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Abstract
COVID-19 is a respiratory disease triggered by an RNA virus inclined to mutations.
SinceDecember 2020, variants of COVID-19 (especially Delta andOmicron) continu-
ously appeared with different characteristics that influenced death and transmissibility
emerged around the world. To address the novel dynamics of the disease, we propose
and analyze a dynamical model of two strains, namely native andmutant, transmission
dynamics with mutation and imperfect vaccination. It is also assumed that the recu-
perated individuals from the native strain can be infected with mutant strain through
the direct contact with individual or contaminated surfaces or aerosols. We compute
the basic reproduction number, R0, which is the maximum of the basic reproduc-
tion numbers of native and mutant strains. We prove the nonexistence of backward
bifurcation using the center manifold theory, and global stability of disease-free equi-
librium when R0 < 1, that is, vaccine is effective enough to eliminate the native and
mutant strains even if it cannot provide full protection. Hopf bifurcation appears when
the endemic equilibrium loses its stability. An intermediate mutation rate ν1 leads
to oscillations. When ν1 increases over a threshold, the system regains its stability
and exhibits an interesting dynamics called endemic bubble. An analytical expression
for vaccine-induced herd immunity is derived. The epidemiological implication of
the herd immunity threshold is that the disease may effectively be eradicated if the
minimum herd immunity threshold is attained in the community. Furthermore, the
model is parameterized using the Indian data of the cumulative number of confirmed
cases and deaths of COVID-19 fromMarch 1 to September 27 in 2021, using MCMC
method. The cumulative cases and deaths can be reduced by increasing the vaccine
efficacies to both native and mutant strains. We observe that by considering the vac-
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cine efficacy against native strain as 90%, both cumulative cases and deaths would
be reduced by 0.40%. It is concluded that increasing immunity against mutant strain
is more influential than the vaccine efficacy against it in controlling the total cases.
Our study demonstrates that the COVID-19 pandemic may be worse due to the occur-
rence of oscillations for certain mutation rates (i.e., outbreaks will occur repeatedly)
but better due to stability at a lower infection level with a larger mutation rate. We
perform sensitivity analysis using the Latin Hypercube Sampling methodology and
partial rank correlation coefficients to illustrate the impact of parameters on the basic
reproduction number, the number of cumulative cases and deaths, which ultimately
sheds light on disease mitigation.

Keywords COVID-19 · Endemic bubble · Mutation · Imperfect vaccination ·
MCMC · Two strain dynamics · Hopf bifurcation · Transcritical bifurcation ·
Sensitivity analysis

Mathematics Subject Classification 92D30 · 34D23 · 34K18 · 34C10

1 Introduction

Contagious diseases are one of the foremost reasons for demise worldwide. The spread
of contagious diseases dangerously affects the growth of countries and the evolution
of a population. Thoughmodern scientificmedicine hasmade rapid advancements, the
diseases have not been completely eradicated. Diseases have obtained new versions
due to the genetic variations of pathogens triggered via mutations. Many pathogens
are characterized by more than one variant (Sato et al. 1995; Palese and Young 1982).
Virus or pathogen mutations are general in contagious diseases such as HBV (Sato
et al. 1995), influenza (Palese and Young 1982), and HIV (Eron et al. 1998). Multiple
strains of the 1918 avian influenza virus with mutations have been recognized by
Iwami et al. (2007). The existence of different variants of a pathogen is mainly due
to resist immune attacks of the host or induced by treatment with antiviral drugs
or antibodies (Eron et al. 1998). Ultimately, they confirm the persistence of disease
in a host. Sansonetti and Arondel (1989) have revealed that mutant strains can be
associated with higher virulence to disease than the native strains, and those people
diseased with mutant strains have a higher death rate in the contagious diseases, such
as plague, influenza A, etc. Thus, one of the major challenges in stopping the spread
of infectious diseases is to treat the genetic variations of pathogens (May and Nowak
1995; Parton et al. 1994; Liu et al. 2018). Various epidemic models with multi-strain
contacts and mutations have been proposed in recent years from different aspects (Liu
et al. 2018; Cai et al. 2012; Li et al. 2004). Li et al. (2004) proposed a two-strain SIR
model with infection age and mutation. The authors analyzed the local and global
stability of all possible equilibria and Hopf bifurcation. Liu et al. (2018) proposed a
mathematical model for Influenza with virus mutation and analyzed the model in the
sense of permanence of the disease. Moreover, epidemiological investigations have
exposed that the phenomenon of mutations leads to further resistant viruses giving the
emergence of many new dangerous epidemics or even new serious pandemics.
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Since December 2019, a new coronavirus causing a respiratory disease known as
COVID-19 has rapidly spread and affected a large portion of the global population.
TheWorldHealthOrganization (WHO) has detected the spread ofCOVID-19 as a pan-
demic, and as of December 4, 2021, over 263 million people were diseased, and about
5.2 million deaths caused by the virus. The SARS-CoV-2 virus triggered by severe
acute respiratory syndrome is also mutating. Lately, numerous variants of the SARS-
CoV-2 virus have been identified. These variants are described according to the number
and types of mutations (Korber et al. 2020; Lemieux and Li 2021). At the beginning of
the COVID-19 pandemic, the SARS-CoV-2 coronavirus that initiated COVID-19 has
mutated, raising different variants of the virus. Numerous SARS-CoV-2 variants have
developed worldwide, and the presence of different variants depends on several fac-
tors. One of these is called the delta variant, which was first identified in India (Centers
for Disease Control and Prevention (CDC) 2021a). Different variants have appeared
in Brazil, England, California, and other countries. More transmittable variants such
as beta, which was primarily emerged in South Africa, may have improved the abil-
ity to re-infect individuals who have recuperated from previous versions of the virus
and also be somewhat resistant to some of the coronavirus vaccines in development
(Johns Hopkins Medicine 2021). These new variants might have distinct features that
can influence the death rate and transmissibility (Korber et al. 2020; Lemieux and Li
2021; Gonzalez-Parra et al. 2021). From October 2020, the number of infected cases
of SARS-CoV-2 and related deaths augmented drastically in England. It has been
discovered that the new SARS-CoV-2 variant VOC-202012/01 was widespread, and
its proportion amplified throughout the latest months in England (Bussiness Insider
2021; Public Health England 2021). The mutations of viruses are frequent, and as an
outcome, SARS-CoV-2 may develop mutations with immunological resistance and
fitness advantages (Korber et al. 2020). It is anticipated that further mutations will
occur worldwide and probably even more after worldwide vaccination due to muta-
tion force (Rahimi and Abadi 2021). Therefore, analyzing the effects of new strains
of the SARS-CoV-2 virus is supremely significant. In the literature, a few authors pro-
posed multi-variant mathematical models for COVID-19 (Gonzalez-Parra et al. 2021;
Khyar and Allali 2020; Arruda et al. 2021). Gonzalez-Parra et al. (2021) studied the
effect of a new, more infectious SARS-CoV-2 variant (VOC-202012/01 of lineage
B.1.1.7) on hospitalizations, prevalence, and deaths associated with the SARS-CoV-2
virus. Khyar and Allali (2020) proposed a multi-strain SEIR model with general inci-
dent rate and studied the global dynamics of the model. The authors also discussed the
quarantine strategy for controlling the disease spread and fit the model to the Moroc-
can clinical data of COVID-19. Arruda et al. (2021) proposed a model for COVID-19
and studied the optimal control of multi-strain epidemics.

Vaccination has been an effective strategy in battling the spread of contagious
diseases, e.g., measles, influenza, and pertussis. In history, the elimination of smallpox
has been counted as the most notable victory of vaccination ever recorded (World
Health Organization 2021c). Several authors in multiple papers have investigated the
role of vaccination (Cai et al. 2012; Castillo-Chavez et al. 2002; Scherer and McLean
2002; Liu et al. 2008; Arino et al. 2003; Gumel et al. 2006; Cai et al. 2018; Alexander
et al. 2004). Under vaccination concern, certain mutant strains will finally have the
competitive benefits amongst their contacts (Scherer andMcLean2002).Mathematical
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models are helpful to describe and understand the dynamics of different strains under
mutation and vaccination. The impact of vaccination on the growth of strain contacts
in multi-strain viruses has been analyzed in many papers (Cai et al. 2012; Fudolig
and Howard 2020; Gupta et al. 1997; Martcheva et al. 2007; May and Nowak 1994;
McLean 1995; Porco and Blower 1998, 2000). Cai et al. (2012) proposed a two-strain
modelwith vaccination. The authors studied the existence and stability of the equilibria
as well as the existence of Hopf bifurcation from endemic equilibria. Martcheva et al.
(2007) considered an epidemicmodel with vaccination and two competing strains. The
authors engrossed on the ability of vaccination to generate subthreshold persistence of
the disease and the consequences that thismay occur whenmultiple strains are present.
Porco and Blower (1998, 2000) analyzed mathematical models to assess the impact
of vaccine programs to contain two variants of HIV and resulted different conditions
for eradication of two variants in case of mass vaccination. McLean (1995) studied the
different properties of the vaccine efficacy for the eradication of two different variants
by developing a mathematical model. Gupta et al. (1997) analyzed that a vaccine
consisting of the most immunogenic combinations of antigenic variants can cause a
dramatic increase in frequency of a subset of rare strains. With the latest development
of anti-COVID vaccines, a few models have been proposed to provide insight into
the impact of vaccination of a certain fraction of the populace on the dynamics of the
COVID-19 pandemic. For instance, Fudolig and Howard (2020) proposed a multi-
strain model with vaccination for COVID-19 and studied the conditions for existence
and local stability of equilibria. Furthermore, there is evidence of COVID-19 vaccine
efficacy inAustralia. ThemRNAvaccine has shownover 90%efficacy againstCOVID-
19 infection, the ChAdOx1 nCoV-19 vaccine has a 62% efficacy against symptomatic
infection in the intended two-dose schedule, and the BNT162b2 mRNA vaccine has a
95% efficacy against symptomatic infection (MacIntyre et al. 2021). Also, the Pfizer-
BioNTech BNT162b2 mRNA vaccine has an efficacy over 95%, Johnson & Johnson
[J&J] Ad26 has an efficacy over 67%, the AstraZeneca-Oxford ChAdOx1 nCov-
19 vaccine has an efficacy over 67%, and the Gamaleya GamCovidVac [Sputnik V]
vaccine has the efficacy over 90% (Olliaro et al. 2021). According to the Ministry of
Health and Family Welfare, Government of India, the Indian vaccine also has vaccine
efficacy over 70–90% (Ministry of Health and Family Welfare 2021).

To determine effectual countermeasures, it is significant to develop mathematical
models that support us in predicting and understanding the spread of COVID-19 and
providing suitable control strategies. Mathematical modeling in epidemiology pro-
vides a progressively greater room to public health research. This research discipline
participates to sufficiently comprehend the studied epidemiological phenomenon and
capture the distinct issues that can give rise to a terrible epidemic or even an alarm-
ing pandemicworldwide. The classical susceptible-infected-recovered (SIR) epidemic
model was first proposed by Kermack and McKendrick (1927). To obtain a sharper
understanding of various vaccination strategies and their impacts on the number of
infected individuals,Kermack-McKendrick typemodels have grabbed a vital role. This
type of model has been benefited to comprehend vaccination dynamics on various dis-
eases (Alexander et al. 2004). It is essential to emphasize that, Kermack-McKendrick
kind mathematical models have helped in explaining COVID-19 epidemics proper-
ties worldwide. These models have been utilized to estimate the basic reproductive
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number associated with the disease and various parameters engaged in its spread.
Additional use of this type of models has been focused on proposing and assessing the
impact of different control measures categorized as NPIs. For example, the authors in
papers (Bugalia et al. 2020, 2021; Bajiya et al. 2020) proposed mathematical models
for COVID-19 and analyzed the impact of NPIs on the disease dynamics. It is of
paramount significance to develop mathematical models that can perfectly forecast
the spread of COVID-19 so that the disease can be controlled and restrictions can be
securely relaxed. However, the infection incubation period may occupy a long time
interval in some cases. An incubated person is not yet infectious in this time interval
and remains latent. Therefore another compartment of exposed individuals should be
included in SIR, and the new model will termed as SEIR (Hethcote 2000).

Inspired by the evidence mentioned above about imperfect vaccine and mutation of
the virus, in this work, we utilize an SEIR-typemathematical model to comprehend the
dynamics of disease spread on the human populace under imperfect vaccination and
two variants of the virus. The general methodology and mathematical model can be
inferred to enhance the number of parameters and differential equations. We incorpo-
rate the vaccination compartment to the two-strain model to examine the effectiveness
of the anti-COVID-19 vaccination, which is currently being employed in many coun-
tries to help battle the intense pandemic situation. It is supposed that the spread of a
virus may mutate in the host to make a second, co-circulating, mutant strain. After
some period of infection, the original strain, referred to as native strain, is converted
to a mutant strain, such that a proportion of the people infected by the original strain
are also carrying mutant strain. Thus we consider mutation in our proposed epidemic
model. We intend to study the dynamical behavior of the strains’ contacts under the
vaccination scheme and investigate the impact of parameters (vaccination proportion,
mutation rate, etc.) to demonstrate how they influence disease transmission. We also
assume that recovered individuals from native strain have 100% immunity against
native strain but may get infected by mutant strain. The objectives of the present study
are the following: (i) construction of an epidemic model describing the dynamics of
mutant strain under imperfect vaccination, (ii) investigation of the impact of an imper-
fect vaccine on the disease burden, (iii) investigation of different bifurcations with
respect to significant parameters, (iv) application of the proposed model to the data of
COVID-19 in India, (v) observation of the COVID-19 dynamics with respect to the
key parameter related to the vaccine efficacy and mutation.

The remaining paper is organized as follows. Section2 describes the proposed
model with imperfect vaccine and mutation. Section3 represents the dynamical anal-
ysis of the proposed system including the non-negativity and boundedness of solutions,
basic reproduction number, existence, and stability of possible equilibria, transcriti-
cal bifurcation, and Hopf bifurcation. Section4 describes the implications of disease
control and explicit expression of vaccine-induced herd immunity. Numerical evalua-
tions have been presented in Sect. 5. Cumulative cases and cumulative mortality data
for COVID-19 pandemic in India have been used to parametrize the model, and the
impact of different parameters on the cumulative cases and deaths have been shown
in Sect. 6. Sensitivity analysis of the parameters with respect to the basic reproduction
number, cumulative cases, and cumulative deaths has been performed in Sect. 7. The
paper ends with a thorough discussion in Sect. 8.
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2 Model formulation

We introduce a homogeneous two-strain model with imperfect vaccination. The sys-
tem starts with a population exposed to both the native (original) and mutant (variant
of original) strains of the virus. A few studies (Eletreby et al. 2020; Yagan et al.
2021) have revealed that SARS-CoV-2 mutates independently within the host, leading
to infection with mutated strains that exhibit varying levels of transmissibility. Some
previous studies (Gonzalez-Parra et al. 2021; Deng et al. 2021) exposed that the variant
is more transmissible and severe than the original strain, and antibody neutralization is
reduced in COVID-19 patients and vaccine recipients in various countries, including
the US. Nature news (Nature news 2021) has reported that the mutant strain is spread-
ing quickly in India and has become the dominant strain. A mutation is accounted for
in epidemic models through a term that transfers individuals infected with one of the
strains into individuals infected with the other (Bonhoeffer and Nowak 1994; Liu et al.
2018; Iwami et al. 2007; Cai et al. 2012;Martcheva 2015).We assume that vaccination
is applied only to healthy individuals, therefore only susceptible individuals get vac-
cinated. Further, we also assume that the vaccine is imperfect, that is, the vaccinated
individuals can become infected with both native and mutant strains of the virus. That
happens at reduced transmission rates δ1β1 and δ2β2, where 0 ≤ δ1 ≤ 1, 0 ≤ δ2 ≤ 1
are the reduction coefficients of native and mutant strains, respectively. If δ1 = 0,
then vaccinated individuals will not get infected with native strain, i.e., the vaccine
is perfect for native strain, and δ1 = 1 means vaccinated individuals get infected just
like susceptible individuals, i.e., vaccine plays no protective role to native strain. Here
1 − δ1 describes the vaccine efficacy against native strain. A similar scenario applies
to the mutant strain, and 1 − δ2 describes the vaccine efficacy against the mutant
strain. Some vaccinated individuals can go back to susceptible individuals due to par-
tial immunity. There are some shreds of evidence that there is a chance of a second
COVID-19 infection after being diagnosed with first, from which recovered (Health,
The Sciences 2021; Shastri et al. 2021; Centers for Disease Control and Prevention
(CDC) 2021b). Therefore, we assume that the recovered individuals of native strain
can also become infected via mutant strain of the virus at a reduced rate δ3β2.

The model is composed of a system of differential equations that has eight com-
partments: susceptible compartment S—individuals in this compartment are healthy
but can be infected by both the native and mutant strains of the virus; vaccinated
compartment V—individuals that applied to vaccination, these individuals can also
become infected by both the native and mutant strains of the virus but at lower rates;
exposed compartment E1—individuals that are exposed to a native strain of virus;
exposed compartment E2—individuals that are exposed to a mutant strain of virus;
infected compartment I1—individuals that are infected to a native strain of virus;
infected compartment I2—individuals that are infected to a mutant strain of virus;
recovered compartment R1—individuals that were infected to native strain, and are
now immune to the native strain but not immune to the mutant strain; recovered com-
partment R2—individuals that were infected to mutant strain are now immune to both
native and mutant strains and do not interact with the remaining compartments. The
biological interpretations of the parameters involved in the model are given in Table1.
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Table 1 Biological interpretations of parameters

Parameters Biological interpretations

� The recruitment rate at which new individuals enter in the susceptible population

β1 Infection rate of the native strain

β2 Infection rate of the mutant strain

p Per capita vaccination rate of susceptible individuals

1/μ Average life expectancy of the individuals of all compartments

1 − δ1 Efficacy of vaccine to native strain

1 − δ2 Efficacy of vaccine to mutant strain

γ Per capita rate of lost of immunity of vaccinated individuals

a1 Per capita rate at which the exposed individuals of native strain become infectious

a2 Per capita rate at which the exposed individuals of mutant strain become infectious

α1 Per capita recovery rate of native strain

α2 Per capita recovery rate of mutant strain

d1 Per capita death rate due to native strain

d2 Per capita death rate due to mutant strain

δ3 Reduction coefficient of infection after recovery

ν1 Per capita mutation rate of native strain

The schematic diagram of the model is given in Fig. 1. The total population size is
N (t) = S(t) + V (t) + E1(t) + E2(t) + I1(t) + I2(t) + R1(t) + R2(t).

Based on the parameters given in Table1 and schematic diagram1, the dynamics
of the disease transmission can be governed by the following system of ordinary
differential equations:

dS

dt
= � − β1 I1S − β2 I2S − (μ + p)S + γ V ,

dV

dt
= pS − δ1β1 I1V − δ2β2 I2V − (μ + γ )V ,

dE1

dt
= β1(S + δ1V )I1 − (a1 + μ)E1,

dE2

dt
= β2(S + δ2V + δ3R1)I2 − (a2 + μ)E2,

d I1
dt

= a1E1 − (α1 + μ + d1 + ν1)I1,

d I2
dt

= a2E2 − (α2 + μ + d2)I2 + ν1 I1,

dR1

dt
= α1 I1 − δ3β2 I2R1 − μR1,

dR2

dt
= α2 I2 − μR2,

(1)
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Fig. 1 Schematic diagram of
system (1)

with the initial conditions: S(0) > 0, V (0) ≥ 0, E1(0) ≥ 0, E2(0) ≥ 0, I1(0) ≥
0, I2(0) ≥ 0, R1(0) ≥ 0, R2(0) ≥ 0.

3 Rigorous analysis

This section is devoted to investigating the dynamical behaviors of system (1) includ-
ing positivity and boundedness of the solutions, computation of the basic reproduction
number, the existence of possible equilibria and their stability, and possible bifurca-
tions. Firstly, we prove the positivity and boundedness of the solutions of system (1).
Positivity is significant for biologically feasible solutions of the system while bound-
edness infers that solutions are finite. System (1) is given by the following bounded
planes:

dS

dt

∣
∣
∣
∣
S=0,V �=0,E1 �=0,E2 �=0,I1 �=0,I2 �=0,R1 �=0,R2 �=0

= � + γ V > 0,

dV

dt

∣
∣
∣
∣
S �=0,V=0,E1 �=0,E2 �=0,I1 �=0,I2 �=0,R1 �=0,R2 �=0

= pS ≥ 0,

dE1

dt

∣
∣
∣
∣
S �=0,V �=0,E1=0,E2 �=0,I1 �=0,I2 �=0,R1 �=0,R2 �=0

= β1(S + δ1V )I1 ≥ 0,

dE2

dt

∣
∣
∣
∣
S �=0,V �=0,E1 �=0,E2=0,I1 �=0,I2 �=0,R1 �=0,R2 �=0

= β2(S + δ2V )I2 + δ3β2 I2R1 ≥ 0,
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d I1
dt

∣
∣
∣
∣
S �=0,V �=0,E1 �=0,E2 �=0,I1=0,I2 �=0,R1 �=0,R2 �=0

= a1E1 ≥ 0,

d I2
dt

∣
∣
∣
∣
S �=0,V �=0,E1 �=0,E2 �=0,I1 �=0,I2=0,R1 �=0,R2 �=0

= a2E2 + ν1 I1 ≥ 0,

dR1

dt

∣
∣
∣
∣
S �=0,V �=0,E1 �=0,E2 �=0,I1 �=0,I2 �=0,R1=0,R2 �=0

= α1 I1 ≥ 0,

dR2

dt

∣
∣
∣
∣
S �=0,V �=0,E1 �=0,E2 �=0,I1 �=0,I2 �=0,R1 �=0,R2=0

= α2 I2 ≥ 0.

Note that on each of the bounding planes of the non-negative cone of R8+, all rates
in the system (1) are non-negative. Thus, if we initiate in the interior of this cone,
we shall always remain in this cone as the direction of the vector field is inward on
all the bounding planes. Therefore, the non-negativity of all solutions is guaranteed if
we start from a non-negative initial point. Furthermore, system (1) also states that the
total population N follows the below differential equation:

dN

dt
= � − μN − d1 I1 − d2 I2, (2)

which gives

� − (μ + d1 + d2)N ≤ dN

dt
≤ � − μN .

Now integrating the above inequality and using initial conditions, we obtain

�

μ + d1 + d2
+

(

N (0) − �

μ + d1 + d2

)

e−(μ+d1+d2)t

≤ N (t) ≤ �

μ
+

(

N (0) − �

μ

)

e−μt ,

Considering t → +∞, we obtain

�

μ + d1 + d2
≤ lim inf

t→+∞ N (t) ≤ lim sup
t→+∞

N (t) ≤ �

μ
,

which implies the feasible region for system (1) and hence the positively invariant set
for system (1), denoted by �, is given by

� =
{

(S, V , E1, E2, I1, I2, R1, R2) ∈ R
8+ : �

μ + d1 + d2

≤ S + V + E1 + E2 + I1 + I2 + R1 + R2 ≤ �

μ
⊂ R

8+
}

. (3)
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From the above analysis, we conclude the following consequence:

Theorem 3.1 The dynamics of system (1) would attract to the positively invariant set
�.

Therefore, the system (1) is well-posed and epidemiologically feasible since all
variables remain nonnegative for all t ≥ 0. Further, since the right hand side functions
of each equations of system (1) are continuous and have continuous partial derivatives,
then they satisfy the Lipschitz condition. Additionally, from Theorem 3.1, system (1)
is uniformly bounded. Hence, the solution of system (1) exists and is unique.

3.1 Disease free equilibrium (DFE) and basic reproduction number

The disease free equilibrium (DFE) can be obtained by setting all infected variables
(E1, E2, I1, I2) equal to zero while all non-infected variables (S, V , R1, R2) are non-
zero. The DFE of system (1) is given by

D0 = (S0, V 0, E0
1 , E

0
2 , I

0
1 , I 02 , R0

1, R
0
2)

=
(

�(μ + γ )

μ(μ + γ + p)
,

�p

μ(μ + γ + p)
, 0, 0, 0, 0, 0, 0

)

. (4)

To obtain the basic reproduction number, we use the next generation method (Diek-
mann et al. 2010; Van den Driessche and Watmough 2002). By considering x =
(E1, E2, I1, I2)T , we have

x ′ = f (x) − v(x),

where

f =

⎛

⎜
⎜
⎝

β1(S + δ1V )I1
β2(S + δ2V )I2 + δ3β2 I2R1

0
0

⎞

⎟
⎟
⎠

, v =

⎛

⎜
⎜
⎝

(a1 + μ)E1
(a2 + μ)E2

(α1 + μ + d1 + ν1)I1 − a1E1
(α2 + μ + d2)I2 − ν1 I1 − a2E2

⎞

⎟
⎟
⎠

.

The Jacobian of f (x) and v(x) at D0 are

F = Df (D0) =

⎛

⎜
⎜
⎝

0 0 β1(S0 + δ1V 0) 0
0 0 0 β2(S0 + δ2V 0)

0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

,

and

V = Dv(D0) =

⎛

⎜
⎜
⎝

(a1 + μ) 0 0 0
0 (a2 + μ) 0 0

−a1 0 (α1 + μ + d1 + ν1) 0
0 −a2 −ν1 (α2 + μ + d2)

⎞

⎟
⎟
⎠

,
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respectively. The next generation matrix FV−1 is given by

FV−1 =

⎛

⎜
⎜
⎜
⎝

β1a1(S0+δ1V 0)
(a1+μ)(α1+d1+μ+ν1)

0 β1(S0+δ1V 0)
α1+d1+μ+ν1

0
a1β2ν1(S0+δ2V 0)

(a1+μ)(α2+d2+μ)(α1+d1+μ+ν1)
β2a2(S0+δ2V 0)

(a2+μ)(α2+d2+μ)
β2ν1(S0+δ2V 0)

(α2+d2+μ)(α1+d1+μ+ν1)
β2(S0+δ2V 0)

α2+d2+μ

0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎟
⎠

.

Hence, the basic reproduction number for system (1) is the dominant eigenvalue or
spectral radius of the next generation matrix FV−1, which implies

R0 = ρ(FV−1) = max {R1, R2} , (5)

where

R1 = β1a1(S0 + δ1V 0)

(μ + a1)(μ + d1 + α1 + ν1)
= �β1a1(γ + μ + pδ1)

μ(μ + a1)(μ + d1 + α1 + ν1)(p + γ + μ)
,

R2 = β2a2(S0 + δ2V 0)

(μ + a2)(μ + d2 + α2)
= �β2a2(γ + μ + pδ2)

μ(μ + a2)(μ + d2 + α2)(p + γ + μ)
.

Here R1(R2) represents the average number of secondary infection cases generated
by a single infectious individual of the native (mutant) strain of the virus, called the
basic reproduction number of the native (mutant) strain.

3.1.1 Interpretation of the basic reproduction number

As stated above, the basic reproduction number R0 is the maximum of the two basic
reproduction numbers, R1 and R2. The basic reproduction number R1 is given by
the product of the infection rate of the susceptible (unvaccinated) and vaccinated
individuals by native strain infectious individuals (near the disease-free equilibrium)
[β1(S0 + δ1V 0)], the proportion of the exposed individuals to the native strain that
survived in the exposed class (E1) and moved to infected compartment (I1) [

a1
μ+a1

],

and the average time duration in the infectious class (I1) [ 1
μ+d1+α1+ν1

]. Similarly,
the basic reproduction number R2 is given by the product of the infection rate of the
susceptible (unvaccinated) and vaccinated individuals by the mutant strain infectious
individuals (near the disease-free equilibrium), [β2(S0 + δ1V 0)], the proportion of
the exposed individuals to the mutant strain that survived in the exposed class (E2)
and moved to infected compartment (I2) [

a2
μ+a2

], and the average time duration in the

infectious class (I2) [ 1
μ+d2+α2

].

Remark 3.2 If δ1 = 0, δ2 = 0, then vaccine is perfectly effective to both native and
mutant strains and if p = 0 then the system reduces without vaccination. For this case,
the basic reproduction numbers of the native strain and mutant strain, R1wv and R2wv

are given by, respectively,

R1wv = �β1a1
μ(μ + a1)(μ + d1 + α1 + ν1)

,
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R2wv = �β2a2
μ(μ + a2)(μ + d2 + α2)

.

Thus, the basic reproduction number of systemwithout vaccination is given by R0wv =
max {R1wv, R2wv} .

Theorem 3.3 1. D0 is locally asymptotically stable, whenever R0 = max {R1, R2}
< 1; otherwise unstable.

2. D0 is globally asymptotically stable, whenever R0 = max {R1, R2} < 1.

Proof 1. We first prove the local asymptotic stability of D0. By linearizing the system
(1) at D0, we obtain the following characteristic equation

(λ + μ)3(λ + p + γ + μ)(λ2 + λ(2μ + a1 + d1 + α1)

+ (μ + a1)(μ + d1 + α1 + ν1)(1 − R1))

(λ2 + λ(2μ + a2 + d2 + α2) + (μ + a2)(μ + d2 + α2)(1 − R2)) = 0.

(6)

From the above characteristic equation, it is easy to observe that all the roots of Eq. (6)
are negative or have negative real parts for R0 < 1. Hence, the D0 of system (1) is
locally asymptotically stable for R0 < 1. If R0 > 1, at least one of the roots of Eq. (6)
has positive real part. Hence, D0 is unstable for R0 > 1.
2. To prove the global stability of D0, we follow the approach given byCastillo-Chavez
et al. (2002). We rewrite the system (1) as follows

dX

dt
= F(X ,Y ),

dY

dt
= G(X ,Y ), G(X , 0) = 0,

(7)

where X = (S, V , R1, R2) ∈ R
4 signifies the number of uninfected individuals and

Y = (E1, E2, I1, I2) ∈ R
4 signifies the number of infected individuals. Disease-free

equilibrium (D0) is globally stable if the following two conditions are fulfilled:

(H1) For dX
dt = F(X ,Y ), X∗ is globally asymptotically stable,

(H2) G(X ,Y ) = MY − Ĝ(X ,Y ), Ĝ(X ,Y ) > 0 for (X ,Y ) ∈ �,

where M = DYG(X∗, 0) is an M-matrix. For the system (1), we have

F(X , 0) =

⎛

⎜
⎜
⎝

� − (μ + p)S + γ V
pS − (μ + γ )V

0
0

⎞

⎟
⎟
⎠

. (8)
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It is obvious that the equilibrium X∗ =
(

�(μ+γ )
μ(μ+γ+p) ,

�p
μ(μ+γ+p) , 0, 0

)

of system (8) is

globally asymptotically stable. Further for system (1), we obtain

M =

⎛

⎜
⎜
⎝

−(μ + a1) 0 β1(S0 + δ1V 0) 0
0 −(μ + a2) 0 β2(S0 + δ2V 0)

a1 0 −(α1 + μ + d1 + ν1) 0
0 a2 ν1 −(α2 + μ + d2)

⎞

⎟
⎟
⎠

,

Ĝ(X ,Y ) =

⎛

⎜
⎜
⎝

β1 I1((S0 + δ1V 0) − (S + δ1V ))

β2 I2((S0 + δ2V 0) − (S + δ2V + δ3R1))

0
0

⎞

⎟
⎟
⎠

.

It is clear that Ĝ(X ,Y ) ≥ 0. Hence, D0 is globally stable, i.e. every solution of the
system (1) approaches the DFE (D0) as t → ∞ for R0 < 1. Thus, the disease (i.e.,
both native and mutant strains) will be eliminated from the community if R0 < 1.
Consequently, R0 represents the threshold value for the existence of other positive
equilibria of the system (1). Moreover, it is well known that the basic reproduction
number (R0) represents the average number of secondary infections that occurred from
a single infectious individual in thewhole susceptible population in its entire infectious
period. Therefore, if R0 < 1, each infectious individual in the entire infectious period
will produce less than one infected individual on average, which implies that the
disease will die out. However, if R0 > 1, then each infectious individual in the whole
infectious period having contact with susceptible individuals will generate more than
one infected individual; this leads to the disease invading the susceptible population.

��

It must be mentioned that for mathematical (endemic) models such as (1), the epi-
demiological necessity R0 < 1 is sufficient as well as necessary for eradication of the
disease. This is because, for such mathematical models (i.e., Kermack-McKendrick
models with demographic dynamics), the disease will persist whenever R0 > 1 (this
is because the pool of new susceptible individuals will continuously be refilled, by
immigration or birth, thereby letting the disease tomaintain itself in the community). If
the demographic effects are not allowed (i.e., in the case of a single outbreak/epidemic
model is used), the epidemiological condition R0 < 1 is only sufficient but not nec-
essary for eradicating the epidemic. For such epidemic models (with no demographic
dynamics), the disease always dies out with time (irrespective of the value of the basic
reproduction number of the epidemic models). In other words, even if the basic repro-
duction number exceeds unity, the disease will eventually die out; this is because the
epidemic rises and reaches a peak.

3.2 Mutant dominant equilibrium and its stability

First of all, it should be mentioned that in the absence of native strain (I1 = 0), the
system (1) reduces to the following subsystem:
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dS

dt
= � − β2 I2S − (μ + p)S + γ V ,

dV

dt
= pS − δ2β2 I2V − (μ + γ )V ,

dE2

dt
= β2(S + δ2V )I2 − (a2 + μ)E2,

d I2
dt

= a2E2 − (α2 + μ + d2)I2,

dR2

dt
= α2 I2 − μR2.

(9)

The analysis of the sub-system (9) will be considered in the following positively
invariant region

�I2 =
{

(S, V , E2, I2, R2) ∈ R
5+ : 0 < S + V + E2 + I2 + R2 ≤ �

μ
⊂ R

5+
}

.

The mutant dominant (boundary) equilibrium is given by D2 = (S2, V 2, 0, E2
2 , 0,

I 22 , 0, R2
2), where the components of D2 can be obtained by solving the equations of

right hand side of the subsystem (9). Thus,

S2 = �

μ
−

p
{

�a2 − (a2 + μ)(α2 + μ + d2)I
2
2

}

μa2(δ2β2 I
2
2 + μ + γ + p)

− (a2 + μ)(α2 + μ + d2)I
2
2

μa2
,

V 2 =
p

{

�a2 − (a2 + μ)(α2 + μ + d2)I
2
2

}

μa2(δ2β2 I
2
2 + μ + γ + p)

, E2
2 = (α2 + μ + d2)I

2
2

a2
, R2

2 = α2 I
2
2

μ
,

and I 22 satisfies the following equation:

k
′
1 I

2
2 + k

′
2 I2 + k

′
3 = 0, (10)

where

k
′
1 = β2

2 (μ + a2)(μ + d2 + α2)δ2,

k
′
2 = β2((μ + a2)(μ + d2 + α2)(γ + μ + (p + μ)δ2) − �β2a2δ2),

k
′
3 = μ(μ + a2)(μ + d2 + α2)(γ + μ + p)(1 − R2).

We can see that Eq. (10) has zero, one, or two roots, depending on parameter values.
For the case 0 < δ2 ≤ 1, k

′
3 < 0 if R2 > 1, and k

′
3 > 0 if R2 < 1. Since Eq. (10) is a

quadratic equation, therefore if R2 > 1, then Eq. (10) has a unique positive root and
there is a unique mutant dominant equilibrium. If R2 = 1, then k

′
3 = 0 and there is

unique non-zero solution of (10), given by I 22 = − k
′
2

k
′
1

, which is positive if and only if

k
′
2 < 0. If R2 = 1, k

′
3 = 0, then
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�β2a2(γ + μ + pδ2) = μ(μ + a2)(μ + d2 + α2)(p + γ + μ). (11)

The condition k
′
2 < 0 gives

(μ + a2)(μ + d2 + α2)(γ + μ + (p + μ)δ2) < �β2a2δ2,

combined with (11), we obtain

(γ + μ)2 + (pδ2)
2 + μpδ22 + 2γ pδ2 + μpδ2 < 0,

which is not possible. Hence, if R2 ≤ 1, system (1) has no mutant dominant equilib-
rium.Furthermore, it should be stated that for the equilibrium D2 to exist, it is necessary
that the native strain dies out asymptotically (i.e., R1 ≤ 1). Thus, we conclude that
system (9) has a unique mutant dominant equilibrium (D2) whenever R2 > 1 and
R1 ≤ 1. Further, for the stability of the equilibrium D2, we have the following result:

Theorem 3.4 Theuniquemutant dominant equilibrium (D2) is globally asymptotically
stable whenever it exists.

Proof We consider

x = S

S2
, y = V

V 2 , z = E2

E2
2

, u = I2
I 22

,

and with the help of right hand side of the system (9), the system (9) can be rewritten
as follows:

x ′ = x
[ �

S2

(1

x
− 1

)

− β2 I
2
2 (u − 1) + γ V 2

S2

( y

x
− 1

)]

,

y′ = y
[ pS2

V 2

( x

y
− 1

)

− δ2β2 I
2
2 (u − 1)

]

,

z′ = z
β2 I 22
E2
2

[

S2
( xu

z
− 1

)

+ δ2V
2
( yu

z
− 1

)]

,

u′ = u
a2E2

2

I 22

[ z

u
− 1

]

.

(12)

Further, we consider the following Lyapunov function

Z = k1S
2(x − 1 − ln x) + k2V

2(y − 1 − ln y) + k3E
2
2(z − 1 − ln z)

+k4 I
2
2 (u − 1 − ln u),

where the positive constants k1, k2, k3, and k4 will be defined below. By differentiating
Z with respect to t along the solutions of (9), we obtain
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Z ′ = k1(x − 1)
[

�
(1

x
− 1

)

− β2S
2 I 22 (u − 1) + γ V 2

( y

x
− 1

)]

+ k2(y − 1)
[

ps2
( x

y
− 1

)

− δ2β2V
2 I 22 (u − 1)

]

+ k3β2 I
2
2 (z − 1)

[

S2
( xu

z
− 1

)

+ δ2V
2
( yu

z
− 1

)]

+ k4a2E
2
2(u − 1)

( z

u
− 1

)

=k1(2� + γ V 2 − β2S
2 I 22 ) + k2(pS

2 − δ2β2V
2 I 22 ) + k3(β2S

2 I 22 + δ2β2V
2 I 22 )

+ k4a2E
2
2 − (k1� + k1γ V

2 − k1β2S
2 I 22 − k2 pS

2)x − k1�
1

x

− (−k1γ V
2 + k2 pS

2 − k2δ2β2V
2 I 22 )y − k1γ V

2 y

x
− k2 pS

2 x

y

− (k1β2S
2 I 22 − k3β2S

2 I 22 )ux − (−k1β2S
2 I 22 − k2δ2β2V

2 I 22 + k4a2E
2
2)u

− (k2δ2β2V
2 I 22 − k3δ2β2V

2 I 22 )yu − (k3β2S
2 I 22 + k3δ2β2V

2 I 22 − k4a2E
2
2)z

− k3β2S
2 I 22

xu

z
− k3δ2β2V

2 I 22
yu

z
− k4a2E

2
2
z

u
=:G(x, y, z, u).

Choose the positive constants k1, k2, k3, and k4 as follows:

k1 = k2 = k3 = 1, k4 = a2 + μ

a2
.

Substituting the above values in the function G(x, y, z, u), we obtain

G(x, y, z, u) = 2� + γ V 2 + pS2 + (a2 + μ)E2
2 − μS2x − �

1

x
− μV 2y − γ V 2 y

x

− pS2
x

y
− β2S

2 I 22
xu

z
− δ2β2V

2 I 22
yu

z
− (a2 + μ)E2

2
z

u

=μS2
(

2 − x − 1

x

)

+ γ V 2
(

2 − x

y
− y

x

)

+ μV 2
(

3 − 1

x
− y − x

y

)

+ β2S
2 I 22

(

3 − 1

x
− xu

z
− z

u

)

+ δ2β2V
2 I 22

(

4 − 1

x
− x

y
− yu

z
− z

u

)

.

By the property that the arithmetic mean is greater than or equal to the geometric
mean, G(x, y, z, u) ≤ 0, and the equality holds only for x = y = 1 and z = u, i.e.,

{

(x, y, z, u) ∈ �I2 : G(x, y, z, u) = 0
}

≡ {(x, y, z, u) : x = y = 1, z = u} ,

which corresponds to the set

�′
I2 =

{

(S, V , E2, I2) : S = S∗, V = V ∗, E2

E∗
2

= I2
I ∗
2

}

⊂ �I2 ⊂ �.

123



Mutations make pandemics worse or better: modeling… Page 17 of 50 45

It is evident to see that the maximum invariant set of (9) on the set�′
I2
is the singleton

{

D2
}

, therefore the mutant dominant equilibrium D2 is globally stable in �I2 ⊂ �

by LaSalle’s Invariance Principle (LaSalle 1976). ��

3.3 Coexistence equilibrium and its stability

This section examines the existence and global stability of the coexistence equi-
librium of system (1). First of all, let us consider the endemic equilibrium D∗ =
(S∗, V ∗, E∗

1 , E
∗
2 , I

∗
1 , I ∗

2 , R∗
1 , R

∗
2), then S∗, V ∗, E∗

1 , E
∗
2 , I

∗
1 , I ∗

2 , R∗
1 , and R∗

2 satisfy
the following equations:

� − β1 I1S − β2 I2S − (μ + p)S + γ V = 0,

pS − δ1β1 I1V − δ2β2 I2V − (μ + γ )V = 0,

β1(S + δ1V )I1 − (a1 + μ)E1 = 0,

β2(S + δ2V + δ3R1)I2 − (a2 + μ)E2 = 0,

a1E1 − (α1 + μ + d1 + ν1)I1 = 0,

a2E2 − (α2 + μ + d2)I2 + ν1 I1 = 0,

α1 I1 − δ3β2 I2R1 − μR1 = 0,

α2 I2 − μR2 = 0.

(13)

The above Eqs. (13) lead the following expressions:

S∗ = �(β1δ1 I ∗
1 + β2δ2 I ∗

2 + μ + γ )

(β1 I ∗
1 + β2 I ∗

2 + μ + p)(β1δ1 I ∗
1 + β2δ2 I ∗

2 + μ + γ ) − pγ
,

V ∗ = �p

(β1 I ∗
1 + β2 I ∗

2 + μ + p)(β1δ1 I ∗
1 + β2δ2 I ∗

2 + μ + γ ) − pγ
,

E∗
1 = (α1 + μ + d1 + ν1)I ∗

1

a1
, E∗

2 = (α2 + μ + d2)I ∗
2 − ν1 I ∗

1

a2
,

R∗
1 = α1 I ∗

1

δ2β2 I ∗
2 + μ

, R∗
2 = α2 I ∗

2

μ
,

and I ∗
1 , I ∗

2 are the solutions of the following equations:

F(I1, I2) ≡β2
2 δ2 I

2
2 + β2

(

− �β1a1δ2
(μ + a1)(μ + d1 + α1 + ν1)

+ γ + μ + (p + μ)δ2 + β1(δ1 + δ2)I1
)

I2

+ β2
1 δ1 I

2
1 + β1

(

− �β1a1δ1
(μ + a1)(μ + d1 + α1 + ν1)

+ γ + μ + (p + μ)δ1

)

I1

+ μ(p + μ + γ )(1 − R1) = 0,

G(I1, I2) ≡I 32

(

β2
2 δ2

(

1 − �a2β2δ2
(μ + a2)(μ + d2 + α2)

− a2α1β2δ3 I1
(μ + a2)(μ + d2 + α2)

))
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+ I 22

(

β2(γ + μ + δ2(p + μ))

− a2β
2
2 δ2�(γ + 2μ − pδ2)

(μ + a2)(μ + d2 + α2)
− I 21 a2α1β1β

2
2 δ3(δ1 + δ2)

(μ + a2)(μ + d2 + α2)

+ I1
(

β1β2(δ1 + δ2)

− β2
2 (a2α1δ3(γ + μ + (p + μ)δ2) + �a2β1δ1δ2 + (μ + a2)δ1ν1)

(μ + a2)(μ + d2 + α2)

))

+ I2

(

μ(p + γ + μ) − �β2a2μ(γ + μ + pδ2)

(μ + a2)(μ + d2 + α2)
− a2α1β

2
1β2δ1δ3 I

3
1

(μ + a2)(μ + d2 + α2)

+ I 21

(

1 − β1β2δ3α1a2(γ + μ + (p + μ)δ1)

(μ + a2)(μ + d2 + α2)
+ (δ1 + δ2)ν1

(μ + d2 + α2)

)

+ I1
(ν1(γ + μ + (p + μ)δ2) − β2μa2α1δ3(γ + μ + p) − �μa2β1β2δ1

(μ + a2)(μ + d2 + α2)

+ β1(γ + μ + (p + μ)δ1)
))

− I1
(μ + d2 + α2)

(

ν1μ(p + γ + μ)

+ I1β1ν1(γ + μ + (p + μ)δ1) + I 21 β2
1 δ1ν1

)

= 0. (14)

If the system (14) admits a solution, then the system (1) will have an endemic equi-
librium. Obtaining the explicit expression for the exact solution of the non-linear
autonomous system (14) is a daunting task. However, we will later show that the sys-
tem (1) is uniformly persistent when R1 > 1 and R2 > 1, which implies that the
system (1) has at least one endemic equilibrium. Here, we prove the global stability
of the endemic equilibrium for a special case (δ3 = 0 and ν1 = 0) of system (1) in the
subsequent theorem:

Theorem 3.5 If the endemic equilibrium D∗ = (S∗, V ∗, E∗
1 , E

∗
2 , I

∗
1 , I ∗

2 , R∗
1 , R

∗
2)

exists for δ3 = 0 and ν1 = 0, then it is globally asymptotically stable.

Proof For δ3 = 0 and ν1 = 0, the endemic equilibrium D∗ = (S∗, V ∗, E∗
1 , E

∗
2 ,

I ∗
1 , I ∗

2 ), S∗, V ∗, E∗
1 , E

∗
2 , I

∗
1 , and I ∗

2 satisfy the following equations:

� − β1 I1S − β2 I2S − (μ + p)S + γ V = 0,

pS − δ1β1 I1V − δ2β2 I2V − (μ + γ )V = 0,

β1(S + δ1V )I1 − (a1 + μ)E1 = 0,

β2(S + δ2V )I2 − (a2 + μ)E2 = 0,

a1E1 − (α1 + μ + d1)I1 = 0,

a2E2 − (α2 + μ + d2)I2 = 0.

(15)

Since R1 and R2 do not appear explicitly in the first six equations of system (1),
therefore we omit them. By using the Eqs. (15) and denoting
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x = S

S∗ , y = V

V ∗ , z = E1

E∗
1
, u = E2

E∗
2
, v = I1

I ∗
1

, w = I2
I ∗
2

,

the system (1) can be rewritten as:

x ′ = x
[ �

S∗
( 1

x
− 1

)

− β1 I
∗
1 (v − 1) − β2 I

∗
2 (w − 1) + γ V ∗

S∗
( y

x
− 1

)]

,

y′ = y
[ pS∗

V ∗
( x

y
− 1

)

− δ1β1 I
∗
1 (v − 1) − δ2β2 I

∗
2 (w − 1)

]

,

z′ = z
β1 I ∗

1

E∗
1

[

S∗( xv
z

− 1
)

+ δ1V
∗( yv

z
− 1

)]

,

u′ = u
β2 I ∗

2

E∗
2

[

S∗( xw
u

− 1
)

+ δ2V
∗( yw

u
− 1

)]

,

v′ = v
a1E∗

1

I ∗
1

[ z

v
− 1

]

,

w′ = w
a2E∗

2

I ∗
2

[ u

w
− 1

]

.

(16)

It is clear that the endemic equilibrium D∗ of (1) corresponds to the positive equi-
librium D̄∗(1, 1, 1, 1, 1, 1) of (16), and that the global stability of D̄∗ is same as that
of D∗, therefore, we will discuss the global stability of the equilibrium D̄∗ of system
(16) instead of D∗.

Define the Lyapunov function

L = k1S
∗(x − 1 − ln x) + k2V

∗(y − 1 − ln y) + k3E
∗
1 (z − 1 − ln z)

+ k4E
∗
2 (u − 1 − ln u) + k5 I

∗
1 (v − 1 − ln v) + k6 I

∗
2 (w − 1 − lnw),

where the positive numbers k1, k2, k3, k4, k5, and k6 will be given below, then differ-
entiating L with respect to t along solutions of (16), we obtain

L ′ = k1(x − 1)
[

�
(1

x
− 1

)

− β1 I
∗
1 S

∗(v − 1) − β2 I
∗
2 S

∗(w − 1) + γ V ∗( y

x
− 1

)]

+ k2(y − 1)
[

pS∗( x
y

− 1
)

− δ1β1 I
∗
1 V

∗(v − 1) − δ2β2 I
∗
2 V

∗(w − 1)
]

+ k3(z − 1)β1 I
∗
1

[

S∗( xv
z

− 1
)

+ δ1V
∗( yv

z
− 1

)]

+ k4(u − 1)β2 I
∗
2

[

S∗( xw
u

− 1
)

+ δ2V
∗( yw

u
− 1

)]

+ k5(v − 1)a1E
∗
1

[ z

v
− 1

]

+ k6(w − 1)a2E
∗
2

[ u

w
− 1

]

=k1(2� − β1S
∗ I ∗

1 − β2S
∗ I ∗

2 + γ V ∗) + k2(pS
∗ − δ1β1V

∗ I ∗
1 − δ2β2V

∗ I ∗
2 )

+ k3(β1S
∗ I ∗

1 + δ1β1V
∗ I ∗

1 ) + k4(β2S
∗ I ∗

2 + δ2β2V
∗ I ∗

2 ) + k5a1E
∗
1 + k6a2E

∗
2

− (k1� − k1β1S
∗ I ∗

1 − k1β2S
∗ I ∗

2 + k1γ V
∗ − k2 pS

∗)x − k1�
1

x
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− (−k1γ V
∗ + k2 pS

∗ − k2δ1β1V
∗ I ∗

1 − k2δ2β2V
∗ I ∗

2 )y

− (k1β1S
∗ I ∗

1 − k3β1S
∗ I ∗

1 )xv − (−k1β1S
∗ I ∗

1 − k2δ1β1V
∗ I ∗

1 + k5a1E
∗
1 )v

− (k1β2S
∗ I ∗

2 − k4β2S
∗ I ∗

2 )xw

− (−k1β2S
∗ I ∗

2 − k2δ2β2V
∗ I ∗

2 + k6a2E
∗
2 )w − k1γ V

∗ y
x

− k2 pS
∗ x
y

− k3β1S
∗ I ∗

1
xv

z

− k3β1δ1V
∗ I ∗

1
yv

z
− k4β2S

∗ I ∗
2
xw

u
− k4β2δ2V

∗ I ∗
2
yw

u
− (k1δ1β1V

∗ I ∗
1 − k3δ1β1V

∗ I ∗
1 )yv

− (k2δ2β2V
∗ I ∗

2 − k4δ2β2V
∗ I ∗

2 )yw − (k3β1S
∗ I ∗

1 + k3β1δ1V
∗ I ∗

1 − k5a1E
∗
1 )z

− (k4β2S
∗ I ∗

2 + k4β2δ2V
∗ I ∗

2 − k6a2E
∗
2 )u − k5a1E

∗
1
z

v
− k6a2E

∗
2
u

w

=:F(x, y, z, u, v, w).

Now we choose the positive constants k1, k2, k3, k4, k5, k6 as follows:

k1 = k2 = k3 = k4 = 1, k5 = a1 + μ

a1
, k6 = a2 + μ

a2
.

Substituting them into the function F(x, y, z, u, v, w) gives

F(x, y, z, u, v, w) = [2� + γ V ∗ + pS∗ + (a1 + μ)E∗
1 + (a2 + μ)E∗

2 ]
− μS∗x − �

1

x
− μV ∗y

− γ V ∗ y
x

− pS∗ x
y

− β1S
∗ I∗1

xv

z
− δ1β1V

∗ I∗1
yv

z
− β2S

∗ I∗2
xw

u

− δ2β2V
∗ I∗2

yw

u
− (a1 + μ)E∗

1
z

v
− (a2 + μ)E∗

2
u

w

=μS∗(

2 − x − 1

x

)

+ γ V ∗(

2 − x

y
− y

x

)

+ μV ∗(

3 − y − 1

x
− x

y

)

+ β1S
∗ I∗1

(

3 − 1

x
− xv

z
− z

v

)

+ β2S
∗ I∗2

(

3 − 1

x
− xw

u
− u

w

)

+ δ2β2V
∗ I∗2

(

4 − 1

x
− x

y
− yw

u
− u

w

)

+ δ1β1V
∗ I∗1

(

4 − 1

x
− x

y
− yv

z
− z

v

)

.

Here, clearly F(x, y, z, u, v, w) ≤ 0, and the equality holds only for x = y = 1,
z = v, and u = w, i.e.,

{(x, y, z, u, v, w) ∈ � : F(x, y, z, u, v, w) = 0}
≡ {(x, y, z, u, v, w) : x = y = 1, z = v, u = w} ,
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which corresponds to the set

�′ =
{

(S, V , E1, E2, I1, I2) : S = S∗, V = V ∗, E1

E∗
1

= I1
I ∗
1

,
E2

E∗
2

= I2
I ∗
2

}

⊂ �.

It is evident to see that the maximum invariant set on the set �′ is the singleton {D∗},
therefore the endemic equilibrium D∗ is globally stable in � by LaSalle’s Invariance
Principle (LaSalle 1976). ��

3.4 Uniform persistence

Epidemiological implications of persistencemean the disease persists for a future time.
Also, we can say that the disease is endemic if the infected population persists above a
certain level for a sufficiently large time. For amulti-strain disease, the epidemiological
consequence of persistence is that all strains persist above a certain level for a long
time. Mathematically, the meaning of persistence is that strictly positive solutions do
not have omega limit points on the boundary of the non-negative axes. A population
x(t) is called uniformly persistent if there is an ε > 0, independent of x(0) > 0
such that lim

t→∞ x(t) > ε. We say that a system persists uniformly whenever each

component persists uniformly. For the persistence result of system (1), we have the
following theorem:

Theorem 3.6 The system (1) is uniformly persistent if R1 > 1 and R2 > 1.

Proof The necessity of R1 > 1 and R2 > 1 ensues from the global stability of the
equilibria D0 and D2 which excludes any kind of persistence of both strains when
R1 < 1 or R2 < 1. To prove the uniform persistence, we need to show that there are
no omega limit points on the axes of orbits initiating in the interior of the positive
cone. Suppose v is a point in the positive cone and �(v) is the orbit through v and
w is the omega limit set of the orbit through v. Note that w(v) is bounded. We claim
that D0 and D2 do not belong to w(v). If D0, D2 ∈ w(v), then by Butler-McGehee
lemma (Freedman and Waltman 1985), there exists a point u ∈ w(v) ∩ Ms(D0) and
z ∈ w(v) ∩ Ms(D2), where Ms(D0) and Ms(D2) denote the stable manifolds of D0

and D2, respectively. Since �(u) and �(z) lie in w(v), we conclude that �(u) and
�(z) are unbounded, which is a contradiction. Hence, w(v) lies in the positive cone
and the system (1) is persistent. Finally, since only the closed orbits and the equilirbia
from the omega limit set of the solutions on the boundary of R8+ and the system (1) is
dissipative, by Butler et al. (1986), the system (1) is uniformly persistent. ��

3.5 Bifurcations

Different dynamical behaviors may occur in a mathematical model for the variation
of the model parameters. The critical parametric value at which qualitative dynamic
change occurs is called a bifurcation point. The objective of this section is to determine
some local bifurcations of the system (1) with the variation of different parameters.
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3.5.1 Hopf bifurcation

This section focuses on the local stability and Hopf bifurcation at the positive equilib-
rium D∗ of system (1), which represents the coexistence of the both strains (native and
mutant). To determine the local asymptotic stability of D∗, the characteristic equation
of the linearized system of (1) at D∗ is utilized. The characteristic equation is given
by

C(λ) = λ7 + l1λ
6 + l2λ

5 + l3λ
4 + l4λ

3 + l5λ
2 + l6λ + l7 = 0, (17)

where l1, l2, l3, l4, l5, l6, and l7 are given in Appendix A. Now, we define Routh-
Hurwitz determinants

H1 = l1 , H2 = l1 l3
1 l2

, H3 =
l1 l3 l5
1 l2 l4
0 l1 l3

, H4 =
l1 l3 l5 l7
1 l2 l4 l6
0 l1 l3 l5
0 1 l2 l4

,

H5 =

l1 l3 l5 l7 0
1 l2 l4 l6 0
0 l1 l3 l5 l7
0 1 l2 l4 l6
0 0 l1 l3 l5

, H6 =

l1 l3 l5 l7 0 0
1 l2 l4 l6 0 0
0 l1 l3 l5 l7 0
0 1 l2 l4 l6 0
0 0 l1 l3 l5 l7
0 0 1 l2 l4 l6

, H7 = l7H6.

By Routh-Hurwitz criterion, D∗ is locally asymptotically stable (i.e. Re(λ) < 0) if
and only if H1 > 0, H2 > 0, H3 > 0, H4 > 0, H5 > 0, H6 > 0, and H7 > 0;
otherwise, D∗ becomes unstable.

Further, we determine the occurrence conditions of Hopf bifurcation of system
(1). To study the Hopf bifurcation, bifurcation parameter should be chosen at first.
Among all parameters of system (1), we choose the parameter ν1, which represents
the mutation rate of the native strain. With the other parameter values given, we can
calculate the threshold value of the bifurcation parameter ν1. In the following, we
denote this threshold value of Hopf bifurcation point as ν1 = ν∗

1 .
By Liu criterion (Liu 1994), we assume that there is a smooth curve of equilib-

rium points (D(ν1), ν
∗
1 ) with D(ν1) = ν∗

1 for system (1) and (D∗, ν∗
1 ) is a positive

equilibrium point. If C(λ, ν∗
1 ) = λ7 + l1(ν∗

1 )λ
6 + l2(ν∗

1 )λ
5 + l3(ν∗

1 )λ
4 + l4(ν∗

1 )λ
3 +

l5(ν∗
1 )λ

2+l6(ν∗
1 )λ+l7(ν∗

1 ) is the characteristic equation at (D
∗, ν∗

1 ), then for a simple
Hopf bifurcation, we have the following conditions:

(i) l7(ν∗
1 ) > 0, H1(ν

∗
1 ) > 0, H2(ν

∗
1 ) > 0, H3(ν

∗
1 ) > 0, H4(ν

∗
1 ) > 0, H5(ν

∗
1 ) > 0,

and H6(ν
∗
1 ) = 0.

(ii) d
dν1

(H6(ν
∗
1 )) �= 0,

where H1(ν
∗
1 ), H2(ν

∗
1 ), H3(ν

∗
1 ), H4(ν

∗
1 ), H5(ν

∗
1 ), and H6(ν

∗
1 ) are the Hurwitz deter-

minants at the bifurcation parameter ν∗
1 .

If the condition (i) holds, then the characteristic polynomial have to meet the con-
dition for a pair of purely imaginary eigenvalues. Now for the occurrence of Hopf
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bifurcation, we need to derive the transversality condition (ii). For this, we let ±iω be
a pair of purely imaginary eigenvalues. Here, differentiating the characteristic equation
(17) with respect to ν1, we obtain

(7λ6 + 6l1λ
5 + 5l2λ

4 + 4l3λ
3 + 3l4λ

2 + 2l5λ + l6)
dλ

dν1
+ λ6

dl1
dν1

+ λ5
dl2
dν1

+ λ4
dl3
dν1

+ λ3
dl4
dν1

+ λ2
dl5
dν1

+ λ
dl6
dν1

+ dl7
dν1

= 0.

Further, we obtain

(
dλ

dν1

)−1

= − 7λ6 + 6l1λ5 + 5l2λ4 + 4l3λ3 + 3l4λ2 + 2l5λ + l6

λ6 dl1
dν1

+ λ5 dl2
dν1

+ λ4 dl3
dν1

+ λ3 dl4
dν1

+ λ2
dl5
dν1

+ λ dl6
dν1

+ dl7
dν1

.

Furthermore, we have

sign

[
d(Re(λ))

dν1

]

λ=iω,H6=0

= sign

[

Re

(
dλ

dν1

)−1]

λ=iω,H6=0

= sign[ϒ],
where,

ϒ = Re

[
(7ω6 − 5l2ω4 + 3l4ω2 − l6) + i(−6l4ω5 + 4l3ω2 − 2l5ω)

(−ω6 dl1
dν1

+ ω4 dl3
dν1

− ω2 dl5
dν1

+ dl7
dν1

) + i(ω5 dl2
dν1

− ω3 dl4
dν1

+ ω dl6
dν1

)

]

= M1M3 + M2M4

M2
3 + M2

4

,

M1 = 7ω6 − 5l2ω
4 + 3l4ω

2 − l6, M2 = −6l4ω
5 + 4l3ω

2 − 2l5ω,

M3 = −ω6 dl1
dν1

+ ω4 dl3
dν1

− ω2 dl5
dν1

+ dl7
dν1

, M4 = ω5 dl2
dν1

− ω3 dl4
dν1

+ ω
dl6
dν1

.

IfM1M3+M2M4 > 0, then sign
[
d(Re(λ))

dν1

]

ν1=ν∗
1

> 0 and the transversality condition

(ii) holds. Summarizing the above discussion, we obtain the subsequent theorem:

Theorem 3.7 For the existing positive equilibrium D∗ of system (1), if the conditions
(i) and (ii) hold, then the system (1) around D∗ enters into Hopf bifurcation when ν1
crosses through ν∗

1 .

3.5.2 Transcritical bifurcation

We see that Eq. (6) has a zero eigenvalue when either R1 = 1 or R2 = 1. Thus, the
system (1) may undergo a transcritical bifurcation at D0 when either R1 = 1 or R2 =
1. In this subsection, we establish conditions on the parameters using Theorem 4.1
from Castillo-Chavez and Song (2004) and center manifold theory (Gukenheimer and
Holmes 1983). For the transcritical bifurcation, we establish the following theorem:
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Theorem 3.8 1. Assume R1 < 1, the system (1) undergoes a transcritical bifurca-
tion near D0, when R2 = 1.

2. Assume R2 < 1, the system (1) undergoes a transcritical bifurcation near D0,
when R1 = 1.

Proof 1. We choose β2 as a bifurcation parameter. By solving R2 = 1, we obtain

β2 = β∗
2 = μ (a2 + μ) (α2 + d2 + μ) (γ + μ + p)

a2�(γ + μ + δ2 p)
.

It can easily be obtained that the Jacobian J(D0,β∗
2 ) evaluated at D0 and β2 = β∗

2

has a simple zero eigenvalue and other eigenvalues have negative sign. Hence D0 is
a non-hyperbolic equilibrium, when β2 = β∗

2 . Now, we calculate a right eigenvec-
tor W = (w1, w2, w3, w4, w5, w6) and a left eigenvector V = (v1, v2, v3, v4, v5,

v6) associated to the zero eigenvalue. Here

w1 = − (a2 + μ) (α2 + d2 + μ)
(

(γ + μ)2 + γ δ2 p
)

a2μ(γ + μ + p) (γ + μ + δ2 p)
,

w2 = − p (a2 + μ) (α2 + d2 + μ) (γ + μ + δ2(μ + p))

a2μ(γ + μ + p) (γ + μ + δ2 p)
,

w3 = 0, w4 = μ + d2 + α2

a2
, w5 = 0, w6 = 1, w7 = 0,

v1 = 0, v2 = 0, v3 = a1ν1
(μ + a1)(μ + d1 + α1 + ν1)(1 − R1)

,

v4 = 1, v5 = ν1

(μ + d1 + α1 + ν1)(1 − R1)
, v6 = 1, v7 = 0.

Now from Theorem 4.1 of Castillo-Chavez and Song (2004), we need to calculate the
bifurcation constants a and b. For system (1), a and b with the associated non-zero
partial derivatives of f (evaluated at D0, x1 = S, x2 = V , x3 = E1, x4 = E2, x5 =
I1, x6 = I2, x7 = R1) are given by

a = 2v3w1w5
∂2 f3
∂S∂ I1

+ 2v3w2w5
∂2 f3

∂V ∂ I1
+ 2v4w1w6

∂2 f4
∂S∂ I2

+ 2v4w2w6
∂2 f4

∂V ∂ I2
+ 2v4w6w7

∂2 f4
∂ I2∂R1

= 2v4w6(w1 + δ2w2)β
∗
2 < 0,

b = 2v4w6
∂2 f4

∂β2∂ I2
= 2v4w6(S

0 + δ2V
0) > 0.

Since the coefficient a is negative and b is positive, the direction of the bifurcation of
system (1) at β2 = β∗

2 is forward.
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2. By choosing β1 as a bifurcation parameter and solving R1 = 1, we obtain

β1 = β∗
1 = μ (a1 + μ) (γ + μ + p) (α1 + d1 + μ + ν1)

a1�(γ + μ + δ1 p)
.

Following simple procedure of previous case, we obtain that D0 is a non-hyperbolic
equilibrium, when β1 = β∗

1 . Now, we calculate a right eigenvector W1 =
(w11, w22, w33, w44, w55, w66) and a left eigenvector V1 = (v11, v22, v33, v44, v55,

v66) associated to the zero eigenvalue. Here

w11 = − �β2((γ + μ)2 + pγ δ2)ν1

α1μ(p + γ + μ)2(μ + d2 + α2)(μ + a2)(1 − R2)

− (a1 + μ) (α1 + d1 + μ + ν1)
(

(γ + μ)2 + γ δ1 p
)

a1α1(γ + μ + p) (γ + μ + δ1 p)
,

w22 = − p(γ + μ + (p + μ)δ2)

(p + γ + μ)α1

( �β2ν1

μ(p + γ + μ)(μ + d2 + α2)(1 − R2)

+ (μ + a1)(μ + d1 + α1 + ν1)

a1(γ + μ + pδ2)

)

,

w33 = μ (α1 + d1 + μ + ν1)

a1α1
,

w44 = �β2(γ + μ + pδ2)ν1
α1(p + γ + μ)(μ + d2 + α2)(μ + a2)(1 − R2)

, w55 = μ

α1
,

w66 = μν1

α1(μ + d2 + α2)(1 − R2)
, w77 = 1 v11 = 0, v22 = 0,

v33 = a1
a1 + μ

, v44 = 0,

v55 = 1, v66 = 0, v77 = 0.

Similarly, as in previous case, we have

a = 2v33w11w55
∂2 f3
∂S∂ I1

+ 2v33w22w55
∂2 f3

∂V ∂ I1
= 2v33w11w55β

∗
1 + 2v33w22w55δ1β

∗
1 ,

= 2v33w55β
∗
1 (w11 + δ1w22) < 0,

b = 2v33w55
∂2 f3

∂β1∂ I1
= 2v33w55(S

0 + δ1V
0) > 0.

Therefore again in this case, the direction of the bifurcation of system (1) at β1 = β∗
1

is forward. ��
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4 Implications for disease control

For vaccine-preventable diseases, not all susceptible individuals can be immunized
due to various reasons. These include being too young (as vaccination may be harm-
ful to infants or young children), having weakened immune systems or underlying
health conditions (where vaccination could worsen their prognosis), advanced age, or
personal reasons based on religion, tradition, or culture. However, the key question
is: what is the minimum proportion of individuals we need to vaccinate in order to
protect those who cannot be vaccinated from severe disease or death? The idea of
herd immunity in the disease dynamics is related to the indirect protection against
acquiring of infectious disease, which members of the community obtain when a large
percentage of the populace has become protected to the contagious disease due to nat-
ural recovery from prior infection or vaccination (Anderson 1992; Anderson and May
1985; Elbasha and Gumel 2021). The outcome of herd immunity is that persons who
are not immune (e.g., those who have not been infected yet or cannot be vaccinated)
obtain some defense against acquiring the infection. The fastest and safest way to
attain herd immunity is vaccination. It should, however, be stated that Sweden imple-
mented the other procedure for achieving herd immunity in the COVID-19 dynamics
in Sweden (Friedman 2020). In other words, the Swedish public health agencies aimed
to achieve herd immunity without implementing common strategies like community
lockdowns, social distancing, contact tracing, or the widespread use of face masks in
public. Instead, they chose to allow individuals to contract the disease and hopefully
recover from it. In this section, a theoretical condition for achieving community-wide
vaccine-induced herd immunity is obtained. Theorem 3.3 has significant public health
implications. It reveals that if the imperfect vaccine has sufficient efficacy and cov-
erage rate to make R0 < 1, COVID-19 will be eradicated from society. The global
stability of the disease-free equilibrium (Theorem 3.3) for R0 < 1 confirms that such
epidemics do not hit. This means R0 is an appropriate combination of parameters to
measure the efficiency of a vaccination campaign.

4.1 Herd immunity

Not every person in a given population expects to be immunized in order to eradicate
the disease. A fraction of people with immunity in the given population is required to
stop an epidemic is named herd immunity. Let ρ denotes the fraction of the vaccinated
population at D0 (the disease-free equilibrium). Then,

ρ = p

μ + γ + p
.

In the absence of vaccination, i.e., when p = 0, the basic reproduction number is
given by R0wv . Hence, we can write

R0 = max {R1wv(1 − (1 − δ1)ρ), R2wv(1 − (1 − δ2)ρ)} , (18)
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with R1 = R1wv(1 − (1 − δ1)ρ), and R2 = R2wv(1 − (1 − δ2)ρ). It is noted that
R1 ≤ R1wv, R2 ≤ R2wv, and thus R0 ≤ R0wv. The equality holds only when ρ = 0
(i.e., p = 0) or δ1 = δ2 = 1. This indicates that the vaccine, even not 100% effective,
will certainly reduce the basic reproduction number of the disease. Since R0 < 1 is a
necessary and sufficient condition for the eradication of disease (Theorem 3.3), hence
it follows from (18) that

ρ > max

{
1

1 − δ1

(

1 − 1

R1wv

)

,
1

1 − δ2

(

1 − 1

R2wv

)}

= ρcri tical (19)

is also a necessary and sufficient condition for disease elimination. Here ρcri tical
signifies herd immunity. Although this outcome could be achieved in the case of
continuous vaccination and that herd immunity is attained if the vaccination rate is
large enough such that ρ, the fraction of vaccinated individuals at the disease-free
equilibrium, exceeds the critical value ρcri tical . From Theorem 3.3, we obtain the
following consequence:

Proposition 4.1 COVID-19 can be eradicated from the population if ρ > ρcri tical .

The inequality (19) can be expressed in terms of the vaccination rate p. This is
done by noting, first of all, that R0 is a decreasing function of p,

dR0

dp
= max

{ −�(γ + μ)(1 − δ1)a1β1

μ(p + γ + μ)2(μ + a1)(μ + d1 + α1 + ν1)
,

−�(γ + μ)(1 − δ2)a2β2

μ(p + γ + μ)2(μ + a2)(μ + d2 + α2)

}

< 0

and so it is minimized if p becomes sufficiently large enough. Taking the limit
as p approaches infinity, we observe that this expression is always greater than
max {δ1R1wv, δ2R2wv}. Thus, if max {δ1R1wv, δ2R2wv} > 1, then no amount of vac-
cination can make R0 smaller than unity. Alternatively, if max {δ1R1wv, δ2R2wv} < 1,
then the condition

p > max

{
(γ + μ)(R1wv − 1)

1 − δ1R1wv

,
(γ + μ)(R2wv − 1)

1 − δ2R2wv

}

= pcritical (20)

gives R0 < 1. Of course, this condition assumes R0 > 1, since disease elimination
follows without vaccination if R0 < 1 (by Theorem 3.3 and the fact that R0 ≤ R0wv).
It is easy to show that from (20), we obtain R0 < 1 if p > pcritical , and R0 > 1 if
p < pcritical . Thu, we have the following result:

Proposition 4.2 Ifmax {δ1R1wv, δ2R2wv} < 1 and p > pcritical , then COVID-19 will
be eliminated from the community. If max {δ1R1wv, δ2R2wv} > 1, then no amount of
vaccination would be able to prevent the COVID-19 outbreak in the community.
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Table 2 Numerical values of parameters

Parameters Value with unit Reference

� 10,000 people per week Assumed

β1 0.000001 Assumed

β2 0.0000003 Assumed

p 0.02 week−1 Assumed

μ 0.0003 week−1 1/(65 × 48)

1 − δ1 0.75 (dimensionless) Assumed that vaccine efficacy is 75%
against native strain

1 − δ2 0.40 (dimensionless) Assumed that vaccine efficacy is 40%
against mutant strain

γ 1/32 week−1 Assumed that loss of immunity of vaccinated
individuals after 32 weeks

a1 1 week−1 Incubation (1 Week) Lauer et al. (2020)

a2 1 week−1 Incubation (1 Week) Lauer et al. (2020)

α1 1/2 week−1 Recovery (2 Weeks) Iboi et al. (2020)

α2 1/2 week−1 Recovery (2 Weeks) Iboi et al. (2020)

d1 0.0006 week−1 Assumed

d2 0.0006 week−1 Assumed

1 − δ3 0.90 (dimensionless) Assumed that recovered individuals have
90% immunity against mutant strain

ν1 0.3 week−1 Assumed

5 Numerical illustration

In this section, we investigate the dynamics of system (1) numerically for different
sets of parametric values. Such investigations aim to determine the effect of varying
the values of the different parameters and support the obtained theoretical results. It
is observed that the hypothetical values of parameters given in Table 2 are biologi-
cally feasible. However, to verify the bifurcations and different dynamical behavior
of system (1), some parameters are varied differently from Table 2.

The dynamics of system (1) is simulated using MATLAB 2018a. Figure2a shows
that for R0 = max {R1, R2} = 0.9735 < 1, DFE (D0) is asymptotically stable. Fig-
ure2b represents that the mutant dominant equilibrium (D2) is asymptotically stable
for R1 < 1 and R2 > 1. Further, Fig. 3 shows that mutation rate (ν1) changes the
dynamics of positive equilibrium of system (1). Figure3a represents that the positive
equilibrium is asymptotically stable. Figure3b, c ensure that system (1) loses its sta-
bility around the positive equilibrium for high mutation rate and periodic solutions
occur. Furthermore, Fig. 3d shows that the positive equilibrium regains its stability
for further higher mutation rate. This type of dynamics is called endemic bubble (Liu
et al. 2015).

Figures 4a, b depict the transcritical bifurcation diagrams with respect to R2 and
R1, respectively, as the results obtained in Theorem3.8. Figure4a shows that system
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Fig. 2 a The solutions I1 and I2 of system (1) for the parametric values β1 = 0.000000033, β2 =
0.000000017, and others from Table 2. b The solutions I1 and I2 of system (1) for β1 =
0.0000000033, β2 = 0.0000003, and other parametric values from Table 2
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Fig. 3 a The solutions I1 and I2 of system (1) for the parametric values in Table 2 and ν1 = 0.3. b The
solutions I1 and I2 of system (1) for ν1 = 0.5. c The solutions I1 and I2 of system (1) for ν1 = 0.7. d The
solutions I1 and I2 of system (1) for ν1 = 0.90
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Fig. 4 a Transcritical bifurcation with respect to R2 when R1 < 1. The blue curve shows the stable mutant
dominant equilibrium when R2 > 1. b Transcritical bifurcation with respect to R1 when R2 < 1. The
blue curve shows the stable endemic equilibrium (only native strain exists, i.e. I2 = 0) when R1 > 1. Red
colored curve shows the disease-free equilibrium (color figure online)

(1) undergoes a transcritical bifurcation at R2 = 1 and exchanges the stability between
disease free equilibrium (D0) andmutant dominant equilibrium (D2). For this scenario,
native strain is assumed to die out, i.e. I1 = 0 when R1 < 1. More precisely, D0

is stable when R2 < 1, while a unique stable mutant dominant equilibrium (D2)
appears and D0 becomes unstable when R2 > 1. The equilibrium D2 exists and
stable when R2 > 1 and R1 < 1 which has also been theoretically proved in Sect. 3.2
and Theorem 3.8. Figure4b illustrates that system (1) exchanges the stability between
disease free equilibrium (D0) and native strain’s associated endemic equilibrium at
R1 = 1 implying that system (1) undergoes a transcritical bifurcation at R1 = 1.
This scenario happens when mutant strain is assumed to die out for R2 < 1. When
mutant strain dies out only native strain’s associated endemic equilibrium exists and
stable when R1 > 1. We have not computed an explicit expression for native strain’s
associated endemic equilibrium, it can simply be computed by considering a simple
SVEIR model by considering I2 = 0.

Furthermore, Fig. 5 shows the endemic equilibrium (D∗) is locally asymptotically
stable for small and large enough values of ν1, but unstable for intermediate values
of ν1. In this way, we get the bifurcation diagram in Fig. 5, which we call an endemic
bubble. As shown in the bifurcation diagram (Fig. 5), for a lower range of values of
ν1, both strains persist in the environment and system (1) is asymptotically stable. For
a range of ν1, the periodic oscillations (limit cycle) will appear, but for higher values
of ν1, system (1) regains its stability. Figure6 illustrates the Hopf bifurcation diagram
with respect to the parameter δ3. It shows that the system (1) is locally asymptotically
stable for lower values of δ3 and periodic solutions (Hopf bifurcation) appear for higher
values of δ3.

6 Case study on COVID-19 data in India

Here we estimate the unknown parameters of the system (1) on the cumulative cases
and deaths of COVID-19 in India fromMarch 1, 2021 to September 27, 2021 by using
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Fig. 5 Bifurcation diagrams (endemic bubble) with respect to mutation rate (ν1), other parametric values
remain same as in Table 2. The blue color shows the upper limit of the limit cycle and red color shows the
lower limit of the limit cycle (color figure online)

Fig. 6 Hopf bifurcation diagrams with respect to δ3. We keep ν1 = 0.4 and other parametric values same
as in Table 2. The blue color shows the upper limit of the limit cycle and red color shows the lower limit of
the limit cycle (color figure online)

the MCMC algorithm (Haario et al. 2006, 2001; Ahmed 2008). We collect the data of
cumulative cases and deaths of COVID-19 for March 1, 2021 to September 27, 2021
(31 weeks) from theWHOwebsite (World Health Organization 2021a). By estimating
the parameters, we estimate the mean values, standard deviation, and Geweke values
of some parameters of the system (1). The cumulative cases can be given as

dC

dt
= a1E1 + a2E2, (21)

where C(t) represents the cumulative cases, and the cumulative deaths can be given
as

dD

dt
= d1 I1 + d2 I2, (22)

where D(t) represents the cumulative deaths.
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Fig. 7 Fitting results of the cumulative cases and deaths of COVID-19. a The blue solid boxes represent
the actual reported cumulative cases and the orange curve represents the model output. b Blue solid boxes
represent the actual reported cumulative deaths and orange curve represents the model output. For the
different colors in the Figure, refer to the web version of the paper (color figure online)

In this section, we are interested in understanding the qualitative and quantitative
impact of imperfect vaccine and mutation on the dynamics of COVID-19, where
mutant strain is more transmissible. In particular, we consider the data of COVID-
19 in India from March 1, 2021 to September 27, 2021 and in this period the delta
variant was the variant of concern (VOC) and led a specific wave which was primarily
identified in India in October 2020 (World Health Organization 2021d; Duong et al.
2022). The Delta variant was highly infectious, estimated to be more than double that
of the previous variants (HowDangerous Is theDelta Variant 2023; Duong et al. 2022).
Thus, we consider β1 < β2, specifically β2 = 2β1. However, the general methodology
andmathematical could be applied to other SARS-CoV-2 variants andmay be assumed
β2 = κβ1, where κ > 0 depends on the uncertainty in the transmissibility of the
mutant SARS-CoV-2 variant. We use MCMC method for 20,000 simulations to fit
the Eqs. (21) and (22) and estimate the parameters. Figure7 represents a good fitting
between the cumulative reported cases of COVID-19 and the model solution, well
suggesting the epidemic trend in India. Some of the parameters of the system (1) are
taken either from the literature or presumed based on publicly-available COVID-19
associated information.We assume parametric values of α1, α2, μ, δ1, δ2, and δ3 same
as given in Table 2 and initial conditions given in Table 4.

By using MCMC method, we acquire the values of the parameters β1, β2, ν1, d1,
and d2 withMCMC chain of the time evolution of the cumulative cases and deaths and
comparison with the confirmed cases of COVID-19 in India. We compute the mean
values, standard deviation, and Geweke values of these parameters (refer in Table 3).

6.1 The effects of different efficacies of vaccine andmutation rate on cumulative
cases and cumulative deaths over time

The system (1) is simulated to assess the population-level impact of the imperfect
anti-COVID-19 vaccine in India. The population-level impact of the vaccine efficacy
against both strains (native and mutant) on the burden of the pandemic is examined.
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Table 3 Estimated values of parameters by MCMC method

Parameters Mean value Standard deviation Geweke value Reference

� 320000 – – Assumed

β1 1.999e−07 5.3206e−13 0.99 MCMC

β2 3.9980e−07 3.145e−13 0.99 MCMC

p 0.01 – – Paul et al. (2022)

γ 0.04 – – Bugalia et al. (2023) and
Chowdhury et al. (2022)

ν1 0.02 3.265e−04 0.98 MCMC

d1 0.007 5.347e−05 0.99 MCMC

d2 0.007 3.016e−05 0.99 MCMC

a1 0.5 – – Assumed

a2 0.33 – – Assumed

Table 4 Initial conditions for system (1) with respect to COVID-19 in India

S(0) V(0) E1(0) E2(0) I1(0) I2(0) R1(0) R2(0)

23 × 105 12256337 10 × 104 60 × 104 10 × 103 80 × 103 60 × 102 20 × 103

Firstly, we consider different values of the vaccine efficacy against the native strain.
The system (1) is then simulated using the baseline parameter values in Table 2, 3, and
different values of the vaccine efficacy (1 − δ1) against the native strain. The results
obtained from the Fig. 8a show that, for the vaccine efficacy (1−δ1) = 75% (assumed),
34,149,900 cumulative cases (the red curve) have been reported by September 27,
2021. Predictions show that the cumulative cases would be recorded 36,923,800, by
November 29, 2021 (9 weeks after September 27, 2021). The simulations further
ensure a reduction with increasing values of the vaccine efficacy (1 − δ1) from its
baseline value. In particular, ifwe consider the vaccine efficacy as (1−δ1) = 90%, then
36,774,900 cumulative cases would be recorded by November 29, 2021, representing
only 0.40% reduction. Figure8b represents that for the vaccine efficacy (1−δ2) = 40%
(assumed) against the mutant strain, 34,066,700 cumulative cases (the yellow curve)
have been reported by September 27, 2021. Predictions show that the cumulative cases
would be recorded 36,890,600, by November 29, 2021. These simulations ensure that
initially an increase in the vaccine efficacy against the mutant strain (1 − δ2) reduces
the cumulative cases but not for longer time.

The system (1) is simulated for different values of 1− δ3 (immunity against mutant
strain). Figure8c represents that, if recovered individuals by native strain have 90%
immunity against mutant strain (i.e. (1 − δ3) = 90%) (assumed), 34,149,900 cumu-
lative cases (the blue curve) have reported by September 27, 2021. Simulations also
show that the cumulative cases would be recorded 36,923,800, by November 29, 2021.
These simulations observe an increase in the cumulative cases with decreasing value
of 1 − δ3. Particularly, if we consider (1 − δ3) = 75%, then 37,032,000 cumulative
cases would be recorded by November 29, 2021. This represents 0.29% increase in the
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Fig. 8 Assessment of the impacts of different parameters on the cumulative cases of COVID-19 in India.
Simulations of the system (1) show the cumulative cases of COVID-19 in India, as a function of time,
a for different values of vaccine efficacy against native strain (1 − δ1). b for different values of vaccine
efficacy against mutant strain (1− δ2). c for different values of immunity against mutant strain (1 − δ3). d
for different values of mutation rate (ν1). The baseline parameter values are used from Tables 2 and 3

cumulative cases. If we consider (1 − δ3) = 50%, then 37,048,600 cumulative cases
would be recorded by November 29, 2021, representing 0.33% increase in the cumu-
lative cases. Furthermore, if (1−δ3) = 25%, then 37,049,500 cumulative cases would
be recorded by November 29, 2021, representing 0.34% increase in the cumulative
cases.

Furthermore, simulations are also carried out to assess the impact of mutation
rate on the disease dynamics of COVID-19. Figure8d represents that, for the baseline
value of the mutation rate (ν1 = 0.02), 34,149,900 cumulative cases (blue curve) have
reported by September 27, 2021. Simulations show that the cumulative cases would
be 36,923,800 by November 29, 2021. These simulations show a decrease in the
cumulative cases with increasing values of ν1. Particularly, if we consider ν1 = 0.5,
then 36,628,700 cumulative cases would be recorded by November 29, 2021. This
represents a 0.79% decrease in the cumulative cases. Furthermore, if ν1 = 1, then
36,564,100 cumulative cases would be recorded by November 29, 2021, representing
0.97% decrease in the cumulative cases.

Furthermore, the impact of vaccine efficacies on cumulative deaths is examined. The
result in Fig. 9a shows that for the vaccine efficacy (1−δ1) = 75% (assumed), 468,197
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Fig. 9 Assessment of the impacts of different parameters on the cumulative deaths of COVID-19 in India.
Simulations of the system (1) show the cumulative deaths of COVID-19 in India, as a function of time, a for
different values of vaccine efficacy against native strain (1 − δ1); b for different values of vaccine efficacy
against mutant strain (1 − δ2). The baseline parameter values are used from Tables 2 and 3

cumulative deaths (red curve) have been reported by September 27, 2021. Predictions
show that the cumulative deaths would be recorded as 504,977 by November 29,
2021 (9 weeks after September 27, 2021). The simulations further show a reduction
in cumulative deaths with increasing values of the vaccine efficacy (1 − δ1) from
its baseline value. In particular, if we consider the vaccine efficacy as (1 − δ1) =
90%, then 502,946 cumulative deaths would be recorded by November 29, 2021,
representing only a 0.4% reduction. Figure9b represents that, for the vaccine efficacy
(1 − δ2) = 40% (assumed) against the mutant strain, 467,005 cumulative deaths
(yellow curve) have been reported by September 27, 2021. Simulations show that
the cumulative deaths would be recorded at 504,392 by November 29, 2021. Further
predictions show that initially increasing values of the vaccine efficacy (1−δ2) reduce
the cumulative deaths but not for long time.

To examine the dependence of the end time (November 29, 2021) of the epidemic
on the vaccine efficacies against both native and mutant strains, i.e. (1− δ1), (1− δ2),
mutation rate (ν1), and immunity against mutant strain (1−δ3), we sketch the contour
plots of the total number of the cumulative cases of COVID-19, with respect to (1−δ1)

and (1 − δ2) in Fig. 10a; (1 − δ3) and ν1 in Fig. 10b; (1 − δ2) and ν1 in Fig. 10c;
(1− δ2) and (1− δ3) in Fig. 10d, respectively. In order to assess the combined impact
of the parameters, the other parameters remain fixed when we vary two parameters.
The results indicate that increasing the vaccine efficacies (1 − δ1) and (1 − δ2), the
cumulative cases would be reduced (Fig. 10a). It can also be observed that the vaccine
efficacy against the native strain (1− δ1) is more influential than the vaccine efficacy
against the mutant strain (1− δ2), in controlling the total number of cases. In the same
way, the result in Fig. 10b shows that the cumulative number of cases would be reduced
for the higher immunity against mutant strain (1−δ3) and higher value ofmutation rate
(ν1). The result also shows that mutation rate has a negligible impact on cumulative
caseswhen immunity againstmutant strain is high. The result in Fig. 10c shows that the
cumulative number of cases would be reduced for the higher vaccine efficacy against
the mutant strain (1 − δ2) when mutation rate (ν1) is high. The result also shows that
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Fig. 10 Contour plots of the cumulative cases as a function of different parameters: a as a function of
vaccine efficacy (1 − δ1) against native strain and vaccine efficacy (1 − δ2) against mutant strain; b as
a function of immunity against mutant strain (1 − δ3) and mutation rate (ν1); c as a function of vaccine
efficacy (1 − δ2) against mutant strain and mutation rate (ν1); d as a function of vaccine efficacy (1 − δ2)
against mutant strain and immunity against mutant strain (1− δ3). The baseline parameter values are used
from Tables 2 and 3

cumulative cases would be higher for the higher values of (1−δ2) and lower values of
ν1, which implies that the higher vaccine efficacy against mutant strain could not be
able to control the disease. Figure10d represents that the cumulative number of cases
would be reduced only for higher immunity against mutant strain (1− δ3). This result
makes it wonder that cumulative cases would be higher even for the higher value of the
vaccine efficacy against the mutant strain (1− δ2) if there is a low value of immunity
against mutant strain. This means there may exist an appropriate combination of these
parameters to ensure fewer confirmed cases. Thus, it would be interesting to consider
an optimal strategy for supplying vaccines to minimize the cumulative number of
cases.

6.2 Impact of mutation rate on the dynamics of strains and infected population
over time

The impact of mutation rate (ν1) has been analyzed on the dynamics of strains and
total infected population for COVID-19. We explicitly explore how the numbers of
infected individuals I1 and I2 depend on the mutation parameter (ν1). For this, we
choose � = 120000, β2 = 3.9980e− 08 and other parametric values remain same as
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Fig. 11 Bifurcation diagram (endemic bubble) with respect to mutation rate (ν1) for the fitted values of
parameters given in Table 3. The blue color shows the upper limit of the limit cycle and red color shows
the lower limit of the cycle (color figure online)

in Table 3.As shown in the bifurcation diagram (Fig. 11), for the range ofmutation rate,
0 < ν1 ≤ 0.9, both strains persist in the environment, and system is asymptotically
stable. For 0.9 < ν1 < 1.9, the periodic oscillations (limit cycle) will appear, i.e. the
disease outbreak will occur repeatedly. However, for a higher values of ν1, i.e. for
ν1 ≥ 1.9, the periodic solutions disappear and the disease again becomes stable. This
dynamical phenomenon has been illustrated in Fig. 12, for the values ν1 = 0.5, 1.2
and 2.0. Furthermore, we have plotted the total infected population (E1+E2+ I1+ I2)
over time for different values of ν1 in Fig. 13. This result gives a wondering dynamics
over a long time. We can easily observe that if the mutation rate (ν1) increases from
0.02 to 0.5, then the infected population persists at a lower level (blue and red curves).
In addition, if the value of ν1 is increased to 1.5, then the total infected population
oscillates over time (yellow curve). If the value of ν1 is further increased to 2, then the
infected population persists at a much lower level (purple curve) over long time.

7 Sensitivity analysis

Our ultimate goal in developing a mathematical model of two strains with imperfect
vaccine and mutation is to find the role of different parameters to control the disease.
From the viewpoints of biological significance, R0 plays a vital role in determining the
severity (burden of disease), outcome and process of the infection. This section inves-
tigates how a percentage change in key parameters in the model (1) affects (changes)
the basic reproduction number. If the basic reproduction number is brought below one,
the disease infection will be eliminated. Even if the basic reproduction number cannot
be brought below one, sensitivity analysis may help to determine which parameter, if
acted upon, will bring the largest reduction in the basic reproduction numbers. Sen-
sitivity indices measure the percentage change of a key quantity, such as the basic
reproduction number, when a parameter value in that quantity is changed by a certain
percentage. Sensitivity analysis is carried out on each parameter, which is utilized to
recognize and check parameters responsible for impacting the basic reproductive num-
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Fig. 12 Impact of mutation rate (ν1) on the infected populations I1 and I2. a The asymptotically stable
solutions I1 and I2 of system (1) for the parametric values in Table 3 and ν1 = 0.5. b The periodic solutions
I1 and I2 of system (1) for ν1 = 1.5. c The asymptotically stable solutions I1 and I2 of system (1) for
ν1 = 2.0

Fig. 13 Variation of the total
infected population with respect
to different values of ν1
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ber. The normalized sensitivity indices also called elasticity of a particular quantity Q
with respect to the parameter p, is defined as follows (Martcheva 2014):

εQp = ∂Q

∂ p

p

Q
. (23)
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Table 5 List of elasticities of R1
and R2

Parameters Values of
elasticities of
R1

Values of
elasticities of
R2

� 1 1

β1 1 –

β2 – 1

a1 0.00059 –

a2 – 0.0009

γ 0.139 0.1077

μ −1 −1

p −0.14 −0.1085

δ1 0.058 –

δ2 – 0.0903

d1 −0.013 –

d2 – −0.0138

α1 −0.948 –

α2 – −0.985

ν1 −0.0379 –

Elasticities can be positive or negative. A positive sign says that quantity Q increases
with the increase in the parameter value of p, while a negative sign says that quantity
Q decreases with the increase in the value of p.

We compute the elasticity indices for the basic reproduction numbers R1 and R2
given in Table 5. In Table 5, the parameters with positive sensitivity indices are those
parameters that have a great influence on the development of the disease in the com-
munity if their values are increasing. This is because the basic reproduction number
increases as the value of these parameter increases; that is, the average number of
secondary cases of infection increases in the community. Also, all the parameters in
which their indices are negative can curtail the infection in the community as their
values increase while the others are left constant. As their values increase, the basic
reproduction number decreases, which reduces the endemicity of the disease in the
community.

It is evident from the values of elasticities that the reproduction numbers experience
the highest impact with change to recruitment rate (�), transmission rates ((β1) and
(β2)), natural death rate (μ), and recovery rates ((α1) and (α2)), where (�), (β1), and
(β2) have positive sensitivities while μ, α1, and α2 have negative sensitivities.

We also perform global sensitivity analysis using the methodology of Latin Hyper-
cube Sampling (LHS) and partial rank correlation coefficients (PRCCs) (Marino et al.
2008) to investigate the dependence of R0 on the different parameters. From Fig. 14,
we observe that recruitment rate (�), transmission rates (β1, β2), natural death rate
(μ), and recovery rates (α1, α2) are the most sensitive parameters for R0. To generate
the LHS matrices, we assume that all the model parameters are uniformly distributed.
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Fig. 15 PRCC sensitivity on cumulative cases (C)

Then using the baseline values from Tables 2 and 3, a total of 10,000 simulations per
LHS run are carried out.

We also examine the impact of sensitivities of the parameters on the population sizes
of cumulative cases (C) and deaths (D). From Fig. 15, we observe that a1, β2, a2 and
δ2 are the most sensitive parameters to the cumulative cases, which means that the
increasing value of these parameters increases the cumulative cases. This result implies
that we should control these parameters to reduce the cumulative cases. From Fig. 16,
we observe that a1, a2, β2, d1, d2, and α2 are the most sensitive parameters to the
cumulative deaths, where β2, a1, a2, d1, and d2 have positive sensitivities and α2 has
negative sensitivity, indicating that we should control the parameters β2, a1, a2, d1, d2
and promote α2 to reduce the cumulative deaths.

8 Discussion

The novel coronavirus has rapidly emerged as a disease COVID-19 and evolved as
pandemics worldwide. The emergence of new variants of SARS-CoV-2 could compli-
cate mitigation efforts. Reducing the transmission of the novel coronavirus pandemic
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Fig. 16 PRCC sensitivity on cumulative deaths (D)

has been the massive responsibility of the intellects of every public health agencies,
Govt. officials, and millions of populations worldwide. According to theWorld Health
Organization (WHO) (World Health Organization 2021b), over 26 crore populations
are infected with the COVID-19 as of December 4, 2021. Now the Govt. of different
countries have been trying to give safeguards to the populations via vaccination. Since
every vaccine is imperfect to the disease and the virus mutates over time, mathematical
models may help to understand the dynamics of transmission and control of the novel
coronavirus.

Taking care of the pandemic scenario, we proposed and analyzed an SEIR type
multi-strain mathematical model (1) with imperfect vaccine and mutation. We also
assumed that recovered individuals of native strain could become infected by the
mutant strain, but they have some immunity against the mutant strain, and it has
been modeled by multiplying a reduction coefficient to the transmission rate. The
model we developed takes the form of a deterministic system of nonlinear differential
equations. Themodel is rigorously analyzed to gain insights into its dynamical features.
Theoretical and numerical analysis of the proposed system (1) have been carried out
using stability theory. Positivity and boundedness of the solutions of system (1) have
been studied, and the system (1) is well-posed.We found that the DFE (D0) is globally
asymptotically stable when R0 < 1 in the presence of an imperfect vaccine, i.e., the
native and mutant strains will be eliminated in the community whenever R0 < 1.
In other words, the imperfect vaccine against COVID-19 can lead to the eradication
of the pandemic if it can bring (or maintain) R0 to a value less than unity. Further,
we analyzed the existence and stability of the mutant dominant equilibrium (D2) by
constructing a suitable Lyapunov function. Global stability of coexistence (endemic)
equilibrium of both native and mutant strains has been investigated for the case ν1 = 0
and δ3 = 0, by constructing a suitable Lyapunov function. This result implies that if the
mutation rate is zero and recovered individuals from native strain have 100% immunity
against mutant strain, the disease persists in the environment at a certain level when
R0 > 1. Moreover, we investigated that system (1) undergoes a Hopf bifurcation. The
transcritical bifurcation was also investigated for system (1) by using center manifold
theory. By numerical simulation, we discovered that system (1) exhibits an interesting
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dynamics called an endemic bubble, which means the system loses its stability for
certain values of mutation rate (ν1), and oscillations occur, and further for larger
values of ν1, the system regains its stability (refer the Fig. 5). The occurrence of Hopf
bifurcation has also been ensured by varying the parameter δ3 (Fig. 6), which implies
that the disease will appear repeatedly for the higher values of δ3.

We also computed an expression for herd immunity and a threshold value for the
vaccination rate that suggest disease control implications. The mentioned necessary
herd immunity (induced by vaccination) percentage may not be realistically achiev-
able. Indeed, Dr. Anthony Fauci, a member of the US Presidential Task Force on
COVID-19, said on June 29, 2020, that an imaginary anti-COVID-19 vaccine might
not be helpful in attaining the requisite high immunity in the US if many people deny
getting it Cable News Network (2020). One way to get around this requirement for
high vaccine coverage to attain high immunity is to merge the vaccination program
with other anti-COVID-19 intervention strategies, such as social distancing, the use
of face masks in public, etc.

Furthermore, we parameterized the proposed mathematical model using the data of
the COVID-19 pandemic in India, for assessing the potential community-wide impact
of an imperfect vaccine against COVID-19 and mutation of the virus. Using the data
of cumulative confirmed cases and deaths of COVID-19 in India from March 1, 2021
to September 27, 2021, and by employing theMCMCmethod to fit the model (1) with
the data, the mean values, the standard deviation, and Geweke values of the unknown
parameters were estimated.

We carried out numerical simulations to measure the population-level impact of the
vaccine’s efficacies. The results exhibited that the COVID-19 burden (as measured in
terms of cumulative cases and deaths) decreases with increasing vaccine efficacies, as
expected. We investigated how the cumulative number of cases varies with different
values of vaccine efficacies against different strains, mutation rate, and immunity
against the mutant strain in India. Our analysis showed what would happen if the
vaccine efficacies against native and mutant strains were increased from their baseline
values, as shown in Fig. 8a, b. The results showed that if the vaccine efficacy (1− δ1)

was increased by its baseline value, then the cumulative cases would be decreased by
November 29, 2021. Figure8b demonstrated that if the vaccine efficacy against mutant
strain (1 − δ2) increased from its baseline value then cumulative cases would have
decreased initially but not for longer time. We also assessed the impact of immunity
against mutant strain (1 − δ3) and observed that if the value of (1 − δ3) is decreased
from its baseline value, then the cumulative cases would be increased by November
29, 2021, shown in Fig. 8c.We also analyzed the impact ofmutation rate on cumulative
cases shows the reduction in cumulative cases with increasing mutation rate, depicted
in Fig. 8d.

The cumulative number of deaths has also been varied with different values of
vaccine’s efficacies against different strains in Fig. 9. The results in Fig. 9a showed that
if the vaccine efficacy against native strain (1 − δ1) was increased from its baseline
value, then the cumulative deathswould be decreased byNovember 29, 2021. Figure9b
demonstrated that if the vaccine efficacy against mutant strain increased from its
baseline value, then cumulative deaths would be decreased. Our analysis also showed
the combined impact of vaccine efficacies to both strains, which were increased to
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20%, 40%, 60%, 80%, respectively, as shown in Fig. 10a. The result demonstrated
that increasing the vaccine efficacy against the native strain is more influential in
reducing the cumulative number of cases than the efficacy against mutant strain. We
have shown in the contour plot (Fig. 10b) that there would be higher cumulative cases
for the lower immunity against mutant strain even for the lower value of the mutation
rate. There will be fewer cumulative cases if immunity against mutant strain is high.
The contour plot (Fig. 10c) exhibited that cumulative cases would be high for the lower
mutation rate and high vaccine efficacy against mutant strain. Furthermore, it has also
been shown that immunity against mutant strain is more effective than vaccine efficacy
against mutant strain in reducing the cumulative cases. This implies that there is a need
to increase in the immunity against mutant strain (1 − δ3) to decrease the cumulative
cases of COVID-19 in the presence of the mutation.

The endemic bubble phenomenon has been verified for COVID-19 by plotting the
bifurcation diagram and periodic solutions for the fitted values from Table 3 in Figs. 11
and 12, respectively. These results imply that for a certain range of values of mutation
rate (ν1), the COVID-19 outbreaks will occur repeatedly. However, for the lower and
higher enough values of ν1, the disease remains stable in the environment. These
dynamics represent a worse scenario for the mutation of the virus in the sense of the
occurrence of periodic solutions. Furthermore, the total infected population has also
been plotted for different values of mutation rate (ν1) and a wondering dynamics has
been observed. This result shows that for a high rate of mutation, the total infected
population would be stable at a lower level over a long time. However, oscillation
occurs for an intermediate range of mutation rate, implying that mutation may be
worse in the sense of oscillation but better in the sense of stability at a lower infection
level over a long time.

Furthermore, sensitivity analysis was performed to reveal the relative significance
of the key epidemiological parameters of the system (1), which are �,β1, β2, α1, α2,
because these parameters should be given priority to effectively control the disease.
The PRCCs of the reproduction numbers (Fig. 14) provided that reducing �,β1, β2,
whichmay be realized by strong control measures, such as lockdown, using facemask,
travel restrictions, isolation of infected individuals, contact tracing, can significantly
reduce R0 and thus lower the transmission risk of COVID-19. The PRCCs of the
cumulative cases and deaths suggest that the parameters a1, a2, β2, and δ2 should be
controlled in order to reduce the cumulative cases; and a1, a2, β2, d1, and d2 should
be controlled in order to reduce the cumulative deaths.

We have to point out that the results in contour plots revealed an interesting problem,
i.e., there may exist an optimal strategy of supplementing the vaccine with different
efficacies, in order to ensure fewer cumulative cases and deaths, and the expenditure is
economical, a topic for our future work. For preserving public health, it must focused
on how the facility of medical resources availability affects the pandemic of COVID-
19, whichmay be included in ourmodel as future work. Formulating and analyzing the
model with other non-pharmaceutical interventions (Xue et al. 2022) with vaccination
will be more helpful to control the spread of multi-strain disease. For instance, Iboi
et al. (2020) proposed a dynamical model to assess the impact of vaccine strategy
with other public health intervention strategies; in particular, the authors assessed the
impact of vaccine efficacy combined with mask efficacy concerning COVID-19 in the
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US. Their results confirmed that the elimination of COVID-19 is more feasible if the
vaccine program is combined with other interventions. We focused on the situation
in India, but the model may be extended to describe the efficacies of vaccines against
different strains with mutation rates and developed immunity against other mutant
variants of SARS-CoV-2 in other countries.
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Appendix A

l1 = −(a11 + b12 + c13 + d13 + e12 + f13 + g13),

l2 = −a12b11 + c13d13 + c13e12 − c14e11 + d13e12 − d14 f11 + (c13 + d13 + e12) f13
+ g13(c13 + d13 + e12 + f13) + b12(c13 + d13 + e12 + f13 + g13)

+ a11(b12 + c13 + d13 + e12 + f13 + g13),

l3 =a11(−b12(c13 + d13 + e12 + f13 + g13) − c13(d13 + e12 + f13 + g13) + c14e11
− g13(d13 + e12 + f13) − d13e12 − d13 f13 + d14 f11 − e12 f13)

+ a12b11(c13 + d13 + e12 + f13 + g13) − g13(b12(c13 + d13 + e12 + f13)

+ c13(d13 + e12 + f13) − c14e11 + f13(d13 + e12) + d13e12 − d14 f11)

− e11(a13c11 + b13c12) − c13d13e12 + c13d14 f11 − c13d13 f13 − c13e12 f13
− f11(a14d11 + b14d12) + d14e12 f11 − d13e12 f13 + c14e11(d13 + f13) − d15 f11g12
− b12(c13(d13 + e12 + f13) − c14e11 + f13(d13 + e12) + d13e12 − d14 f11),

l4 =a13e11(c11(b12 + d13) − b11c12) + d13(b12c13e12 − b12c14e11 + b13c12e11)

+ f11(a14(d11(b12 + c13 + e12) − b11d12) − d14(e12(b12 + c13) + b12c13 − c14e11)

+ b14d12(c13 + e12)) − a12(b11(c13(d13 + e12) − c14e11 + d13e12
− d14 f11) + b13c11e11
+ b14d11 f11) − e11 f12(a14c11 + b14c12)

+ b12c13d13 f13 + f13(a13c11e11
+ e12(d13(b12 + c13) + b12c13) − c14e11(b12 + d13) + b13c12e11)

− a12b11 f13(c13 + d13 + e12) + d15 f11g12(b12 + c13 + e12) − a12b11g13(c13
+ d13 + e12 + f13) + g13(a13c11e11 + a14d11 f11 + b12(c13(d13 + e12 + f13)

− c14e11 + f13(d13 + e12) + d13e12 − d14 f11) + b13c12e11 + b14d12 f11
+ c13d13e12 + c13d13 f13 − c13d14 f11 + c13e12 f13 − c14e11(d13 + f13)

+ d13e12 f13 − d14e12 f11) + a11(b13c12e11 + b14d12 f11 + c13( f13(d13 + e12)

+ d13e12 − d14 f11) + d13e12 f13 − d14e12 f11 + d15 f11g12) + a11(b12(c13(d13
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+ e12 + f13 + g13) − c14e11 + d13(e12 + f13 + g13) − d14 f11 + g13(e12 + f13)

+ e12 f13) + g13(c13(d13 + e12 + f13) + d13(e12 + f13) − d14 f11 + e12 f13)

− c14e11(d13 + f13 + g13)),

l5 = a12(b11(g13(c13(d13 + e12 + f13) + f13(d13 + e12) + d13e12 − d14 f11) + c13d13e12
+ c13d13 f13 − c13d14 f11 + c13e12 f13 − c14e11(d13 + f13 + g13) + d13e12 f13
− d14e12 f11 + d15 f11g12) + b13c11e11(d13 + f13 + g13)

+ b14(d11 f11(c13 + e12 + g13)

− c11e11 f12)) − a13e11(−b11c12(d13 + f13 + g13) + b12c11(d13 + f13 + g13)

+ c11(g13(d13 + f13) + d13 f13 − d14 f11)) − g13( f11(a14(d11(c13 + e12) − b11d12)

+ b14d12(c13 + e12) − c13d14e12 + c14d14e11) − b12(−a14d11 f11 − c13d13e12
+ d14 f11(c13 + e12) + c14d13e11) − e11 f12(a14c11 + b14c12) + b13c12d13e11
+ f13(b12(c13(d13 + e12) − c14e11 + d13e12) + b13c12e11 + c13d13e12 − c14d13e11)

+ a11(b12(c13(d13 + e12 + f13) − c14e11 + f13(d13 + e12) + d13e12 − d14 f11)

+ b13c12e11 + b14d12 f11 + c13d13e12 + c13d13 f13 − c13d14 f11 + c13e12 f13
− c14e11(d13 + f13) + d13e12 f13 − d14e12 f11)) + a14e11 f12(c11(b12
+ d13) − b11c12)

+ a14 f11(b11d12(c13 + e12) − b12d11(c13 + e12) − c13d11e12 + c14d11e11)

− d15 f11g12(b12(c13 + e12) + c13e12 − c14e11) + b14c12d13e11 f12
+ f11(d14(b12c13e12
− b12c14e11 + b13c12e11) + b14d12(c14e11 − c13e12)) − d13 f13(b12c13e12
− b12c14e11 + b13c12e11) + a11(− f13(b12(c13(d13 + e12) − c14e11 + d13e12)

+ b13c12e11 + c13d13e12
− c14d13e11) − b12c13d13e12 + b12c13d14 f11 − d15 f11g12(b12
+ c13 + e12) + b12c14d13e11
+ b12d14e12 f11 − b13c12d13e11 + b14c12e11 f12 − b14c13d12 f11
− b14d12e12 f11
+ c13d14e12 f11 − c14d14e11 f11),

l6 = a13e11(−g13(b11c12(d13 + f13) − c11d13 f13 + c11d14 f11)

− b11c12d13 f13 + b11c12d14 f11
+ b12c11(g13(d13 + f13) + d13 f13 − d14 f11) + b14 f11(c11d12 − c12d11)

+ c11d15 f11g12)

+ a14(b11c12d13e11 f12 − b11c13d12e12 f11 + b11c14d12e11 f11 − b12(c11d13e11 f12
− c13d11e12 f11 + c14d11e11 f11) + b13e11 f11(c12d11 − c11d12) − c11d15e11 f11g11
+ g13( f11(−b11d12(c13 + e12) + b12d11(c13 + e12) + c13d11e12 − c14d11e11)

− e11 f12(c11(b12 + d13) − b11c12))) − g13(a11(b12d13(c14e11 − c13e12)

+ b12d14 f11(c13 + e12) − b13c12d13e11 + b14c12e11 f12 − f11(b14d12(c13 + e12)
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− c13d14e12 + c14d14e11)) + d14 f11(b12c13e12 − b12c14e11 + b13c12e11)

+ b14(c12d13e11 f12 − c13d12e12 f11 + c14d12e11 f11)

+ a12(b11(c13( f13(d13 + e12)

+ d13e12 − d14 f11) − c14e11(d13 + f13) + d13e12 f13 − d14e12 f11)

+ b13c11e11(d13 + f13)

− b14c11e11 f12 + b14d11 f11(c13 + e12)) − f13(a11(b12(e12(c13 + d13)

+ c13d13 − c14e11)

+ b13c12e11 + c13d13e12 − c14d13e11) + d13(b12c13e12
− b12c14e11 + b13c12e11)))

+ a11(−(d14 f11 − d13 f13)(b12c13e12 − b12c14e11 + b13c12e11)

+ d15 f11g12(e12(b12 + c13)

+ b12c13 − c14e11) − b14(c12d13e11 f12 − c13d12e12 f11
+ c14d12e11 f11)) + a12((d14 f11
− d13 f13)(b11c13e12 − b11c14e11 + b13c11e11) − b11d15 f11g12(c13 + e12)

+ b14(c11d13e11 f12 − c13d11e12 f11 + c14d11e11 f11))

+ d15 f11(g12(b12c13e12 − b12c14e11
+ b13c12e11) − b14c12e11g11),

l7 =a14d15e11 f11g11(b12c11 − b11c12) + g13(a11((d14 f11 − d13 f13)

(b12c13e12 − b12c14e11
+ b13c12e11) + b14(c12d13e11 f12 − c13d12e12 f11 + c14d12e11 f11))

− a12(d14 f11(b11c13e12
− b11c14e11 + b13c11e11) + b14(c11d13e11 f12 − c13d11e12 f11 + c14d11e11 f11))

+ a12d13 f13(b11c13e12 − b11c14e11 + b13c11e11) + a13e11((b12c11 − b11c12)(d14 f11
− d13 f13) + b14 f11(c12d11 − c11d12))) + d15 f11(g12(e11(a11b12c14 − a11b13c12
− a12b11c14 + a12b13c11 + a13b11c12 − a13b12c11) + c13e12(a12b11 − a11b12))

+ b14e11g11(a11c12 − a12c11)) + a14g13(d13e11 f12(b12c11 − b11c12) + f11(b12d11
− b11d12)(c14e11 − c13e12) + b13e11 f11(c11d12 − c12d11)).

a11 = − β1 I
∗
1 − β2 I

∗
2 − (μ + p), a12 = γ, a13 = −β1S

∗, a14 = −β2S
∗,

b11 =p, b12 = −δ1β1 I
∗
1 − δ2β2 I

∗
2 − (μ + γ ), b13 = −δ1β1V

∗,

b14 = − δ2β2V
∗, c11 = β1 I

∗
1 , c12 = δ1β1 I

∗
1 , c13 = −(a1 + μ),

c14 =β1(S
∗ + δ1V

∗), d11 = β2 I
∗
2 , d12 = δ2β2 I

∗
2 , d13 = −(a2 + μ),

d14 =β2(S
∗ + δ2V

∗) + δ3β2R
∗
1 , d15 = δ3β2 I

∗
2 , e11 = a1,

e12 = − (α2 + μ + d1 + ν1), f11 = a2, f12 = ν1, f13 = −(α2 + μ + d2),

g11 =α1, g12 = −δ3β2R
∗
1 , g13 = −(δ3β2 I

∗
2 + μ).
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Eletreby R, Zhuang Y, Carley KM, Yağan O, Poor HV (2020) The effects of evolutionary adaptations on
spreading processes in complex networks. Proc Natl Acad Sci 117(11):5664–5670. https://doi.org/10.
1073/pnas.1918529117

Eron JJ, Vernazza PL, Johnston DM, Seillier-Moiseiwitsch F, Alcorn TM, Fiscus SA, Cohen MS (1998)
Resistance ofHIV-1 to antiretroviral agents in blood and seminal plasma: implications for transmission.
AIDS 12(15):F181–F189. https://doi.org/10.1097/00002030-199815000-00003

Freedman HI, Waltman P (1985) Persistence in a model of three competitive populations. Math Biosci
73(1):89–101. https://doi.org/10.1016/0025-5564(85)90078-1

Friedman TL (2020) Is Sweden doing it right? New York Times. https://www.nytimes.com/2020/04/28/
opinion/coronavirus-sweden.html. Accessed 3 Oct 2021

Fudolig M, Howard R (2020) The local stability of a modified multi-strain SIR model for emerging viral
strains. PLoS ONE 15(12):e0243408. https://doi.org/10.1371/journal.pone.0243408

Gonzalez-ParraG,Martínez-RodríguezD,Villanueva-MicóRJ (2021) Impact of a newSARS-CoV-2variant
on the population: A mathematical modeling approach. Math Comput Appl 26(2):25. https://doi.org/
10.3390/mca26020025

Gukenheimer J, Holmes P (1983) Nonlinear oscillations, Dynamical Systems, and Bifurcation of Vector
Fields. Springer, New York. https://doi.org/10.1007/978-1-4612-1140-2

Gumel AB, McCluskey CC, Watmough J (2006) An SVEIR model for assessing potential impact of an
imperfect anti-SARS vaccine. Math Biosci Eng 3(3):485. https://doi.org/10.3934/mbe.2006.3.485

Gupta S, Ferguson NM, Anderson RM (1997) Vaccination and the population structure of antigenically
diverse pathogens that exchange genetic material. Proc R Soc Lond B 264(1387):1435–1443. https://
doi.org/10.1098/rspb.1997.0200

Haario H, LaineM,Mira A, Saksman E (2006) DRAM: efficient adaptiveMCMC. Stat Comput 16(4):339–
354. https://doi.org/10.1007/s11222-006-9438-0

Haario H, Saksman E, Tamminen J (2001) An adaptive Metropolis algorithm. Bernoulli 7(2):223–242.
https://doi.org/10.2307/3318737

Health, The Sciences (2021) https://science.thewire.in/the-sciences/covid-19-reinfection-hong-kong-
man-immunity/. Accessed 10 Nov 2021

HethcoteHW(2000) Themathematics of infectious diseases. SIAMRevSoc IndApplMath 42(4):599–653.
https://doi.org/10.1137/S0036144500371907

How Dangerous Is the Delta Variant (B.1.617.2)? (2023) American society of microbiology. https://asm.
org/Articles/2021/July/How-Dangerous-is-the-Delta-Variant-B-1-617-2. Accessed 20 June 2023

Iboi EA, Ngonghala CN, Gumel AB (2020) Will an imperfect vaccine curtail the COVID-19 pandemic in
the US? Infect Disease Model 5:510–524. https://doi.org/10.1016/j.idm.2020.07.006

Iboi EA, Sharomi OO, Ngonghala CN, Gumel AB (2020) Mathematical modeling and analysis of COVID-
19 pandemic in Nigeria. Math Biosci Eng 17(6):7192–7220. https://doi.org/10.3934/mbe.2020369

Iwami S, Takeuchi Y, Liu X (2007) Avian-human influenza epidemic model. Math Biosci 207(1):1–25.
https://doi.org/10.1016/j.mbs.2006.08.001

Johns Hopkins Medicine (2021) https://www.hopkinsmedicine.org/health/conditions-and-diseases/
coronavirus/a-new-strain-of-coronavirus-what-youshould-know. Accessed 17 Sept 2021

KermackWO,McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc R Soc
Lond Ser A Contain Pap Math Phys Charact 115(772):700–721. https://doi.org/10.1098/rspa.1927.
0118

Khyar O, Allali K (2020) Global dynamics of a multi-strain SEIR epidemic model with general incidence
rates: application to COVID-19 pandemic. Nonlinear Dyn 102(1):489–509. https://doi.org/10.1007/
s11071-020-05929-4

123

https://doi.org/10.1016/j.cell.2021.04.025
https://doi.org/10.1098/rsif.2009.0386
https://doi.org/10.3390/ijerph19084586
https://doi.org/10.1007/s00285-021-01686-z
https://doi.org/10.1073/pnas.1918529117
https://doi.org/10.1073/pnas.1918529117
https://doi.org/10.1097/00002030-199815000-00003
https://doi.org/10.1016/0025-5564(85)90078-1
https://www.nytimes.com/2020/04/28/opinion/coronavirus-sweden.html
https://www.nytimes.com/2020/04/28/opinion/coronavirus-sweden.html
https://doi.org/10.1371/journal.pone.0243408
https://doi.org/10.3390/mca26020025
https://doi.org/10.3390/mca26020025
https://doi.org/10.1007/978-1-4612-1140-2
https://doi.org/10.3934/mbe.2006.3.485
https://doi.org/10.1098/rspb.1997.0200
https://doi.org/10.1098/rspb.1997.0200
https://doi.org/10.1007/s11222-006-9438-0
https://doi.org/10.2307/3318737
https://science.thewire.in/the-sciences/covid-19-reinfection-hong-kong-man-immunity/
https://science.thewire.in/the-sciences/covid-19-reinfection-hong-kong-man-immunity/
https://doi.org/10.1137/S0036144500371907
https://asm.org/Articles/2021/July/How-Dangerous-is-the-Delta-Variant-B-1-617-2
https://asm.org/Articles/2021/July/How-Dangerous-is-the-Delta-Variant-B-1-617-2
https://doi.org/10.1016/j.idm.2020.07.006
https://doi.org/10.3934/mbe.2020369
https://doi.org/10.1016/j.mbs.2006.08.001
https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/a-new-strain-of-coronavirus-what-youshould-know
https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/a-new-strain-of-coronavirus-what-youshould-know
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1007/s11071-020-05929-4
https://doi.org/10.1007/s11071-020-05929-4


Mutations make pandemics worse or better: modeling… Page 49 of 50 45

Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi EE, Bhat-
tacharya T, Foley B, Hastie KM (2020) Tracking changes in SARS-CoV-2 Spike: evidence that D614G
increases infectivity of the COVID-19 virus. Cell 182(4):812–827. https://doi.org/10.1016/j.cell.2020.
06.043

LaSalle JP (1976) The stability of dynamical systems. Soc Ind Appl Math. https://doi.org/10.1137/1.
9781611970432

Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q,Meredith HR, Azman AS, Reich NG, Lessler J (2020) The
incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases:
estimation and application. Ann Intern Med 172(9):577–582. https://doi.org/10.7326/M20-0504

Lemieux JE, Li JZ (2021) Uncovering ways that emerging SARS-CoV-2 lineages may increase transmis-
sibility. J Infect Dis 223(10):1663–1665. https://doi.org/10.1093/infdis/jiab083

Li J, Zhou Y,Ma Z, Hyman JM (2004) Epidemiological models for mutating pathogens. SIAM JApplMath
65(1):1–23. https://doi.org/10.1137/S0036139903430185

Liu L, Ren X, Liu X (2018) Dynamical behaviors of an influenza epidemic model with virus mutation. J
Biol Syst 26(03):455–472. https://doi.org/10.1142/S0218339018500201

Liu M, Liz E, Rost G (2015) Endemic bubbles generated by delayed behavioral response: global stability
and bifurcation switches in an SIS model. SIAM J Appl Math 75(1):75–91. https://doi.org/10.1137/
140972652

Liu WM (1994) Criterion of Hopf bifurcations without using eigenvalues. J Math Anal Appl 182(1):250–
256. https://doi.org/10.1006/jmaa.1994.1079

Liu X, Takeuchi Y, Iwami S (2008) SVIR epidemic models with vaccination strategies. J Theor Biol
253(1):1–11. https://doi.org/10.1016/j.jtbi.2007.10.014

MacIntyre CR, Costantino V, Trent MJ (2021) Modelling of COVID-19 vaccination strategies and herd
immunity, in scenarios of limited and full vaccine supply in NSW. Vaccine, Australia. https://doi.org/
10.1016/j.vaccine.2021.04.042

Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and
sensitivity analysis in systems biology. J Theor Biol 254(1):178–196. https://doi.org/10.1016/j.jtbi.
2008.04.011

Martcheva M (2015) An introduction to mathematical epidemiology. Springer, New York. https://doi.org/
10.1007/978-1-4899-7612-3

Martcheva M, Iannelli M, Li XZ (2007) Subthreshold coexistence of strains: the impact of vaccination and
mutation. Math Biosci Eng 4(2):287. https://doi.org/10.3934/mbe.2007.4.287

May RM, Nowak MA (1995) Coinfection and the evolution of parasite virulence. Proc R Soc Lond B
261(1361):209–215. https://doi.org/10.1098/rspb.1995.0138

May RM, Nowak MA (1994) Superinfection, metapopulation dynamics, and the evolution of diversity. J
Theor Biol 170(1):95–114. https://doi.org/10.1006/jtbi.1994.1171

McLean AR (1995) Vaccination, evolution and changes in the efficacy of vaccines: a theoretical framework.
Proc R Soc Lond B 261(1362):389–393. https://doi.org/10.1098/rspb.1995.0164

Ministry of Health and Family Welfare, Government of India (2021). https://www.mohfw.gov.in/covid_
vaccination/vaccination/faqs.html#what-to-expect-before-vaccination-2. Accessed 16 Oct 2021

Nature news (2021) https://www.nature.com/articles/d41586-021-01059-y. Accessed 18 Oct 2021
Olliaro P, Torreele E, Vaillant M (2021) COVID-19 vaccine efficacy and effectiveness-the elephant (not) in

the room. Lancet Microbe. https://doi.org/10.1016/S2666-5247(21)00069-0
Palese P, Young JF (1982)Variation of influenzaA, B, andC viruses. Science 215(4539):1468–1474. https://

doi.org/10.1126/science.7038875
Parton R, Hall E, Wardlaw AC (1994) Responses to Bordetella pertussis mutant strains and to vaccination

in the coughing rat model of pertussis. J Med Microbiol 40(5):307–312. https://doi.org/10.1099/
00222615-40-5-307

Paul S, Mahata A, Mukherjee S, Roy B, Salimi M, Ahmadian A (2022) Study of fractional order SEIR
epidemic model and effect of vaccination on the spread of COVID-19. Int J Appl Comput Math
8(5):237. https://doi.org/10.1007/s40819-022-01411-4

Porco TC, Blower SM (1998) Designing HIV vaccination policies: subtypes and cross-immunity. Interfaces
28(3):167–190. https://doi.org/10.1287/inte.28.3.167

Porco TC, Blower SM (2000) HIV vaccines: the effect of the mode of action on the coexistence of HIV
subtypes. Math Popul Stud 8(2):205–229. https://doi.org/10.1080/08898480009525481

123

https://doi.org/10.1016/j.cell.2020.06.043
https://doi.org/10.1016/j.cell.2020.06.043
https://doi.org/10.1137/1.9781611970432
https://doi.org/10.1137/1.9781611970432
https://doi.org/10.7326/M20-0504
https://doi.org/10.1093/infdis/jiab083
https://doi.org/10.1137/S0036139903430185
https://doi.org/10.1142/S0218339018500201
https://doi.org/10.1137/140972652
https://doi.org/10.1137/140972652
https://doi.org/10.1006/jmaa.1994.1079
https://doi.org/10.1016/j.jtbi.2007.10.014
https://doi.org/10.1016/j.vaccine.2021.04.042
https://doi.org/10.1016/j.vaccine.2021.04.042
https://doi.org/10.1016/j.jtbi.2008.04.011
https://doi.org/10.1016/j.jtbi.2008.04.011
https://doi.org/10.1007/978-1-4899-7612-3
https://doi.org/10.1007/978-1-4899-7612-3
https://doi.org/10.3934/mbe.2007.4.287
https://doi.org/10.1098/rspb.1995.0138
https://doi.org/10.1006/jtbi.1994.1171
https://doi.org/10.1098/rspb.1995.0164
https://www.mohfw.gov.in/covid_vaccination/vaccination/faqs.html#what-to-expect-before-vaccination-2
https://www.mohfw.gov.in/covid_vaccination/vaccination/faqs.html#what-to-expect-before-vaccination-2
https://www.nature.com/articles/d41586-021-01059-y
https://doi.org/10.1016/S2666-5247(21)00069-0
https://doi.org/10.1126/science.7038875
https://doi.org/10.1126/science.7038875
https://doi.org/10.1099/00222615-40-5-307
https://doi.org/10.1099/00222615-40-5-307
https://doi.org/10.1007/s40819-022-01411-4
https://doi.org/10.1287/inte.28.3.167
https://doi.org/10.1080/08898480009525481


45 Page 50 of 50 S. Bugalia et al.

Public Health England (2021) investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201.
https://www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-
concern-20201201. Accessed 27 Sept 2021

RahimiF,AbadiAT (2021) Implications of the emergenceof a newvariant of SARS-CoV-2,VUI-202012/01.
Arch Med Res 52(5):569–571. https://doi.org/10.1016/j.arcmed.2021.01.001

Sansonetti PJ, Arondel J (1989) Construction and evaluation of a double mutant of Shigella flexneri as
a candidate for oral vaccination against shigellosis. Vaccine 7(5):443–450. https://doi.org/10.1016/
0264-410X(89)90160-6

Sato S, Suzuki K, Akahane Y, Akamatsu K, Akiyama K, Yunomura K, Tsuda F, Tanaka T, Okamoto
H, Miyakawa Y, Mayumi M (1995) Hepatitis B virus strains with mutations in the core promoter
in patients with fulminant hepatitis. Ann Intern Med 122(4):241–248. https://doi.org/10.7326/0003-
4819-122-4-199502150-00001

Scherer A, McLean A (2002) Mathematical models of vaccination. Br Med Bull 62(1):187–199. https://
doi.org/10.1093/bmb/62.1.187

Shastri J, Parikh S, Aggarwal V, Agrawal S, Chatterjee N, Shah R, Devi P, Mehta P, Pandey R (2021) Severe
SARS-CoV-2 breakthrough reinfection with Delta variant after recovery from breakthrough infection
by Alpha variant in a fully vaccinated health worker. Front Med 1:1379. https://doi.org/10.3389/fmed.
2021.737007

Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria
for compartmental models of disease transmission. Math Biosci 180(1–2):29–48. https://doi.org/10.
1016/S0025-5564(02)00108-6

Martcheva M (2014) Avian flu: modeling and implications for control. J Biol Syst 22(01):151–75. https://
doi.org/10.1142/S0218339014500090

WorldHealth Organization (2021a) https://covid19.who.int/region/searo/country/in. Accessed 29Oct 2021
World Health Organization (2021b) https://covid19.who.int/. Accessed 29 Oct 2021
World Health Organization (2021c) WHO advisory committee on variola virus research: report of the

thirteenth meeting report (World Health Organization, 2011). https://apps.who.int/iris/handle/10665/
70778. Accessed 29 Oct 2021

World Health Organization (2021d) Tracking SARS-CoV-2 Variants. https://www.who.int/en/activities/
tracking-SARS-CoV-2-variants/. Accessed 29 Oct 2021

Xue L, Jing SL, Wang H (2022) Evaluating the impacts of non-pharmaceutical interventions on the trans-
mission dynamics of COVID-19 in Canada based on mobile network. PLoS ONE 16(12):e0261424.
https://doi.org/10.1371/journal.pone.0261424

Yagan O, Sridhar A, Eletreby R, Levin S, Plotkin JB, Poor HV (2021) Modeling and analysis of the spread
of COVID-19 under a multiple-strain model with mutations. Harvard Data Sci Rev 4:1. https://doi.
org/10.1162/99608f92.a11bf693

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201
https://www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201
https://doi.org/10.1016/j.arcmed.2021.01.001
https://doi.org/10.1016/0264-410X(89)90160-6
https://doi.org/10.1016/0264-410X(89)90160-6
https://doi.org/10.7326/0003-4819-122-4-199502150-00001
https://doi.org/10.7326/0003-4819-122-4-199502150-00001
https://doi.org/10.1093/bmb/62.1.187
https://doi.org/10.1093/bmb/62.1.187
https://doi.org/10.3389/fmed.2021.737007
https://doi.org/10.3389/fmed.2021.737007
https://doi.org/10.1016/S0025-5564(02)00108-6
https://doi.org/10.1016/S0025-5564(02)00108-6
https://doi.org/10.1142/S0218339014500090
https://doi.org/10.1142/S0218339014500090
https://covid19.who.int/region/searo/country/in
https://covid19.who.int/
https://apps.who.int/iris/handle/10665/70778
https://apps.who.int/iris/handle/10665/70778
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://doi.org/10.1371/journal.pone.0261424
https://doi.org/10.1162/99608f92.a11bf693
https://doi.org/10.1162/99608f92.a11bf693

	Mutations make pandemics worse or better: modeling SARS-CoV-2 variants and imperfect vaccination
	Abstract
	1 Introduction
	2 Model formulation
	3 Rigorous analysis
	3.1 Disease free equilibrium (DFE) and basic reproduction number
	3.1.1 Interpretation of the basic reproduction number

	3.2 Mutant dominant equilibrium and its stability
	3.3 Coexistence equilibrium and its stability
	3.4 Uniform persistence
	3.5 Bifurcations
	3.5.1 Hopf bifurcation
	3.5.2 Transcritical bifurcation


	4 Implications for disease control
	4.1 Herd immunity

	5 Numerical illustration
	6 Case study on COVID-19 data in India
	6.1 The effects of different efficacies of vaccine and mutation rate on cumulative cases and cumulative deaths over time
	6.2 Impact of mutation rate on the dynamics of strains and infected population over time

	7 Sensitivity analysis
	8 Discussion
	Acknowledgements
	Appendix A
	References




