fig. 3c). The base model exhibits similar dynamics
as the optimal foraging model at a higher light intensity with K = 1.75 mg C/L
(Fig. 2d). Interestingly, for this very high level of light the optimal foraging model
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(a) (b)

(c) (d)

Fig. 2 Phase plane for the simplified base model for different light intensities. Dashed curves are producer
nullclines, solid curves are grazer nullclines, solid circles are stable equilibria, open circles are unstable
equilibria. Arrowed curves depict stable limit cycles solutions. Here, P = 0.03 mg P/L and all other
parameter values are listed in Table 1

gains an additional two interior equilibria and exhibits bistability, with two stable
interior equilibria (Fig. 3d).

3.3 Numerical Simulations

Figure 4 presents numerical simulations of the reduced base model (10) and optimal
foraging model (12) that correspond to the phase planes depicted in Figs. 2 and 3. The
ingestion rates for both models given in Eqs. (5) and (6) are shown in the last column.

3.4 Bifurcation Analysis

Here, we numerically conduct a bifurcation analysis using XPPAUT (Ermentrout
2002). The bifurcation diagrams are quite complicated, so we first present a bifur-
cation diagram of the well-studied LKE model by Loladze et al. (2000), shown in
Fig. 5. For low K, the grazer is unable to survive due to low food quantity. As K
increases, the grazer population increases. As K continues to increase, it reaches a
Hopf bifurcation where limit cycles emerge. These limit cycles are abruptly halted
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(a) (b)

(c) (d)

Fig. 3 Phase plane for the simplified optimal foraging model for different light intensities. Dashed curves
are producer nullclines, solid curves are grazer nullclines, solid circles are stable equilibria, open circles
are unstable equilibria. Arrowed curves depict stable limit cycles solutions

as K increases to a saddle-node bifurcation. After the saddle-node bifurcation, grazer
densities start to decline and eventually reach extinction. High values of K result in
low algal P:C ratio (Q), or low-quality food. The decline in grazer density is due to
low food quality. More detailed bifurcation analyses of the LKE model have shown
the model exhibits multiple regions of bistability as well (Li et al. 2011; Xie et al.
2018).

Similar to Loladze et al. (2000), we use nonsmooth minimum function to incorpo-
rate stoichiometric constraints and our bifurcation diagrams have a similar structure.
Bifurcation diagrams of our reduced models, systems (10) and (12) are presented in
Figs. 6, 7, 8, and 9 for different light intensities and P values.

For fixed intermediate P = 0.03 mg P/L, as shown in Fig. 6, under low light inten-
sities the base model exhibits a stable coexistence equilibrium; however, the optimal
foraging model exhibits periodic cycles with amplitudes that bring both populations
near to extinction. Under these conditions, the Daphnia in the base model fair better
than the optimal foraging model. As light increases, the base model exhibits a Hopf
bifurcation and limit cycles emerge. There is a range of K where bothmodels oscillate,
but the cyclic amplitudes in the optimal foraging model remain larger. Eventually, for
larger values ofK the oscillations in the optimal foraging model disappear and a stable
coexistence equilibrium emerges. This occurs at a saddle-node homoclinic connection
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 4 Numerical simulations for the reduced base model (dashed) and optimal foraging model (solid) for
population densities x , y C/L and grazer ingestion rates f for different light intensities: a–c K = 0.25 mg
C/L, d–f K = 0.75 mg C/L, g–i K = 1.25 mg C/L, and j–l K = 1.75 mg C/L. Here, P = 0.03 mg P/L
and all other parameter values are listed in Table 1. Under a very high light intensity with K = 1.75 mg
C/L, the optimal foraging model exhibits bistability, and two solutions with different initial conditions are
shown in j–l

(details of a similar bifurcation for the LKE model are presented in Van Voorn et al.
(2010).

This is the turning point, where the optimal foraging behavior begins to benefit the
Daphnia. Here, the base model predicts oscillatory dynamics, while optimal foraging
behaviors allow theDaphnia to remain at high population densities. AsK increases, the
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Fig. 5 Bifurcation diagram of
the LKE model by Loladze et al.
(2000) of the grazer population
for varying light-dependent
producer carrying capacity K .
Thick lines are stable equilibria
and extrema of stable limit
cycles, and thin lines are
unstable equilibria

(a) (b)

Fig. 6 Bifurcation diagrams for varying light-dependent carrying capacity K with intermediate nutrient
level P = 0.03 mg P/L. All other parameter values are listed in Table 1. Dashed red curves are for the base
model, and blue solid curves are for the optimal foraging model. Thick curves represent stable equilibria
and the maximum and minimum of stable limit cycles. Thin curves are unstable branches. Optimal foraging
behaviors benefit the grazers in the shaded region (Color figure online)

basemodel also goes through a saddle-nodebifurcation as the cycles collapse to a stable
equilibrium. Eventually, as light increases to very high values Daphnia populations
begin to decline in the base models due to poor food quality. This is a well-observed
phenomenon in stoichiometric producer–grazer models (Loladze et al. 2000; Wang
et al. 2008; Peace 2015). Under these very high light intensities, the optimal foraging
model exhibits bistability. One equilibrium at high Daphnia densities predating on a
low quantity of very-high-quality algae, and another equilibrium with low Daphnia
population densities, similar to the dynamics of the base model.

Figure 7 presents bifurcation diagram under a low nutrient level P = 0.02 mg P/L.
Under low light intensities, the bifurcation dynamics are similar to Fig. 6; the base
model has a stable equilibrium and the optimal foraging model has stable limit cycles.
As light increases, The optimal foraging model exhibits the saddle-node bifurcation
and its limit cycles collapse before the base model exhibits its Hopf bifurcation. Inter-
estingly, the limit cycles emerging in the base model have smaller amplitudes than
before and persist as light further increases. As light continues to increase, the base
model becomes bistable with a small-amplitude stable limit cycle and a stable interior
equilibrium.
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(a) (b)

Fig. 7 Bifurcation diagrams for varying light-dependent carrying capacity K with low nutrient level P =
0.02 mg P/L. All other parameter values are listed in Table 1. Dashed red curves are for the base model,
and blue solid curves are for the optimal foraging model. Thick curves represent stable equilibria and
the maximum and minimum of stable limit cycles. Thin curves are unstable branches. Optimal foraging
behaviors benefit the grazers in the shaded region (Color figure online)

(a) (b)

Fig. 8 Bifurcation diagrams for varying light-dependent carrying capacity K with high nutrient level P =
0.04 mg P/L. All other parameter values are listed in Table 1. Dashed red curves are for the base model,
and blue solid curves are for the optimal foraging model. Thick curves represent stable equilibria and the
maximum and minimum of stable limit cycles. Thin curves are unstable branches (Color figure online)

Figure 8 presents bifurcation diagram for a high nutrient level P = 0.04 mg P/L.
Under low light intensities, this bifurcation diagram is similar to low and intermediate
P conditions; however, as light increases the limit cycles of both models persist. The
amplitudes of the limit cycles are large and the producer populations reach extremely
low values (almost extinction). In the optimal foraging model, the large-amplitude
limit cycles bring the grazer population densities near extinction as well.

A two-parameter bifurcation diagram for varying light level K and varying nutrient
level P is presented in Fig. 9. The location of the Hopf and saddle-node bifurcations
observed in the above one-dimensional bifurcation diagrams divides the parameter
space into multiple regions. The colored regions in Fig. 9 are regions of oscillations.
Outside these regions, both models have stable equilibria. The optimal foraging model
exhibits limit cycles in blue region 1, the base model has limit cycles in red region 2,
and both models cycle in purple region 3.
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Fig. 9 A two-parameter bifurcation diagram for varying light level K and varying nutrient level P . All
other parameter values are listed in Table 1. Red corresponds to the base model, and blue corresponds to
the optimal foraging model. Solid red and blue curves depict Hopf bifurcations, and dashed red and blue
curves depict saddle-node bifurcations. The optimal foraging model exhibits oscillations in region 1, the
base model exhibits oscillations in region 2, and both models exhibit oscillations in region 3. Outside these
regions, both models have stable equilibria (Color figure online)

4 Discussion

Optimal foraging behaviors of grazers depend on both food availability as well as
stoichiometric constraints. The base model [System (3)] is a stoichiometric producer–
grazer model that employs a Holling type II functional response which incorporates
the carbon cost of feeding efforts as suggested by Suzuki-Ohno et al. (2012). The
optimal foraging model (System (6)) expands the base model under the assumption
that the feeding effort is quadratically related to food quality as observed empirically
by Elser et al. (2016). Comparing the two models allows us to gain insight into the
conditions where optimal foraging behaviors benefits the grazers.

Under intermediate P conditions and low–medium light intensities, the grazers in
the base model appear to have an advantage of those in the optimal foraging model.
The model simulations in Fig. 4b show the grazer population at stable values for the
base model, whereas the population oscillates near extinction for the optimal foraging
model. Under slightly higher light in Fig. 4e, both models predict oscillations in the
grazer population; however, the larger amplitude oscillations in the optimal foraging
model bring the population near extinction. For medium–high light intensities, the
grazers in the optimal foraging model gain the advantage. Figure 4h shows the grazer
population saturates to a high stable value for the optimal foraging model, whereas
the population oscillates for the base model. Under high light intensities, both models
predict that the grazer population saturates at high stable values, as shown in Fig. 4k,
but it is higher in the optimal foragingmodel. Interestingly, the optimal foragingmodel
exhibits bistability with two high-value stable equilibria.

These comparative dynamics of the two models can also be observed in the bifur-
cation diagrams. Regardless of P levels, under low light the grazer in the base model
does better than that in the optimal foraging model. This can be observed from the
left portion of the bifurcation diagrams Figs. 6, 7, and 8 where the base model has a
stable equilibrium and the optimal foraging model has large-amplitude oscillations.
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(a) (b)

Fig. 10 a Per capital growth rates of the grazer population for the base model (red) and the optimal foraging
model (blue) as functions of x and Q for the steady-state scenario in Eqs. (17) and (18). b Comparison of
the two surfaces in x − Q parameter space, grazer per capital growth rates are higher for the base model in
the red regions and higher for the optimal foraging model in the blue regions (Color figure online)

Under intermediate levels of P, the grazer in the optimal foraging model gains the
advantage for higher light intensities (shaded region of Fig. 6). A high grazer density
stable equilibrium emerges in the optimal foraging model, and the base model exhibits
oscillations. Under low P conditions, the grazer in the optimal foraging model only
has the advantage for a small region of intermediate light intensities (shaded region of
Fig. 7). The base model exhibits bistability with a stable equilibrium and a stable limit
cycle. The stable equilibrium has similar dynamics as the one in the optimal foraging
model for high light intensities. Under high P conditions, both models exhibit large-
amplitude oscillations for high light intensities, although the low points of oscillations
in the optimal foraging model get closer to extinction (Fig. 8). Arguably, the grazer in
the base model has advantage in this scenario.

The observed bifurcation dynamics of nonsmooth stoichiometric models are rich.
Robust analyses and global bifurcation have been conducted on the LKE model
(Loladze et al. 2000). Li et al. (2011) performed a bifurcation analysis of the LKE
model with Holling type II functional response with fixed parameter values and found
the appearance of bistability. Xie et al. (2018) performed additional investigations with
a complete global bifurcation without fixing any parameter. Here, they found multiple
types of bistability. The global bifurcation analyses performed by Van Voorn et al.
(2010) highlight the important ecological consequences of global bifurcations. We
refer to these sources for details on robust bifurcation analyses to nonsmooth models
and note that more rigorous analyses and global bifurcation on our models may shed
more light into these dynamics and is left for future work.

Under the equilibrium case, we can visualize and compare the grazer per capita
growth rates of the two models as functions of x and Q, by considering the grazer per
capital growth rates for the base model:

dy/dt

y
= emin

{

1,
Q

θ

}

f (x) − δ − ξ (17)
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and for the optimal foraging model:

dy/dt

y
= emin

{

1,
Q

θ

}

f (x, Q) − δ − ξ(Q). (18)

These surfaces are presented in Fig. 10 for varying x and Q values under the equilib-
rium case. The models suggest that the grazer can benefit from compensatory feeding
behaviors for low and high food nutrient content (see the blue region in Fig. 10b). In
many cases, the differences in height between the two surfaces in Fig. 10a are small,
especially when the fitness of the base model (red) is higher than that of the optimal
foraging model (blue). In these cases, the benefits of different foraging strategies may
be small, especially considering any uncertainties in parameter values. The differences
between the strategies are largest in scenarios of food low in quantity but high in P.
We note that these surfaces are only showing dynamics at equilibria conditions, and
bifurcation diagrams should be considered when the dynamics are oscillatory.

The models were parameterized with values from empirical observations, and sev-
eral parameter values are used in previous studies, see Table 1. However, the lack of
long-term datasets of population dynamics with corresponding measurements of vary-
ing stoichiometric ratios makes model validation challenging. While future datasets
will help validate modeling efforts, the analyses presented here provide insight into
the possible qualitative dynamics as light and P levels vary, rather than accurate quan-
titative predictions.

The developed models only consider one producer population, a single species
of algae with a variable P:C ratio, and the optimal foraging model employs compen-
satory feeding behaviors. An alternative strategy for grazers to dealwith stoichiometric
constraints is to ingest a variety of prey of different elemental compositions. This strat-
egy, called complementary feeding (Simpson et al. 2004; Suzuki-Ohno et al. 2012),
includes a mixed diet composed of several producer species. A natural extension of
the model presented here can include multiple producer populations.

Additionally, population dynamics can be more complicated with the consideration
of spatial variation in food quality. Schatz and McCauley (2007) tested how Daphnia
fair under a spatial gradient of algal P:C ratios while algal densities were held constant.
Daphnia adjusted their ingestion rates and were able to quickly locate regions of high-
quality food.
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