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Abstract The Alzheimer’s disease (AD) is a neu-

rodegenerative disease, which is caused by the aggre-

gation of beta-amyloid peptide (Ab) in the patient’s

brain and the disorder of Ca2þ homeostasis in neurons.

Caluwé and Dupont (Theor Biol 331:12–18, 2013)

proposed a deterministic AD model to explore the

effect of Ca2þ on AD. They demonstrated the positive

feedback loop between Ab and Ca2þ : and the

occurrence of bistability. Based on their results, we

further discuss the bistable behaviors. We present two

periodically feasible drug strategies to alleviate the

AD and screen out more effective one. In this paper,

we also formulate a stochastic AD model, analyze the

existence and uniqueness of global positive solutions

and establish sufficient conditions for the existence of

ergodic stationary distribution. Furthermore, the con-

fidence ellipses describing the configurational

arrangement of stochastic coexistence equilibria are

constructed by stochastic sensitivity function tech-

nique, and tipping threshold is estimated as well.

Noise-induced stochastic switching between two

coexistence equilibria is observed in bistability region.

Our results provide a new idea to control noise to

alleviate AD through physical therapy.

Keywords Bistability � Positive feedback loop �
Environmental noise � Ergodic stationary � Confidence

ellipse

1 Introduction

Alzheimer’s disease (AD) is recognized as the leading

disease in the elderly, usually causing irreversible

brain dysfunction in humans [1, 2], while less than

10% of AD cases are familial and occur in people

around the age of 30–50[3]. AD is divided into seven

stages (Global Deterioration Scale): from normal

cognition but pathological changes in the brain (stage

1) to poor mobility, communication difficulty, and the

need for feeding assistance (stage 7) [4]. Importantly,

cognitive dysfunction is major. Patients also often

suffer from neuropsychiatric dysfunction, such as

depression, anxiety, psychosis and circadian rhythm

disorder [5]. Unfortunately, death occurs 3–10 years

J. Gao � R. Wang

School of Ecology and Environment, Northwestern

Polytechnical University, Xi’an 710129, China

J. Ji � H. Wang (&)

Department of Mathematical and Statistical Sciences,

University of Alberta, Edmonton, AB T6G 2G1, Canada

e-mail: hao8@ualberta.ca

Y. Liu

School of Mathematics and Computer Application,

Shangluo University, Shangluo 726000, China

F. Zhang (&)

School of Statistics and Mathematics, Yunnan University

of Finance and Economics, Kunming 650221, China

e-mail: fzhang188@163.com

123

Nonlinear Dyn

https://doi.org/10.1007/s11071-023-08547-y(0123456789().,-volV)( 0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-023-08547-y&amp;domain=pdf
https://doi.org/10.1007/s11071-023-08547-y


after the onset of AD and is the result of inactivity,

often leading to pneumonia and blood clots [6]. It was

estimated that the incidence of AD doubles every five

years after the age of 65, affecting 1275 per 100,000

people. The cases after 86 years old accounted for the

30–50% of total AD cases [7]. Countries around the

world invest a large amount of money to mitigate the

development of AD every year. According to statis-

tics, the investment in 2015 was $ 818 billion, which

was increased by 35.4% over 2010, and accounted for

1.09% of global GDP [8, 9], which greatly increases

the economic burden of the country, and has a

detrimental influence on human life, social harmony

and stability. Currently, the cholinesterase inhibitors

on the market for the treatment of AD include

galantamine, donepezil, rivastigmine, memantine

and herbal medicine. These drugs have long been

considered the first line of treatment for AD. Unfor-

tunately, reports have shown that although patients

taking these drugs can alleviate the development of

AD to some extent, these drugs can also produce

certain side effects, such as diarrhea, nausea and

vomiting. Few patients also experience life-threaten-

ing adverse effects such as thrombocytopenia, heart

attack, adenocarcinoma and extreme anaemia. In

addition, various different and contradictory assump-

tions have made it difficult to determine the exact

mechanism and physiological function of the disease

itself, as well as the obstacles of drug transport across

the impenetrable blood–brain barrier [10]. Addition-

ally, due to the inability to target the large area of

neuron [11] and synaptic death in AD brain, the

current treatment has also reached a bottleneck.

However, some researchers have tried to break the

shackles of the current treatment of AD by studying

the mathematical modeling of AD [12–15]. For

example, Helal et al. suggested that the polymerization

rate of b-amyloid (Ab) peptide is constant and also

when it is described by a power law, and they proved

the well-posedness and stability of model [15].

Oligomers are more toxic in the process of Ab aggre-

gation, the elastic analysis showed that Ab42 paranu-

clei can be used as therapeutic target [12]. Dayeh et al.

proposed Ab mathematical model for monomer

aggregation into oligomers by the concepts of chem-

ical dynamics and population dynamics. They inves-

tigated the stable and unstable conditions of

equilibrium, and also gave the formula of the amount

of monomers needed for the production of oligomer

[13]. Although the research on AD has been carried

out and achieved substantial results, the potential

mechanism of AD is still unclear. Therefore, it is

urgent to explore the potential molecular mechanisms

leading to AD.

The pathogenesis of AD is accompanied by highly

complex ecological processes. It is widely believed

that the beta-amyloid (Ab) lesion, cholinergic and tau

hypothesis are three primary inducements of AD [3].

At present, a reasonable explanation for causing AD is

the aggregation of b-amyloid peptide (Ab) in the brain

of patients. Pathologically, a large number of plaques

(composed of Ab-peptide) have been found in brains

of AD patients, so researchers have believed that the

incidence of AD is closely related to the accumulation

of these plaques in human’s brain [16]. In the Ab-

lesion hypothesis, it is assumed that amyloid precursor

protein (APP) produces sAPPb and CTFb through b-

secretase, among which the CTFb is cleaved to form

Ab monomers under catalysis of c-secretase. Then Ab
monomers further aggregate to form insoluble Ab-

plaques, which in turn affects the function of neuronal

cells seriously [17]. Experimental and theoretical

studies on AD also have elucidated the aggregation

process generating the Ab-peptide [2, 3, 16, 17]. In

addition, the AD-mouse model showed that the Ab can

cause the increase in cell membrane with permeabil-

ity, which makes a large amount of Ca2? flow into

cytoplasm and destroys the Ca2?-homeostasis in the

brain. Increasing evidences suggested that the AD is

induced by continuous disturbance of intracellular

Ca2? homeostasis in the brain [18, 19]. Berridge

showed that the concentration of Ca2? remains high in

the neurites near the amyloid deposits, which con-

tributes to the cognitive decline due to long-term

depression and temporally memory-storage elimina-

tion [20]. Meantime, the excessive Ca2? may lead to

the accumulation of Ab in rat cortical neurons by

stimulating the c-secretase activity, which was also

confirmed by the study on the endogenous enzymes in

human neuroblastoma SH-SY5Y cells in vitro

[21, 22]. These results demonstrated that the perma-

nent increase of Ca2? enhances the c-secretase

activity, thereby improving the production and toxi-

city of Ab [23]. Intuitively, we believe that there exists

a positive feedback loop between the changes of Ab
and Ca2?: the accumulation of Ab contributes to the

increase of Ca2?, and which in turn improves the level

of Ab. This forms a pernicious cycle between the two
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sides, and accelerates the development of AD. Caluwé

and Dupont [1] firstly proposed a deterministic AD

model to formalize the positive feedback loop between

Ab and Ca2?:

dx

dt
¼ V1 þ V3f ðyÞ � k1x;

dy

dt
¼ V2 þ V4gðxÞ � k2y;

ð1Þ

where x and y denote the concentrations of Ab and the

intracellular Ca2?, respectively. V1 is the basic

synthesis rate of Ab, and k1 is the clearing rate of

Ab. V2 represents the rate at which Ca2? flow into the

cytoplasm, and k2 is the decay rate of Ca2?. V3f ðyÞ
denotes the positive feedback of Ca2? acting on Ab
(stimulating the c-secretase activity), where

f yð Þ ¼ y2

k2
3
þy2, and k3 is a half-saturation constant.

V4gðxÞ represents the positive feedback of Ab acting

on Ca2? (increasing the permeability of cell mem-

brane), and the concentration of Ca2? changes very

quickly in the cell, where gðxÞ ¼ x. Caluwé and

Dupont obtained that under a set of appropriate

parameters, System (1) has three internal equilibria,

E1 (small), E2 (middle) and E3 (large). Where E1, E3

are asymptotically stable and E2 is an unstable saddle

point. This shows a bistable phenomenon between

stable equilibria and they discussed that the intracel-

lular Ca2? homeostasis is disturbed sufficiently, the

Ca2? homeostasis becomes a pathological state, and

also explored that presenilin mutation accelerates the

development of AD.

In addition, the random error or uncertainty is an

inevitable factor in the development of organic tissues

and biological systems. However, it is of great

significance to consider random effect in the study of

dynamic models. For AD in the elderly, there is no

clear inheritance pattern and well-identified molecular

bases. AD is usually described as a multifactorial

disease caused by genetic, epigenetic, environmental

and metabolic factors related to aging. Therefore, it is

necessary to study the dynamics of stochastic models

and explore the possibility that AD may be caused by

random disturbances. There are two kinds of stochas-

tic noises in the theoretical studies: the intrinsic noise

and the extrinsic one. The former noise is incurred by

random changes of biochemical reaction between cells

[24], like effects of calcium on c-secretase activity,

nuclear fusion and the changes of cell-membrane

permeability, while the latter one is induced by the

stochastic changes of intracellular microenvironment

for Ab and Ca2?, such as Na?, pH value as well as

immune cells [25, 26]. Since the intrinsic noise in AD

mentioned above is caused by complex random

changes of biochemical reactions between cells,

meanwhile the pathogenesis of AD is accompanied

by highly complex ecological processes, it is a great

challenge to consider the intrinsic noise in AD. While

the extrinsic noise is caused by random changes in the

cellular microenvironment, it can also truly reflect

random changes between molecules in the cell, and

some works on AD have considered the effect of

extrinsic noise on the development of AD, for

example, Hu et al. [9, 14]1 proposed two stochastic

models of the extrinsic noise (including stochastic

PDE) to describe the dynamics of Ab plaques, Ab
oligomers, PrPC proteins, and the Ab-x-PrPC complex

which are associated with AD. However, Caluwé and

Dupont only considered the deterministic AD model

and studied the impact of Ca2? on the development

process of AD, but they did not consider the extrinsic

noise in the cellular microenvironment, so, in this

paper, we introduce extrinsic noise into System (1)

established by Caluwé and Dupont to investigate the

following stochastic system:

dx ¼ V1 þ V3

y2

k2
3 þ y2

� k1x

� �
dt þ r1xdB1ðtÞ;

dy ¼ 1

e
V2 þ V4x� k2yð Þdt þ r2ffiffi

e
p ydB2ðtÞ;

ð2Þ

where 0\e � 1: Due to the time scales of the onset of

AD and of Ca2? are in years and seconds or minutes,

we add 1=e to System (2) to keep the time scales of Ab
and Ca2? at the same level. BiðtÞ ði ¼ 1; 2Þ are the

standard Wiener process and ri [ 0 ði ¼ 1; 2Þ denote

the intensity of noise. It is very common to study the

dynamics of the stochastic systems by constructing

ellipses through stochastic sensitivity function tech-

nique [27]. For example, Xu et al. [28, 29] considered

a stochastic model in which two microorganisms

compete for an inhibitory growth-limiting nutrient and

explored feedback control of noise-induced extinc-

tion. Zhao et al. [30] considered a stochastic model

with toxic phytoplankton and patchy aggregation,

1 PrPC proteins: Cellular prion proteins. Ab-x-PrPC: PrPC binds

to Ab oligomer as a receptor to produce Ab-x-PrPC complex.
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revealed that noise-induced phase transitions may

explain blooms. In this paper, we study the positivity,

global and ergodic properties of stochastic solutions.

The confidence ellipses describing the configurational

arrangement of stochastic coexistence equilibria are

constructed by stochastic sensitivity function tech-

nique [27]. The noise-induced switching between two

coexistence equilibria and estimation tipping thresh-

old [31] are investigated.

The main purpose of this paper is as follows. We

first focus on the deterministic system (i.e., r1 ¼ r2 ¼
0 in (2)), explore the process of AD induced by

positive feedback strength (reflected by V3), and we

obtain that the concentrations of Ab and Ca2? jump

from lower steady states (healthy states) to higher ones

(pathological states), which is a key index to trigger

AD. Moreover, we present two periodically feasible

drug strategies to alleviate the AD and screen out more

effective one, and confirm that as long as the

concentrations of Ab and Ca2? are adjusted to

attraction basin in healthy state through drug treat-

ment, the development of AD can be alleviated. Then,

for the stochastic system, we prove uniqueness of

global positive solutions and give sufficient conditions

for stationary distribution. The most important finding

is that phenomenon of the noise-induced phase

transition occurs, such as noise induces pathological

state to change into healthy state. Therefore, we can

control the noise intensity by physics methods to keep

Ab and Ca2? in healthy states, which provides

theoretical support for the control of AD in the

medical field. Our results provide some new sugges-

tions on how to mitigate the progression of Alzhei-

mer’s disease.

The rest of this paper reads as follows. In Sect. 2,

we study the deterministic system based on Caluwé

and Dupont’s system through bifurcation analysis.

The dynamical effects of different strategies of drug

therapy on the development of AD are explored as

well. In Sect. 3, we pay attention to the stochastic

system, the uniqueness of global positive solutions and

sufficient conditions for stationary distribution are

studied. Moreover, the noise-induced switching

between two coexistence equilibria and estimation

tipping threshold are investigated. A summary is

presented, and some future works are discussed in the

last section.

2 Bifurcation analysis and drug therapy for AD

in deterministic system

In this section, we study the dynamics of the deter-

ministic system (2) without noise, and explore how the

positive feedback strength (reflected by V3) between

Ab and Ca2? affects the development of AD. Under

periodic treatment, the effects of different treatment

strategies of drugs on the development of AD are

investigated as well. In our work, we set the parameter

values in System (2),

V1 ¼ 0:25; V2 ¼ 0:11; V3 ¼ 2:89; V4 ¼ 1;

k1 ¼ 0:35; k2 ¼ 5; k3 ¼ 1; e ¼ 0:01;
ð3Þ

to analyze the dynamics of Ab and Ca2?.

2.1 Bifurcation analysis

The positive feedback between Ab and Ca2þ may

accelerates the probability of Ab accumulation, lead-

ing to the formation of a large number of plaques in the

brain of patients [32–34]. It may give rise to neuro-

logic disorders and even neurologic death in the

elderly people. To explore the effects of positive

feedback between Ab and Ca2þ on AD system, in this

subsection we focus on the deterministic system (i.e.,

r1 ¼ r2 ¼ 0 in (2)) and take V3 as bifurcation

parameter and sketch bifurcation diagram in Fig. 1.

As shown in Fig. 1, when V3\V�
3; the deterministic

system admits a unique stable equilibrium, the levels

of Ab and Ca2þ keep at lower stable branches. Slow

positive feedback strength contributes to a healthy

state. With the increasing of V3, the concentrations of

Ab and Ca2þ also increase, and the deterministic

system undergoes a saddle-node bifurcation at V3 ¼
V�

3: When V3 passes the first bifurcation point, the

deterministic system has 3 equilibria (two stable nodes

and one saddle point, see Appendix) and a bistability

region is presented for V3 2 ðV�
3;V

��
3 Þ. Notice that the

evolution paths of Ab and Ca2þ depend on the initial

concentrations of Ab and Ca2þ, when the initial

concentrations of Ab and Ca2þ are low, the evolution

paths of Ab and Ca2þ remain in the lower

stable branches (healthy states); if the initial concen-

trations of Ab and Ca2þ are relatively high, then the

evolution paths of Ab and Ca2þ will jump from the

lower stable branches (healthy states) to the higher
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ones (pathological states). Observe that the healthy

and pathological states can switch depending on

different levels of initial concentrations of Ab and

Ca2þ in the bistable region, we can add human

interference to mitigate the development of AD. For

example, we can employ drug treatment [3] and

physical treatment [35, 36] such that the initial

concentrations of Ab and Ca2þ are in the attraction

basin of healthy states. As V3 further increases, a

saddle-node bifurcation reoccurs when V3 ¼ V��
3 . As

V3 exceeds the threshold V��
3 , the deterministic system

has a unique stable equilibrium, the levels of Ab and

Ca2þ remain at the higher stable branches. The

concentrations of Ab and Ca2þ always keep in a

pathological state for V3 [V��
3 . This transition is

reversible, because when the dynamic parameter V3

decreases, the opposite transition (from high steady

state to low steady state) occurs. This shows that even

if the levels of Ab and Ca2þ exceed the threshold V��
3 ,

we can reduce the levels of Ab and Ca2þ by human

interference.

2.2 Effects of using different strategies for drugs

on Ab and Ca2?

In this subsection, we will explore the impact of

different use strategies of the same drugs on AD

during periodic treatment. In reality, the patients

sometimes change the way of taking drugs at will

during the periodic treatment. For example, the doctor

originally suggested that the patients should take one

dose once a day, but the patients may divide a dose into

several parts and take them at equally spaced intervals,

then some people question whether the patient’s

random changes in the way of taking drugs would

weaken the effect of relieving AD? To this end, we

here investigate the effect of periodic treatment on

AD, and whether the patients’ random changes in the

dosage and the number of times of taking drugs affect

the remission of AD. Now we examine the above

questions with the help of deterministic system (i.e.,

r1 ¼ r2 ¼ 0 in (2)), and use ki tð Þ ¼ aþ
bsin tð Þ i ¼ 1; 2ð Þ to model periodic drug treatment

that can reduce the concentrations of Ab and Ca2þ:
Here we assume that the same dose of drugs is used

every day, and set up two feasible drug strategies (i)

the patients take the drugs once a day at t 2 ½6; 7� (see

Fig. 2a); (ii) the drugs are divided into three parts on

average, and the patients take it three times a day at

equally spaced intervals t 2 ½6; 7�, t 2 ½12; 13� and t 2
½18; 19� (see Fig. 2b) to relieve the AD. We analyze

the dynamics of Ab and Ca2þ within 24 h. As shown in

Fig. 2c, d, the blue line represents the absence of

periodic treatment, suggesting that it is at the level of

disease; the black curve represents the effect of

strategy (i); the red curve indicates the effect of

strategy (ii). In fact, the concentrations of Ab and Ca2þ

have always been in a pathological state without

periodic treatment, similar to the concentration of the

high stable branch (see Fig. 1); observe that no matter

what kind of periodic treatment strategy, the patho-

logical state changes to a healthy state in the form of

pulse, that is, the high concentration jumps to a low

Fig. 1 Bifurcation diagram

of the deterministic system

with respect to V3, where

SNiði ¼ 1; 2; 3; 4Þ represent

saddle-nodes. The green and

black curves stand for the

concentrations of Ab and

Ca2þ; separately. The solid

curves represent

stable equilibria, and the

dotted curves represent

unstable equilibria. The

proof of asymptotic stability

of the equilibria is shown in

the appendix. All parameter

values are given in (3).

(Color figure online)
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concentration, similar to the concentration of the jump

to the low stable branch (see Fig. 1). It is further found

that the amplitude of the concentration reduction of

strategy (i) is very large, and the treatment effect is

more obvious on alleviating AD compared with

strategy (ii). Moreover, we find that for strategy (ii),

the concentration of Ca2þ decreases in the form of an

upward pulse, we suspect that this may be due to the

reduction of drug dose in strategy (ii), which leads to

the weakening of the effect of alleviating AD, so that it

could not produce a positive effect in a short time, and

the concentration of Ca2þ in cells changes rapidly in

seconds or minutes [1], which may cause the concen-

tration of Ca2þ to decrease in the form of an upward

pulse. In order to display the concentrations of Ab and

Ca2þ in the brain of patients after multiple drug use,

we take out the concentration values of Ab and Ca2þ

for final solution stability after each drugs division and

draw Fig. 2e-f, in which the horizontal axis values

show times / frequency that the drugs are evenly

divided, the vertical axis values are the stable concen-

tration of Ab or Ca2þ(see solid black dots). We can see

that the concentrations of Ab and Ca2? gradually

increase with the increase in drugs equalization times/

frequency in Fig. 2e, f. This shows that the same dose

of drugs is divided into multiple doses, which will

slow down the patient’s recovery process, it also

reflects that strategy (i) is the optimal treatment

scheme, that is, here the best treatment effect can be

achieved by using three units of medicine once at t 2
½6; 7� every day. Thus, we conclude that periodic

treatment can significantly alleviate AD, and the effect

of relieving AD will be slower if the patients change

the way of taking medicine at will. This indirectly

reflects that following the doctor’s advice and taking

drugs scientifically play an important role in the

recovery of the patients.

Remark 1 Notice that in System (2), let

r1 ¼ r2 ¼ 0, we have already guaranteed that time

scales of Ab and Ca2? is the same level (the right-hand

side of the second equation of System (2) is multiplied

by 1
e (0\e � 1)), so without loss of generality, we

draw (c) and (d) in hours with a step length of 0.01 by

using ODE45 command in MATLAB 2014. We here

Fig. 2 The effect of drug treatment on the concentrations of Ab
and Ca2?. a The patients take the drugs once a day, where

a ¼ 3; b ¼ 0:1; b The drugs are divided into three parts on

average, and the patients take them three times a day, where

a ¼ 0:94; 0:965 and 0:9895; b ¼ 0:1; c, d denote the effects of

different strategies on the concentrations of Ab and Ca2?, in

which the blue line indicates that no drugs are taken, suggesting

that it is at the level of disease, the black curve represents the

effect of strategy (i) and the red curve indicates the effect of

strategy (ii); e, f are respectively the final concentrations of Ab
and Ca2? after each evenly divided drug, in which the horizontal

axis values show times/frequency that the drugs are evenly

divided, the vertical axis values are the stable concentration of

Ab or Ca2? (see solid black dots), here only one to five times/

frequency are shown. All parameter values are given in (3)
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chose the periodic function kiðtÞ ¼ aþ b sinðtÞ as the

quantity of the drugs, whereas the quantity of the drugs

can also be described by other functions, as long as

these functions can simulate a periodic curve greater

than zero.

Remark 2 Figure 2 shows the effect of different

strategies of periodic drug therapy on the progression

of AD. The drugs on the market for the treatment of

AD, such as galantamine, donepezil, rivastigmine,

memantine and herbal medicine, can alleviate the

development of AD to a certain extent by inhibiting

acetylcholine, but these drugs may also produce

certain side effects, such as diarrhea, nausea and

vomiting. Few patients also experience life-threaten-

ing adverse effects such as thrombocytopenia, heart

attack, adenocarcinoma and extreme anaemia. In

addition, various different and contradictory assump-

tions have made it difficult to determine the exact

mechanism and physiological function of the disease

itself, as well as the obstacles of drug transport across

the impenetrable blood–brain barrier. Additionally,

due to the inability to target the large area of neuron

and synaptic death in AD brain, the current treatment

has also reached a bottleneck. Moreover, Tatiaparti

et al. [37] have suggested that so far, more than 200

AD clinical trials have failed. One of these failures is

irreversible damage to the patient’s neurons, leaving

little scope for the use of different drugs, which makes

drug treatment of AD particularly difficult. Thus, in

order to seek promising therapeutic measures for the

treatment of AD, more scholars focus on neurology

[38, 39] because AD is a neurological disease, and

some studies have presented physical therapy methods

to affect the brain nerves of patients to achieve the

purpose of treating AD [36, 40]. Therefore, in the

second half, we will establish a stochastic system

about AD. We take random disturbances in System as

control variables, such as language training, physical

therapy, to realize the control of AD so as to slow the

deterioration of AD.

In summary, the positive feedback between Ab and

Ca2? produces bistability, that is, the evolution of AD

can be described as a bistable transition. The initial

value concentrations of Ab and Ca2? can be adjusted

to the basin attraction of low steady state through

human intervention, which can slow down the devel-

opment of AD even if the levels of Ab and Ca2?

exceed the threshold V��
3 . In addition, we give two

periodic treatment strategies for AD remission, which

provides guidance for the scientific use of drugs in AD

patients.

3 Analysis of the stochastic system

Notice that the evolution paths of Ab and Ca2? in

bistability region depend on the initial concentrations

of Ab and Ca2?. In this bistability region, stochastic

variations in the microenvironment of Ab and Ca2?

may easily change the concentrations of Ab and Ca2?.

In this section, we explore how the extrinsic noise

from stochastic variations of microenvironment for Ab
and Ca2? in the bistability region affects the develop-

ment of AD. We discuss the uniqueness of global

positive solutions and the existence of unique station-

ary distribution, and the noise-induced switching

between two coexistence equilibria of the stochastic

system (2). In our work, we choose different noise

intensities to study the dynamics of Ab and Ca2? and

adopt the Milstein’s higher order method [41] in our

numerical simulations.

3.1 Stationary distribution

In this subsection, we intend to present that there exists

a unique ergodic stationary distribution. We first prove

that the stochastic system (2) has a unique global

positive solution.

Let zðtÞ be a time-homogeneous Markov process in

Ed (d-dimensional Euclidean space), which is repre-

sented by the following equation:

dzðtÞ ¼ hðzÞdt þ
Xk
r¼1

grðzÞdBrðtÞ;

where hðzÞ ¼ ðh1ðzÞ; h2ðzÞ; . . .; hdðzÞÞ; grðzÞ ¼
ðg1

r ðzÞ; g2
r ðzÞ; . . .; gdr ðzÞÞ and BrðtÞ ðr ¼ 1; 2; . . .; kÞ are

independent standard Brownian motions defined on

some probability space ðX;F;PÞ. Let AðzÞ be the

diffusion matrix, which is written as the following

form

AðzÞ ¼ ðaijðzÞÞd�d; aijðzÞ ¼
Xk
r¼1

girðzÞg j
rðzÞ:

Now, we state a lemma to show that System (2) has

a stationary distribution.
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Lemma 1 (see [42, 43]) Assume that there exists a

bounded domain D � Ed with regular boundary,

satisfying the following properties.

(i) In the domain D and some neighborhood

thereof, the smallest eigenvalue of the diffu-

sion matrix AðzÞ is bounded away from zero.

(ii) If z 2 EdnD, the mean time s at which a path

issuing from z reaches the set D is finite, and

supz2K Ezs\1 for every compact subset

K � Ed .

Then, the Markov process zðtÞ has a stationary

distribution lð�Þ with density in Ed such that

limt!1 PfzðtÞ 2 Bg ¼ lðBÞ for any Borel set

B � Ed, and

P lim
T!1

1

T

Z T

0

f ðzðtÞÞdt ¼
Z
Ed

f ðzÞlðdzÞ
� �

¼ 1;

for all z 2 Ed, where f zð Þ is a function integrable with

respect to the measure l.

Remark 3 To verify condition (i), it is sufficient to

show that there exists a positive constant G such thatPd
i;j¼1 aijðzÞninj 	G nj j2; z 2 D; n 2 Rd(see [44, 45]).

To validate condition (ii), it is sufficient to show that

there is a nonnegative C2-function HðzÞ and a bounded

domain D � Ed with regular boundary such that for

some constant k one has LH zð Þ\� k for all z 2 EdnD
(see [46]).

Theorem 1 For any given initial value

ðx0; y0Þ 2 R2
þ, t	 0, System (2) admits a unique

solution ðxðtÞ; yðtÞÞ, which remains in Rþ
2 with prob-

ability one.

Proof Observe that the coefficients of System (2)

satisfy the local Lipschitz conditions, then System (2)

admits a unique local solution ðxðtÞ; yðtÞÞ for t 2 0; se½ Þ,
where se is explosion time. Now we show that the

solution exists globally, i.e., se ¼ þ1 almost surely

(a.s.). For any initial value, there exists a sufficiently

large n0 	 1 such that x0, y0 2 1
n0
; n0

h i
: For each

integer n[ n0, we give a following stopping time:

sn ¼ inf t 2 0; se½ Þ : min x; yf g
 1

n
or max x; yf g	 n

� �
:

Here, we define inf ; ¼ 1 (; represents empty

set). Obviously, sn increases as n ! 1: Choose s1 ¼
limn!þ1 sn; then s1 
 se a.s., thus, we only need to

obtain that s1 ¼ 1 a.s. Assume that s1 ¼ 1 is

untrue, then we find two constants T [ 0 and f 2
0; 1ð Þ such that P s1 
 Tf g[ f. Therefore, there

exists n1 	 n0 ðn1 2 NþÞ such that

P sn 
 Tf g	 f; n	 n1:

Define a C2-function U : Rþ
2 ! Rþ as

U x; yð Þ ¼ V4

ek1

x� 1 � ln xð Þ þ y� 1 � ln yð Þ:

It is easy to see that Uðx; yÞ	 0 for any ðx; yÞ 2 Rþ
2 . By

Itô’s formula, we have

dU x; yð Þ ¼ LU x; yð Þdt þ V4r1

ek1

x� 1ð ÞdB1

þ r2ffiffi
e

p y� 1ð ÞdB2;

where

LU¼ V4

ek1

V1þ
V3y

2

k2
3 þy2

�k1x�
V1

x
� V3y

2

x k2
3 þy2

� �þk1

 !

þ1

e
V2þV4x�k2y�

V2

y
�V4

y
xþk2

� �
þ1

2

V4r2
1

ek1

þr2
2

e

� �


 V4

ek1

V1þV3�k1xþk1ð Þþ1

e
V2þV4xþk2ð Þþ1

2

V4r2
1

ek1

þr2
2

e

� �

¼ V4

ek1

V1þV3þk1ð Þþ1

e
V2þk2ð Þþ1

2

V4r2
1

ek1

þr2
2

e

� �

:¼K0:

Thus,

dU x; yð Þ
K0dt þ V4r1

ek1

x� 1ð ÞdB1 þ
r2ffiffi
e

p y� 1ð ÞdB2:

Integrating this inequality on both sides from 0 to sn ^
T and taking expectation, we have

EUðxðsn ^ TÞ; yðsn ^ TÞÞ
Uðxð0Þ; yð0ÞÞ þ E r
sn^T

0

K0dt


U x 0ð Þ; y 0ð Þð Þ þ K0T:

Define Xn ¼ fsn 
 Tg for any integer n[ n1, we can

obtain PfXng	 f. So, at least one of xðsn;xÞ or

yðsn;xÞ is always equal to n or 1
n for any x 2 Xn: Thus

Uðxðsn;xÞ; yðsn;xÞÞ	min
1

n
� 1 � ln

1

n
; n� 1 � lnn

	 

:

Then we have
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Uðxð0Þ; yð0ÞÞ þ K0T 	E½1XnðxÞUðxðsn;xÞ; yðsn;xÞÞ�

	 f � min
1

n
� 1 � ln

1

n
; n� 1 � lnn

	 

;

where 1XnðxÞ denotes the indicative function of Xn. Let

n ! 1; we obtain

1[Uðxð0Þ; yð0ÞÞ þ K0T 	 f

� min
1

n
� 1 � ln

1

n
; n� 1 � lnn

	 


¼ 1;

which contradicts the fact. Therefore, we obtain s1 ¼
1 a.s. This completes the proof of Theorem 1.

Let

K ¼ min k1 �
V4

Ne
;
k2

e

� �
� h

2
max r2

1;
r2

2

e

� �
; k1 [

V4

Ne

� �
:

ð4Þ

Theorem 1 guarantees that the concentrations of Ab
and Ca2? of System (2) are positive and global, which

is essential to illustrate that System (2) has a unique

ergodic stationary distribution and satisfies the condi-

tion (4).

Theorem 2 Assume that k1 [ V4

Ne, K[ 0 for N[ 0

and 0\h\1: Then for any given initial value

ðx0; y0Þ 2 R2
þ, System (2) admits a unique stationary

distribution.

Proof. The proof is divided into two steps, we first

verify condition (i) in the Lemma 1 holds. It is easy to

obtain the diffusion matrix of System (2):

A ¼
r2

1x
2 0

0
r2

2

e
y2

0
@

1
A ¼ ðaijÞ.

Define G ¼ minðx;yÞ2Dk�R2
þ

r2
1x

2;
r2

2

e y
2

n o
and Dk ¼

1
k ; k
� �

� 1
k ; k
� �

for sufficiently large integer k[ 0. For

any ðx; yÞ 2 Dk and n ¼ n1; n2ð Þ 2 R2, we have

X2

i;j¼1

aijninj ¼ a11n1n1 þ a22n2n2

¼ r2
1x

2n2
1

þ r2
2

e
y2n2

2 	 min r2
1x

2;
r2

2

e
y2

� �
n2

1 þ n2
2

� �
¼ Gkn2k:

Therefore, condition (i) in Lemma 1 holds.

Next, we show that the condition (ii) of Lemma 1

holds. By the Itô’s formula, we have

L �Nx� y� ln y½ � ¼ �N V1 þ
V3y

2

k2
3 þ y2

� k1x

� �

� 1

e
V2 þ V4x� k2yð Þ � 1

e
V2

y
þ V4x

y
� k2

� �
þ r2

2

2e
;

and

L
1

hþ1
Nxþyð Þhþ1

� �
¼ Nxþyð Þh NV1þ

NV3y
2

k2
3þy2

�k1Nxþ
1

e
V2þV4x�k2yð Þ

� �

þh
2
Nxþyð Þh�1 r2

1N
2x2þr2

2

e
y2

� �


 Nxþyð Þh NV1þNV3þ
V2

e
�min k1�

V4

Ne
;
k2

e

� �
Nxþyð Þ

� �

þh
2
Nxþyð Þhþ1

max r2
1;
r2

2

e

� �

¼ Nxþyð Þh NV1þNV3þ
V2

e

� �
� Nxþyð Þhþ1

min k1�
V4

Ne
;
k2

e

� �

þh
2
Nxþyð Þhþ1

max r2
1;
r2

2

e

� �

¼ Nxþyð Þh NV1þNV3þ
V2

e

� �
�K Nxþyð Þhþ1

¼C�K
2

Nxþyð Þhþ1
C�K
2

xhþ1þyhþ1
� �

;

where

C ¼ ðNxþ yÞh NV1 þ NV3 þ V2

e

� �
� K

2
ðNxþ yÞhþ1

.

There exist two positive constants N and 0\h\1

such that k1 [ V4

Ne and K[ 0. Choosing a C2-function

H ¼ ð�Nx� y� ln yÞ þ 1

hþ 1
ðNxþ yÞhþ1;

then

lim
k!1;ðx;yÞ2R2

þnDk

inf Hðx; yÞ ¼ 1;

here Dk ¼ 1
k ; k
� �

� 1
k ; k
� �

with integer k[ 1. Since

Hðx; yÞ is a continuous function, it admits a minimum

value Hðx0; y0Þ in R2
þ: Then we get the following

nonnegative C2- function

H ¼ ð�Nx� y� ln yÞ þ 1

hþ 1
ðNxþ yÞhþ1

� Hðx0; y0Þ;

thus
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LH
C � K
2
ðxhþ1 þ yhþ1Þ � N V1 þ

V3y
2

k2
3 þ y2

� k1x

� �
� 1

e
ðV2 þ V4x� k2yÞ

� 1

e
V2

y
þ V4x

y
� k2

� �
þ r2

2

2e
;


C � K
2
ðxhþ1 þ yhþ1Þ � NV1 þ

V2

e

� �
þ k2

e
þ r2

2

2e
þ N k1 �

V4

Ne

� �
x

þ k2

e
y� V2

ey
� V4

ey
x:

To show condition (ii) in Lemma 1 holds, we

construct a compact subset X. Define

X ¼ ðx; yÞ 2 R2
þ d1 
 x
 1

d1

 ; d2 
 y
 1

d2

� �
;

where di [ 0 i ¼ 1; 2ð Þ are sufficiently

small constants.

For the convenience, we set

X1 ¼ ðx; yÞ 2 R2
þ 0\x\d1j

� �
; X2 ¼ ðx; yÞ 2 R2

þ 0\y\d2;j x	 d1

� �
;

X3 ¼ ðx; yÞ 2 R2
þ x	 1

d1


� �

; X4 ¼ ðx; yÞ 2 R2
þ y	 1

d2


� �

:

Obviously, R2
þnX ¼ [4

i¼1Xi. Now we need to prove

that LH x; yð Þ
 � 1 on R2
þnX, which is equivalent to

show LH x; yð Þ
 � 1 holds on the Xi i ¼ 1; 2; 3; 4ð Þ.

Case 1 If x; yð Þ 2 X1, then.

LH
F1 � NV1 þ
V2

e

� �
þ N k1 �

V4

Ne

� �
d1;

where F1 ¼ supðx;yÞ�R2
þ

C � K
2

xhþ1 þ yhþ1
� �

þ
�

k2

e þ
r2

2

2e

� �
þ k2

e yg.

Then there exists a sufficiently small constant

d1 [ 0 and sufficiently large constant N[ 0 such that

F1 � NV1 þ V2

e

� �
þ N k1 � V4

Ne

� �
d1\� 1; thus we

have

LH
 � 1 for all ðx; yÞ 2 X1:

Case 2 If ðx; yÞ 2 X2, then

LH
F2 þ
k2

e
d2 �

1

ed2

ðV2 þ V4d1Þ;

where

F2 ¼ sup
x;yð Þ�R2

þ

C � K
2
ðxhþ1 þ yhþ1Þ � NV1 þ

V2

e

� ��

þ k2

e
þ r2

2

2e
þ N k1 �

V4

Ne

� �
x

�
:

Then there exists a sufficiently small constant

d2 [ 0 such that F2 þ k2

e d2 � 1
ed2

ðV2 þ V4d1Þ\� 1;

hence, we know

LH
 � 1 for all ðx; yÞ 2 X2:

Case 3 If x; yð Þ 2 X3; then

LH
F3 �
K
2

1

d1

� �hþ1

;

where F3 ¼ supðx;yÞ�R2
þ

C � NV1 þ V2

e

� �
þ k2

e þ
�

r2
2

2e þ N k1 � V4

Ne

� �
xþ k2

e yg.

Then there exists a sufficiently small constant

d1 [ 0 such that F3 � K
2

1
d1

� �hþ1

\� 1; we can get

LH
 � 1 for all ðx; yÞ 2 X3:

Case 4 If ðx; yÞ 2 X4, then we can obtain

LH
F3 �
K
2

1

d2

� �hþ1

:

There exists a sufficiently small constant d2 [ 0

such that F3 � K
2

1
d2

� �hþ1

\� 1; we obtain that

LH
 � 1 for all ðx; yÞ 2 X4:

From the above analysis of four cases, we can

achieve

LHðx; yÞ
 � 1; for all ðx; yÞ 2 R2
þnX;

which completes the proof.

Theorem 2 shows that if the initial concentrations

of Ab and Ca2þ are greater than 0 and the conditions of

Theorem 2 hold, then System (2) has a unique ergodic

stationary distribution. Here, we adopt the Milstein’s

higher order method to obtain the corresponding

discrete equations as follows:
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xiþ1 ¼ xi þ V1 þ V3

y2
i

k2
3 þ y2

i

� k1xi

� �
Dt þ xi r1ni

ffiffiffiffiffi
Dt

p
þ 1

2
r2

1 n2
i � 1

� �
Dt

	 

;

yiþ1 ¼ yi þ
1

e
ðV2 þ V4xi � k2yiÞDt þ

yiffiffi
e

p r2ni
ffiffiffiffiffi
Dt

p
þ 1

2
r2

2 n2
i � 1

� �
Dt

	 

;

where ni ði ¼ 1; 2; . . .Þ are Gaussian random variables

and follow the standard normal distribution Nð0; 1Þ:
Here, we take r1 ¼ 0:1; r2 ¼ 0:08; k2 ¼ 3:5; h ¼
0:2;N ¼ 1000 and then K ¼ 0:1860: The numerical

simulations shown in Fig. 3 illustrate that System (2)

exhibits a unique ergodic stationary distribution. This

also shows that AD will persist.

3.2 Analysis of transition between two

coexistence equilibria induced by noise

According to work of Caluwé and Dupont and (3),

System (1) admits three equilibria, E1 ¼
1:4282; 0:3076ð Þ;E2 ¼ 2:7517; 0:5723ð Þ and E3 ¼
4:5716; 0:9363ð Þ; where E2 is an unstable saddle

point, both E1 and E3 are asymptotically stable (see

Appendix). Attractive domains of the stable equilibria

Fig. 3 The left subfigures are the evolution paths of x and y for

System (1) and System (2) with initial values (2.5, 2). The right

subfigures show histograms of probability density function of x

and y. Here, r1 ¼ 0:1;r2 ¼ 0:08; k2 ¼ 3:5; h ¼ 0:2;N ¼ 1000

and other parameter values are given in (3), and K ¼ 0:1860:

Fig. 4 Vector field of System (1), and the black dash-dotted line

represents the separatrix between the attraction basins of two

coexistence equilibria (E1 and E3). Solid dots represent

stable equilibria (blue and red), and hollow dot represents

unstable saddle point (green). The approximate equation of the

separatrix is y ¼ �2:976xþ 8:7614. (Color figure online)

123

A confidence ellipse analysis for stochastic dynamics model



are separated by the stable manifold of the saddle,

which shows a bistable phenomenon between

stable equilibria (see Fig. 4). In this subsection, we

will estimate the tipping threshold [31] and explore the

switch between two coexistence equilibria (E1 and E3)

via stochastic sensitivity function technique [27],

which are both induced by noise.

In Fig. 4, we plot the vector field of the determin-

istic system, in which the black dash-dotted line

represents the separatrix between the attraction basins

of two coexistence equilibria (E1 and E3). Equilibrium

E3 is a pathological state and E1 is a healthy state. As

can be seen in Fig. 4, the initial values are chosen in

the attraction basin (the right (left) area of separatrix)

of E3ðE1Þ, and the trajectories starting from these

initial values eventually converge to the equilibrium

E3ðE1Þ. However, the stochastic system sometimes

cannot accurately predict its dynamics. In order to

study how environmental noise affects dynamics of

System (2) and estimate tipping threshold, we set r ¼
r1 ¼ r2 and take E3 as an example in System (2). As

presented in Fig. 5, when the noise intensity is quite

small (r1 ¼ r2 ¼ 0:02), the random trajectories start-

ing from the attraction basin of E3 finally oscillate

slightly near the equilibrium E3, and the concentra-

tions of Ab and Ca2þ oscillate around the constant

level. From Fig. 6, we observe that as the noise

intensity increases, large noise intensity

(r1 ¼ r2 ¼ 0:5) makes the random trajectories start-

ing from the attraction basin of E3 eventually cross the

separatrix and reach the surroundings of equilibrium

E1 or tend to zero. Large noise intensity makes the

concentrations of Ab and Ca2þ decrease to the lowest,

and even tend to zero.

Next, we construct the confidence ellipses to

describe the configurational arrangement of stochastic

equilibria using stochastic sensitivity function tech-

nique [27], and further estimate tipping threshold r:
Define

F ¼ f11 f12

f21 f22

� �
;G ¼ g11 0

0 g22

� �
; S ¼ GGT ;

where f11 ¼ �k1; f12 ¼ 2V3y
k2

3
þy2 � 2V3y

3

k2
3
þy2ð Þ2 ; f21 ¼

V4

e ; f22 ¼ � k2

e ; g11 ¼ x; g22 ¼ yffiffi
e

p .

Let W be the stochastic sensitivity matrix:

W ¼ x11 x12

x21 x22

� �
;

which satisfies the following equations:

2f11x11 þ f12x12 þ f12x21 ¼ �g2
11;

f21x11 þ ðf11 þ f22Þx12 þ f12x22 ¼ 0;
f21x11 þ ðf11 þ f22Þx21 þ f12x22 ¼ 0;
f21x12 þ f21x21 þ 2f22x22 ¼ �g2

22:

8>><
>>:

From (A.3) in [27], we have the following confi-

dence ellipse equation

h x�x;y�yð ÞT ;W�1ðx�x;y�yÞTi¼2r2 log
1

1�P

� �
;

ð5Þ

where r and P are the noise intensity and fiducial

probability, separately. x; yð Þ is a positive equilibrium

of the deterministic system (1).

Fig. 5 a Time series

diagram of System (2); b
Phase trajectory of System

(2) with the initial value

(4:5716; 0:9363) and the

noise intensity

r1 ¼ r2 ¼ 0:02; c, d show

histograms of probability

density function of x and y.

Other parameter values are

given in (3)
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At E1 ¼ 1:4282; 0:3076ð Þ; we obtain the stochastic

sensitivity matrix and its inverse,

W1 ¼ 19:1039 3:8189

3:8189 0:7732

� �
; W�1

1 ¼ 4:1132 �20:3144

�20:3144 101:6222

� �
.

From (5), the confidence ellipse equation at equi-

librium E1 is given by

4:1132ðx� 1:4282Þ2 � 40:6288ðx� 1:4282Þ
ðy� 0:3076Þ þ 101:6222ðy� 0:3076Þ2

¼ 2r2
1 log

1

1 � P1

� �
:

ð6Þ

The stochastic sensitivity matrix and its inverse at

E3 ¼ ð4:5716; 0:9363Þ read as

W3 ¼ 244:1360 48:8081

48:8081 9:8493

� �
; W�1

3 ¼ 0:4406 �2:1835

�2:1835 10:9216

� �
.

By (5), we obtain the confidence ellipse equation at

equilibrium E3

0:4406ðx� 4:5716Þ2 � 4:367ðx� 4:5716Þ
ðy� 0:9363Þ þ 10:9216ðy� 0:9363Þ2

¼ 2r2
2 log

1

1 � P2

� �
:

ð7Þ

Fig. 7 a Separatrix (dashed-dotted) and confidence ellipses (solid) for r ¼ 0:04 (red),r ¼ 0:0475(green) and r ¼ 0:095 (blue); b
Random states (black dots) of System (2) and confidence ellipse (red) for r ¼ 0:04: Other parameter values are given in (3). (Color

figure online)

Fig. 6 a Time series diagram of System (2); b Phase trajectory of System (2) with the initial value (4:5716; 0:9363) and the noise

intensity r1 ¼ r2 ¼ 0:5; c, d show histograms of probability density function of x and y. Other parameter values are given in (3)
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Fig. 8 The left subfigures represent the confidence ellipses, and

the right subfigures represent the time series diagram of System

(2). Here, r1 ¼ 0:101; r2 ¼ 0:04 in a, b; r1 ¼ 0:101; r2 ¼

0:078 in c, d;r1 ¼ 0:278;r2 ¼ 0:04 in e,

f;r1 ¼ 0:278;r2 ¼ 0:078 in g, h. Other parameter values are

given in (3)
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Fig. 9 a, b show histograms of probability density function of x
and y in b of Fig. 8; c, d show histograms of probability density

function of x and y in d of Fig. 8; e, f show histograms of

probability density function of x and y in f of Fig. 8; g, h show

histograms of probability density function of x and y in h of

Fig. 8. Notice that this figure shows unimodal (monostabillity)

for a–f and bimodal (bistable state) for g, h. Here, xi i ¼ 1; 2; 3ð Þ
are the internal equilibria in g
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To describe the configurational arrangement of the

confidence ellipses of stochastic equilibria induced by

noise, we let r ¼ r1 ¼ r2 and take E3 as an example in

System (2). We fix P ¼ P2 ¼ 0:95 and take three

increasing noises r ¼ 0:04, 0:0475 and 0:095: Then

configurational arrangements of the confidence

ellipses at equilibrium E3 are presented in Fig. 7a,

which shows that as the noise intensity increases

continuously, the confidence ellipse gradually

expands and passes through the separatrix and even-

tually enters the attraction basin of coexistence

equilibrium E1. This implies that noise-induced

tipping [31] occurs only when the confidence ellipse

crosses the separatrix. When the confidence ellipse

tangents to the separatrix, the noise intensity r is

defined as tipping threshold. In Fig. 7a, the tipping

threshold is r� � 0:0475 (see green in Fig. 7a). When

r[ r�, the trajectory of equilibrium E3 leaves its

attraction basin and finally stays near equilibrium E1

with high probability. From Fig. 7b, we observe that

the random states of System (2) are distributed around

equilibrium E3 with r ¼ 0:04, and they locate in the

interior of confidence ellipse with probability 0.95.

For equilibrium E1, we have the similar results, which

are not stated here.

Next, we consider how the two coexistence equi-

libria switch as r1 and r2 are not equal in (6) and (7).

Let P1 ¼ P2 ¼ 0:95, we study the two confidence

ellipses with r1 and r2. For weak noise,

r1 ¼ 0:101; r2 ¼ 0:04, two confidence ellipses of

two coexistence equilibria (E1 and E3) are obviously

separated by the separatrix of attraction basins of these

equilibria (see Fig. 8a), and the random solutions

starting from one side of the separatrix finally stay near

the equilibrium on this side (see Fig. 8b). It shows that

weak noise induces the trajectories of Ab and Ca2þ to

oscillate regularly and slightly near the coexistence

equilibrium, which indicates that weak noise has a

slight effect on the concentrations of Ab and Ca2þ.

Fixing r1 ¼ 0:101, as the noise intensity r2 increases

to 0.078 and exceeds the tipping threshold (r�2 ¼ r�),
the confidence ellipse of equilibrium E3 evidently

crosses the separatrix (see Fig. 8c), and the random

solutions starting from the attraction basin of equilib-

rium E3 cross the separatrix and enter the attraction

basin of equilibrium E1(see Fig. 8d). For fixed

r2 ¼ 0:04, as the noise intensity r1 increases to

0.278, we can also get similar results (see Fig. 8e, f),

which will not be stated here. More interestingly, we

observe that when r1 ¼ 0:278; r2 ¼ 0:078, the confi-

dence ellipses of two coexistence equilibria (E1 and

E3) both cross the separatrix into each other’s

attraction basin and intersect each other (see Fig. 8g).

The frequent jumps between two coexistence equilib-

ria (E1 and E3) are also viewed (see Fig. 8h). The first

three cases are associated with the initial value of the

random trajectory (see Fig. 8b, d, f), while for the

fourth case, the initial values can be chosen anywhere

(see Fig. 8h). These findings provide a theoretical

basis for the control of AD.

It is worthy to point out the phase transitions

induced by noise are associated with shape changes

of the probability density functions of Ab and Ca2þ.

Notice that we take out the data of the stable random

solution (after the first phase transition) in the time

series diagrams in Fig. 8, and then draw Fig. 9. Taking

E3 as an example, when the noise intensity is less than

r�, the probability density functions have a unique

peak (see Figs. 8b, 9a, b). As noise intensity passes r�,
the phase transition induced by noise occurs, noise-

induced tipping occurs, which also shows a unique

peak (see Figs. 8d, 9c, d). Similarly, at E1; we can get

the noise-induced phase transition as well (see

Figs. 8f, 9e, f). As both r1 and r2 are greater than

the tipping thresholds, System (2) exhibits two peaks

at x1; x3, and a valley at x2 (x1\x2\x3) (see Figs. 8h,

9g, h), here, xi i ¼ 1; 2; 3ð Þ are the internal equilibria of

System (1). This case shows multiple phase transi-

tions, and represents a bimodal (located at x1; x3)

reflected by probability density functions of x and y

(see Fig. 9g, h). In a word, System (2) exhibits a

monostable behavior for (a)–(f) in Fig. 9, and a

bistable behavior for (g), (h) in Fig. 9. Therefore, the

stationary density of System (2) undergoes the phase

transitions from unimodal to bimodal distributions

with both r1 and r2 increasing. However, such a phase

transition is characteristic of stochastic system and

does not exist in deterministic system.

In this subsection, we observe that three forms of

phase transition are induced by noise: pathological

state to healthy state switching (see Fig. 8d), healthy

state to pathological state switching (see Fig. 8f) and

the pathological state and healthy state switching

many times in a long time (see Fig. 8g). In fact, it is

possible to control the noise intensity by physical

methods to alleviate AD. For example, physical
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exercise therapy [35], repetitive transcranial magnetic

stimulation [36] and positron emission tomography

[40], in which physical methods have been used to

treat AD, and the treatment has been very effective

(e.g., improved cognitive ability). These treatment

methods make the noise intensity reach the tipping

threshold, which can also be said that the key point of

the bistable switch toward the evolution of AD and can

be used as an important indicator for the treatment of

AD. So, it is possible to switch from pathological state

to healthy state due to varying degrees of influence on

noise intensity through treatment methods. Currently,

there are no permanent drugs on the market to control

AD, but controlling the noise intensity through

physical methods may be a feasible strategy for the

treatment of AD in future. Therefore, noise-induced

phase transition may provide a theoretical basis for

contemporary medicine to alleviate AD. It should be

pointed out that the phenomenon of noise-induced

phase transition has been found in many research

fields and can explain some things that happen in

ecosystems [29, 30, 47, 48] such as blooms in aquatic

ecosystems [30], the two modes of survival of

biological populations [48] and the species extinction

[29].

Notice that Figs. 8 and 9 are based on the bistability

of System (1). The two attractors (stable equilibria

E1;E3) correspond to healthy and pathological equi-

librium, respectively. Two attraction basins are dis-

tinctly separated by the separatrix, which is the

stable manifold of saddle point E2. Solutions from

either side of separatrix will eventually approach the

equilibrium (see Figs. 8a, b, 9a, b). However, when

there is noise disturbance, the boundary may be

damaged by noise, and the solutions in the attractive

basin of one stable coexistence equilibrium can

eventually approach the other stable coexistence

equilibrium with a high probability (see Fig. 8c–h,

9c–h). That is, noise interference makes it possible to

switch stability between random equilibria. Due to the

inability to target the large area of neuron and synaptic

death in AD brain, and the obstacles of drug transport

across the impenetrable blood–brain barrier, as well as

drug therapy is prone to side effects (see introduction),

so drug therapy has reached the bottleneck at present.

Thus controlling noise intensity with physical methods

is likely to be the most promising treatment for AD in

future.

4 Conclusion and discussion

At present, the modeling methods of AD models is

very rare, most likely the pathogenesis of AD is

accompanied by a highly complex ecological process.

However, only a few models have been developed to

elucidate specific and focal aspects for cerebral

neurological disorders, such Ab aggregation [49], the

APP kinetics [50] and the impact of the interaction

between neurons, astrocyte and microglial cells on the

formation of Ab [51]. It is well known that the

stochastic variations from microenvironment inside

the cell cannot be ignored, but there are very few

achievements on how the stochastic variations in the

microenvironment of Ab and Ca2þ affect the devel-

opment of AD. In this paper, we introduced extrinsic

noise into the deterministic system to study how

extrinsic noise affects the development of AD. Here,

we mainly studied, on the one hand, the impacts of

positive feedback and periodic treatment on AD in the

deterministic system; on the other hand, the global and

ergodic properties of stochastic solutions and noise-

induced phase transitions. Our results can qualitatively

explain the dynamic process that triggers AD and the

noise-induced phase transition may become one of the

effective means to treat AD.

For the deterministic system (1), we discussed the

impacts of the positive feedback strength (reflected by

V3) between Ab and Ca2þ on the development of AD.

With the increase of V3, System (1) can undergo

saddle-node bifurcations. For certain range of V3,

System (1) exhibits a node–node bistability (two

stable equilibria coexist). Since the dynamics is initial

condition dependent, we can adjust the initial concen-

trations of Ab and Ca2þ to mitigate the development of

AD. However, as the positive feedback strength

exceeds the threshold (V��
3 ), the concentrations of Ab

and Ca2þ are always in a pathological state. Moreover,

we proposed two periodic treatment feasible drug

strategies to alleviate AD and screened out more

effective one. This also demonstrates that periodic

drug treatment can keep concentrations of Ab and

Ca2þ in the attraction basin in healthy state, even the

positive feedback strength exceeds the threshold

(reflected by V3) (see Figs. 1, 2), and it also indirectly

reflects that following the doctor’s advice and taking

drugs scientifically play an important role in the

recovery of the patients. For the stochastic system (2),
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we analyzed the existence and uniqueness of global

positive solutions and established sufficient conditions

for the existence of ergodic stationary distribution. We

also constructed confidence ellipses to study the noise-

induced switch between two random coexistence

equilibria and estimated the tipping threshold. Our

results showed that the change of noise intensity can

lead to stochastic switching between pathological and

healthy state. Our results may provide new ideas for

the medical field to alleviate AD.

Clinical diagnosis has shown that the patients with

AD have a significant reduction in the acetylcholine

neurotransmitter in their brain [52]. Some acetyl-

cholinesterase inhibitors on the market [3, 53, 54] can

enhance acetylcholine system by inhibiting acetyl-

cholinesterase and Ab-targeting clearance [3, 55].

Moreover, repetitive transcranial magnetic stimula-

tion and positron emission tomography in physical

therapy are used as a noninvasive treatment for

neurological diseases, and currently physical therapy

has shown significant reductions in the concentration

of Ab and also improved the patient’s cognitive ability

[36, 40]. It should be noted that the National Institute

on Aging and the Alzheimer’s Association suggested

that level of Ab is an important indicator of detecting

AD [56, 57], and some biomarker tests to detect the

level of Ab have been used as an auxiliary method to

diagnose AD, including beta-amyloid PET imaging,

cerebrospinal fluid testing, features of the superficial

white matter and impaired LTP-like cortical plasticity

[36, 58–60]. In addition, gene therapy, Ab
immunotherapy and nanotechnology can also alleviate

the development of AD [3, 37, 61]. Therefore, we

concluded that we can control the noise intensity

through physical therapy to make System undergo

phase transition (see Figs. 8, 9), which makes it

possible to achieve low concentration of Ab. This also

provides theoretical support for the control of AD in

the medical field. We expect that noise-induced phase

change provides a possibility to cure AD completely in

future.

In this paper, we studied the effect of two periodic

feasible drug strategies on the progression of AD, and

presented the basic results of stochastic system

including the uniqueness and existence and ergodic

stationary distribution of solution. We also investi-

gated noise-induced switching between stable equilib-

ria, which suggests that noise may induce reduction in

the Ab concentration. Therefore, we can view the

random disturbance in System as a control variable,

such as language training and physical therapy, to

achieve the control of AD, thereby slowing the

deterioration of AD. The introduction of the Brownian

motion in System (2) has been proven to be a useful

technique to capture molecular trails in experimental

settings. Therefore, our numerical analysis can

provide real-time observation of the concentration of

Ab in different time periods. This mathematical

approach can be a promising quantitative screening

device for AD therapy, especially in the context of

early diagnosis and disease evolution predictions.

However, we here studied just the most basic

dynamics of Ab and Ca2þ, but there is a need for

further research on the mechanism of AD. For

example, silibinin, a flavonoid compound, selectively

interacts with Ab monomer to reduce its aggregation

and alleviate neuronal damage. Spread of misfolded

proteins by ‘‘prion-like’’ protein aggregation, and

soluble oligomers bind with high affinity to prion

proteins, which is mediated by the protein and

produces toxic damage neurons on the surface of the

cell [39]. Thus, the interaction between these mole-

cules affects the development of AD. In addition,

some substances in the brain have diffusion behavior,

e. g., Achdou et al. [62] proposed a mathematical

model at the early stage of AD based on aggregation

equation to account for the diffusion. Therefore,

spatial diffusion has a certain influence on the

development of AD. And the effect of intrinsic noise

on Ab and Ca2þ metabolism is often ignored, it will be

interesting to combine intrinsic noises with extrinsic

noises and discuss their joint influence on the dynam-

ics of AD system. We regard these studies as our future

work.
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Appendix

From the second equation of the deterministic system

(i.e., r1 ¼ r2 ¼ 0 in (2)), we have

y ¼ V4xþ V2

k2

: ðA:1Þ

The bring (A.1) into the first equation of the

deterministic system, we get a cubic equation in one

variable with respect to x

FðxÞ ¼ T3x
3 þ T2x

2 þ T1xþ T0 ¼ 0; ðA:2Þ

where

T3 ¼ �k1V
2
4 ;

T2 ¼ �2V2V4k1 þ V2
4 ðV1 þ V3Þ;

T1 ¼ 2V2V4ðV1 þ V3Þ � V2
2 þ k2

2k
2
3

� �
k1;

T0 ¼ V2
2 ðV1 þ V3Þ þ V1k

2
2k

2
3:

We assume that (A.2) has three positive equilibria,

x1; x2 and x3 (x1\x2\x3). F0ðx1Þ is the derivative of

FðxÞ at xi. We can easily get that F0ðx1Þ\0,

F0ðx2Þ[ 0 and F0ðx3Þ\0. Next, we give the stability

analysis of the equilibria.

Calculate the Jacobian matrix JðEiÞ of the deter-

ministic system at internal equilibrium Eiðxi; yiÞ

JðEiÞ ¼
�k1

2V3k
2
3yi

k2
3 þ y2

i

� �2

V4

e
� k2

e

0
BB@

1
CCA:

The eigenvalues of JðEiÞ satisfy the equation:

k2 � trðJÞkþ DetðJÞ ¼ 0;

where,

trðJÞ¼�k1�
k2

e
\0; DetðJÞ¼� V4xiþV2ð ÞF0 xið Þ

k2
2yi k

2
3 þy2

i

� � ;

because F0ðx1Þ\0, F0ðx2Þ[ 0 and F0ðx3Þ\0, so E1

and E3 are asymptotically stable and E2 is an

unstable saddle point.

In addition, the two equations on the right of the

deterministic system are respectively defined as H1

and H2, then

oH1

ox
þ oH2

oy
¼ �k1 �

k2

e
\0:

According to the Bendixson–Dulac criteria, it is

clear that there is no closed orbit in the deterministic

system, that is, when the deterministic system has a

unique equilibrium, it must be globally asymptotically

stable.

References
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