
Journal of Mathematical Biology           (2023) 86:54 
https://doi.org/10.1007/s00285-023-01890-z Mathematical Biology

Niche differentiation in the light spectrum promotes
coexistence of phytoplankton species: a spatial modelling
approach

Christopher M. Heggerud1 · King-Yeung Lam2 · Hao Wang1

Received: 8 September 2021 / Revised: 9 February 2023 / Accepted: 18 February 2023
© The Author(s) 2023

Abstract
The paradox of the plankton highlights the apparent contradiction between Gause’s
law of competitive exclusion and the observed diversity of phytoplankton. It is well
known that phytoplankton dynamics depend heavily on light availability. Here we
treat light as a continuum of resources rather than a single resource by considering the
visible light spectrum. We propose a spatially explicit reaction–diffusion–advection
model to explore under what circumstance coexistence is possible from mathematical
and biological perspectives. Furthermore, we provide biological context as to when
coexistence is expected based on the degree of niche differentiation within the light
spectrum and overall turbidity of the water.
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1 Introduction

Phytoplankton are microscopic photosynthetic aquatic organisms that are the main
primary producers of many aquatic ecosystems, and play a pivotal role at the base of
the food chain. However, the overabundance of phytoplankton species, or algal blooms
as it is often referred to, regularly leads to adverse effects both environmentally and
economically (Huisman et al. 2018; Reynolds 2006;Watson et al. 2015). For these rea-
sons the study of phytoplankton dynamics is important to enhance the positive effects
of phytoplankton while limiting any unfavourable outcomes. Phytoplankton dynamics
depend on inorganic materials, dissolved nutrients and light, and create energy for the
entire aquatic ecosystem via photosynthesis (Reynolds 2006). As the world becomes
more industrialized anthropogenic sources of nutrients drastically increase, and more
often than not the amount of nutrient in the system exceeds what is required for life,
resulting in eutrophication. Thus, in eutrophic conditions light becomes the limiting
resource for phytoplankton productivity (Paerl and Otten 2013; Watson et al. 2015).

Resource limitation, be it light or nutrient limitation, leads to competition amongst
species. The competitive exclusion principle (CEP) states that any two species that
compete for the same limited resource can not stably coexist at a constant population
level. However, the paradox of the plankton (a.k.a Hutchinson’s paradox) stems from
ostensible contradiction between the diversity of phytoplankton typically observed in a
water body and the competitive exclusion principle, since phytoplankton superficially
compete for a couple of limited resources (i.e. light and nutrient) under a fairly well-
mixed environment (Hutchinson 1961).

Several attempts have beenmade to study phytoplankton competition and dynamics
and have helped offer explanations to the paradox of the plankton and phytoplankton
dynamics in general (Tilman 1977; Heggerud et al. 2020; Hsu and Lou 2010; Du
and Mei 2011; Shigesada and Okubo 1981). These studies include various modelling
approaches including stoichiometric modelling (Heggerud et al. 2020; Grover 1991),
non-local reaction–diffusion equations (Hsu and Lou 2010; Du and Mei 2011) and
complex limnological interactions (Zhang et al. 2021). Non-local reaction diffusion
equations are beneficial to the study of phytoplankton population because they are
capable of capturing light availability after attenuation throughout the water column,
modelling diffusion and buoyancy/sinking of phytoplankton, and there exists a myriad
of mathematical tools and theories to aid in their analysis. One such mathematical the-
ory that we utilize in this paper is the monotone dynamical systems theory (Hess 1991;
Hirsch and Smith 2005; Lam and Lou 2022; Smith 2008). The theory of monotone
dynamical systems is a powerful tool to study the global dynamics of competition
systems consisting of at most two species, as demonstrated in Hsu and Lou (2010),
Ma and Ou (2017), Jiang et al. (2019, 2021).

One such explanation towards to paradox of the plankton is based on the distin-
guishing of resources that have been commonly thought of as a single resource. In
particular, it was hypothesized in Petersen (1975) that each phytoplankton species has
a unique affinity for various nutrients. Classically, light has been treated as a single
resource and competitive exclusion is regularly predicted bymathematical models that
treat it as so (Heggerud et al. 2020; Huisman and Weissing 1994; Wang et al. 2007;
Jiang et al. 2019, 2021; Hsu and Lou 2010). However, as pointed out by Abrams
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(1988), whether or not a resource should be treated as singular or as distinguishable
resources depends heavily on the biology of the consumer. In reality light is highly
variable in several dimensions that are relevant to phytoplankton. In particular, as
light passes through a body of water it is attenuated, meaning that the availability of
light decreases as depth into the water column increases. Additionally, light can be
separated into various wavelengths or frequencies of which each has its own unique
properties altering they way light of a specific wavelength is utilized and attenuated.
By considering both the spatial and spectral dimensions of light it is reasonable to
suggest that light likely does not act as a single resource in many ecological systems.

In the context of phytoplankton, investigation shows that phytoplankton species
absorb and utilize wavelengths with varying efficiencies, implying non-uniform
absorption spectra (Burson et al. 2018; Luimstra et al. 2020; Holtrop et al. 2021;
Stomp et al. 2004, 2007a). A species’ absorption spectrum measures the amount of
light absorbed, of a specific wavelength, by the species. Figure1 gives examples of
absorption spectra for four different species of phytoplankton. Hence, as discussed by
Abrams (1988), light should be treated as a continuum of resources when studying
phytoplankton competition. These differences between the absorption spectra imply
niche differentiation among species and can, in part, help to explain Hutchinson’s
paradox. Furthermore, Stomp et al. (2004, 2007a, b) not only explored the spectral
variation of phytoplankton species experimentally, they have also shown that these
spectral variations allow for coexistence both experimentally and theoretically.

On the other hand, several modelling attempts have been made to shed light on
the spatial heterogeneity throughout the water column (Jiang et al. 2019, 2021; Hsu
and Lou 2010; Yoshiyama et al. 2009; Huisman et al. 1999). For example, compet-
itive advantage is readily gained by a species who has better overall access to light,
whether it be realized through buoyancy regulation or increased turbulent diffusion.
Furthermore, several studies explicitly consider light limitation caused by attenuation
throughout the water column (Heggerud et al. 2020; Jiang et al. 2019). Light is attenu-
ated differently as it penetrates through the water column due to the various molecules
and organisms present. Typically this attenuation is modelled using Lambert-Beer’s
law which assumes an exponential form of light absorbance by water molecules and
seston (suspended organisms,minerals, compounds, gilvin, tripton and etc.). However,
the amount of light attenuated is not strictly uniform with respect to wavelengths. For
example, pure water absorbs green and red wavelengths more than blue, giving water
its typical bluish tone whereas waters rich in gilvin, that absorb blue light, typically
appear yellow. Additionally, as mentioned, phytoplankton species’ absorption spec-
tra are non-uniform across the light spectrum thus contributing to the variable light
attenuation. Because absorption depends on wavelength, the available light profile
can change drastically throughout the depth of the water column, giving rise to water
colour and another potential mechanism for species persistence.

In this paper we novelly combine the spatial and spectral aspects of light as
a resource to explain the paradox of the plankton. We extend spatially explicit
mathematical models for phytoplankton dynamics to consider competition amongst
phytoplankton species with niche differentiation in the absorption spectrum (Jiang
et al. 2019, 2021; Stomp et al. 2007b). Furthermore, the underwater light spectrum,
and its attenuation, as modelled by the Lambert-Beer law, explicitly depend on the
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Fig. 1 Normalized absorption spectra for four phytoplankton species: green cyanobacteria (Synechocystis
strain), red cyanobacteria (Synechococcus strain), green algae (Chlorella strain) and a diatom (Nitzschia
strain) (Luimstra et al. 2020; Burson et al. 2018; Stomp et al. 2007b). The differences of absorption spectra
among species imply niche differentiation throughout the spectrum (color figure online)

wavelengths of light. In Sect. 2, we introduce a reaction–diffusion–advection phyto-
plankton competition model that non-locally depends on phytoplankton abundance
and light attenuation. In Sect. 3, we provide several preliminary results regarding the
persistence of a single species via the associated linearized eigenvalue problem and
extend these results for two species competition. In Sect. 4, we introduce an index to
serve as a proxy for the level of niche differentiation amongst two species and pro-
vide coexistence results based on this index. In the absence of niche differentiation
we establish the competitive exclusion results based on advantages gained through
buoyancy or diffusion. In Sect. 5, we numerically explore two types of competitive
interactions: i) specialist versus specialist and ii) specialist versus generalist, in order
to investigate how niche differentiation may overcome competitive forces that would
otherwise result in competitive exclusion. We then consider the case when more than
two species compete and show that upon sufficient niche differentiation any number of
phytoplankton species may coexist in Sect. 6. Finally, we offer a realistic competition
scenario where the absorption spectra of two competing species are given in Fig.1 and
background attenuation is modelled based on water conditions ranging from clear to
highly turbid. Our work offers a possible explanation of Hutchinson’s paradox. That
is, through sufficient niche differentiation in the light spectrum, many phytoplankton
species can coexist.

2 Themodel

In this section, we extend a two species non-local reaction–diffusion–advection model
previously proposed in several papers (Du and Hsu 2010; Hsu and Lou 2010; Jiang
et al. 2019, 2021) to consider niche differentiation via absorption spectra separation.
The PDE system assumes sufficient nutrient conditions so that light is the only factor
limiting phytoplankton growth. However, the species utilize incident wavelengths
at varying efficiency (Stomp et al. 2007b; Burson et al. 2018; Luimstra et al. 2020;
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Holtrop et al. 2021), as highlighted in Fig. 1. Because of the attenuation of light through
the vertical water column, the diffusivity of the phytoplankton and the potential for
buoyancy regulation (advection) the system is spatially explicit. That is, let x denote the
vertical depth within the water column, and let u1(x, t) and u2(x, t) be the population
densities of the two competing phytoplankton species, at depth x and time t . The
following model generalizes that of Stomp et al. (2007b) in the spatial context:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u1 = D1∂
2
x u1 − α1∂xu1 + [g1(γ1(x, t)) − d1(x)]u1 for 0 < x < L, t > 0,

∂t u2 = D2∂
2
x u2 − α2∂xu2 + [g2(γ2(x, t)) − d2(x)]u2 for 0 < x < L, t > 0,

D1∂xu1(x, t) − α1u1(x, t) = D2∂xu2(x, t) − α2u2(x, t) = 0 for x = 0, L, t > 0,

u1(x, 0) = u1,0(x), u2(x, 0) = u2,0(x) for 0 < x < L.

(1)
In the above, the turbulent diffusion coefficients D1, D2 > 0 and advection coefficients
α1, α2 ∈ R are assumed to be constants. When αi > 0, the i-th species is sinking,
where asαi < 0means the i-th species is buoyant enough and tends towards thewaters
surface. The functions d1(x), d2(x) ∈ C([0, L]) are the death rate of the species at
depth x . Next, we describe the light intensities and model the light dependent growth
rates. We assume sunlight enters the water column with an incident light intensity
Iin(λ), then I (λ, x, t) is the light intensity of wavelength λ at depth x and time t
which, according to the Lambert-Beer’s law, is given by

I (λ, x, t) = Iin(λ) exp

[

−KBG(λ)x − k1(λ)

∫ x

0
u1(y, t)dy − k2(λ)

∫ x

0
u2(y, t)dy

]

, (2)

where KBG(λ) is the background attenuation of light and k1(λ) and k2(λ) are the
absorption spectra of species 1 and 2, respectively. The absorption spectrum is the
proportion of incident photons of a given wavelength absorbed by the phytoplankton
population. Finally, the function γ1(x, t) is the number of absorbed photons available
for photosynthesis by species 1 and is given by

γ1(x, t) =
∫ 700

400
a1(λ)k1(λ)I (λ, x, t) dλ, (3)

The respective quantity γ2(x, t) for species 2 is similarly defined. For i = 1, 2, and for
each given wavelength λ, the positive quantity ai (λ) converts the absorption spectrum
of the i-th species into the action spectrum, i.e. it is the proportion of absorbed photons
used for photosynthesis. In most cases, absorbed photons are utilized with similar
efficiency, thus we take a1(λ) = a2(λ) = 1 for simplicity. We also assume that the
specific growth rates g1(s) and g2(s) of both phytoplankton species are increasing and
saturating functions of the number of absorbed photons available for photosynthesis,
i.e.

gi (0) = 0, g′
i (s) > 0 for s ≥ 0, gi (+∞) < +∞ for i = 1, 2. (4)
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A common choice of growth function is the Monod equation given by

gi (s) = ĝi s

γ̂i + s
, i=1,2, (5)

where ĝi is the maximal growth rate of the i-th species and γ̂i is the half-saturation
coefficient. Lastly, we assume there is no net movement across the upper and lower
boundaries of the water column, resulting in the zero-flux boundary conditions for
x = 0, L .

3 Preliminary results

In this section, we establish several preliminary theorems for coexistence and com-
petitive exclusion that are used throughout the paper. We establish a representative
eigenvalue problem of system (1) at the boundary equilibrium. From the eigenvalue
problemwe establish conditions for a single species to persist in the absence of a com-
petitor. From this we are able to extend the results and establish sufficient conditions
for either coexistence or competitive exclusion.

First, we define the functions fi : [0, L] × [0,∞) × [0,∞) → R by:

fi (x, p1, p2) = gi

⎛

⎝

∫ 700

400
ai (λ)ki (λ)Iin(λ) exp

[

− KBG(λ)x −
2∑

j=1

k j (λ)p j

]

dλ

⎞

⎠ − di (x). (6)

Then, for i = 1, 2, the function fi satisfies

(H)
∂ fi
∂ p j

< 0 and
∂ fi
∂x

< 0 for (x, p1, p2) ∈ [0, L] × R
2+, j = 1, 2.

Biologically, the function fi (x, p1, p2) is the per capita growth rate of the i-th species,
which is given by the photosynthetic growth rate minus the death rate. Thus, (H)
states that the per capita growth rate decreases when light is less available due to
either increased depth (x) or increased shading caused by population abundance p j

of each phytoplankton species. Although we only consider the autonomous system
here, we remark that most of the theoretical results can be generalized to the case of
a temporally periodic environment.

3.1 Persistence of a single species

In this subsection we characterize the long-term dynamics of system (1) in the absence
of competitors, i.e when u1,0 ≡ 0 or u2,0 ≡ 0. We begin by defining the following
eigenvalue problem.

Definition 3.1 For given constants D > 0 and α ∈ R, and given arbitrary function
h(x) ∈ C([0, L]), defineμ(D, α, h) ∈ R to be the smallest eigenvalue of the following
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boundary value problem:

{
D∂xxφ − α∂xφ + h(x)φ + μφ = 0 for (x, t) ∈ [0, L] × R

+,

D∂xφ − αφ = 0 for (x, t) ∈ {0, L} × R
+.

(7)

The eigenvalue problem given in Definition 3.1 is well associated to the system (1)
linearized around the boundary equilibrium E1 = (ũ1, 0) or E2 = (0, ũ2). Note that
this eigenvalue follows the mathematical convention, while it might have a reversed
sign in the ecology literature in analogy with the positive or negative growth rate of
a species when rare. Below we give the main result of this section, which provides a
condition for the existence and attractiveness of the semi-trivial solutions E1 and E2.

Proposition 3.2 Suppose

(P) μ(Di , αi , fi (x, 0, 0)) < 0 for i = 1, 2.

Then the system (1) has exactly two non-negative monoculture equilibria E1 =
(ũ1, 0) and E2 = (0, ũ2). Moreover, E1 (resp. E2) attracts all solutions of (1) with
initial condition (u1,0, u2,0) such that

u1,0 ≥, �≡ 0 and u2,0 ≡ 0 (resp. u1,0 ≡ 0 and u2,0 ≥, �≡ 0). (8)

Proof See Jiang et al. (2019, Proposition 3.11). 	

The condition (P) says that the trivial solution is linearly unstable, which is equiva-

lent to the persistence of a single species in the absence of a competitor. The following
corollary gives an explicit condition for (P).

Corollary 3.3 Let fi be defined in (6). If

∫ L

0
eαi x/Di fi (x, 0, 0) dx > 0 for i = 1, 2, (9)

then (P) holds and the conclusions of Proposition 3.2 concerning the existence and
attractivity of semi-trivial solutions E1 and E2 hold.

Proof Thanks to Lemma A.1 in the Appendix, (9) implies (P. The conclusion thus
follows from Proposition 3.2. 	


In terms of the physical parameters, (9) reads

∫ L

0
eαi x/Di gi

(∫ 700

400
ai (λ)ki (λ)Iin(λ)e−KBG (λ)x

)

dx >

∫ L

0
eαi x/Di di (x) dx,

(10)
giving a sufficient condition for the existence and attractivity of the monoculture equi-
librium E1 and E2. The nonzero sinking velocity α introduces spatial heterogeneity,
exhibited by the presence of the term eαx/D in (10) in which the bottom region of the
water column is weighted more heavily then the surface region. Thus, as described in
(10), persistence of a single species occurs when the average growth rate through the
water column exceeds the average death rate weighted by eαi x/Di to account for the
sinking velocity.
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3.2 Coexistence in two species competition

We now classify the possible outcomes of a two species competition and establish
sufficient conditions for coexistence.We begin by casting the system (1) in the context
of monotone dynamical systems. We will apply the comparison principle and a novel
notion of super/subsolution developed in Jiang et al. (2019); see also the earlier work
(Ma and Ou 2017) on a single species. Note that while parabolic system of two
competing species admits monotone structures, the same does not hold when the two
species compete for an exploitable resource. In fact, the maximum principle does not
hold in general when nonlocal/integral terms are involved, even for the single species
case (Lam 2019).

We begin by considering the Banach space X = C([0, L]) ×C([0, L]) ordered by
the nonstandard cone K = K1 × (−K1), where

K1 =
{

φ ∈ C([0, L]) :
∫ x

0
φ(y) dy ≥ 0 for all x ∈ [0, L]

}

. (11)

The cone K has non-empty interior, i.e. IntK = (IntK1) × (−IntK1), where

IntK1 =
{

φ ∈ C([0, L]) : φ(0) > 0
∫ x

0
φ(y) dy > 0 for all x ∈ [0, L]

}

. (12)

Let (ui (x, t), vi (x, t)) (i = 1, 2) be two sets of solutions of (1) with initial conditions
(ui,0(x), vi,0(x)). Since f1 and f2 satisfy (H), it follows by Jiang et al. (2019,Corollary
3.4) that

(u2,0−u1,0, v2,0 − v1,0)∈K\{(0, 0)} ⇒ (u2,0−u1,0, v2,0 − v1,0)(·, t) ∈ Int K ∀t>0.

In other words, the system (1) preserves the ordering induced by the cone K. In fact,
it generates a semiflow that is strongly monotone with respect to the cone K. An
important consequence is that the long-time dynamics of the system (1) can largely be
determined by the local stability of the equilibria, which will be characterized next.

We now characterize the local stability of Ei . Note that in this section we allow for
competition and do not restrict the initial conditions to be of the form as in (8).

Proposition 3.4 (Jiang et al. 2019, Proposition4.5) Suppose theparameters are chosen
such that (P) holds, i.e. the two species system has two monoculture equilibria E1 =
(ũ1, 0) and E2 = (0, ũ2).

(a) The equilibrium E1 is linearly stable (resp. linearly unstable) if μ1 > 0 (resp.
μ1 < 0), where

μ1 := μ(D2, α2, f2(x,
∫ x

0
ũ1(y) dy, 0)). (13)

(b) The equilibrium E2 is linearly stable (resp. linearly unstable) if μ2 > 0 (resp.
μ2 < 0), where

μ2 := μ(D1, α1, f1(x, 0,
∫ x

0
ũ2(y) dy)). (14)
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Proof We only prove assertion (a), since assertion (b) follows by a similar argument.
To determine the local stability of the monoculture equilibrium E1, we consider the
associated linearized eigenvalue problem at E1 = (ũ1, 0), which is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D1φxx − α1φx + f1(x,
∫ x
0 ũ1(y) dy, 0)φ

−ũ1g′
1(γ1)[A11(x)

∫ x
0 φ(y) dy + A12(x)

∫ x
0 ψ(y) dy] + μφ = 0 in [0, L],

D2ψxx − α2ψx + f2(x,
∫ x
0 ũ1(y) dy, 0)ψ + μψ = 0 in [0, L],

D1φx − α1φ = D2ψx − α2ψ = 0 for x = 0, L.

(15)
where (recall that we have taken ai ≡ 1)

Ai j (x) =
∫ 700

400
ki (λ)I (λ, x)k j (λ) dλ (16)

and

γi (x) =
∫ 700

400
ki (λ)Iin(λ) exp

[

−KBG(λ)x − k1(λ)

∫ x

0
ũ1(y) dy

]

dλ. (17)

Note that I (λ, x) and γi (x) are defined as in (2) and (3), respectively, but with
(u1, u2) = (ũ1(x), 0) such that the dependence on t is dropped due to steady state con-
ditions. Thanks to the monotonicity of the associated semiflow, the linearized problem
(15) has a principal eigenvalue μp in the sense that μp ≤ Reμ for all eigenvalues
μ of (15), and that the corresponding eigenfunction can be chosen in K\{(0, 0)}. In
particular, E1 is linearly stable (resp. linearly unstable) if μp > 0 (resp. μp < 0).

Note that the system (15) decouples, so that we may apply (Jiang et al. 2019,
Proposition 4.5) to yield

sgnμp = sgnμ1,

where μ1 is given in (13). Hence, E1 is linearly stable (resp. linearly unstable) if
μp > 0 (resp. μp < 0). 	


Proposition 3.4 gives the sufficient conditions for which the monoculture equilibria
exist andwhether or not they are linearly stable. If both E1 and E2 existwe can conclude
the existence of a positive equilibrium solution by the following proposition.

Proposition 3.5 Assume (P), so that both semi-trivial equilibria E1 and E2 exist.
Suppose further that

μ1 · μ2 > 0,

then (1) has at least one positive equilibrium (û1, û2).

Proof If μ1 · μ2 > 0, then the monoculture equilibria E1 and E2 are either both
linearly stable or both linearly unstable. The existence of positive equilibrium thus
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follows from Hess (1991, Remark 33.2 and Theorem 35.1) and Hsu et al. (1996),
Smith and Thieme (2001). 	


In the case both E1 and E2 are linearly unstable, both species persist in a robust
manner.

Proposition 3.6 Assume (P) so that the semi-trivial equilibria E1, E2 exist. Suppose

μ1 < 0 and μ2 < 0, (18)

(i.e. both E1 and E2 are unstable) then the following holds.

(i) There exists δ0 > 0 that is independent of the initial data such that

lim inf
t→∞ min

i=1,2

∫

0<x<L
ui (x, t) ≥ δ0;

(ii) System (1) has at least one stable coexistence equilibrium (û1, û2).

Proof By (18), both monoculture equilibria E1, E2 are linearly unstable. The result
follows from Hess (1991, Theorems 33.3) and Hsu et al. (1996), Smith and Thieme
(2001). 	


Thus, based on the signs of the principal eigenvalues μ1 and μ2, we can assert the
existence of at least one stable coexistence equilibrium. The signs of the principal
eigenvalue μ1 and μ2 are often difficult to determine although they can be computed
numerically. We now establish an explicit condition for coexistence. To this end,
observe from Corollary 3.3 and (10) that a sufficient condition for

μ2 = μ(D1, α1, f1(x, 0,
∫ x

0
ũ2(y, t) dy)) < 0. (19)

is given by

∫ L

0
eα1x/D1g1

(∫ 700

400
a1(λ)k1(λ)Iin(λ)e−KBG (λ)x−k2(λ)

∫ x
0 ũ2(y,t) dy

)

dx

>

∫ L

0
eα1x/D1d1(x, t) dx . (20)

To this end, we first obtain an explicit upper bound for
∫ x
0 ũi (y) dy. Let us define,

for i = 1, 2,

Mi := inf

{

M > 0 :
∫ x

0
fi (y, 0, M

∫ y

0
e−αi z/Di dz)e−αi y/Di dy ≤ 0 in [0, L] × [0, T ]

}

.

123



Niche differentiation in the light spectrum promotes… Page 11 of 34    54 

Lemma 3.7 For i = 1, 2,

∫ x

0
ũi (y, t) dy ≤ Mi Di

αi
(1 − e−αi x/Di ) for all (x, t) ∈ [0, L] × [0, T ].

Proof Indeed, with such a choice of Mi , the function Mie−αi x/Di will then qualify as
an super-solution for the single species equation for the i-th, in the sense of Jiang et
al. (2019, subsection 3.2) (Note that the differential inequality is satisfied in the sense
of the cone K rather than at every point (x, t)). Hence, by comparison, we have

Mie
−αi x/D1 − ũi ∈ K1,

that is,

∫ x

0
ũi (y, t) dy ≤

∫ x

0
Mie

−αi y/Di dy = Mi Di

αi
(1 − e−αi x/Di ) for x ∈ [0, L].

This completes the proof. 	

By the above discussion, a sufficient condition for (20) is

∫ L

0
eα1x/D1g1

(∫ 700

400
a1(λ)k1(λ)Iin(λ, t)e

−KBG (λ)x−k2(λ)
M2D2

α2
(1−e−α2x/D2 )

)

dx

>

∫ L

0
eα1x/D1d1(x) dx . (21)

Furthermore, an upper bound,M1, for
∫ x
0 ũ1(y, t) dy is easily established following

the arguments in Lemma 3.7. Thus, a sufficient condition for (18) is given by (21) and

∫ L

0
eα2x/D2g2

(∫ 700

400
a2(λ)k2(λ)Iin(λ)e

−KBG (λ)x−k1(λ)
M1D1

α1
(1−e−α1x/D1 )

)

dx

>

∫ L

0
eα2x/D2d2(x) dx . (22)

This yields an explicit sufficient condition for coexistence. That is, conditions (21)
and (22) suggest that the average light availability for a typical individual is sufficient
enough to exceed its average death rate, where the average is weighted by eα1x/D to
account for the sinking velocity.

4 Extreme cases of niche differentiation: competitive outcomes

In this section, we explicitly consider niche differentiation via the absorption spectra,
k1(λ) and k2(λ). We consider the extreme cases of differentiation, where the niches
either completely overlap, or do not overlap at all. Sufficient conditions for exclusion
or coexistence are given.
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We establish the following definition to serve as a proxy for niche differentiation.

Definition 4.1

IS(k1, k2) = 1

2

∥
∥
∥
∥

k1
‖k1‖L1

− k2
‖k2‖L1

∥
∥
∥
∥
L1

. (23)

We refer to IS(k1, k2) as the index of spectrum differentiation among two species.
If the two species have the same absorption spectra then IS(k1, k2) = 0 whereas if
their absorption spectra are completely non-overlapping then IS(k1, k2) = 1. Note
that this metric considers only niche differentiation and gives no information about
any fitness difference, or competitive advantage a species may have. For this reason it
is seen as a simplification and adaption of those classical metrics described inMcCann
and Gellner (2020, Chapeter 2) and MacArthur (1970).

4.1 Coexistence for disjoint niches

Consider the case where the absorption spectra are completely non-overlapping, so
that competition for light is at the extreme minimum. Namely,

IS(k1(λ), k2(λ)) = 1.

We give an intuitive coexistence result showing under no competition the species
coexist.

Corollary 4.2 Suppose (P) holds, so that the monoculture equilibria E1 and E2 exist.
If, in addition, IS(k1(λ), k2(λ)) = 1, then the coexistence results of Proposition 3.6
hold.

Proof First note that IS(k1(λ), k2(λ)) = 1 is equivalent to k1(λ)k2(λ) = 0 for each
λ. It suffices to observe that

f2(x,
∫ x

0
ũ1(y) dy, 0) = f2(x, 0, 0), and f1(x, 0,

∫ x

0
ũ2(y) dy) = f1(x, 0, 0)

so that (P) implies μ1 < 0 and μ2 < 0. The rest follows from Proposition 3.6. 	


4.2 Competitive exclusion for identical niches

Next, we consider the case where the absorption spectra overlap completely (IS = 0)
to consider maximum competition for light. Recall our assumption that a1(λ) =
a2(λ) = 1.Additionally, we assume that all demographic parameters are equal and that
only diffusion and advection rates differ among the competing species. Thus, under
these assumptions we establish the competitive exclusion scenarios in the following
theorems.

Theorem 4.3 Assume IS(k1, k2) = 0. Let D1 = D2, α1 < α2, f1 = f2, d1 = d2. If
(P) holds (i.e. both E1, E2 exist), then species 1 drives the second species to extinction,
regardless of initial condition.
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Proof By the theory of monotone dynamical systems (see, e.g. (Hsu et al. 1996, The-
orem B) and (Lam and Munther 2016, Theorem1.3)), it suffices to establish the linear
instability of the monoculture equilibria E2, and the non-existence of positive equi-
libria.
Step 1. We claim that μ2 < 0, i.e. E2 = (0, ũ2) is linearly unstable.

Recall that ũ2 is the unique positive solution to

{
D2ũxx − α2ũx + f2(x, 0,

∫ x
0 ũ(y) dy)ũ = 0 in [0, L],

D2ũx − α2ũ = 0 for x = 0, L,

where f2 is given in (6) and satisfies (H). Observe that zero can be regarded as an
eigenvalue of (7) with (D, α, h) = (D2, α2, f2(x, 0,

∫ x
0 ũ2(y) dy) dy), with the corre-

sponding eigenfunction being ũ2 > 0. Since the principal eigenvalue is characterized
as the only eigenvalue admitting a positive eigenfunction (Lam and Lou 2022), it
follows that

μ(D2, α2, f2(x, 0,
∫ x

0
ũ2(y) dy)) = 0.

Since D1 = D2, α1 < α2 and f1 = f2, we may apply the eigenvalue comparison
lemma (Lemma A.2(a) of Appendix) to deduce

μ2 = μ(D1, α1, f1(x, 0,
∫ x

0
ũ2(y) dy)) < μ(D2, α2, f2(x, 0,

∫ x

0
ũ2(y) dy)) = 0.

Thus E2 is linearly unstable.
Step 2. The system (1) has no positive equilibrium.

Suppose to the contrary that (u∗
1, u

∗
2) is a positive equilibrium, then we argue as

before that

μ(Di , αi , fi (x,
∫ x

0
u∗
1(y) dy,

∫ x

0
u∗
2(y) dy)) = 0 for i = 1, 2,

where the respective eigenfunctions are given by u∗
i > 0. However, this is in contra-

diction with Lemma A.2(a). 	

Theorem 4.3 gives the competition outcome in the scenario that one species has

a higher advection rate, while all other rates are equal. In the following Theorem,
Theorem 4.4 we give the competition result when both species are sinking at the same
rate, but one has a higher diffusion rate.

Theorem 4.4 Assume IS(k1, k2) = 0. Let D1 < D2, α1 = α2 ≥ [ f1(0, 0, 0) − d1]L,
f1 = f2, d1 = d2. If (P) holds (i.e. both E1, E2 exist), then the faster diffusing
species, species 2 drives the slower species, species 1, to extinction, regardless of
initial condition.

Proof Denote α = α1 = α2 and f = f1 = f2. By the theory of monotone dynamical
systems (see, e.g. Hsu et al. 1996, Theorem B and Lam and Munther 2016, Theorem
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1.3), it suffices to establish the linear instability of the monoculture equilibria E2, and
the non-existence of positive equilibria.
Step 1. We claim that μ1 < 0, i.e. E1 = (ũ1) is linearly unstable.

Recall that ũ1 is the unique positive solution to

{
D1ũxx − αũx + f (x, 0,

∫ x
0 ũ(y) dy)ũ = 0 in [0, L],

D1ũx − αũ = 0 for x = 0, L,

where f = f1 = f2 is given in (6) and satisfies (H). It follows as in the proof of
Theorem 4.3 that μ(D1, α, f (x, 0,

∫ x
0 ũ1(y) dy)) = 0. Next, define

H(D) := μ(D, α1, f1(x, 0,
∫ x

0
ũ2(y) dy)).

We claim that
H(D1) = 0 and H ′(D1) < 0. (24)

Indeed, H(D1) = 0 is proved in the above, andLemmaA.2(c) of theAppendix implies
H ′(D1) < 0. This proves (24).

To prove the instability of E1, we need to show that H(D2) < 0. Suppose to the
contrary that H(D2) ≥ 0. Then by considering also (24), there exists D′ ∈ (D1, D2]
such that H(D3) = 0 and H ′(D3) ≥ 0.But this is impossible in viewofLemmaA.2(c).
Thus H(D2) < 0, and E1 is linearly unstable.
Step 2. The system (1) has no positive equilibrium.

Suppose to the contrary that (u∗
1, u

∗
2) is a positive equilibrium, then deduce that

μ(Di , α, f (x,
∫ x

0
u∗
1(y) dy,

∫ x

0
u∗
2(y) dy)) = 0 for i = 1, 2,

where the respective eigenfunctions are given by u∗
i > 0. However, we can argue as

in Step 1 that this is in contradiction with Lemma A.2(c). 	

Theorem 4.5 gives the competition result when both species are equally buoyant

but one has a higher diffusion rate.

Theorem 4.5 Assume IS(k1, k2) = 0. Let D1 < D2, α1 = α2 ≤ 0, f1 = f2, d1 = d2.
If (P) holds (i.e. both E1, E2 exist), then the slower diffusing species, species 1 drives
the faster diffusing species, species 2, to extinction, regardless of initial condition.

Proof One may argue as in Theorem 4.3, except to use Lemma A.2(b) in place of
Lemma A.2(a). We omit the details. 	


Note that IS(k1, k2) = 0 is equivalent to saying that {k1(λ), k2(λ)} is linearly
dependent. The above theorems can be summarized into a single sentence: suppose
both species consume light with the same efficiency, the species that has the stronger
tendency toward the water surface will exclude the other species. That is, if both
species are sinking, the one sinking slower (Theorem 4.3), or with higher diffusion
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(Theorem 4.4) will exclude the other species. If both species are buoyant, then the
less buoyant species (Theorem 4.3) or the more diffusive species will be excluded
(Theorem 4.5).

5 Numerical investigation of niche differentiation

To complement the theorems established in Sects. 3 and 4 we present several numeri-
cal simulations that show the relatively large regions in parameter space that allow for
coexistence.We numerically explore twomain competition scenarios: 1) Niche differ-
entiation through specialization of different wavelengths and 2) niche differentiation
through specialist and generalist (with respect to light) competition. In each scenario
we consider the intermediate levels of niche differentiation evaluated by IS(k1, k2),
which is not covered by the previous analytical results.

The conclusions of this section can be summarized as follows:

P1: Competitive advantage is given to the specieswhose absorption spectrumoverlaps
the most with the available incident light. However, significant niche differentia-
tion can promote coexistence for scenarios where incident light does not strongly
favour a single species.

P2: Competitive exclusion through an advection advantage can be overcome by niche
differentiation.

P3: Intermediate values of specialization will promote coexistence. Otherwise, the
specialist is excluded if its niche is too narrow, or excludes the other species if its
niche overlaps with the incident light significantly.

Throughout this section we manipulate certain parameter values to explore the
competition scenarios, however the following parameters are fixed throughout this
section: Di = 1mh−2, di = 0.001 h−1, ĝi = 1 h−1, γ̂i = 10 µmol photons/(cell h),
for i = 1, 2, k̂ = 0.2 m2/cell and KBG(λ) ≡ 0.001 m−1. We implement an implicit
finite difference scheme inMATLAB 2021 to obtain our numerical results.We assume
that equilibrium is reached when successive iterations differ less than a set tolerance.
That is, we assume the solution has reached equilibrium for values of tk such that
(|u(tk) − u(tk+1)| < 10−4).

5.1 Competition outcomes for specialization on separate parts of the light
spectrum

Here we assume that the two species with relatively narrow niches are competing
for light. We numerically show that niche differentiation can overcome competitive
exclusion. These results imply that when two competing specialist species’ absorption
spectra do not significantly overlap, coexistence is generally achieved. This can be
compared with the theorems in Sect. 4.1 where the absence of niche differentiation
IS(k1, k2) = 0 is assumed.

To investigate the extent of which niche differentiation promotes coexistence we
consider two scenarios. First, we let k1(λ) and k2(λ) be unimodal functions that are
horizontal translations of each other. Specifically, let [a, b] be a subinterval of the
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visible light spectrum [400, 700], μ ∈ [a, b], σ > 0, and let g∗(λ;μi , σ, a, b) be a
truncated normal distribution given by

g∗(x;μ, σ, a, b) =
{
Cg exp

(
− 1

2
(x−μ)2

σ

)
for x ∈ [a, b],

0 otherwise,
(25)

where Cg is a normalizing constant so that
∫ 700
400 g∗ dx ≡ 1, σ is the standard

deviation, and μ ∈ [a, b] being the location of the local maximum. Then ki (λ) =
k̂g∗(λ; λi,0, σk, λi,0 − 75, λi,0 + 75) where λi,0 ∈ [475, 625] is the location of peak
absorbance in the visible light spectrum and k̂ = 0.2 m2/cell, is a constant that does
not depend on i = 1, 2. This ensures k1(λ) and k2(λ) have the same L1 norm and are
identical in their degree of specialization, giving no advantage through the absorption
spectra alone. We then allow the location λ1,0 of the peak of k1(λ) to vary along the
light spectrum [475, 625]while keeping the peak location of k2(λ) fixed at λ2,0 = 475.
Note that the degree IS(k1, k2) also changes as we vary the location of the peak of
k1(λ). Examples of this are shown graphically with the blue curves in Fig. 2b. We
also assume that the incident light Iin(λ) = Îing∗(λ; λI , σI , 400, 700) is a unimodal
function with the location of peak incidence at λ = λI and constant Îin . To understand
the implications incident light has on coexistence we vary λI in the range [450, 650].
Two example curves for Iin(λ) are shown in orange in Fig. 2b In this first scenario we
assume equal advection (α1 = α2) and diffusion (D1 = D2) rates.

Second, we alter IS(k1, k2) as above but with a uniform incident light function and
allow a competitive advantage through advection by altering the advection rate α2 of
species 2. Recall that u1 has competitive advantage when α1 < α2, and species 2 has
competitive advantage when α1 > α2 (see Theorem 4.3).

By varying IS(k1, k2) we can then explore the competitive outcomes for various
scenarios where exclusion is known to occur when niche differentiation is not consid-
ered. Furthermore, we show that the incident light function Iin(λ), together with the
absorption spectra k1(λ), k2(λ), play important roles in the competition outcome by
allowing competitive advantages to be overcome, or diminished. Our results of this
section are shown in Figs. 2 and 3.

Figure2a shows the coexistence regions when varying the location of the peak of
incident light and the distance between the two absorption spectra k1(λ) and k2(λ)

(as measured by IS(k1, k2)). The conclusion P1 can be drawn from Fig. 2a. We see
that competitive exclusion is exhibited for extreme values of λ1,0 − λI and non-zero
IS(k1, k2). When the values of λ1,0 − λI are extreme, one of the species’ absorption
spectrum overlaps with the incident light significantly more giving it a competitive
advantage. However, when the values of λ1,0 − λI are intermediate and IS(k1, k2) is
large then each species has sufficient overlap with the incident light spectrum and any
competitive advantage is diminished, promoting coexistence.

Figure3 shows the coexistence region when varying the advection rate of species
2 (α2) and the distance between the two absorption spectra k1(λ) and k2(λ) (given
by IS(k1, k2)). First, we observe that when IS(k1, k2) = 0, whichever species that is
more buoyant excludes the other species, as was established in Sect. 4.2.
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(a) (b)

Fig. 2 In (a) we show the competition outcome as the peak locations, λ1,0 and λI , are changed. By changing
λ1,0, as shown in the secondary y-axis(right, not in linear scale), we change degree of niche differentiation

between the two species (λ2,0 = 475nm). The heat map is given by |u1||u1|+|u2| . The dotted black line
indicates the level zero contour line, i.e. the border between coexistence and exclusion. In (b) we show the
shape of k2(λ), as well as k1(λ) for various reference values of λ1,0 in blue, and Iin(λ) for two reference

values of λI in orange. Here, σk = 40, σI = 50, αi = −0.01mh−1 for i = 1, 2, and Îin = 500 µmol
photons/(m2 s nm) (color figure online)

Fig. 3 The competition outcome as the advection rate, α2, is changed versus the degree of niche differenti-
ation between the two species under uniform incident light is shown. The niche differentiation is changed
through λ1,0 which is displayed on the secondary y-axis(right, not in linear scale). Example niches are

given in blue in Fig. 2b. The heat map is given by |u1||u1|+|u2| . The dotted and dashed black lines indicate
the level zero and level one contour lines, respectively, and represent the border between coexistence and
exclusion of species. We fix λ2,0 = 475, σk = 25, α1 = −0.01 mh−1 for i = 1, 2 and Iin(λ) ≡ 1.67µmol
photons/(m2 s) (color figure online)

However, when the niche differentiation is significant (i.e. IS(k1, k2) is large) the
competitive exclusion caused by advection advantage is mitigated and coexistence
occurs, thus justifying P2.
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5.2 Outcomes for generalist versus specialist competition

In this sectionwe numerically explore competitive outcomeswith niche differentiation
in the light spectrum via competition between a specialist and a generalist. We say
that a generalist species is a species whose absorption spectrum is uniform (or nearly
uniform) across all visible wavelengths, whereas we say a specialist species is one
whose absorption spectrum is unimodal or narrow. In other words, a specialist absorbs
a small subset of wavelengths at a higher rate than other wavelengths.

We explore the mechanism of specialist versus generalist competition in overcom-
ing competitive exclusion by explicitly comparing absorption spectra.We take k2(λ) to
be a constant (representing generalist) and choose k1(λ) such that |k1(λ)|1 = |k2(λ)|1
in the L1 norm.We further assume that k1(λ) is given by a truncated normal distribution
defined in (25) with k1(λ) = k̂g∗(λ; λ1,0, σk, 400, 700). By using the truncated nor-
mal distribution for k1(λ)we are able to change the degree of specialization of species
1 by changing the standard deviation, σk , of the distribution as shown in Fig. 4b. Fur-
thermore, we allow the location of peak absorption to vary along the incident light
spectra, that is λ1,0 ∈ [400, 700], where λ1,0 is the mean of the truncated normal
distribution and is the location of the local maximum of k1(λ).

We consider two scenarios to analyze the promotion of coexistence via the niche
differentiationmechanismof specialist versus generalist competition. First, we assume
an unimodal incident light given by Iin(λ) = Îing∗(λ; λI , σI , 400, 700) as in Fig. 2a
and vary the location of the peak species absorption spectra, λ1,0. Additionally, we
vary the degree of specialization of species 1 by changing the standard deviation, σk ,
of the truncated normal distribution that defines its absorption spectrum. That is, by
changing the standard deviationwe change the narrowness of its niche and thus change
the values of IS(k1, k2).

Second, we change IS(k1, k2) as described above but with a uniform incident
light function. We allow a competitive advantage through advection by altering the
advection rate of species 2,α2. Recall thatu1 has competitive advantagewhenα1 < α2,
and u2 has competitive advantage when α1 > α2 (see Theorem 4.3).

By varying IS(k1, k2) we are able to show the competitive outcomes when niche
differentiation via a specialist versus generalist competition is permitted. The results
pertaining to competition outcomes of the scenarios discussed in this section are shown
in Figs. 4 and 5.

In Fig. 4awe show the relative abundance of species 1 for various degrees of special-
ization and overlap with the incident light function. Let us discuss P3 in the following.
Species 1 is a strong competitor for a narrow set of wavelengths, whereas species 2 is a
weak competitor for a broad set of wavelengths. When species 1 is highly specialized
(IS(k1, k2) close to one) it is a better competitor than species 2 for a small portion of
the light spectrum, however species 2 has little competition for the rest of the light
spectrum and is able to exclude species 1. Furthermore, if species 1’s niche does not
overlap significantly with the incident light spectra or is too specialized then species 1
is faced with limited resource and is thus excluded. On the other hand, for intermediate
specialization and relatively small distance between the location of peaks of k1(λ) and
Iin(λ) (small |λI − λ1,0|) species 1 will out-compete species 2 for nearly all of the

123



Niche differentiation in the light spectrum promotes… Page 19 of 34    54 

(a) (b)

Fig. 4 (a) shows coexistence regions for a specialist (species 1), and a generalist (species 2). The heat map

is given by |u1||u1|+|u2| . The secondary y-axis (right, not in linear scale) represents σk and shows the one
to one nonlinear relation between σk and IS(k1, k2). The dotted and dashed black lines indicate the level
zero and level one contour lines, respectively, and represent the border between coexistence and exclusion
of species. In (b) we show samples of the absorption spectra in blue and the incident light in orange. We
fix the absorption spectrum k2(λ) of the generalist and change the specialization of species 1 by adjusting
the standard deviation of its absorption spectrum k1(λ) (while keeping the L1 norm constant) as shown
by the blue lines in (b). We fix Iin(λ) as given in (b) and show the competition outcome with relation to
the distance between the specialists location of peak absorption and the incident lights location of peak
intensity and the distance between the two absorption spectra given by IS(k1, k2) in (a). Here σI = 50,
λI = 550 k2(λ) ≡ 6.7×10−4 m2/cell, k̂ = 0.2 m2/cell, αi = −0.01mh−1 for i = 1, 2, and Îin = 500
µmol photons/(m2 s nm) (color figure online)

Fig. 5 We show coexistence regions for competing specialist (species 1), and generalist (species 2). The

heat map is given by |u1||u1|+|u2| . The dotted and dashed black lines indicate the level zero and level one
contour lines, respectively, and represent the border between coexistence and exclusion of species. We fix
the absorption spectrum of the generalist (k2(λ) ≡ 6.7×10−4 m2/cell) and adjust IS(k1, k2) by changing
the standard deviation, σk , of k1(λ) with fixed mean λ1,0 = 550 nm. The secondary y-axis (right, not in
linear scale) shows the corresponding value of σk . We also vary the generalists’ advection rate α2 from
−0.1 to 0.7mh−1, while fixing the specialists’ advection rate α1 = 0.01mh−1. Here, Iin(λ) ≡ 1.67µmol
photons/(m2 s) and k̂ = 0.2 m2/cell. Note that since we consider specialist versus generalist competition
here our choice for absorption spectra does not permit IS(k1, k2) = 0
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resources and thus excluding species 2. When the specialist is relaxed to a general-
ist niche (IS(k1, k2) is close to zero), coexistence can be observed thanks to weak
competition along the entire light spectrum and no significant advantage exists. Addi-
tionally, with intermediate values of IS(k1, k2) and sufficient overlap between incident
light and the niche of species 1, coexistence is permitted by the balance between the
specialist strongly competing for a sufficient but narrow amount of resource and the
generalist weakly competing for wide amount of resource that is not utilized by the
specialist.

In Fig. 5 we show the relative abundance of species 1 for various degrees of spe-
cialization and advection rates of species 2 under uniform incident light. The point
P2 is reiterated by the following results. Recall that in Theorem 4.3 we show that
competitive exclusion occurs if one species has an advection advantage and there is
no niche differentiation. Here we see that niche differentiation in the light spectrum
(IS(k1, k2) > 0) allows for coexistence even though one species has a competitive
advantage through advection.We note that if the generalist has an advection advantage
then it will always exclude the specialist. On the other hand, if the specialist has the
advection advantage it will exclude the generalist unless it becomes too specialized, in
which case sufficient light is available for the generalist and either coexistence occurs,
or in the case of extreme specialization, the specialist is entirely excluded. Further-
more, there is a region where the competitive advantage of advection is so strong for
the specialist that it will always exclude the generalist.

6 Coexistence of N species

In this section,wewill show the possibility of coexistence of N species, for any number
N ≥ 1. We numerically verify this result by considering competition among several
species with varying advection rates. We introduce the N -species model analogous to
(1):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t ui = Di ∂
2
x ui − αi∂xui + [gi (γi (x, t)) − di (x)]ui for 0 < x < L, 1 ≤ i ≤ N ,

Di ∂xui (x, t) − αi ui (x, t) = 0 for x = 0, L, t > 0, 1 ≤ i ≤ N ,

ui (x, 0) = ui,0(x) for 0 < x < L, 1 ≤ i ≤ N ,

(26)

where Di > 0, αi ∈ R and di are the diffusion, advection and death rates of the
i-th species, respectively. The functions gi satisfies (4). The functions γi (x, t) is the
number of absorbed photons available for photosynthesis by the i-th species and is
given by

γi (x, t) =
∫ 700

400
ki (λ)I (λ, x) dλ, (27)

where we have chosen ai ≡ 1 as before, and

123



Niche differentiation in the light spectrum promotes… Page 21 of 34    54 

I (λ, x) = Iin(λ) exp

[

−KBG(λ)x −
N∑

i=1

ki (λ)

∫ x

0
ui (y, t) dy

]

. (28)

Theorem 6.1 Let the incident light spectrum Iin(λ) be positive on an open set in
[400, 700]. Then for each N ≥ 1, there exists a choice of di and {ki (λ)}Ni=1 such that
all N species can persist in (26), i.e. for any positive initial condition, the solution
(ui )Ni=1 of (26) satisfies

lim inf
t→∞

[

inf
0≤x≤L

ui (x, t)

]

> 0 for each 1 ≤ i ≤ N .

Proof By the hypotheses of the theorem, there exists λ1, λ2 such that 400 ≤ λ1 <

λ2 ≤ 700 and that I∗ := inf [λ1,λ2] Iin(λ) > 0. Let {Ji }Ni=1 be a partition of [λ1, λ2],
and choose the functions ki (λ) such that Supp ki ⊂ Int Ji . In particular, the support
of ki do not overlap. Hence,

I (λ, x) = Iin(λ) exp

[

−KBG(λ)x − ki (λ)

∫ x

0
ui (y, t) dy

]

in Supp ki ,

and the i-th species satisfies effectively a single species equation

{
∂t ui = Di∂

2
x ui − αi∂xui + [gi (γi (x, t)) − di (x)]ui for 0 < x < L, t > 0,

Di∂xui − αi∂xui = 0 for x = 0, L, t > 0,

with γi being independent of u j for j �= i . Precisely,

γi (x, t) =
∫ 700

400
ki (λ)Iin(λ) exp

[

−KBG(λ)x − ki (λ)

∫ x

0
ui (y, t) dy

]

dλ. (29)

Next, we choose di to be a positive constant such that

μ(Di , αi , gi (
∫

ki (λ)Iin(λ) exp(−KBG(λ)x)) − di ) < 0.

This is possible since

lim
di→0

μ(Di , αi ,gi (
∫

ki (λ)Iin(λ) exp(−KBG(λ)x)) − di )

= μ(Di , αi , gi (
∫

ki (λ)Iin(λ) exp(−KBG(λ)x))) < 0,
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where the last inequality follow from Lemma A.1. It then follows from Jiang et al.
(2019, Proposition 3.11) that the problem

{
Di∂

2
x ui − αi∂xui + [gi (γ̃i (x)) − di ]ui for 0 < x < L,

Di∂xui (x) − αi ui (x) = 0 for x = 0, L,

with γ̃i (x) given by

γ̂i (x) =
∫ 700

400
ai (λ)ki (λ)Iin(λ) exp

[

−KBG(λ)x − ki (λ)

∫ x

0
ũi (y, t) dy

]

dλ,

has a unique positive solution ũi . Moreover,

ui (·, t) → ũi in C([0, L]), as t → ∞,

provided ui (·, 0) �≡ 0. This completes the proof. 	

Next, we numerically demonstrate the possibility of coexistence of numerous phy-

toplankton species under niche differentiation. We consider the competition of N
species, where N = 5 and N = 100. We assume that all species specific parameters
are identical except for advection. That is, Di = Dj , di = d j , and gi = g j for all i, j
and that α1 = 0.01 with αi = i · α1 for all i for the N = 5 scenario and α1 = 0.001
with αi = i · α1 for all i for the N = 100 scenario. We assume that all absorption
spectra are unimodal and are given by the truncated normal distribution described in
(25). Furthermore, each absorption spectrum ki (λ) is a horizontal translation of one
another. We alter the location of peak absorption (or the mean, λi ) of each species to
allow for niche differentiation similarly to Figs. 2b and 4b.Mathematically this is given
by ki (λ) = k̂g∗(λ; λi,0, σk, 400, 700) where we fix k̂ = 0.2 m2/cell, and σk = 10 for
the N = 5 case and σk = 1 for the N = 100 case. We assume that the peaks of all
species absorption spectra are equally spaced by λsep. That is, |λi,0 − λi+1,0| = λsep
for all species, i . For the N = 5 case we assume that the incident light is given by
Iin(λ) = Îing∗(λ; λI , σI , 400, 700) where σI = 75 and λI = 575 nm allowing for a
competitive advantage. In the N = 100 case, Iin(λ) ≡ 1. For N = 5, we compare the
relative abundances of the five species at time t defined by

ūi (t) = ‖ui (x, t)‖L1
∑N

j=1 ‖u j (x, t)‖L1

, (30)

where the L1 normhere is takenwith respect to the spatial variable x .We further denote
the relative abundance at equilibrium as ū∗

i . In addition, we define the N species niche
differentiation index as

Ii = 1

N − 1

N∑

j=1, j �=i

IS(ki , k j ). (31)
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Fig. 6 Top: Gives the steady state relative abundance (ū∗
i ) of 5 competing species and their respective

overlap measure defined in (31). Bottom: Gives the number of coexisting species in perpetuity when one
hundred species are competing for light. The x-axes are labelled as the difference between the locations
of the peak absorption for each species, μsep . All model parameters are the same among species except
the competitive advantage obtained through buoyancy. Top: (N = 5) α1 = 0.01mh−1, αi = i · α1 for all
i. Bottom: (N = 100) α1 = 0.001mh−1, αi = i · α1 for all i. Additionally, Di = 1mh−2, di = 0.001
h−1, ĝi = 1 h−1, γ̂i = 10 µmol photons/(cell h), for i = 1, 2, 3, 4, 5 and KBG (λ) ≡ 0.001 m−1. This
simulation was produced through an implicit finite method scheme in MATLAB 2021

Figure6 gives the numerical results of the N-species competition. Competitive
exclusion occurs when niche differentiation is not sufficient and the species with the
lowest advection rate (species 1) excludes all other species. However, as the niche
differentiation is increased, more species are able to coexist and all species can persist
when niche differentiation is significant enough.

The results of this section begin to allude to a possible explanation of the observed
diversity of phytoplankton species. Theorem 6.1 suggests the theoretical possibility
that for any given incident light, there exists a parameter region such that all N species
of phytoplankton can coexist indefinitely. Of course this result is merely theoretical
and realistic absorption spectra are not likely as specialized as we assume them to be
in this section. However, our numerical simulations help bridge the gap between the
theoretical result and reality by showing that for fairly general, but sufficiently dis-
joint absorption spectra and slightly differing advection rates coexistence is observed.
Furthermore, these numerical results begin to suggest that coexistence among many
species is observed even for more realistic absorption spectrum as long as a certain
degree of niche differentiation occurs. In addition, Stomp et al. (2007b) and Luim-
stra et al. (2020) show empirical results for two specific species of phytoplankton in
competition with emphasis being placed on niche differentiation in the light spectrum.
Thus, by compiling the theoretical result of Theorem 6.1, numerical results of Fig. 6
and the empirical results found in Stomp et al. (2007b) and Luimstra et al. (2020) we
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can offer one potential explanation of the observed diversity of phytoplankton via the
mechanism of niche differentiation in the light spectrum.

7 The effect of background turbidity on competition

In this section we explore the effect that background turbidity has on competi-
tion amongst two species. We first give a mathematical result that explicitly shows
competitive advantages that can be given when changes in background turbidity dis-
proportionately affects the species in competition. Furthermore, we consider realistic
competition scenarios, using data from Stomp et al. (2007b), Luimstra et al. (2020),
Pope and Fry (1997), for various levels of background turbidity. Our results show that
background turbidity can change the competitive outcomes, even leading to competi-
tive exclusion, which is consistent with many empirical observations.

7.1 Mathematical results of turbidity on competition

In the following,we illustrate the effect ofwater turbidity on the competition dynamics.
Consider the competition model described in (1), (2), and (3). We consider two sets
of incident light intensities (Iin(λ)) in (2): the first one is under normal conditions,
and the second one is with high turbidity. In this subsection we interpret the effect of
turbidity to be reduction of incident light intensity on a certain subset ω of the visible
light spectrum. Mathematically, let Iin(λ) be the incident light intensity under low
turbidity and Ĩin(λ) be the one under high turbidity. Precisely, suppose there exists an
open subset ω in the visible light spectrum [400, 700] such that

Iin(λ) > Ĩin(λ) in ω, and Iin(λ) = Ĩin(λ) in [400, 700]\ω. (32)

We will analyze the competitive ability of two species, and assume the first species
does not specialize on light with wavelength in ω. For simplicity, we consider the
extreme case when it does not use light with wavelength in ω at all i.e.,

k1(λ) = 0 on ω. (33)

The following theorem illustrate the effect of water turbidity on the competition.

Theorem 7.1 Suppose (32) and (33) holds. Let (u1, u2) (resp. (ũ1, ũ2)) be the solution
of (1) with incident light intensity Iin (resp. Ĩin). If they have the same initial data

(u1(x, 0), u2(x, 0)) = (ũ1(x, 0), ũ2(x, 0)) in [0, L],

then
u1(·, t) >K1 ũ1(·, t) and u2(·, t) <K1 ũ2(·, t) for each t > 0. (34)

where >K1 is defined in (A.3).

123



Niche differentiation in the light spectrum promotes… Page 25 of 34    54 

Proof Let fi be defined by (6) using the normal light incidence Iin(λ), and let f̃i be
given by

f̃i (x, p1, p2) = gi

⎛

⎝

∫ 700

400
ai (λ)ki (λ) Ĩin(λ) exp

[

− KBG(λ)x −
2∑

j=1

k j (λ)p j

]
⎞

⎠ − di (x).

(35)
Then we observe that

f̃1(x, p1, p2) = f1(x, p1, p2) and f̃2(x, p1, p2) ≤ f2(x, p1, p2)

for (x, p1, p2) ∈ [0, L]×R+ ×R+. Hence, the solution (ũ1, ũ2) can be considered a
subsolution of (1) in the sense introduced in Definition 3.2 in Jiang et al. (2019), i.e.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t ũ1 ≥ D1∂
2
x ũ1 − α1∂x ũ1 + f1(x,

∫ x
0 ũ1 dy,

∫ x
0 ũ2 dy)ũ1 for 0 < x < L, t > 0,

∂t ũ2 ≤ D2∂
2
x ũ2 − α2∂x ũ2 + f2(x,

∫ x
0 ũ1 dy,

∫ x
0 ũ2 dy)ũ2 for 0 < x < L, t > 0,

D1∂x ũ1(x, t) − α1ũ1(x, t) = D2∂x ũ2(x, t) − α2ũ2(x, t) = 0 for x = 0, L, t > 0,

ũ1(x, 0) = u1(x, 0), ũ2(x, 0) = u2(x, 0) for 0 < x < L.

(36)
It follows from the comparison principle (Theorem 3.3 of Jiang et al. 2019) that either
(34) holds for all t > 0, or

(u1, u2) ≡ (ũ1, ũ2) in [0, L] × [0, t0] for some t0 > 0. (37)

Since the second inequality in (36) is strict for x ∈ ω, we deduce that (37) is impossible.
This proves (34). 	


Theorem 7.1 gives a rigorous, yet intuitive result about the effect of turbidity, or
available light on the competition outcome of two species. In particular, Theorem 7.1
shows that when only one species utilizes a subset of wavelengths (ω) that the abun-
dance of both species is altered based on the availability of light inω. That is, when the
light in ω is not available the species that utilizes it will suffer while the species that
does not utilize remains hardly affected. However, due to the competitive interaction,
the species that does not utilize the light in ω will become more abundant because
they are facing less overall competitive pressure from the species that does utilize light
in ω. This result shows that although there is a differentiation in niches competitive
advantages are easily gained through environmental disturbances that can stem from
lake turbidity or reduction of certain incident wavelengths.

7.2 Red versus Green cyanobacteria competition

In this subsection we numerically explore a more realistic competition scenario
between two phytoplankton species. To incorporate realistic biological assumptions
into our model we consider two main things. First, the background attenuation of
water is not uniform across the visible light spectrum and depends on the amount
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Fig. 7 The absorption spectrum of pure water (Pope and Fry 1997; Stomp et al. 2007b), and the absorption
spectra for lakes with gilvin and tripton concentrations representative of clear oligotrophic or mesotrophic
waters (KGT (480) = 0.1), and turbid eutrophic waters (KGT (480) = 1)

of dissolved and particulate organic matter (gilvin and tripton) in the water. Second,
we consider absorption spectra given empirically as in Fig. 1 and explore competition
outcomes.

7.2.1 Background attenuation in water

Here we introduce a reasonable function to more accurately model background atten-
uation of water, gilvin and tripton and phytoplankton.

We divide the background attenuation into two parts to account for the attenuation
of pure water and gilvin and tripton

KBG(λ) = KW (λ) + KGT (λ), (38)

where KW (λ) is readily found in the literature and shown in Fig. 7 (Stomp et al. 2007b;
Pope and Fry 1997). KGT (λ) is also found in literature and is given by the following
form Kirk (2010):

KGT (λ) = KGT (λr )exp(−S(λ − λr )), (39)

where λr is a reference wavelength with a known turbidity and S is the slope of
the exponential decline. Following literature we take reasonable values for each of
these variables with S = 0.017nm−1 as in Stomp et al. (2007b) and referenced in Kirk
(2010).We fix our referencewavelength, λr , to be 480nm. The background attenuation
is larger in turbid lakes due to the high concentrations of gilvin and tripton. For this
reason, we use KGT (480) as a proxy for the turbidity of a lake, and vary KGT (480)
between 0.1−3m−1. That is, low KGT (480) values correspond to clear lakes whereas
high KGT (480) values correspond to highly turbid lakes. These absorption curves are
given in Fig. 7.

Lastly, we consider the absorption spectra of red and green cyanobacteria species.
In Fig. 1 we see that there are significant differences in the absorption spectra between
the phytoplankton allowing for niche differentiation.
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Fig. 8 a–c show steady state outcomes of competition between green cyanobacteria, u1(x, t) (shown
in blue), and red cyanobacteria, u2(x, t) (shown in red), for various amounts of gilvin and tripton that
correspond to low, intermediate and high turbidity, respectively. d–f shows the background absorption for
those states with KGT (480) = 0.1, KGT (480) = 1.5, KGT (480) = 2, respectively. g shows the computed
values of the principal eigenvalues (defined in (13) and (14)) as a function of the background turbidity
defined by KGT (480) (color figure online)

7.2.2 Competition outcomes of red and green cyanobacteria

We now show the steady state outcome when red and green cyanobacteria compete
for light in lakes of varying turbidity given by (38) for different values of KGT (480).

Denote species 1 as the green cyanobacteria (Synechocystis strain) and species 2
as the red cyanobacteria (Synechococcus strain). Then, k1(λ) and k2(λ) are given by
the blue and red absorption spectra shown in Fig. 1, respectively. Their absorption
spectra are sufficiently different so that niche differentiation occurs (Stomp et al.
2007b). That is, the green cyanobacteria mainly absorbs light in the orange-red ranges,
whereas the red cyanobacteria absorbsmore green light. Both species absorb blue light
similarly. We assume the following parameter values for this section: Di = 1mh−2,
αi = 0.1mh−1 di = 0.001 h−1, ĝi = 1 h−1, γ̂i = 10 µmol photons/(cell h), for
i = 1, 2, Iin(λ) ≡ 1.67µmol photons/(m2 s) and KBG(λ) as described in (38).

In Fig. 8 the competition outcome between green cyanobacteria (Synechocystis
strain) and red cyanobacteria (Synechococcus strain) is shown. In Fig. 8d–f we see
that as the gilvin and tripton concentrations increase (shifting from low turbidity to
high) the background absorption’s shift to absorb proportionally more blue and green
light, leaving proportionallymore orange and red light available. This shift in available
light then alters the competitive outcome, where red cyanobacteria clearly dominate
in less turbid water, whereas green cyanobacteria dominate in the highly turbid water,
even though the two species coexist in both situations.

In Fig. 8g we plot the corresponding principal eigenvalues μ1 and μ2 as defined
in (13) and (14). In this case, μ1 and μ2 correspond to the principle eigenvalues for
the linearized system near the equilibrium that exclude green cyanobacteria and red
cyanobacteria, respectively. By plotting the values of μ1 and μ2 we draw a direct
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connection to the mathematical results of Sects. 3 and 4. In particular, we note that
for Fig. 8a–c the two species coexist and correspond to negative values of μ1 and μ2
as seen in Fig. 8g. This indicates that the conditions of Proposition 3.6 are satisfied
and a coexistence state exists and is locally stable. Hence our mathematical results are
supported by these simulations and vice versa. Furthermore, we note that in Fig. 8g
the value of μ2 becomes positive for larger KBG(480). In this case, even though we
do not show it, the numerical simulation converges to an monoculture equilibrium as
implied in Proposition 3.4. The principal eigenvalues allude to results regarding the
dominant species in the two species competition scenario but a stronger connection
can be made to Theorem 7.1. In Theorem 7.1 we show how a change in incident light
alters the competition outcome for two general species. In our simulations we show
how the increase in background attenuation changes the competition outcome for two
specific species. Note that in our simulations an increase in background attenuation
disproportionately reduces the smaller wavelengths on the light spectrum (see Fig. 7),
which are more readily utilized by the red cyanobacteria (see Fig. 1). This result helps
connect logical extensions of Theorem7.1 to realistic scenarios and in particular allows
to understand the way in which light limitation of specific wavelengths changes the
competition outcomes. Additionally, our model results of this section are consistent
with the empirical results seen in Stomp et al. (2007b), showing a region of coexistence
for the two species for intermediate turbidity and the dominance of green cyanobacteria
for higher turbidity.

8 Conclusion

In this manuscript we explore niche differentiation along the light spectrum by extend-
ing the models of Stomp et al. (2007b) to the spatial context, using well established
reaction–diffusion approach. Differing with previous works (Huisman and Weissing
1994; Jiang et al. 2019; Hsu and Lou 2010; Du and Mei 2011; Huisman et al. 1999),
in which light was regarded as a single resource with varying intensity, here we treat
light as a continuum of resources that have varying availability and are consumed in
different efficiency by the phytoplankton species. Our main theoretical results, found
in Sect. 3, stem from the theory of monotone dynamical systems and include the exis-
tence and attractiveness of the equilibrium. These results give a condition for when
the semi-trivial equilibria exist and characterize their stability. As an extension, a suf-
ficient condition for coexistence is obtained. The condition for coexistence is then
made explicit to offer direct biological interpretations based on model parameters.
Unfortunately, proving the uniqueness of the coexistence state has challenges that we
have not overcome in this manuscript. Generally, more qualitative properties of this
state are desired and is left as an open problem to be reexamined in future work.

Niche differentiation is introduced in Sect. 4 by varying the absorption spectra,
denoted as ki (λ), of competing species. We consider the case where the competing
species niches are completely disjoint and provide a condition for coexistence. Fur-
thermore we consider the case when competing species occupy the same niche and
provide competitive exclusion outcomes based on transport related parameters and
show that species who are able to stay closer to the surface through either advection
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or turbulent diffusion will competitively exclude the other species. These results lay
the groundwork to study the impacts niche differentiation will have on coexistence
outcomes in Sect. 5.

We show numerically, in Sect. 5, a myriad of mechanisms in which coexistence can
occur. When two specialists compete, the competitive advantages given by advection
or incident light can be overcome when niche differentiation is significant as shown
in Fig. 2. Furthermore, we see that competitive exclusion occurs when the overlap
between the incident light and a species’ absorption spectrum is large, see Fig. 2a.
In addition, the more buoyant species no longer dominates if niche differentiation is
significant, as shown in Fig. 3. Similarly, in the competition between a specialist and a
generalist, coexistence readily occurs for intermediate degrees of niche differentiation.
However, if the niche of the specialist occupies only a narrow part of the incident light
spectrum, then their growth rate can be negatively impacted as shown in Fig. 4. In either
case niche differentiation in the light spectrum is enough to overcome competitive
exclusion caused by diffusion and advection, thus offering an important perspective
in resolving the paradox of the plankton in the affirmative direction.

Furthermore, to fully explore the ecological diversity and the paradox of the plank-
ton, we consider a system with N competing species. First, we show analytically that
coexistence of N species is possible under sufficient niche differentiation and proper
natural death rate (di (x)) functions. This result suggests a possible evolutionary strate-
gies that phytoplanktonmay take in partitioning in their usage of the light spectrum for
growth (Holtrop et al. 2021). To illustrate our result, we provide numerical simulations
for a five species and a one hundred species scenario with an advection and incident
light advantage present. Here we choose phytoplankton species that have differential
buoyancy properties. In the absence of niche differentiation, competitive exclusion
was predicted by previous work (Jiang et al. 2019). When niche differentiation is
significant, we observe that the species are able to coexist in a robust manner.

In Theorem 6.1 we proved a mathematical result that N species occupying different
niches can coexist in a dynamically stable manner, for any number N . However, for
large number of species, such an ecological attractor may not be structurally robust
even if they are dynamically stable (Armstrong and McGehee 1976; Barabás et al.
2012). This is a modern refinement to the concept of limiting similarity introduced
by Macarthur and Levins (1967), which suggests a lower bound to the number of
coexistence species in each specific situation. While our result can be interpreted as a
mechanism promoting coexistence, other factors, such as predation, stochasticity, and
transient dynamics will be needed to account for the full measure of diversity observed
in nature.

Lastly, we numerically study the competition dynamics for absorption spectra and
background attenuation functions that are representative of phytoplankton species
found in nature. Precisely, we consider the absorption spectra of green and red
cyanobacteria species and explore the competitive outcome as it depends on the tur-
bidity of the ecosystem as shown in Fig. 8. Our numerical results suggest that clear
lakes host higher abundances of red cyanobacteria whereas green cyanobacteria out-
compete in highly turbid lakes. Our result are aligned with empirical results (Stomp
et al. 2007b) thus extending the understanding of phytoplankton competition.
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In this paper, we explored a potential explanation to the paradox of the plankton by
allowing for niche differentiation in the visible light spectrum.To achieve this,wemade
several simplifying assumptions about the biological system, such as the eutrophicity
assumption. It is well known that phytoplankton dynamics heavily depend on nutrient
dynamics (Tilman 1977; Reynolds 2006; Klausmeier et al. 2004; Klausmeier and
Litchman 2001;Huisman et al. 2006). Thus, in order to fully understand phytoplankton
population dynamics, future attempts at modelling niche differentiation should also
allow for the explicit consideration of nutrient and nutrient uptake dynamics. We
have also assumed that our model parameters are constant in time. This in general
is not true for ecological systems, and in particular those that explicitly consider
light. Light availability is periodic on the time scales of days and, in addition, varying
seasonally (Litchman and Klausmeier 2001). In addition to light, parameters related to
mortality and motility can depend on water temperature and thus change according to
location and time. This type of oscillatory forcing can significantly change dynamics
and especially when considering transient dynamics (Hastings et al. 2018). In this
work we assume that absorbed light is utilized equally among all competing species
(a1(λ) = a2(λ)). However, this is not always the case and some wavelengths are
hypothesized to transfer less energy to photosynthesis (Luimstra et al. 2019). This
consideration could result in interesting dynamics in which a species absorbs certain
wavelengths, but gains little growth benefit while still competing for light.

The results presented here are biologically intuitive and are consistent with the cur-
rent state of the biological literature, even though our mathematical model has certain
limitations. Our work furthers the understanding of niche differentiation and phyto-
plankton competition and can be used as a basis for future studies of phytoplankton
dynamics and predictive modelling. In conclusion, our study shows that niche dif-
ferentiation can promote coexistence of phytoplankton species in a robust way, thus
supporting one explanation of the Hutchinson’s paradox.
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Appendix

In this appendix, we recall several useful lemmas concerning the principal eigenvalue
μ(D, α, h) of (7).

Lemma A.1 Suppose either (i)
∫ L
0 eαx/Dh(x)dx > 0, or (ii)

∫ L
0 eαx/Dh(x)dx = 0,

and h′(x) is not identically zero in [0, L], then μ(D, α, h) < 0.
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Proof Let φ̃(x) = e−αx/Dφ(x), where φ is a principal eigenfunction of μ(D, α, h),
and satisfies φ > 0 in [0, L]. Then (7) can be rewritten as

{
0 = D∂x

(
eαx/D∂x φ̃

)
+ eαx/D(h(x) + μ)φ̃ for (x) ∈ [0, L],

∂x φ̃ = 0 for (x) ∈ {0, L}.
(40)

Notice that φ̃ > 0 in [0, L], by the strong maximum principle. One can divide the
above equation by φ̃ and integrate over [0, L] to get

0 = D
∫ L

0

1

φ̃
∂x

(
eαx/D∂x φ̃

)
dx +

∫ L

0
eαx/D(h(x) + μ) dx,

= −D
∫ L

0
∂x

(
1

φ̃

) (
eαx/D∂x φ̃

)
dx +

∫ L

0
eαx/D(h(x) + μ) dx,

= D
∫ L

0
eαx/D |∂x φ̃|2

φ̃2
dx +

∫ L

0
eαx/D(h(x) + μ) dx .

Note that we used the Neumann boundary condition of φ̃ to perform the integrate by
parts in the second equality. Hence,

− μ

∫ L

0
eαx/D dx = D

∫ L

0
eαx/D |∂x φ̃|2

φ̃2
dx +

∫ L

0
eαx/Dh(x) dx . (41)

Suppose to the contrary that μ ≥ 0, then it follows from (41) that
∫ L
0 eαx/Dh(x) dx ≤

0. Hence, case (i) is impossible, and we must have case (ii), which implies

∫ L

0
eαx/D |∂x φ̃|2

φ̃2
dx =

∫ L

0
eαx/Dh(x) dx = 0.

Hence, ∂x φ̃ ≡ 0 which by (40) (in the Appendix) implies either φ̃ ≡ 0 or h(x) ≡ 0,
which leads to a contradiction.

	

Lemma A.2 If h(x) ∈ C1([0, L]) satisfies h′(x) < 0 in [0, L], then

(a)
∂μ

∂α
(D, α, h) > 0 for any D > 0 and α ∈ R.

(b)
∂μ

∂α
(D, α, h) > 0 for any D > 0 and α ≤ 0.

(c) If μ(D0, α0, h) = 0 for some D0 and α0 ≥ h(0)L, then ∂μ
∂D (D0, α0, h) < 0.

Proof Assertion (a) follows from Jiang et al. (2019, Lemma 4.8), while assertions (b)
and (c) follow from Jiang et al. (2019, Lemma 4.9). 	
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Definition A.3 For given w, w̃ ∈ C([0, L]), we say that w ≥K1 w̃ if

∫ x

0
w(y) dy ≥

∫ x

0
w̃(y) dy for all x ∈ [0, L].

We say that w >K1 w̃ if w ≥K1 w̃ and w(x) �= w̃(x) for some x ∈ [0, L].
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