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 A B S T R A C T

We investigate a reaction–diffusion–advection mussel-algae model with nonlinear boundary conditions, mo-
tivated by population dynamics in flowing aquatic environments. The system exhibits complex threshold 
behavior governed by energy conversion efficiency, flow velocity, and boundary-mediated losses. We establish 
conditions for global existence, boundedness, and characterize semi-trivial and coexistence steady states. By 
employing techniques compatible with the maximum principle under the structural assumption (H1) on the 
nonlinear boundary flux, along with super- and sub-solution methods, we rigorously analyze the persistence 
and extinction regimes. Our analysis reveal critical thresholds and bifurcations that determine species survival, 
with advection and nonlinear boundaries interacting to shape system dynamics. These findings generalize 
classical constant-flux models and offer a new framework for studying stability and bifurcation phenomena in 
reaction–advection–diffusion systems with biologically motivated boundary interactions.
1. Introduction

Aquatic ecosystems pose a fundamental survival challenge: how 
do populations persist in environments where water flow continually 
displaces organisms downstream? From fast-flowing rivers to tidal 
zones, numerous species succeed despite inhabiting what ecologists 
term advective environments—habitats characterized by persistent uni-
directional flow. This phenomenon raises a central ecological question: 
how can riverine populations maintain themselves against currents 
that, in theory, should transport them out of the habitat? This ap-
parent contradiction, known as the drift paradox [1,2], is resolved 
through a delicate interplay between physical forces and biological 
adaptations. Pioneering work by Speirs and Gurney [3] demonstrated 
that random movement (diffusion) counteracts advective displacement, 
while local population growth (reaction) compensates for losses. Their 
mathematical framework revealed how the interaction between advec-
tion, diffusion, and reaction enables population persistence. Subsequent 
studies have extended this theory [4–6] by incorporating (a) nonlin-
ear reaction terms to model density-dependent growth, (b) spatially 
heterogeneous diffusion coefficients reflecting habitat variability, and 
(c) boundary conditions that represent ecological barriers. Collectively, 
these works demonstrate how the coupling between transport processes 
and population dynamics governs stable spatial distributions, with 
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broad implications for ecological management, species conservation, 
and invasion dynamics.

The balance between species in natural ecosystems involves com-
plex interactions, ranging from competition to mutualism. These dy-
namics become even more intricate in flowing environments, such 
as rivers and streams, where unidirectional water movement imposes 
additional ecological constraints. Recent research [7–16] has extended 
classical Lotka–Volterra competition models by incorporating advec-
tion, representing flow-induced transport, and diffusion, describing ran-
dom organismal movement. The coupling of these processes produces 
unexpected survival outcomes, often challenging classical predator–
prey theory. Central questions arise: under what conditions can prey 
populations persist when facing both predation and downstream dis-
placement? When can stable coexistence between predators and prey 
occur in advective systems? How do variations in species mobility and 
flow velocity reshape ecological equilibria? A pivotal study by Hilker 
and Lewis [17] demonstrated that advective environments can generate 
rich dynamical behaviors, including unexpected coexistence, compet-
itive exclusion, and dominance reversals. More recently, significant 
attention has focused on invasion dynamics in predator–prey systems, 
with notable advances reported in [18–23] and related works.
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In ecological modeling, a natural refinement for increasing bio-
logical realism is the incorporation of density dependence. Kuussaari 
et al. [24] observed the behavior of Glanville fritillary butterflies on 
their habitat patches. They found that the butterflies were less likely 
to leave a patch when conspecifics were present, and that populations 
within patches showed an Allee effect. Motivated by the observations of 
the ecologist Kuussaari and his collaborators [24] of Glanville fritillary 
butterflies on habitat patches, Cantrell et al. [25] observed that coef-
ficients in reaction–diffusion models, including boundary conditions, 
may depend on population density, leading to systems with nonlinear 
boundary effects. Subsequently, Cantrell et al. [26] simulated a logistic 
model for the diffusion and growth of an organism population within 
a habitat patch, where the probability of individuals crossing the patch 
boundary and dispersing decreased with increasing local density. Their 
work [26] highlighted the importance of density-dependent behavior 
at habitat edges and its relation to the Allee effect. The existence, 
uniqueness, and stability of steady-state solutions for reaction–diffusion 
systems with nonlinear boundary conditions have been extensively 
studied [27–32], employing bifurcation theory and related analytical 
techniques.

In this paper, we analyze a spatially explicit consumer-resource 
system modeling the ecological interaction between stationary fresh-
water mussels and their drifting algal food source in a flowing aquatic 
environment. To better capture real-world riverine dynamics, we incor-
porate nonlinear boundary conditions that reflect biologically realistic 
processes: 

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑢𝑡 = 𝑑1𝑢𝑥𝑥 − 𝑞𝑢𝑥 + 𝑎(1 − 𝑢) − 𝑢𝑣, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑣𝑡 = 𝑑2𝑣𝑥𝑥 + 𝛾𝑢𝑣 −
𝑣

1 + 𝑣
, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑑1𝑢𝑥(0, 𝑡) − 𝑞𝑢(0, 𝑡) = 0, 𝑡 > 0,

𝑑1𝑢𝑥(𝐿, 𝑡) − 𝑞𝑢(𝐿, 𝑡) = 𝑢(𝐿, 𝑡)𝑔(𝑢(𝐿, 𝑡)), 𝑡 > 0,

𝑣𝑥(0, 𝑡) = 𝑣𝑥(𝐿, 𝑡) = 0, 𝑡 > 0,

𝑢(𝑥, 0) = 𝜑1(𝑥) ≥ 0, ≢ 0, 𝑣(𝑥, 0) = 𝜑2(𝑥) ≥ 0, ≢ 0, 0 ≤ 𝑥 ≤ 𝐿,

(1.1)

where 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) denote the densities of algae and mussels, 
respectively. The algal dynamics incorporate diffusion (𝑑1 > 0), down-
stream advection (𝑞 ≥ 0), and vertical exchange or growth (𝑎 > 0), 
while mussels disperse locally through diffusion (𝑑2 > 0) with an 
energy conversion efficiency 𝛾 > 0. The boundary conditions encode 
key ecological constraints: (i) mussels satisfy homogeneous Neumann 
conditions (𝑣𝑥 = 0 at 𝑥 = 0, 𝐿), representing a closed population; 
(ii) algae experience a no-flux condition upstream (𝑑1𝑢𝑥 = 𝑞𝑢 at 
𝑥 = 0), preventing escape at the domain entrance; and (iii) the 
downstream algal outflow flux depends nonlinearly on the local algal 
density at 𝑥 = 𝐿 through a boundary function 𝑔(𝑢(𝐿, 𝑡)). This setting 
leads to a mathematically rich structure, where nonlinear boundary 
effects interact with internal reaction–advection–diffusion dynamics, 
significantly influencing the system’s behavior. Model (1.1) was first 
introduced by Cangelosi et al. [33] who investigated the spatial dis-
tribution patterns of model (1.1) on an unbounded spatial domain in 
the absence of advection effects and nonlinear boundary conditions 
through weakly nonlinear diffusive instability analysis. We refer to [33,
34] for a complete model derivation and parameter interpretation.

Throughout this paper, we impose the following structural assump-
tion on the boundary flux function:

(H1) The boundary loss term 𝑔(𝑢) ∈ 𝐶1+𝛿(R) with 𝛿 ∈ (0, 1) satisfies 
𝑔(𝑢) ≤ 0 for all 𝑢 ∈ R.

This condition serves three key mathematical purposes: first, the Hölder 
continuity (𝐶1+𝛿) guarantees sufficient smoothness for existence and 
regularity theory; second, the non-positivity constraint (−𝑔(𝑢) ≥ 0) 
corresponds biologically to the interpretation that boundary flux rep-
resents a loss (and never a gain) of algal population at 𝑥 = 𝐿; third, 
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the condition ensures that the maximum principle holds (Theorem 
2.1), which is crucial for obtaining a priori estimates and preventing 
unphysical solutions. The term −𝑔(𝑢) quantifies the population loss 
rate at the downstream boundary relative to the advective flow rate 𝑞, 
with larger values corresponding to greater boundary mortality effects. 
This formulation generalizes classical Robin boundary conditions while 
maintaining biological realism [12].

The degenerate case 𝑔(𝑢) ≡ 0 reduces system (1.1) to classical no-
flux boundary conditions, yielding the simplified mussel-algae model: 

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢𝑡 = 𝑑1𝑢𝑥𝑥 − 𝑞𝑢𝑥 + 𝑎(1 − 𝑢) − 𝑢𝑣, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑣𝑡 = 𝑑2𝑣𝑥𝑥 + 𝛾𝑢𝑣 −
𝑣

1 + 𝑣
, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑑1𝑢𝑥(0, 𝑡) − 𝑞𝑢(0, 𝑡) = 𝑑1𝑢𝑥(𝐿, 𝑡) − 𝑞𝑢(𝐿, 𝑡) = 0, 𝑡 > 0,

𝑣𝑥(0, 𝑡) = 𝑣𝑥(𝐿, 𝑡) = 0, 𝑡 > 0,

𝑢(𝑥, 0) = 𝜑1(𝑥) ≥ 0, 𝑣(𝑥, 0) = 𝜑2(𝑥) ≥ 0, 0 ≤ 𝑥 ≤ 𝐿.

(1.2)

Recent studies have significantly advanced the mathematical under-
standing of the mussel-algae system (1.2) through diverse analytical 
approaches. Qu et al. [35] established critical thresholds for mussel 
population persistence versus extinction, identifying explicit dependen-
cies on three key parameters: (i) the energy conversion efficiency 𝛾
from algae to mussels, (ii) the advection rate 𝑞 representing flow veloc-
ity, and (iii) the diffusion coefficients 𝑑1 and 𝑑2 governing population 
dispersal. Their work further characterized the asymptotic stability of 
positive steady states when they exist. Wang et al. [22] extended this 
framework by incorporating Danckwerts boundary conditions, with no-
flux upstream (at 𝑥 = 0) and free-flow downstream (at 𝑥 = 𝐿) for algae, 
while accounting for intraspecific competition among mussels and ana-
lyzing both local and global dynamics. For the non-advective case (𝑞 =
0), Song et al. [34] conducted a detailed bifurcation analysis, revealing 
Hopf bifurcations (temporal oscillations), steady-state bifurcations (spa-
tial patterns), and Turing–Hopf bifurcations (spatiotemporal patterns) 
near constant steady states. In parallel, Shen et al. [36] introduced mat-
uration delays into the diffusive mussel-algae system (1.2), examining 
the influence of growth response lags on system dynamics. They fur-
ther established rigorous stability criteria for positive constant steady-
state solutions of the delayed mussel-algae system, identifying critical 
thresholds for delay-induced Hopf bifurcations that generate persistent 
population oscillations when the digestion period 𝜏 exceeds stability 
boundaries. Subsequently, Shen et al. [37] characterized the emergence 
of rich spatiotemporal dynamics near Turing–Hopf bifurcation points.

Boundary conditions play a fundamental role in shaping ecological 
dynamics by controlling population interactions with the environment. 
In competitive systems, Lou and Lutscher [10] demonstrated that inter-
mediate diffusion rates optimize species persistence in open environ-
ments, whereas Lam et al. [9] found that closed environments favor 
downstream concentration and may benefit from increased diffusion. 
For predator–prey systems, Nie [19] showed that predator invasion in 
open advective environments is constrained by a critical flow thresh-
old, while Wang and Nie [38] established that closed systems allow 
invasion at any advection rate. Nonlinear boundary effects introduce 
additional complexity. Guo [28,29] revealed that (i) nonlocal delays 
coupled with boundary conditions can generate Hopf bifurcations when 
interior reactions dominate, and (ii) stronger boundary outflow ac-
celerates species extinction. These findings have been corroborated 
in advective environments by Li et al. [39] and Tian et al. [40]. 
Nevertheless, significant gaps remain in understanding (i) the global 
dynamics of predator–prey systems with nonlinear boundaries under 
flow, and (ii) the intricate interplay between advection and boundary 
fluxes in shaping persistence thresholds and spatial patterns.

The presence of nonlinear boundary conditions in system (1.1) 
introduces substantial mathematical challenges: (i) standard maximum 
principle techniques for parabolic systems are no longer directly appli-
cable, and (ii) ill-posedness issues arise that necessitate careful analyt-
ical treatment. To overcome these challenges, we adopt a two-pronged 
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approach: by employing techniques compatible with the maximum 
principle under the structural assumption (H1) governing the nonlinear 
boundary flux (Theorem  2.1), and developing specialized auxiliary 
techniques to establish well-posedness (Proposition  3.1). Moreover, 
nonlinear boundary conditions fundamentally alter the structure of 
steady states: system (1.1) admits neither trivial nor constant equi-
libria, precluding the use of standard linear eigenvalue analysis. In-
stead, we construct super- and sub-solutions to prove the existence of 
non-constant semi-trivial solutions and analyze their spatial profiles 
and stability properties. These methods provide a framework for ad-
dressing the nontrivial coupling between boundary fluxes and internal 
reaction–advection–diffusion dynamics.

The goal of this paper is to investigate how the interplay be-
tween nonlinear boundary conditions and advection shapes consumer-
resource dynamics in system (1.1). Our analysis of the single algae 
species subsystem (3.1) yields several key insights into boundary-
mediated population persistence. Specifically, Proposition  3.1 shows 
that positive steady states decrease monotonically with increasing flow 
velocity when advection dominates boundary reactions (i.e., 𝑞 > |𝑔(𝑢)|), 
contrasting with constant-flux systems [22,35], where monotonicity 
holds unconditionally. The existence of advection-dependent steady 
states reveals a critical tradeoff: populations can compensate for strong 
flow (𝑞) either by increasing dispersal (𝑑2) or by reducing downstream 
losses through 𝑔(𝑢). In addition, Proposition  3.2 shows that steady-
state densities increase with boundary reaction strength, suggesting 
that boundary flux control strategies (e.g., reducing outflow at 𝑥 = 𝐿) 
can enhance population persistence.

We establish rigorous threshold conditions governing mussel popu-
lation persistence in system (1.1), characterized by three key param-
eters: the energy conversion efficiency 𝛾, the advection rate 𝑞, and 
the boundary loss function 𝑔. Our analysis reveals that the interplay 
among these parameters creates distinct dynamical regimes, leading to 
transitions between extinction and coexistence states. Specifically, we 
summarize the main findings as follows:

(a) When advection dominates (𝑞 > |𝑔(𝑢)|), systems with low en-
ergy conversion efficiency exhibit mussel extinction across all 
flow velocities, resulting in algae-only equilibria. In contrast, 
sufficiently high energy conversion efficiency enables mussel 
invasion and coexistence under slow flows, while fast flows 
still lead to extinction (Theorem  4.1). Notably, the special case 
𝑔(𝑢) ≡ −𝑞 recovers previous results [22], demonstrating that 
our model extends classical homogeneous boundary condition 
results to more biologically realistic nonlinear settings.

(b) System (1.1) exhibits rich dynamical behaviors arising from the 
nonlinear coupling among boundary flux 𝑔, advection 𝑞, energy 
conversion efficiency 𝛾, and mussel dispersal 𝑑2. In particular, 
for low 𝛾, a critical mussel diffusion rate 𝑑∗2  separates invasion 
success (𝑑2 < 𝑑∗2 ) from extinction (𝑑2 > 𝑑∗2 ), independent of 
boundary conditions. For high 𝛾, coexistence is promoted when 
boundary effects dominate advection (i.e., |𝑔(𝑢)| > 𝑞). Theorem 
4.2 demonstrates that mussel persistence is enhanced by both 
strong boundary retention of algae (large |𝑔|) and limited mussel 
dispersal (small 𝑑2), highlighting the role of spatial confinement 
in predator establishment under flow.

These results provide new insights into the nonlinear interplay between 
advective transport and boundary-mediated mechanisms in reaction–
diffusion–advection systems with nonlinear boundaries. Our analysis 
quantitatively characterizes how the balance between downstream drift 
(controlled by 𝑞) and boundary population loss (determined by 𝑔(𝑢)) 
shapes ecological outcomes.

The remainder of the paper is organized as follows. In Section 2, 
we establish global existence and uniform boundedness of solutions 
to system (1.1). Section 3 focuses on the existence, uniqueness, and 
global asymptotic stability of semi-trivial steady states. In Section 4, we 
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analyze the effects of energy conversion rate 𝛾, advection rate 𝑞, and 
boundary reaction strength 𝑔 on global dynamics. Using global bifurca-
tion theory, the existence of coexistence steady states is established in 
Section 5. Finally, Section 6 summarizes the main results and discusses 
directions for future research.

2. Global existence and boundedness of solutions

In this section, we establish the global existence and uniform bound-
edness of solutions to system (1.1) using the super-subsolution method. 
Our main result is presented in the following theorem.

Theorem 2.1.  Under assumption (H1), the following statements hold.
(i) For non-negative initial data 𝜑1(𝑥), 𝜑2(𝑥) ∈ 𝐶([0, 𝐿]), system (1.1) 

admits a unique global solution (𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) defined for all (𝑥, 𝑡) ∈
[0, 𝐿] × R+. Moreover, if 𝜑1(𝑥) ≢ 0, 𝜑2(𝑥) ≢ 0, then 𝑢(𝑥, 𝑡) > 0, 
𝑣(𝑥, 𝑡) > 0 for all (𝑥, 𝑡) ∈ [0, 𝐿] × R+.

(ii) The solution remains uniformly bounded, with explicit constants 𝐾1, 𝐾2
(dependent on initial data 𝜑1(𝑥), 𝜑2(𝑥)) such that 0 < 𝑢(𝑥, 𝑡) ≤ 𝐾1, 
0 < 𝑣(𝑥, 𝑡) ≤ 𝐾2 for 𝑥 ∈ [0, 𝐿] and 𝑡 > 0.

Proof.  Through the transformation 𝛽 = 𝑞
𝑑1

 and �̃�(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)𝑒−𝛽𝑥, 
system (1.1) can be rewritten as: 

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�̃�𝑡 = 𝑑1�̃�𝑥𝑥 + 𝑞�̃�𝑥 + 𝑎(𝑒−𝛽𝑥 − �̃�) − �̃�𝑣, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑣𝑡 = 𝑑2𝑣𝑥𝑥 + 𝛾𝑒𝛽𝑥�̃�𝑣 −
𝑣

1 + 𝑣
, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑑1�̃�𝑥(0, 𝑡) = 0, 𝑑1�̃�𝑥(𝐿, 𝑡) = �̃�(𝐿, 𝑡)𝑔(𝑒𝛽𝐿�̃�(𝐿, 𝑡)), 𝑡 > 0,

𝑣𝑥(0, 𝑡) = 𝑣𝑥(𝐿, 𝑡) = 0, 𝑡 > 0,

�̃�(𝑥, 0) = �̃�0(𝑥) = 𝜑1(𝑥)𝑒−𝛽𝑥 ≥ 0,

≢ 0, 𝑣(𝑥, 0) = 𝜑2(𝑥) ≥ 0,≢ 0 0 ≤ 𝑥 ≤ 𝐿.

(2.1)

Applying the strong maximum principle and Lemma 2.4 in [29], we 
establish strict positivity. Namely, for initial data 𝜑1(𝑥) ≥ 0,≢ 0 and 
𝜑2(𝑥) ≥ 0,≢ 0, the solution (�̃�(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) of (2.1) satisfies �̃�(𝑥, 𝑡) > 0, 
𝑣(𝑥, 𝑡) > 0 for (𝑥, 𝑡) ∈ [0, 𝐿] × R+. Consequently, the original solution 
𝑢(𝑥, 𝑡) = �̃�(𝑥, 𝑡)𝑒𝛽𝑥 maintains positivity throughout the domain.

Next, we show that the solution (𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) is uniformly bounded 
in 𝐿∞((0, 𝐿)). Define
𝑃 (�̃�, 𝑣) = 𝑎(𝑒−𝛽𝑥 − �̃�) − �̃�𝑣, 𝑄(�̃�, 𝑣) = 𝛾𝑒𝛽𝑥�̃�𝑣 − 𝑣

1 + 𝑣
,

then 𝜕𝑃𝜕𝑣 = −�̃� ≤ 0, 𝜕𝑄𝜕�̃� = 𝛾𝑒𝛽𝑥𝑣 ≥ 0. Hence, system (2.1) is a mixed quasi-
monotone system. We construct a pair of sub- and super-solutions for 
system (2.1). Let (�̃�(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) = (0, 0) and (�̃�(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) = (�̃�(𝑡), 𝑣(𝑡))
be the unique solution of 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

d�̃�
d𝑡

= 𝑎(1 − �̃�),

d𝑣
d𝑡

= 𝛾𝑒𝛽𝐿�̃�𝑣 − 𝑣
1 + 𝑣

,

�̃�(0) = �̃�∗ = max
𝑥∈[0,𝐿]

�̃�0(𝑥), 𝑣(0) = 𝑣∗ = max
𝑥∈[0,𝐿]

𝜑2(𝑥),

(2.2)

then by applying Definition 9.7.1 of sub- and super-solutions in [41], 
we find that (�̃�(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) = (0, 0) and (�̃�(𝑥, 𝑡), �̄�(𝑥, 𝑡)) = (�̃�(𝑡), �̄�(𝑡)) are the 
sub- and super-solution for (2.1), respectively. Then by Theorem 9.7.1 
in [41], there exists a unique global solution (�̃�(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) of (2.1), 
which satisfies 0 ≤ �̃�(𝑥, 𝑡) ≤ �̃�(𝑡) and 0 ≤ 𝑣(𝑥, 𝑡) ≤ �̄�(𝑡) for 𝑡 > 0. Thus, we 
have

0 ≤ 𝑢 ≤ �̃�(𝑡)𝑒𝛽𝑥, 0 ≤ 𝑣 ≤ 𝑣(𝑡)

for 𝑡 > 0.
From [36], for the solution (�̃�(𝑡), 𝑣(𝑡)) satisfying system (2.2) and any 

𝜀 > 0, there exists some 𝑡0 > 0 such that 0 < �̃�(𝑡) ≤ 1 + 𝜀 for 𝑡 > 𝑡0 and 
0 < 𝑣(𝑡) ≤ 1 + 𝜀 for 𝑡 > 𝑡0. Thus, there exist two positive constants 
𝐾1 ∶= max{max𝑥∈[0,𝐿] 𝜑1(𝑥), 𝑒𝛽𝐿} and 𝐾2 ∶= max{max𝑥∈[0,𝐿] 𝜑2(𝑥), 1}
such that 0 < lim sup𝑡→+∞𝑢(𝑥, 𝑡) ≤ 𝐾1, 0 < lim sup𝑡→+∞𝑣(𝑥, 𝑡) ≤ 𝐾2 for 
𝑥 ∈ [0, 𝐿]. □
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3. Semi-trivial steady-state solutions

In this section, we aim to investigate the existence, uniqueness, 
and stability of semi-trivial steady-state solutions of system (1.1). Our 
analysis utilizes the super-subsolution method to tackle the mathe-
matical challenges arising from the nonlinear boundary conditions. 
A key structural feature of system (1.1) is that it admits only two 
types of steady states: semi-trivial solutions (𝑢(𝑥), 0) and coexistence 
states (𝑢(𝑥), 𝑣(𝑥)). Notably, unlike classical cases, system (1.1) possesses 
neither trivial (0, 0) nor constant steady states, due to the effects of the 
nonlinear boundary conditions.

3.1. Existence of semi-trivial steady state

We first investigate the existence and uniqueness of semi-trivial 
steady-state solutions (𝑢(𝑥), 0) of system (1.1). In the mussel-free case 
(i.e., 𝑣 ≡ 0), the algal population dynamics reduce to a scalar reaction–
diffusion–advection system: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑡 = 𝑑1𝑢𝑥𝑥 − 𝑞𝑢𝑥 + 𝑎(1 − 𝑢), 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑑1𝑢𝑥(0, 𝑡) − 𝑞𝑢(0, 𝑡) = 0, 𝑡 > 0,

𝑑1𝑢𝑥(𝐿, 𝑡) − 𝑞𝑢(𝐿, 𝑡) = 𝑢(𝐿, 𝑡)𝑔(𝑢(𝐿, 𝑡)), 𝑡 > 0,

𝑢(𝑥, 0) = 𝜑1(𝑥) ≥ 0, ≢ 0, 0 ≤ 𝑥 ≤ 𝐿.

(3.1)

The corresponding steady-state problem is the following elliptic bound-
ary value problem: 
⎧

⎪

⎨

⎪

⎩

𝑑1𝑢𝑥𝑥 − 𝑞𝑢𝑥 + 𝑎(1 − 𝑢) = 0, 0 < 𝑥 < 𝐿,

𝑑1𝑢𝑥(0) − 𝑞𝑢(0) = 0,

𝑑1𝑢𝑥(𝐿) − 𝑞𝑢(𝐿) = 𝑢(𝐿)𝑔(𝑢(𝐿)).

(3.2)

To establish the existence of positive solutions, we introduce the 
following structural assumption:

(H2) 𝑔(𝑢) is strictly decreasing for 𝑢 ∈ (0,∞).

Our first main result demonstrates the existence and uniqueness of 
algal steady states:

Theorem 3.1.  Under the conditions (H1) and (H2), for each 𝑞 ∈ [0,+∞), 
(3.1) has a unique positive steady-state solution, denoted by 𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥).

Proof.  Let 𝛽 = 𝑞
𝑑1

 and 𝑢(𝑥) = 𝑒𝛽𝑥�̃�(𝑥), then system (3.2) can be rewritten 
as: 
{

𝑑1�̃�𝑥𝑥 + 𝑞�̃�𝑥 + 𝑎(𝑒−𝛽𝑥 − �̃�) = 0, 0 < 𝑥 < 𝐿,

𝑑1�̃�𝑥(0) = 0, 𝑑1�̃�𝑥(𝐿) = �̃�(𝐿)𝑔(𝑒𝛽𝐿�̃�(𝐿)).
(3.3)

Set �̃�(𝑥) = 0 < 1 and �̃�(𝑥) = 1, then �̃�(𝑥) satisfies
{

− 𝑑1�̃�𝑥𝑥 − 𝑞�̃�𝑥 − 𝑎(𝑒
−𝛽𝑥 − �̃�) = −𝑎𝑒−𝛽𝑥 < 0, 0 < 𝑥 < 𝐿,

−𝑑1�̃�𝑥(0) = 0 ≤ 0, 𝑑1�̃�𝑥(𝐿) − �̃�(𝐿)𝑔(𝑒
𝛽𝐿�̃�(𝐿)) = 0 ≤ 0,

and �̃�(𝑥) satisfies
{

− 𝑑1�̃�𝑥𝑥 − 𝑞�̃�𝑥 − 𝑎(𝑒−𝛽𝑥 − �̃�) = −𝑎(𝑒−𝛽𝑥 − 1) > 0, 0 < 𝑥 < 𝐿,

−𝑑1�̃�𝑥(0) = 0 ≥ 0, 𝑑1�̃�𝑥(𝐿) − �̃�(𝐿)𝑔(𝑒𝛽𝐿�̃�(𝐿)) = −𝑔(𝑒𝛽𝐿�̃�(𝐿)) ≥ 0.

By applying Definition 4.4.1 of sub- and super-solutions from [41], we 
observe that the constant functions �̃�(𝑥) = 0 and �̃�(𝑥) = 1 serve as sub- 
and super-solutions, respectively, for problem (3.3). Through the com-
parison principle for elliptic equations with nonlinear boundary condi-
tions (Theorem 4.4.1 in [41]), we conclude that (3.3) admits at least 
one positive solution �̃�∗(𝑑1, 𝑞, 𝑔)(𝑥) satisfying 0 < �̃�∗(𝑑1, 𝑞, 𝑔)(𝑥) < 1 for 
all 𝑞 ∈ [0,+∞). Consequently, the original Eq. (3.2) possesses a corre-
sponding positive solution 𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥) bounded by 0 < 𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥) <
𝑒𝛽𝑥.

To establish the uniqueness of positive solutions to (3.2), we pro-
ceed by contradiction. Suppose there exist two distinct positive solu-
tions, denoted by �̃�∗(𝑥) and �̃�∗(𝑥), with �̃�∗(𝑥) ≠ �̃�∗(𝑥). Without loss of 
1 2 1 2

4 
generality, we assume �̃�∗1(𝑥) < �̃�∗2(𝑥) on some (0, 𝐿). Since �̃�∗1(𝑥) is a 
steady-state solution of (3.2), it is a positive solution to 
⎧

⎪

⎨

⎪

⎩

𝑑1𝜙𝑥𝑥 − 𝑞𝜙𝑥 + 𝑎(1 − �̃�∗1) = 𝜇𝜙, 0 < 𝑥 < 𝐿,

𝑑1𝜙𝑥(0) − 𝑞𝜙(0) = 0,

𝑑1𝜙𝑥(𝐿) − 𝑞𝜙(𝐿) = 𝜙(𝐿)𝑔(�̃�∗1(𝐿)).

(3.4)

with 𝜇 = 0, so that 𝜇1 = 0 is the first eigenvalue for (3.4). Similarly, 
�̃�∗2(𝑥) satisfies 
⎧

⎪

⎨

⎪

⎩

𝑑1𝜙𝑥𝑥 − 𝑞𝜙𝑥 + 𝑎(1 − �̃�∗2) = 𝜇𝜙, 0 < 𝑥 < 𝐿,

𝑑1𝜙𝑥(0) − 𝑞𝜙(0) = 0,

𝑑1𝜙𝑥(𝐿) − 𝑞𝜙(𝐿) = 𝜙(𝐿)𝑔(�̃�∗2(𝐿)).

(3.5)

with 𝜇 = 0, so that 𝜇1 = 0 is the first eigenvalue for (3.5). However, 
since 𝑎(1 − �̃�∗1) > 𝑎(1 − �̃�∗2) and 𝑔(𝑢) is strictly decreasing in 𝑢 and 
�̃�∗1(𝑥) < �̃�∗2(𝑥) on at least part of (0, 𝐿), the first eigenvalue of (3.5) 
must be strictly less than that of (3.4), contradicting the fact that both 
systems have 𝜇1 = 0 as their principal eigenvalue. Therefore, our initial 
assumption is false, and we conclude that �̃�∗1(𝑥) ≡ �̃�∗2(𝑥). Therefore, (3.1) 
has a unique positive steady-state solution 𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥). □

The global existence and uniqueness of solutions of (1.1) follow 
directly from Theorem  2.1. That is to say, for any initial data 𝜑 =
(𝜑1, 𝜑2) ∈ 𝐶([0, 𝐿],R2), there exists a unique solution 𝑢𝜑 = (𝑢𝜑(𝑥, 𝑡),
𝑣𝜑(𝑥, 𝑡)) of (1.1), defined on [0, 𝐿] × R+, and satisfying 𝑢𝜑(⋅, 𝑡) ∈
𝐶([0, 𝐿],R2) for all 𝑡 ∈ R+. This allows us to define an associated 
solution semigroup {𝑇𝑡 ∶ 𝑡 ≥ 0} in 𝐶([0, 𝐿],R2) by 𝑇𝑡𝜑 = 𝑢𝜑(⋅, 𝑡) for 
𝑡 ≥ 0.

Regarding the asymptotic behavior, Theorem  3.1 implies that sys-
tem (3.1) admits a unique positive steady state 𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥). The 
long-term dynamics of solutions 𝑢(𝑥, 𝑡) are governed by the semi-flow 
generated by (3.1). As (3.1) constitutes a gradient system, we may ap-
ply fundamental results from dynamical systems theory [42] combined 
with Lemma 2.2.1 in [43] to immediately obtain the following global 
stability result:

Theorem 3.2.  Under assumptions (H1) and (H2), the steady state 𝑢∗(𝑑1,
𝑞, 𝑔)(𝑥) is globally asymptotically stable for system (3.1).

3.2. Properties of the positive steady state

We now examine the qualitative properties of the positive steady-
state solution 𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥) of (3.1). The following proposition estab-
lishes several key analytical results:

Proposition 3.1.  Under assumptions (H1) and (H2), the following three 
statements are true:
(i) Boundedness: 0 < 𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥) < 𝑒𝛽𝑥 for all 𝑥 ∈ (0, 𝐿).

(ii) Gradient bounds: If 𝑔(𝑢) ≥ −𝑞 for all 𝑢 ∈ R, then 0 < 𝑢∗𝑥(𝑑1, 𝑞, 𝑔)(𝑥) <
𝛽𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥) in (0, 𝐿).

(iii) Advection dependence: If 𝑔(𝑢) ≥ −𝑞 for all 𝑢 ∈ R, then 𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥)
is decreasing in 𝑞 on [0, 𝐿]. Furthermore, for 1 < 𝛾 < 1∕𝑎, there exist 
positive constants 𝐶2 and 𝐶3 independent of 𝑞 such that 

exp
{

−
(

𝐶3

𝑞
+
𝑞
𝑑1

)

(𝐿 − 𝑥)
}

≤
𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥)
𝑢∗(𝑑1, 𝑞, 𝑔)(𝐿)

≤ exp
{(

𝐶2

𝑞
−
𝑞
𝑑1

)

(𝐿 − 𝑥)
}

(3.6)

for all 𝑥 ∈ [0, 𝐿]. Moreover, we have the asymptotic behavior: 

lim
𝑞→∞

‖

‖

‖

‖

‖

𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥) − 𝑢∗(𝑑1, 𝑞, 𝑔)(𝐿) exp
{

−
𝑞
𝑑1

(𝐿 − 𝑥)
}

‖

‖

‖

‖

‖𝐿∞((0,𝐿))
= 0,

(3.7)

indicating uniform convergence to zero on compact subsets of [0, 𝐿)
as 𝑞 → ∞.
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Fig. 1. The positive steady-state solution of (3.1) with 𝐿 = 2, 𝑑1 = 0.1, 𝑎 = 1, 𝑔(𝑢) = 𝑒−𝑢 − 0.1, 𝜑1 = 0.1 and different values of 𝑞: (a) 𝑞 = 0.8, (b) 𝑞 = 2, (c) 𝑞 = 7. (d) the spatial 
profile corresponding to (a)–(c) for fixed time 𝑡 = 100.
Proof.  The boundedness follows directly from Theorem  3.1. For part 
(ii), set 𝑤 ∶= 𝑢∗𝑥

𝑢∗ , then 𝑤 satisfies 
⎧

⎪

⎨

⎪

⎩

− 𝑑1𝑤𝑥𝑥 + (𝑞 − 2𝑑1𝑤)𝑤𝑥 + 𝑎𝑤
1
𝑢∗

= 0, 0 < 𝑥 < 𝐿,

𝑤(0) =
𝑞
𝑑1

> 0, 𝑤(𝐿) =
𝑞 + 𝑔(𝑢∗)

𝑑1
≥ 0,

(3.8)

where 𝑔(𝑢) ≥ −𝑞 for all 𝑢 ∈ R. The maximum principle yields 0 < 𝑤 ∶=
𝑢∗𝑥
𝑢∗ < 𝑞

𝑑1
 on (0, 𝐿), that is, 0 < 𝑢∗𝑥(𝑑1, 𝑞, 𝑔)(𝑥) < 𝛽𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥) in (0, 𝐿). 

From (3.3) and part (ii), we have (�̃�∗)𝑥 = 𝑒−𝛽𝑥(−𝛽𝑢∗ + 𝑢∗𝑥) < 0 when 
𝑔(𝑢) ≥ −𝑞 for all 𝑢 ∈ R. For part (iii), differentiating (3.3) with respect 
to 𝑞, denoting 𝜕𝜕𝑞 =′, we obtain 

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

− 𝑑1(�̃�∗)′𝑥𝑥 − 𝑞(�̃�
∗)′𝑥 +

𝑎
𝑑1
𝑒𝛽𝑥𝑥 + 𝑎(�̃�∗)′ = (�̃�∗)𝑥, 0 < 𝑥 < 𝐿,

− 𝑑1(�̃�∗)′𝑥(0) = 0,

𝑑1(�̃�∗)′𝑥(𝐿) − (�̃�∗)′(𝐿)[𝑔(𝑒𝛽𝐿�̃�∗(𝐿)) + 𝑒𝛽𝐿�̃�∗(𝐿)𝑔′(𝑒𝛽𝐿�̃�∗(𝐿))]

= 𝐿
𝑑1
𝑒𝛽𝐿𝑔′(𝑒𝛽𝐿�̃�∗(𝐿))(�̃�∗)2(𝐿),

(3.9)

where 𝑔(𝑢) ≥ −𝑞 for all 𝑢 ∈ R. Let 𝜃 = (�̃�∗)′, then (3.9) can be 
transformed as follows 
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

− 𝑑1𝜃𝑥𝑥 − 𝑞𝜃𝑥 + 𝑎𝜃 +
𝑎
𝑑1
𝑒𝛽𝑥𝑥 = (�̃�∗)𝑥, 0 < 𝑥 < 𝐿,

− 𝑑1𝜃𝑥(0) = 0,

𝑑1𝜃𝑥(𝐿) − 𝜃(𝐿)[𝑔(𝑒𝛽𝐿�̃�∗(𝐿)) + 𝑒𝛽𝐿�̃�∗(𝐿)𝑔′(𝑒𝛽𝐿�̃�∗(𝐿))]

= 𝐿 𝑒𝛽𝐿𝑔′(𝑒𝛽𝐿�̃�∗(𝐿))(�̃�∗)2(𝐿),

(3.10)
⎩

𝑑1

5 
By similar arguments as Theorem  3.1, system (3.10) has a super-
solution 𝜃(𝑥) = 0 and sub-solution 𝜃(𝑥) = −𝑀 , where 𝑀 > 0 is 
sufficiently large. The comparison principle of elliptic equations (see, 
e.g. [41]) implies that system (3.10) has at least a solution 𝜃(𝑥), which 
satisfies −𝑀 < 𝜃(𝑥) < 0. Then by the strong maximum principle, we 
have 𝜃(𝑥) < 0. Namely, (�̃�∗)′(𝑥) < 0 on [0, 𝐿], i.e., (𝑢∗)′(𝑥) < 0 on [0, 𝐿]. 
Thus, 𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥) is decreasing with respect to 𝑞 pointwisely on [0, 𝐿]. 
From the Lemma 5.6 and Theorem 5.7 in [35], if 1 < 𝛾 < 1∕𝑎, we can 
obtain (3.6) and (3.7). The proof is completed. □

Remark 3.1.  From Proposition  3.1, the condition 𝑔(𝑢) ≥ −𝑞 for all 𝑢 ≥ 0
implies that the unique positive steady state decreases with respect 
to the advection rate 𝑞 only when the downstream flow dominates 
the algal flux. More complex behavior arises when the algal flux 
oscillates around the advection values, suggesting rich dynamics that 
merit further investigation. Numerical simulation results illustrating the 
monotonicity are shown in Fig.  1.

Proposition 3.2.  Under assumptions (H1) and (H2), the positive steady-
state solution 𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥) is monotonically increasing with respect to the 
boundary flux function 𝑔 on [0, 𝐿].

Proof.  Let 𝑢∗1 and 𝑢∗2 be the unique positive steady-state solution of 
(3.1) corresponding to boundary flux functions 𝑔  and 𝑔 , respectively, 
1 2
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Fig. 2. The positive steady-state solution of (3.1) with 𝐿 = 𝜋, 𝑑1 = 0.1, 𝑎 = 1, 𝑞 = 0.1, 𝜑1 = 0.1 and different values of 𝑔(𝑢). (a) 𝑔1(𝑢) = −6𝑢−10, (b) 𝑔2(𝑢) = −𝑢−3, (c) 𝑔3(𝑢) = −0.1𝑢−1. 
(d) the spatial profile corresponding to (a)–(c) for fixed time 𝑡 = 100.
 

that is, 𝑢∗2 satisfies the following equations: 

⎧

⎪

⎨

⎪

⎩

𝑑1𝑢
∗
2𝑥𝑥 − 𝑞𝑢

∗
2𝑥 + 𝑎(1 − 𝑢

∗
2) = 0, 0 < 𝑥 < 𝐿,

𝑑1𝑢
∗
2𝑥(0) − 𝑞𝑢

∗
2(0) = 0,

𝑑1𝑢
∗
2𝑥(𝐿) − 𝑞𝑢

∗
2(𝐿) = 𝑢∗2(𝐿)𝑔2(𝑢

∗
2(𝐿)).

(3.11)

Suppose that 𝑔1(𝑢) < 𝑔2(𝑢) for all 𝑢 > 0. From the boundary conditions 
at 𝑥 = 𝐿, we have 
0 = 𝑑1𝑢

∗
1𝑥(𝐿) − 𝑞𝑢

∗
1(𝐿) − 𝑢

∗
1𝑔1(𝑢

∗
1(𝐿))

> 𝑑1𝑢
∗
1𝑥(𝐿) − 𝑞𝑢

∗
1(𝐿) − 𝑢

∗
1𝑔2(𝑢

∗
1(𝐿)),

(3.12)

then 
⎧

⎪

⎨

⎪

⎩

𝑑1𝑢
∗
1𝑥𝑥 − 𝑞𝑢

∗
1𝑥 + 𝑎(1 − 𝑢

∗
1) = 0, 0 < 𝑥 < 𝐿,

𝑑1𝑢
∗
1𝑥(0) − 𝑞𝑢

∗
1(0) = 0,

𝑑1𝑢
∗
1𝑥(𝐿) − 𝑞𝑢

∗
1(𝐿) − 𝑢

∗
1(𝐿)𝑔2(𝑢

∗
1(𝐿)) < 0.

(3.13)

This shows that 𝑢∗1 serves as a strict subsolution for (3.11). Since system 
(3.11) admits a unique equilibrium 𝑢∗∗ with 𝑢∗∗ > 𝑢∗1. Since 𝑢∗2 is the 
unique positive equilibrium for (3.11), we conclude 𝑢∗2 = 𝑢∗∗ > 𝑢∗1
pointwise on [0, 𝐿]. Therefore, 𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥) is monotonically increasing 
with respect to 𝑔 pointwisely on [0, 𝐿]. □

Remark 3.2. Proposition  3.2 demonstrates that algal persistence is 
enhanced by reducing downstream boundary loss (i.e., by increasing 𝑔). 
This suggests that management strategies aimed at minimizing outflow 
at 𝑥 = 𝐿 could promote the stability of the algal population. Numerical 
simulations presented in Fig.  2 support these theoretical findings.
6 
3.3. Stability of semi-trivial steady-states

The purpose of this subsection is to investigate the stability prop-
erties of the semi-trivial steady-state solution (𝑢∗(𝑑1, 𝑞, 𝑔), 0) of sys-
tem (1.1), as established in Theorem  3.1. The linear stability is deter-
mined by analyzing the associated eigenvalue problem: 
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑑1𝜙𝑥𝑥 − 𝑞𝜙𝑥 − 𝑎𝜙 − 𝑢∗(𝑑1, 𝑞, 𝑔)𝜓 = 𝜆𝜙, 0 < 𝑥 < 𝐿,

𝑑2𝜓𝑥𝑥 + [𝛾𝑢∗(𝑑1, 𝑞, 𝑔) − 1]𝜓 = 𝜆𝜓, 0 < 𝑥 < 𝐿,

𝑑1𝜙𝑥(0) − 𝑞𝜙(0) = 0,

𝑑1𝜙𝑥(𝐿) − 𝑞𝜙(𝐿) = 𝜙(𝐿)[𝑔(𝑢∗(𝑑1, 𝑞, 𝑔)(𝐿))

+ 𝑢∗(𝑑1, 𝑞, 𝑔)(𝐿)𝑔′(𝑢∗(𝑑1, 𝑞, 𝑔)(𝐿))],

𝜓𝑥(0) = 𝜓𝑥(𝐿) = 0.

(3.14)

Note that the second equation is decoupled from the first. By Lemma 3.2
of [19], it is straightforward to see that the eigenvalues of (3.14) consist 
of those arising from the following two separate eigenvalue problems: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑1𝜙𝑥𝑥 − 𝑞𝜙𝑥 − 𝑎𝜙 = 𝜆𝜙, 0 < 𝑥 < 𝐿,

𝑑1𝜙𝑥(0) − 𝑞𝜙(0) = 0,

𝑑1𝜙𝑥(𝐿) − 𝑞𝜙(𝐿) = 𝜙(𝐿)[𝑔(𝑢∗(𝑑1, 𝑞, 𝑔)(𝐿))

+ 𝑢∗(𝑑1, 𝑞, 𝑔)(𝐿)𝑔′(𝑢∗(𝑑1, 𝑞, 𝑔)(𝐿))],

(3.15)

and 
{

𝑑2𝜓𝑥𝑥 + [𝛾𝑢∗(𝑑1, 𝑞, 𝑔) − 1]𝜓 = 𝜆𝜓, 0 < 𝑥 < 𝐿,

𝜓 (0) = 𝜓 (𝐿) = 0.
(3.16)
𝑥 𝑥
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Under assumptions (H1) and (H2), integration (3.15) over (0, 𝐿)
yields

𝜆𝜙1 ∫

𝐿

0
𝜙d𝑥 = [𝑔(𝑢∗(𝑑1, 𝑞, 𝑔)(𝐿)) + 𝑢∗(𝑑1, 𝑞, 𝑔)(𝐿)𝑔′(𝑢∗(𝑑1, 𝑞, 𝑔)(𝐿))]

× 𝜙(𝐿) − 𝑎∫

𝐿

0
𝜙d𝑥 < 0, (3.17)

which implies that the principal eigenvalue 𝜆𝜙1  of (3.15) is negative. 
Thus, the stability of (𝑢∗(𝑑1, 𝑞, 𝑔), 0) depends entirely on the princi-
pal eigenvalue 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) of (3.16), characterized variationally as 
(see, e.g., [23]): 

𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) = sup
0≠𝜓∈𝑊 1,2(0,𝐿)

∫ 𝐿
0 [𝛾𝑢∗(𝑑1, 𝑞, 𝑔) − 1]𝜓2d𝑥 − 𝑑2 ∫

𝐿
0 (𝜓𝑥)2d𝑥

∫ 𝐿
0 𝜓2d𝑥

.

(3.18)

Consequently, we have

Proposition 3.3.  Under assumptions (H1) and (H2), let 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾)
be the principal eigenvalue of (3.16). Then the semi-trivial steady state 
(𝑢∗(𝑑1, 𝑞, 𝑔), 0) is linearly stable if 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) < 0, is neutrally stable 
if 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) = 0 and is linearly unstable if 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) > 0.

Furthermore, due to the special structure of the consumer-resource 
system (1.1), the comparison principle can be employed to show that 
the semi-trivial steady state (𝑢∗(𝑑1, 𝑞, 𝑔), 0) is globally stable whenever 
it is locally asymptotically stable.

Proposition 3.4.  Under assumptions (H1) and (H2), the semi-trivial 
steady-state (𝑢∗(𝑑1, 𝑞, 𝑔), 0) is globally stable for system (1.1) as long as it 
is locally asymptotically stable.

Proof.  Let 𝑈 (𝑥, 𝑡) be the solution of 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑈𝑡 = 𝑑1𝑈𝑥𝑥 − 𝑞𝑈𝑥 + 𝑎(1 − 𝑈 ), 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑑1𝑈𝑥(0, 𝑡) − 𝑞𝑈 (0, 𝑡) = 0, 𝑡 > 0,

𝑑1𝑈𝑥(𝐿, 𝑡) − 𝑞𝑈 (𝐿, 𝑡) = 𝑈 (𝐿, 𝑡)𝑔(𝑈 (𝐿, 𝑡)), 𝑡 > 0,

𝑈 (𝑥, 0) = 𝜑(𝑥) ≥ 0,≢ 0, 0 ≤ 𝑥 ≤ 𝐿,

(3.19)

and 𝑢(𝑥, 𝑡) satisfies system (1.1), then

𝑈𝑡 − 𝑑1𝑈𝑥𝑥 + 𝑞𝑈𝑥 − 𝑎(1 − 𝑈 ) = 0 ≥ −𝑢𝑣 = 𝑢𝑡 − 𝑑1𝑢𝑥𝑥 + 𝑞𝑢𝑥 − 𝛼(1 − 𝑢),

0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑑1𝑈𝑥(0, 𝑡) − 𝑞𝑈 (0, 𝑡) = 0 = 𝑑1𝑢𝑥(0, 𝑡) − 𝑞𝑢(0, 𝑡), 𝑡 > 0,

𝑑1𝑈𝑥(𝐿, 𝑡) − 𝑞𝑈 (𝐿, 𝑡) − 𝑈 (𝐿, 𝑡)𝑔(𝑈 (𝐿, 𝑡)) = 0 = 𝑑1𝑢𝑥(𝐿, 𝑡)

− 𝑞𝑢(𝐿, 𝑡) − 𝑢(𝐿, 𝑡)𝑔(𝑢(𝐿, 𝑡)), 𝑡 > 0,

𝑈 (𝑥, 0) = 𝜑(𝑥) = 𝑢(𝑥, 0), 0 ≤ 𝑥 ≤ 𝐿.

By the comparison principle of parabolic systems [41], we have 𝑢(𝑥, 𝑡) ≤
𝑈 (𝑥, 𝑡) for 𝑡 > 0. By Theorem  3.2, we have

lim
𝑡→+∞

𝑈 (𝑥, 𝑡) = 𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥).

Denote 𝑢∗(𝑑1, 𝑞, 𝑔) by 𝑢∗ and let 𝜆𝑢
∗

1  be the principal eigenvalue of 
the linearized eigenvalue problem (3.14). Since 𝑢∗(𝑑1, 𝑞, 𝑔) is locally 
asymptotically stable, we have 𝜆𝑢∗1 < 0. Choose 𝜖0 > 0, such that 
𝜆𝑢

∗+𝜖0
1 < 0, where 𝜖0 = 𝜖1 + 𝜖2, 0 < 𝜖1 ≪ 1 and 0 < 𝜖2 ≪ 1. Then 
there exists 𝑇 > 0 such that

𝑢(𝑥, 𝑡) ≤ 𝑢∗(𝑥) + 𝜖1 and 1
1 + 𝑣(𝑥, 𝑡)

≥ 1 − 𝛾𝜖2

for 𝑡 ≥ 𝑇 . By the second equation in (1.1), we have

𝑣 ≤ 𝑑 𝑣 + 𝛾(𝑢∗ + 𝜖 )𝑣 − 𝑣(1 − 𝛾𝜖 ), 0 < 𝑥 < 𝐿, 𝑡 ≥ 𝑇 ,
𝑡 2 𝑥𝑥 1 2
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then 
⎧

⎪

⎨

⎪

⎩

𝑣𝑡 ≤ 𝑑2𝑣𝑥𝑥 + [𝛾(𝑢∗ + 𝜖0) − 1]𝑣, 0 < 𝑥 < 𝐿, 𝑡 ≥ 𝑇 ,

𝑣𝑥(0, 𝑇 ) = 𝑣𝑥(𝐿, 𝑇 ) = 0,

𝑣(𝑥, 𝑇 ) ≤ 𝐶𝜙1𝑣(𝑥), 0 < 𝑥 < 𝐿,

(3.20)

where 𝐶 > 0 is large enough and 𝜙1𝑣(𝑥) is a positive principal eigen-
function associated with the principal eigenvalue 𝜆𝑢∗+𝜖01 (𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) in 
(3.16). Let 𝑉 (𝑥, 𝑡) be the solution of the problem 
⎧

⎪

⎨

⎪

⎩

𝑉𝑡 = 𝑑2𝑉𝑥𝑥 + [𝛾(𝑢∗ + 𝜖0) − 1]𝑉 , 0 < 𝑥 < 𝐿, 𝑡 ≥ 𝑇 ,

𝑉𝑥(0, 𝑇 ) = 𝑉𝑥(𝐿, 𝑇 ) = 0,

𝑉 (𝑥, 𝑇 ) = 𝐶𝜙1𝑣(𝑥), 0 < 𝑥 < 𝐿,

(3.21)

then by the comparison principle of parabolic systems [41], we have 
𝑣(𝑥, 𝑡) ≤ 𝑉 (𝑥, 𝑡). It is easy to check that the solution of (3.21) is

𝑉 (𝑥, 𝑡) = 𝐶𝜙1𝑣(𝑥)𝑒
𝜆𝑢

∗+𝜖0
1 (𝑡−𝑇 ).

Since 𝜆𝑢∗+𝜖01 < 0, we have lim𝑡→+∞ 𝑉 (𝑥, 𝑡) = 0, which implies lim𝑡→+∞
𝑣(𝑥, 𝑡) = 0. By the theory of asymptotically autonomous semi-flows [42], 
we have lim𝑡→+∞ 𝑢(𝑥, 𝑡) = 𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥). □

From Propositions  3.3 and 3.4, we can immediately obtain the 
following threshold dynamics of system (1.1).

Theorem 3.3.  Under assumptions (H1) and (H2), the semi-trivial steady-
state (𝑢∗(𝑑1, 𝑞, 𝑔), 0) of (1.1) is globally asymptotically stable when 𝜆1(𝑑1,
𝑑2, 𝑞, 𝑔, 𝛾) < 0, and is unstable when 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) > 0.

4. Classification of dynamical behaviors

In this section, we investigate the parameter dependence of the prin-
cipal eigenvalue 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) in (3.16), which governs the global 
dynamics according to Theorem  3.3.

To study the eigenvalue problem (3.16), we consider the following 
linear eigenvalue problem: 
{

𝑑𝜔𝑥𝑥 + ℎ(𝑥)𝜔 = 𝜇𝜔, 0 < 𝑥 < 𝐿,

𝜔𝑥(0) = 𝜔𝑥(𝐿) = 0,
(4.1)

where 𝑑 > 0 and ℎ(⋅) ∈ 𝐶([0, 𝐿]). It is well known (see, e.g., [23]) 
that problem (4.1) admits a principal eigenvalue, denoted by 𝜇1(𝑑, ℎ), 
which has an associated eigenfunction 𝜔1(𝑑, ℎ). The principal eigenpair 
(𝜇1(𝑑, ℎ), 𝜔1(𝑑, ℎ)) possesses the following properties: 

Lemma 4.1 ([19]). Suppose that 𝑑 > 0 and ℎ(⋅) ∈ 𝐶([0, 𝐿]). Let 𝜇1(𝑑, ℎ)
be the principal eigenvalue of eigenvalue problem (4.1), then
(i) Smooth dependence: 𝜇1(𝑑, ℎ) and 𝜔1(𝑑, ℎ) depend continuously and 

smoothly on 𝑑;
(ii) Continuity: if ∥ ℎ𝑛(⋅) − ℎ(⋅) ∥∞→ 0 with ℎ𝑛(⋅) ∈ 𝐿∞((0, 𝐿)), then 

𝜇1(𝑑, ℎ𝑛) → 𝜇1(𝑑, ℎ);
(iii) Monotonicity: ℎ1(𝑥) ≥ ℎ2(𝑥) implies 𝜇1(𝑑, ℎ1) ≥ 𝜇1(𝑑, ℎ2), and the 

equality holds only if ℎ1(𝑥) ≡ ℎ2(𝑥);
(iv) Asymptotics: 𝜇1(𝑑, ℎ) is strictly decreasing with respect to 𝑑 if ℎ(𝑥)

is not a constant. Moreover, lim𝑑→0 𝜇1(𝑑, ℎ) = max𝑥∈[0,𝐿]ℎ(𝑥) and 
lim𝑑→∞ 𝜇1(𝑑, ℎ) =

1
𝐿 ∫ 𝐿0 ℎ(𝑥)d𝑥;

(v) Constant case: If ℎ(𝑥) ≡ ℎ0 is a constant, then 𝜇1(𝑑, ℎ) = ℎ0.

Using similar arguments as for Proposition 3.1 in [23], one can con-
clude that the principal eigenvalue of (3.16), denoted by 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾)
depends continuously and smoothly on 𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾, and its associated 
eigenfunction, denoted by 𝜓1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾), can be chosen to be strictly 
positive on [0, 𝐿]. Indeed, 
𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) = 𝜇1(𝑑2, 𝛾𝑢∗(𝑑1, 𝑞, 𝑔) − 1) (4.2)

Furthermore, the principal eigen-pair (𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾), 𝜓1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾))
has the following properties.
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Lemma 4.2.  Suppose that assumptions (H1) and (H2) hold. Let 𝜆1(𝑑1, 𝑑2,
𝑞, 𝑔, 𝛾) be the principal eigenvalue of eigenvalue problem (3.16). Then the 
following three statements are true.
(i) Advection dependence: If 𝑔(𝑢) ≥ −𝑞 for all 𝑢 ∈ R, then 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾)

is strictly decreasing with respect to 𝑞 in [0,+∞). Moreover, lim𝑞→+∞
𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) = −1.

(ii) Boundary flux dependence: 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) is non-decreasing with 
respect to 𝑔 in (−∞, 0].

(iii) Diffusion/growth dependence: 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) is strictly decreasing 
with respect to 𝑑2 in (0,+∞), and 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) is strictly increas-
ing with respect to 𝛾 in (0,+∞). Moreover,
lim
𝑑2→0

𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) = 𝛾max𝑥∈[0,𝐿]𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥) − 1

and

lim
𝑑2→∞

𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) =
𝛾
𝐿 ∫

𝐿

0
𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥)d𝑥 − 1.

Proof.  (i) In view of (4.2), one can conclude that assertion (i) holds 
by combining with Proposition  3.1 (iii). For readers convenience, we 
give the detailed proof here. In fact, by the implicit function the-
orem, 𝜓1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) is a smooth function of 𝑞 from [0,+∞) into 
𝐶2([0, 𝐿]) [44].

For simplicity, denote 𝑢∗(𝑑1, 𝑞, 𝑔) by 𝑢∗, 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) by 𝜆1,
𝜓1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) by 𝜓1, 𝜕𝜕𝑞 𝑢∗(𝑑1, 𝑞, 𝑔) by (𝑢∗)′, 

𝜕
𝜕𝑞𝜓1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) by 𝜓 ′

1. 
Differentiating (3.16) with respect to 𝑞, denoting 𝜕𝜕𝑞 =′, we find 
{

𝑑2(𝜓 ′
1)𝑥𝑥 + 𝛾(𝑢

∗)′𝜓1 + (𝛾𝑢∗ − 1)𝜓 ′
1 = 𝜆1𝜓

′
1 + 𝜆

′
1𝜓1, 0 < 𝑥 < 𝐿,

(𝜓 ′
1)𝑥(0) = (𝜓 ′

1)𝑥(𝐿) = 0.
(4.3)

Multiplying (4.3) by 𝜓1, (3.16) by 𝜓 ′
1, integrating over (0, 𝐿) and 

subtracting the two equations, we have

𝜆′1 ∫

𝐿

0
𝜓2
1 d𝑥 = 𝛾 ∫

𝐿

0
(𝑢∗)′𝜓2

1 d𝑥 < 0

since 𝜕𝑢∗(𝑑1 ,𝑞,𝑔)𝜕𝑞 < 0 when 𝑔(𝑢) ≥ −𝑞 for all 𝑢 ∈ R (see Proposition  3.1 
(iii)). That is, 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) is strictly decreasing with respect to 𝑞 in 
[0,+∞) if 𝑔(𝑢) ≥ −𝑞 for all 𝑢 ∈ R. Note that 𝑢∗(𝑥) → 0 uniformly in any 
compact subset of [0, 𝐿) as 𝑞 → ∞ (see Proposition  3.1 (iii)), we can 
easily get that
lim
𝑞→+∞

𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) = lim
𝑞→+∞

𝜇1(𝑑2, 𝛾𝑢∗(𝑑1, 𝑞, 𝑔) − 1) = 𝜇1(𝑑2,−1) = −1.

(ii) By Lemma  4.1 (iii), 𝜇1(𝑑2, 𝛾𝑢∗(𝑑1, 𝑞, 𝑔) − 1) is non-decreasing to 
𝑢∗. Since 𝑢∗(𝑑1, 𝑞, 𝑔) is strictly increasing in 𝑔 on [0, 𝐿] (see Proposition 
3.2), then 𝜇1(𝑑2, 𝛾𝑢∗(𝑑1, 𝑞, 𝑔) − 1) is non-decreasing with respect to 𝑔. 
Thus, by (4.2), 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) is non-decreasing with respect to 𝑔 in 
(−∞, 0].

The first part of conclusion (iii) is a direct result of Lemma  4.1 (iv). 
Note that

lim
𝑑→0

𝜇1(𝑑, ℎ) = max
𝑥∈[0,𝐿]

ℎ(𝑥) and lim
𝑑→∞

𝜇1(𝑑, ℎ) =
1
𝐿 ∫

𝐿

0
ℎ(𝑥)d𝑥

(see Lemma  4.1 (iv)), then it follows from Lemma  4.1 (v) that
lim
𝑑2→0

𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) = lim
𝑑2→0

𝜇1(𝑑2, 𝛾𝑢∗(𝑑1, 𝑞, 𝑔) − 1) = 𝛾 max
𝑥∈[0,𝐿]

𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥) − 1

and

lim
𝑑2→∞

𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) = lim
𝑑2→∞

𝜇1(𝑑2, 𝛾𝑢∗(𝑑1, 𝑞, 𝑔)−1) =
𝛾
𝐿 ∫

𝐿

0
𝑢∗(𝑑1, 𝑞, 𝑔)(𝑥)d𝑥−1.

The proof is completed. □

These results completely characterize the sign of 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾)
in terms of the key parameters 𝛾, 𝑞, 𝑑2, and the function 𝑔, which 
govern the system’s global dynamics according to Theorem  3.3. The 
monotonicity properties reveal how different ecological factors influ-
ence population persistence: stronger advection promotes extinction, 
reduced downstream loss supports persistence, intermediate mussel 
8 
mobility optimizes survival, and higher energy conversion facilitates 
coexistence.

4.1. Threshold dynamics governed by energy conversion and advection

Theorem 4.1.  In addition to the condition (H1), suppose that 𝑔(𝑢) ≥ −𝑞, 
𝑔(1) = 0 and 𝑔(𝑢) is strictly decreasing in 𝑢 ∈ [1,∞), then the following 
statements hold:
(i) If 𝛾 ≤ 1 (i.e., low conversion efficiency), (𝑢∗(𝑑1, 𝑞, 𝑔), 0) is globally 

asymptotically stable for 𝑞 ∈ [0,+∞).

(ii) If 𝛾 > 1 (i.e., high conversion efficiency), then there exists 𝑞0 ∈
(0,+∞) continuously depending on 𝑑1, 𝑑2, 𝛾, such that (𝑢∗(𝑑1, 𝑞, 𝑔), 0)
is globally asymptotically stable if 𝑞 ∈ (𝑞0,+∞), and unstable if 
𝑞 ∈ [0, 𝑞0).

Proof.  Since 𝑔(1) = 0, we have lim𝑞→0 𝑢∗(𝑑1, 𝑞, 𝑔) = 1 uniformly on 
[0, 𝐿]. From Lemma  4.1 (v), we can easily conclude that
𝜆1(𝑑1, 𝑑2, 0, 𝑔, 𝛾) = 𝜇1(𝑑2, 𝛾𝑢∗(𝑑1, 0, 𝑔) − 1) = 𝜇1(𝑑2, 𝛾 − 1) = 𝛾 − 1.

If 𝛾 ≤ 1, the monotonicity of 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) with respect to 𝑞 (see 
Lemma  4.2(i)) implies that for any 𝑞 ∈ [0,+∞),

𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) < 𝜆1(𝑑1, 𝑑2, 0, 𝑔, 𝛾) = 𝛾 − 1 ≤ 0,

which implies (𝑢∗(𝑑1, 𝑞, 𝑔), 0) is globally asymptotically stable.
If 𝛾 > 1, we have 𝜆1(𝑑1, 𝑑2, 0, 𝑔, 𝛾) > 0. Note that lim𝑞→+∞ 𝜆1(𝑑1, 𝑑2,

𝑞, 𝑔, 𝛾) = −1. By Lemma  4.2(i) and the implicit function theorem, we 
can conclude that there exists a unique 𝑞0 ∈ (0,+∞) continuously 
depending on 𝑑1, 𝑑2, 𝛾, such that 
⎧

⎪

⎨

⎪

⎩

𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) > 0, if 0 ≤ 𝑞 < 𝑞0,

𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) = 0, if 𝑞 = 𝑞0,

𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) < 0, if 𝑞 > 𝑞0.
(4.4)

Namely, for 𝛾 > 1, we have (𝑢∗(𝑑1, 𝑞, 𝑔), 0) is globally asymptotically 
stable if 𝑞 ∈ (𝑞0,+∞), and it is unstable if 𝑞 ∈ [0, 𝑞0). □

Proposition 4.1.  Under the conditions of Theorem  4.1, suppose that 𝛾 > 1. 
Then 𝑞0(𝑑1, 𝑑2, 𝛾), is uniquely determined by 
𝜆1(𝑑1, 𝑑2, 𝑞0, 𝑔, 𝛾) = 0, (4.5)

and is strictly increasing with respect to 𝛾 in (1,+∞) with 𝑞0(𝑑1, 𝑑2, 1) = 0.

Proof.  Differentiating (4.5) with respect to 𝛾 and denoting 𝜕𝜕𝛾 =′, we 
have

𝜆′1(𝑑1, 𝑑2, 𝑞0, 𝑔, 𝛾) +
𝜕𝜆1(𝑑1, 𝑑2, 𝑞0, 𝑔, 𝛾)

𝜕𝑞0
⋅ 𝑞′0 = 0,

then 𝑞′0 > 0 by Lemma  4.2(i)(iii). Thus, by the implicit function 
theorem, 𝑞0(𝑑1, 𝑑2, 𝛾) is strictly increasing with respect to 𝛾 in (1,+∞). 
Note that 𝜆1(𝑑1, 𝑑2, 0, 𝑔, 1) = 0 (see Lemma  4.2(i)) and
𝜆1(𝑑1, 𝑑2, 𝑞0(𝑑1, 𝑑2, 1), 𝑔, 1) = 0,

then 𝑞0(𝑑1, 𝑑2, 1) = 0. □

Remark 4.1. Theorem  4.1 reveals a fundamental tradeoff between 
physiological efficiency 𝛾 and hydrodynamic transport 𝑞 when the 
effect of advection is stronger than the boundary reaction term of algae 
species:

(i) Low efficiency (i.e., 𝛾 ≤ 1): Mussel populations cannot establish 
regardless of flow conditions. In other words, the mussels cannot 
invade no matter how the advection of algae 𝑞 changes.

(ii) High efficiency (i.e., 𝛾 > 1): Slow flows (i.e., 𝑞 < 𝑞0) enables 
mussel persistence, while fast flows (𝑞 > 𝑞0) leads to washout. 
The critical flow speed 𝑞0 increases with 𝛾, showing that more 
efficient consumers can persist under stronger advection.
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Fig. 3. Dynamical regimes characterized by Theorems  4.1 (left panel) and 4.2 (right panel). (I) Coexistence regime: The semi-trivial solution (𝑢∗(𝑑1 , 𝑞, 𝑔), 0) becomes unstable, 
allowing for a positive steady state (mussel-algae coexistence) (II) Extinction regime: (𝑢∗(𝑑1 , 𝑞, 𝑔), 0) is globally asymptotically stable (mussel extinction).
Fig.  3(a) provides a schematic representation of the key conclusions 
derived from Theorem  4.1.

4.2. Combined effects of growth rate, diffusion, and boundary conditions

To investigate how the interaction between energy conversion 
efficiency 𝛾, mussel dispersal rate 𝑑2, and boundary loss 𝑔 influ-
ences the system dynamics when boundary effects dominate advection 
(i.e., |𝑔(𝑢)| > 𝑞), we first consider a simplified case with constant 
boundary flux 𝑔(𝑢) = 𝑏 ≤ 0, where −𝑏 represents the relative loss rate 
at 𝑥 = 𝐿 [12]. In this case, the system reduces to 

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑢𝑡 = 𝑑1𝑢𝑥𝑥 − 𝑞𝑢𝑥 + 𝑎(1 − 𝑢) − 𝑢𝑣, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑣𝑡 = 𝑑2𝑣𝑥𝑥 + 𝛾𝑢𝑣 −
𝑣

1 + 𝑣
, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑑1𝑢𝑥(0, 𝑡) − 𝑞𝑢(0, 𝑡) = 0, 𝑡 > 0,

𝑑1𝑢𝑥(𝐿, 𝑡) − 𝑞𝑢(𝐿, 𝑡) = 𝑏𝑢(𝐿, 𝑡), 𝑡 > 0,

𝑣𝑥(0, 𝑡) = 𝑣𝑥(𝐿, 𝑡) = 0, 𝑡 > 0,

𝑢(𝑥, 0) = 𝜑1(𝑥) ≥ 0,≢ 0, 𝑣(𝑥, 0) = 𝜑2(𝑥) ≥ 0,≢ 0, 0 ≤ 𝑥 ≤ 𝐿.

(4.6)

According to Theorem  3.1, there exists a unique semi-trivial steady 
state (𝑢∗(𝑑1, 𝑞, 𝑏), 0) for system (4.6). And from Section 3.3, the eigen-
value problem obtained by linearizing the system (4.6) at the semi-
trivial solution (𝑢∗(𝑑1, 𝑞, 𝑏), 0) has principal eigenvalue 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑏, 𝛾).

From Proposition  3.2 and Lemma  4.2, it is easy to obtain the 
following lemma. 

Lemma 4.3.  Suppose that 𝑑1, 𝑑2, 𝑎, 𝛾 > 0 and 𝑞 > 0. Then the following 
statements hold.
(i) The algal steady state 𝑢∗(𝑑1, 𝑞, 𝑏) is increasing in 𝑏 on [0, 𝐿].
(ii) The principal eigenvalue 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑏, 𝛾) is non-decreasing with respect 

to 𝑏 in (−∞, 0].

Lemma 4.4.  The following statements on the principal eigenvalue
𝜆1(𝑑1, 𝑑2, 𝑞, 𝑏, 𝛾) are true.
(i) If 𝛾 > 1, then there exists 𝑏∗ ≤ 0, such that when −𝑞 > 𝑏 ≥ 𝑏∗, 

𝜆1(𝑑1, 𝑑2, 𝑞, 𝑏, 𝛾) > 0 for all 𝑑2 > 0.

(ii) If 𝛾 < 1, then for any 𝑏 there exists a threshold value 𝑑∗2 ∈ (0,∞), such 
that 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑏, 𝛾) > 0 (i.e., mussel invasion) for 0 < 𝑑2 < 𝑑∗2 , and 
𝜆 (𝑑 , 𝑑 , 𝑞, 𝑏, 𝛾) < 0 (i.e., mussel extinction) for 𝑑 > 𝑑∗.
1 1 2 2 2
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Proof.  Consider the following algae-only system: 
⎧

⎪

⎨

⎪

⎩

𝑑1𝑢𝑥𝑥 − 𝑞𝑢𝑥 + 𝑎(1 − 𝑢) = 0, 0 < 𝑥 < 𝐿,

𝑑1𝑢𝑥(0) − 𝑞𝑢(0) = 0,

𝑑1𝑢𝑥(𝐿) − 𝑞𝑢(𝐿) = 𝑏𝑢(𝐿).

(4.7)

According to Theorem  3.1, there exists a unique positive solution 
𝑢∗(𝑑1, 𝑞, 𝑏) for system (4.7). Integrating (4.7) over (0, 𝐿), we have

∫

𝐿

0
𝑢∗(𝑑1, 𝑞, 𝑏)(𝑥)d𝑥 =

𝑏𝑢∗(𝑑1, 𝑞, 𝑏)(𝐿) + 𝑎𝐿
𝑎

.

For the eigenvalue problem (3.16) with 𝑔(𝑢) = 𝑏 under the Neumann 
boundary conditions, in view of the threshold results of Theorem 2 
in [45], we have
(a) If ∫ 𝐿0 (𝛾𝑢∗(𝑑1, 𝑞, 𝑏)(𝑥) − 1)d𝑥 > 0, then 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑏, 𝛾) > 0 for all 

𝑑2 > 0;

(b) If ∫ 𝐿0 (𝛾𝑢∗(𝑑1, 𝑞, 𝑏)(𝑥) − 1)d𝑥 < 0, then there exists a threshold value 
𝑑∗2 ∈ (0,∞), such that 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑏, 𝛾) > 0 for 0 < 𝑑2 < 𝑑∗2 , and 
𝜆1(𝑑1, 𝑑2, 𝑞, 𝑏, 𝛾) < 0 for 𝑑2 > 𝑑∗2 .

Note that when 𝑏 = −𝑞, (4.7) can be transformed into an algae 
model with Danckwerts boundary conditions, which was studied in 
the [22]. It follows from Lemma 3.2 in [22] that 0 < 𝑢∗(𝑑1, 𝑞,−𝑞)(𝑥) < 1
in (0, 𝐿). Note that 𝑢∗(𝑑1, 𝑞, 𝑏)(𝑥) depends continuously and differentially 
on 𝑥, then by Lemma  4.3(i), we have 𝑢∗(𝑑1, 𝑞, 𝑏)(𝐿) < 1 for 𝑏 < −𝑞. Thus,

∫

𝐿

0
𝑢∗(𝑑1, 𝑞, 𝑏)(𝑥)d𝑥 =

𝑏𝑢∗(𝑑1, 𝑞, 𝑏)(𝐿) + 𝑎𝐿
𝑎

≥ 𝑏
𝑎
+ 𝐿.

If 𝛾 > 1, there exists 𝑏∗ ≤ 0, such that 𝑏∗𝛾 + 𝐿(𝛾 − 1) = 0 and so

∫

𝐿

0
(𝛾𝑢∗(𝑑1, 𝑞, 𝑏)(𝑥) − 1)d𝑥 ≥ 𝛾 𝑏

𝑎
+ 𝐿(𝛾 − 1) > 0 for 𝑏 ∈ (𝑏∗,−𝑞),

which together with Lemma  4.3(ii) implies that 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑏, 𝛾) > 0
for all 𝑑2 > 0 and 𝑏 ∈ (𝑏∗,−𝑞). Thus, the proof for conclusion (i) is 
completed.

Next, we show (ii). Note that

∫

𝐿

0
𝑢∗(𝑑1, 𝑞, 𝑏)(𝑥)d𝑥 =

𝑏𝑢∗(𝑑1, 𝑞, 𝑏)(𝐿) + 𝑎𝐿
𝑎

≤ 𝐿.

If 𝛾 < 1, we have

∫

𝐿

0
(𝛾𝑢∗(𝑑1, 𝑞, 𝑏)(𝑥) − 1)d𝑥 ≤ 𝐿(𝛾 − 1) < 0.

Then there exists a threshold value 𝑑∗2 ∈ (0,∞), such that 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑏,
𝛾) > 0 for 0 < 𝑑2 < 𝑑∗2 , and 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑏, 𝛾) < 0 for 𝑑2 > 𝑑∗2 . Thus, the 
proof for conclusion (ii) is completed. □
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Based on the parameters range in Lemma  4.4, we have the following 
dynamic results of system (1.1).

Theorem 4.2.  Under conditions (H1) and (H2), the following statements 
hold.

(i) If 𝛾 > 1 (i.e., high conversion), then there exists 𝑏∗ ≤ 0, such that for 
any 𝑑2 > 0, (𝑢∗(𝑑1, 𝑞, 𝑔), 0) is unstable when −𝑞 > 𝑔(𝑢) ≥ 𝑏∗ for all 
𝑢 ∈ R+.

(ii) If 𝛾 < 1 (i.e., low conversion), then there exists a threshold value 
𝑑∗2 ∈ (0,∞), such that (𝑢∗(𝑑1, 𝑞, 𝑔), 0) is unstable for 0 < 𝑑2 < 𝑑∗2 , 
and (𝑢∗(𝑑1, 𝑞, 𝑔), 0) is globally asymptotically stable for 𝑑2 > 𝑑∗2 .

Proof.  The stability and instability of (𝑢∗(𝑑1, 𝑞, 𝑔), 0) follow from Propo-
sition  3.3, and Theorem  3.3 indicates the global asymptotic stability of 
system (1.1). □

Remark 4.2. Theorem  4.2 reveals the combined effects of the con-
version rate 𝛾, mussel diffusion rate 𝑑2, and the nonlinear boundary 
function 𝑔 on the global dynamical behavior of system (1.1). More 
precisely, high energy conversion efficiency (i.e., 𝛾 > 1) leads to suc-
cessful invasion when the boundary reaction effect of the algal species 
dominates advection, allowing mussels and algae to coexist. In contrast, 
when the conversion efficiency is low (i.e., 𝛾 < 1), mussels cannot 
successfully invade if their diffusion rate is large, regardless of how 
the boundary reaction term changes. In this case, mussels go extinct 
and only algae persist. However, mussel invasion becomes possible 
if they disperse slowly. Thus, Theorem  4.2 quantifies how boundary 
conditions mediate the interplay between the physiological factor 𝛾 and 
the ecological factor 𝑑2 in determining the community structure. Fig. 
3(b) provides a schematic summary of these dynamical regimes.

5. Existence of coexistence steady states

In this section, we employ bifurcation theory to establish the exis-
tence of positive steady-state solutions for system (1.1). These solutions 
bifurcate from the semi-trivial steady state (𝑢∗(𝑑1, 𝑞, 𝑔), 0) at critical 
parameter values where the principal eigenvalue 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) = 0. 
The steady states satisfy the coupled elliptic system: 
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑1𝑢𝑥𝑥 − 𝑞𝑢𝑥 + 𝑎(1 − 𝑢) − 𝑢𝑣 = 0, 0 < 𝑥 < 𝐿,

𝑑2𝑣𝑥𝑥 + 𝛾𝑢𝑣 −
𝑣

1 + 𝑣
= 0, 0 < 𝑥 < 𝐿,

𝑑1𝑢𝑥(0) − 𝑞𝑢(0) = 0,

𝑑1𝑢𝑥(𝐿) − 𝑞𝑢(𝐿) = 𝑢(𝐿)𝑔(𝑢(𝐿)),

𝑣𝑥(0) = 𝑣𝑥(𝐿) = 0.

(5.1)

Before proceeding with the bifurcation analysis, we first establish 
uniform bounds for potential solutions of (5.1).

Lemma 5.1 (Solution Bounds). Under assumption (H1), for 𝑑1, 𝑑2, 𝑎, 𝛾, 𝑞 >
0, suppose that (𝑢(𝑥), 𝑣(𝑥)) is a nonnegative solution of (5.1) with 𝑢 ≢ 0 and 
𝑣 ≢ 0. Then
0 < 𝑢(𝑥) ≤ 𝐾(𝑥), ∀𝑥 ∈ [0, 𝐿],

where 𝐾(𝑥) satisfies

𝐾(𝑥) =
𝑞 + 𝛼

[

𝐿 − 𝑑1
𝑞

(

1 − exp
{

− 𝑞
𝑑1
𝐿
})]

𝑑1
(

1 − exp
{

− 𝑞
𝑑1
𝐿
}) 𝐿 exp

{

−
𝑞
𝑑1

(𝐿 − 𝑥)
}

+ 𝛼𝐿
𝑞

[

1 − exp
{

−
𝑞
𝑑1

(𝐿 − 𝑥)
}]

and when 𝛾𝑎 < 1, there exists a positive constant 𝐶 depending only on 𝛾, 
𝑑2 and 𝐿, such that 𝑣(𝑥) satisfies
0 < 𝑣(𝑥) ≤ 𝐶, ∀𝑥 ∈ [0, 𝐿].
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The proof of Lemma  5.1 follows from adaptations of Lemmas 
5.1–5.2 in [35], modified to account for the nonlinear boundary con-
ditions specific to our setting. For brevity, the complete proof is 
omitted.

In what follows, we focus on the biologically relevant case where 
the energy conversion efficiency is high (i.e., 𝛾 > 1) and boundary 
losses are limited (i.e., 𝑔(𝑢) ≥ −𝑞). Using the advection rate 𝑞 as a 
bifurcation parameter, we analyze solutions branching from the semi-
trivial solution curve 𝛤𝑢 = {(𝑞, 𝑢∗, 0) ∶ 𝑞 ∈ [0,+∞)}. Here and 
throughout, we write 𝑢∗(𝑑1, 𝑞, 𝑔) simply as 𝑢∗ for convenience. Let X =
𝑊 2,𝑝(0, 𝐿) ×𝑊 2,𝑝(0, 𝐿) and Y = 𝐿𝑝(0, 𝐿) × 𝐿𝑝(0, 𝐿) with 𝑝 > 1. Define a 
nonlinear mapping 𝑇 : R+ × X → Y × R4 by

𝑇 (𝑞, 𝑢, 𝑣) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑑1𝑢𝑥𝑥 − 𝑞𝑢𝑥 + 𝑎(1 − 𝑢) − 𝑢𝑣
𝑑2𝑣𝑥𝑥 + 𝛾𝑢𝑣 −

𝑣
1+𝑣

𝑑1𝑢𝑥(0) − 𝑞𝑢(0)
𝑣𝑥(0)

𝑑1𝑢𝑥(𝐿) − 𝑞𝑢(𝐿) − 𝑢(𝐿)𝑔(𝑢(𝐿))
𝑣𝑥(𝐿)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Hence the Fréchet derivative 𝐷(𝑢,𝑣)𝑇 (𝑞, 𝑢, 𝑣) of 𝑇 (𝑞, 𝑢, 𝑣) with respect to 
(𝑢, 𝑣) at (𝑢, 𝑣) is given by 

𝐷(𝑢,𝑣)𝑇 (𝑞, 𝑢, 𝑣)(𝜙,𝜓) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑑1𝜙𝑥𝑥 − 𝑞𝜙𝑥 − 𝑎𝜙 − 𝑢𝜓 − 𝑣𝜙
𝑑2𝜓𝑥𝑥 + 𝛾𝑣𝜙 + (𝛾𝑢 − 1

(1+𝑣)2 )𝜓
𝑑1𝜙𝑥(0) − 𝑞𝜙(0)

𝜓𝑥(0)
𝑑1𝜙𝑥(𝐿) − [𝑞 + 𝑔(𝑢(𝐿)) + 𝑢(𝐿)𝑔′(𝑢(𝐿))]𝜙(𝐿)

𝜓𝑥(𝐿)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(5.2)

It is easy to find that
(i)  𝑇  is a continuously differentiable mapping on an open subset 𝑉

of R+ × X;
(ii)  𝑇 (𝑞, 𝑢∗, 0) = 0 for all 𝑞 > 0;
(iii)  For any fixed (𝑞, 𝑢, 𝑣) ∈ R+ × X, 𝐷(𝑢,𝑣)𝑇 (𝑞, 𝑢, 𝑣) is a Fredholm 

operator with index zero (which follows from Remark 2.5 and Corollary 
2.11 of [46]).

It follows from (4.5) that 𝜆1(𝑑1, 𝑑2, 𝑞0, 𝑔, 𝛾) = 0 and that the kernel 
of 𝐷(𝑢,𝑣)𝑇 (𝑞0, 𝑢∗, 0) is
 (𝐷(𝑢,𝑣)𝑇 (𝑞0, 𝑢∗, 0)) = span{(𝜙0, 𝜓0)},

where 𝜓0 is a positive principal eigenfunction of the eigenvalue prob-
lem (3.16) with 𝑞 = 𝑞0, and 𝜙0 is the unique solution to the following 
system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑1𝜙𝑥𝑥 − 𝑞𝜙𝑥 − 𝑎𝜙 − 𝑢∗(𝑑1, 𝑞0, 𝑔)𝜓0 = 0, 0 < 𝑥 < 𝐿,

𝑑1𝜙𝑥(0) − 𝑞𝜙(0) = 0,

𝑑1𝜙𝑥(𝐿) − 𝑞𝜙(𝐿) = 𝜙(𝐿)[𝑔(𝑢∗(𝑑1, 𝑞0, 𝑔)(𝐿))

+ 𝑢∗(𝑑1, 𝑞0, 𝑔)(𝐿)𝑔′(𝑢∗(𝑑1, 𝑞0, 𝑔)(𝐿))].

Note that the principal eigenvalue 𝜆𝜙1  of (3.15) is negative (see (3.17)). 
By the general maximum principle, it follows that 𝜙0 < 0, which implies 
that the algal component decreases as mussel populations emerge. 
Consequently, the coexistence solutions are biologically meaningful, as 
both components remain positive. Thus, we obtain the following result.

Lemma 5.2. 
(i) dim (𝐷(𝑢,𝑣)𝑇 (𝑞0, 𝑢∗, 0)) = 1;

(ii) 𝐷𝑞(𝑢,𝑣)𝑇 (𝑞0, 𝑢∗, 0)(𝜙0, 𝜓0)𝑇 ∉ (𝐷(𝑢,𝑣)𝑇 (𝑞0, 𝑢∗, 0)).

Proof.  We have proved the first assertion, that is, the kernel space of 
𝐷(𝑢,𝑣)𝑇 (𝑞0, 𝑢∗, 0) is one-dimensional. Now, we shall prove assertion (ii). 
We first claim that the range of 𝐷(𝑢,𝑣)𝑇 (𝑞, 𝑢∗, 0) is
(D 𝑇 (𝑞 , 𝑢∗, 0)) = {(𝑢, 𝑣, 𝜉 , 𝜉 , 𝜉 , 𝜉 ) ∈ Y × R ∶ 𝑙(𝑢, 𝑣, 𝜉 , 𝜉 , 𝜉 , 𝜉 ) = 0},
(𝑢,𝑣) 0 1 2 3 4 4 1 2 3 4
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where 𝑙: Y × R4 → R is a linear functional in (Y × R4)∗ defined by

𝑙(𝑢, 𝑣, 𝜉1, 𝜉2, 𝜉3, 𝜉4) = ∫

𝐿

0
𝜓0𝑣d𝑥 + 𝑑2𝜉2𝜓0(0) − 𝑑2𝜉4𝜓0(𝐿).

To prove this, suppose (𝑢, 𝑣, 𝜉1, 𝜉2, 𝜉3, 𝜉4) ∈ (𝐷(𝑢,𝑣)𝑇 (𝑞0, 𝑢∗, 0)). Then 
there exists (𝜙,𝜓) ∈ X such that 

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑1𝜙𝑥𝑥 − 𝑞𝜙𝑥 − 𝑎𝜙 − 𝑢∗(𝑑1, 𝑞0, 𝑔)𝜓 = 𝑢, 0 < 𝑥 < 𝐿,

𝑑2𝜓𝑥𝑥 + [𝛾𝑢∗(𝑑1, 𝑞0, 𝑔) − 1]𝜓 = 𝑣, 0 < 𝑥 < 𝐿,

𝑑1𝜙𝑥(0) − 𝑞𝜙(0) = 𝜉1,

𝑑1𝜙𝑥(𝐿) − [𝑞 + 𝑔(𝑢∗(𝑑1, 𝑞0, 𝑔)(𝐿)) + 𝑢∗(𝑑1, 𝑞0, 𝑔)(𝐿)𝑔′(𝑢∗(𝑑1, 𝑞0, 𝑔)(𝐿))]𝜙(𝐿) = 𝜉3,

𝜓𝑥(0) = 𝜉2, 𝜓𝑥(𝐿) = 𝜉4.

(5.3)

Note that 
{

𝑑2(𝜓0)𝑥𝑥 + [𝛾𝑢∗(𝑑1, 𝑞0, 𝑔) − 1]𝜓0 = 0, 0 < 𝑥 < 𝐿,

(𝜓0)𝑥(0) = 0, (𝜓0)𝑥(𝐿) = 0.
(5.4)

Multiplying the second equation of (5.3) by 𝜓0 and the first equation of 
(5.4) by 𝜓 , integrating over (0, 𝐿) by parts and subtracting, we obtain

∫

𝐿

0
𝜓0𝑣d𝑥 + 𝑑2𝜉2𝜓0(0) − 𝑑2𝜉4𝜓0(𝐿) = 0.

Since all eigenvalues of (3.15) are negative (see (3.17)), then by 
Fredholm alternative theorem, we conclude that the following system 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑1𝜙𝑥𝑥 − 𝑞𝜙𝑥 − 𝑎𝜙 − 𝑢∗(𝑑1, 𝑞0, 𝑔)𝜓 = 𝑢, 0 < 𝑥 < 𝐿,

𝑑1𝜙𝑥(0) − 𝑞𝜙(0) = 𝜉1,

𝑑1𝜙𝑥(𝐿) − [𝑞 + 𝑔(𝑢∗(𝑑1, 𝑞0, 𝑔)(𝐿))

+ 𝑢∗(𝑑1, 𝑞0, 𝑔)(𝐿)𝑔′(𝑢∗(𝑑1, 𝑞0, 𝑔)(𝐿))]𝜙(𝐿) = 𝜉3

(5.5)

always has a unique solution 𝜙 in 𝑊 2,𝑝(0, 𝐿) for any 𝑢 ∈ 𝐿𝑝(0, 𝐿) and 
𝜉1, 𝜉3 ∈ R. Hence, (𝑢, 𝑣, 𝜉1, 𝜉2, 𝜉3, 𝜉4) ∈ (𝐷(𝑢,𝑣)𝑇 (𝑞0, 𝑢∗, 0)) if and only if 
∫ 𝐿0 𝜓0𝑣d𝑥 + 𝑑2𝜉2𝜓0(0) − 𝑑2𝜉4𝜓0(𝐿) = 0.

Next, we apply the bifurcation theorem from a simple eigenvalue 
established by Crandall and Rabinowitz [47], we need to check the 
transversality condition 𝐷𝑞(𝑢,𝑣)𝑇 (𝑞0, 𝑢∗, 0)(𝜙0, 𝜓0)𝑇 ∉ (𝐷(𝑢,𝑣)𝑇 (𝑞0, 𝑢∗, 0)).
Differentiating (5.2) with respect to 𝑞, we obtain
𝐷𝑞(𝑢,𝑣)𝑇 (𝑞0, 𝑢∗, 0)(𝜙0, 𝜓0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−(𝜙0)𝑥 −
𝜕𝑢∗

𝜕𝑞
|

|

|𝑞=𝑞0
𝜓0

𝛾 𝜕𝑢
∗

𝜕𝑞
|

|

|𝑞=𝑞0
𝜓0

−𝜙0(0)
0

−𝜙0(𝐿)
[

1 +
(

𝜕𝑔
𝜕𝑞 ⋅ 𝜕𝑢

∗

𝜕𝑞

)

|

|

|𝑞=𝑞0
+
(

𝜕𝑢∗

𝜕𝑞 𝑔
′(𝑢∗) + 𝑢∗ 𝜕𝑔

′

𝜕𝑞 ⋅ 𝜕𝑢
∗

𝜕𝑞

)

|

|

|𝑞=𝑞0

]

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and

𝑙(𝐷𝑞(𝑢,𝑣)𝑇 (𝑞0, 𝑢∗, 0)(𝜙0, 𝜓0)𝑇 ) = ∫

𝐿

0
𝜓2
0 𝛾
𝜕𝑢∗

𝜕𝑞
|

|

|𝑞=𝑞0
d𝑥 < 0

due to 𝜕𝑢∗𝜕𝑞
|

|

|𝑞=𝑞0
< 0 in (0, 𝐿) (see Proposition  3.1 (iii)). Hence,

𝐷𝑞(𝑢,𝑣)𝑇 (𝑞0, 𝑢∗, 0)(𝜙0, 𝜓0)𝑇 ∉ (𝐷(𝑢,𝑣)𝑇 (𝑞0, 𝑢∗, 0)).

The proof is completed. □

Lemma  5.2 provides the necessary conditions for applying stan-
dard bifurcation theory [47], ensuring the existence of coexistence 
solutions in a neighborhood of (𝑞0, 𝑢∗, 0). To fully characterize the 
bifurcation structure, we now examine the complementary subspace of 
span{(𝜙0, 𝜓0)} in X, which plays a critical role in determining the local 
structure of the solution branch.

Lemma 5.3. span{(𝜙0, 𝜓0)}⊕ U = X, where

U =
{

(𝑢, 𝑣) ∈ X ∶
𝐿
𝜓0𝑣d𝑥 = 0

}

.
∫0

11 
Proof.  We cannot work directly on the operator 𝑇  because 𝐷(𝑢,𝑣)𝑇 (𝑞, 𝑢,
𝑣) is not self-adjoint. As stated in Section 2, we may set �̃�(𝑥) = 𝑢(𝑥)𝑒−𝛽𝑥

and consider the modified operator �̃� : R+ × X → Y × R4 by

𝑇 (𝑞, 𝑢, 𝑣) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑑1𝑢𝑥𝑥 + 𝑞𝑢𝑥 + 𝑎(𝑒−𝛽𝑥 − 𝑢) − 𝑢𝑣
𝑑2𝑣𝑥𝑥 + 𝛾𝑒𝛽𝑥𝑢𝑣 −

𝑣
1+𝑣

𝑑1𝑢𝑥(0)
𝑑2𝑣𝑥(0)

𝑑1𝑢𝑥(𝐿) − 𝑢(𝐿)𝑔(𝑒𝛽𝐿𝑢(𝐿))
𝑑2𝑣𝑥(𝐿)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Hence the Fréchet derivative 𝐷(𝑢,𝑣)�̃� (𝑞, 𝑢, 𝑣) of �̃� (𝑞, 𝑢, 𝑣) with respect to 
(𝑢, 𝑣) at (𝑞0, �̃�∗, 0) is given by

𝐷(𝑢,𝑣)�̃� (𝑞0, �̃�∗, 0)(𝜙,𝜓) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑑1𝜙𝑥𝑥 + 𝑞𝜙𝑥 − 𝑎𝜙 − �̃�∗𝜓
𝑑2𝜓𝑥𝑥 + (𝛾𝑢∗ − 1)𝜓

𝑑1𝜙𝑥(0)
𝑑2𝜓𝑥(0)

𝑑1𝜙𝑥(𝐿) − [𝑔(𝑢∗(𝐿)) + 𝑢∗(𝐿)𝑔′(𝑢∗(𝐿))]𝜙(𝐿)
𝑑2𝜓𝑥(𝐿)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Similarly to the previous discussion, we have
 (𝐷(𝑢,𝑣)�̃� (𝑞0, �̃�∗, 0)) = span{(𝜙0𝑒

−𝛽(⋅), 𝜓0)}.

Let the duality ⟨⋅, ⋅⟩: X×(Y×R4) ↦ R between X and Y×R4 be defined 
as

⟨𝛹, (𝛷, 𝜉)⟩ = ∫

𝐿

0
𝑒𝛽𝑥𝜓1(𝑥)𝜑1(𝑥)d𝑥 + 𝜓1(0)𝜉1 − 𝑒𝛽𝐿𝜓1(𝐿)𝜉3

+ ∫

𝐿

0
𝜓2(𝑥)𝜑2(𝑥)d𝑥 + 𝜓2(0)𝜉2 − 𝜓2(𝐿)𝜉4

for all 𝛹 = (𝜓1, 𝜓2) ∈ X, 𝛷 = (𝜑1, 𝜑2) ∈ Y, and 𝜉 = (𝜉1, 𝜉2, 𝜉3, 𝜉4) ∈ R4. 
Then we have
⟨𝛹,𝐷(𝑢,𝑣)�̃� (𝑞0, �̃�∗, 0)𝛷⟩ = ⟨𝛷,∗𝛹⟩,

where

∗(𝜙,𝜓) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑑1𝜙𝑥𝑥 + 𝑞𝜙𝑥 − 𝑎𝜙
𝑑2𝜓𝑥𝑥 + (𝛾𝑢∗ − 1)𝜓 − 𝑢∗𝜙

𝑑1𝜙𝑥(0)
𝑑2𝜓𝑥(0)

𝑑1𝜙𝑥(𝐿) − [𝑔(𝑢∗(𝐿)) + 𝑢∗(𝐿)𝑔′(𝑢∗(𝐿))]𝜙(𝐿)
𝑑2𝜓𝑥(𝐿)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Thus, we have  (∗) = span{(0, 𝜓0)} and so U = {(𝑢, 𝑣) ∈ X ∶
∫ 𝐿0 𝜓0𝑣d𝑥 = 0} is complement of span{(𝜙0, 𝜓0)} in X, that is,
span{(𝜙0, 𝜓0)}⊕ U = X. The proof is completed. □

We now present our main existence result using global bifurca-
tion theory [46]. The following theorem establishes conditions for the 
existence of coexistence solutions to system (5.1).

Theorem 5.1.  Suppose that 𝛾 > 1 and 𝑔(𝑢) ≥ −𝑞 for all 𝑢 ∈ R. Then 
system (5.1) admits at least one positive solution for all advection rates 
0 ≤ 𝑞 < 𝑞0.

Proof.  In view of Lemma  5.2, we see that (𝑞0, 𝑢∗, 0) is a bifurcation 
point. By Theorem 1.7 in [47] or Theorem 4.3 in [46], there exists a 
𝜀 > 0 and 𝐶1 curve (𝑞(𝑠), 𝑢(𝑠), 𝑣(𝑠)) ∶ (−𝜀, 𝜀) ↦ R × X defined by
(𝑞(𝑠), 𝑢(𝑠), 𝑣(𝑠)) = (𝑞(𝑠), 𝑢∗ + 𝑠(𝜙0 +𝛷(𝑠)), 𝑠(𝜓0 + 𝛹 (𝑠))),

such that 𝑇 (𝑞(𝑠), 𝑢(𝑠), 𝑣(𝑠)) = 0, where 𝑞(0) = 𝑞0, 𝛷(0) = 0, 𝛹 (0) =
0, (𝛷(𝑠), 𝛹 (𝑠)) ∈ U. We are interested in the branch of positive solutions, 
that is, 𝛤+

1 = {(𝑞(𝑠), 𝑢(𝑠), 𝑣(𝑠)) ∶ 0 < 𝑠 < 𝜀} is exactly the positive solution 
branch of (5.1) near the bifurcation point (𝑞0, 𝑢∗, 0). By Theorem 4.3 and 
Theorem 4.4 in [46] for Fredholm operators, we may extend the local 
solution branch 𝛤+

1  to a global one.
By Theorem 4.3 in [46], we obtain a connected component  of the 

set

{(𝑞, 𝑢, 𝑣) ∈ R × X ∶ 𝑇 (𝑞, 𝑢, 𝑣) = 0, (𝑢, 𝑣) ≠ (𝑢∗, 0)}
+
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from 𝛤𝑢 at (𝑞0, 𝑢∗, 0). Moreover, either  is not compact in R+ × X
or  contains a point (𝑞1, 𝑢∗, 0) with 𝑞1 ≠ 𝑞0. Clearly, 𝛤+

1 ⊂ . Let 
X+ = {(𝑢, 𝑣) ∈ X ∶ 𝑢 > 0, 𝑣 > 0 on [0, 𝐿]}. Then  ∩ (R+ × X+) ≠ ∅.

Let 𝛤 =  ∩ (R+ ×X+). Then 𝛤  consists of the local positive solution 
branch 𝛤+

1  near the bifurcation point (𝑞0, 𝑢∗, 0). Let + be the connected 
component of  ⧵ {(𝑞(𝑠), 𝑢(𝑠), 𝑣(𝑠)) ∶ 𝑠 ∈ (−𝜀, 0)}. Then 𝛤 ⊂ +. It 
follows from Theorem 4.4 in [46] that + satisfies one of the following 
alternatives:
(i) + is not compact;
(ii) + contains a point (𝑞∗, 𝑢∗, 0) for some 𝑞∗ ≠ 𝑞0;
(iii) + contains a point (𝑞, 𝑢∗ + 𝑢, 𝑣) for some (𝑢, 𝑣) ∈ U and (𝑢, 𝑣) ≠

(0, 0).
Suppose alternative (ii) holds. Then we can find a sequence of points 

(𝑞𝑛, 𝑢𝑛, 𝑣𝑛) ⊂ 𝛤 ∩ (R+ ×X+), which converges to (𝑞∗, 𝑢∗, 0) in R+ ×X+. It 
follows from the equation for 𝑣𝑛 that we have 𝜇1(𝑑2, 𝛾𝑢∗𝑛 − 1

1+𝑣𝑛
) = 0. It 

follows from Lemma  4.1 (ii) that 𝜇1
(

𝑑2, 𝛾𝑢∗ − 1
)

= 0 by letting 𝑛→ +∞. 
That is, 𝜆1(𝑑1, 𝑑2, 𝑞∗, 𝑔, 𝛾) = 0. By Eq.  (4.5), one can conclude that 
𝑞∗ = 𝑞0. Thus, alternative (ii) cannot occur.

Suppose alternative (iii) holds. For any (𝑞, 𝑢∗ + 𝑢, 𝑣) ∈ 𝛤 , we have 
𝑣 > 0 on [0, 𝐿]. Thus, ∫ 𝐿0 𝜓0𝑣d𝑥 > 0, which contradicts (𝑢, 𝑣) ∈ U. Hence, 
alternative (iii) cannot occur.

It follows from Lemma  5.1 and Theorem  4.1 that every positive 
solution of (5.1) satisfies 0 < 𝑢 < 𝐾(𝑥), 0 < 𝑣 < 𝐶, 0 ≤ 𝑞 < 𝑞0. 
Integrating the first and second equations of (5.1) from 0 to 𝑥, we 
conclude that 𝑢𝑥 and 𝑣𝑥 are uniformly bounded in (0, 𝐿). It follows 
from (5.1) that 𝑢𝑥𝑥 and 𝑣𝑥𝑥 are uniformly bounded in (0, 𝐿). Hence, 
positive solutions of (5.1) must be bounded in X. Thus, assertion (i) 
implies that 𝛤 − {(𝑞0, 𝑢∗, 0)} ⊄ R+ × X+. Thus, there exists a sequence 
{(𝑞𝑛, 𝑢𝑛, 𝑣𝑛)} ⊂ 𝛤 ∩ (R+ × X+) with 𝑢𝑛, 𝑣𝑛 > 0 on [0, 𝐿], which converges 
to (𝑞, �̄�, �̄�), where (𝑞, �̄�, �̄�) ∈ (𝛤 −{(𝑞0, 𝑢∗, 0)})∩𝜕(R+×X+). It follows from 
(𝑞, �̄�, �̄�) ∈ 𝜕(R+ × X+) that one of the following alternatives holds:
(a) �̄� ≥ 0, and �̄�(𝑥0) = 0 for some point 𝑥0 ∈ [0, 𝐿];
(b) �̄� ≥ 0, and �̄�(𝑥0) = 0 for some point 𝑥0 ∈ [0, 𝐿];
(c) 𝑞 = 0.

By the strong maximum principle, one can obtain that �̄� > 0 on 
[0, 𝐿], thus (a) is impossible.

If (b) holds, the strong maximum principle leads to �̄� ≡ 0. Thus, we 
obtain (�̄�, �̄�) ≡ (𝑢∗, 0) and hence the sequence (𝑞𝑛, 𝑢𝑛, 𝑣𝑛) satisfies that 
𝑞𝑛 → 𝑞 and (𝑢𝑛, 𝑣𝑛) → (𝑢∗, 0) in X as 𝑛→ ∞. It follows from the equation 
of 𝑣𝑛 again that

𝜇1
(

𝑑2, 𝛾𝑢
∗
𝑛 −

1
1 + 𝑣𝑛

)

= 0.

Letting 𝑛 → +∞, we get 𝜇1
(

𝑑2, 𝛾𝑢∗ − 1
)

= 0 by Lemma  4.1 (ii). That 
is, 𝜆1(𝑑1, 𝑑2, 𝑞, 𝑔, 𝛾) = 0. In view of (4.5), we conclude that 𝑞 = 𝑞0, a 
contradiction.

Hence, (c) must hold. Namely, there exist 𝑞𝑛 → 0 and positive 
solutions (�̄�, �̄�) of system (5.1) with 𝑞 = 𝑞𝑛 such that (𝑞𝑛, 𝑢𝑛, 𝑣𝑛) → (0, �̄�, �̄�)
in X as 𝑛 → +∞. Integrating the equations for 𝑢𝑛 and 𝑣𝑛 from 0 to 
𝑥, respectively, one can conclude that (𝑢𝑛)𝑥 and (𝑣𝑛)𝑥 are uniformly 
bounded in [0, 𝐿]. Hence, we see that (𝑢𝑛)𝑥𝑥 and (𝑣𝑛)𝑥𝑥 are uniformly 
bounded in [0, 𝐿] by using the equations for 𝑢𝑛 and 𝑣𝑛 respectively 
again. Passing to a subsequence if necessary, we may assume that 
(𝑢𝑛, 𝑣𝑛) → (�̄�, �̄�) in 𝐶1[0, 𝐿] × 𝐶1[0, 𝐿]. Moreover, it is easy to see (�̄�, �̄�)
fulfills system (5.1) with 𝑞 = 0. Next, we show �̄�, �̄� > 0 on [0, 𝐿]. 
Clearly, �̄� > 0 on [0, 𝐿] by applying the strong maximum principle 
to the equation of �̄� (or see Lemma  5.1). If �̄�(𝑥0) = 0 for some point 
𝑥0 ∈ [0, 𝐿], then the strong maximum principle leads to �̄� ≡ 0 on 
[0, 𝐿], which implies �̄� = 𝑢∗. That is, (�̄�, �̄�) → (𝑢∗, 0) in X as 𝑛 → ∞. By 
the similar arguments used to eliminate alternative (b), we can obtain 
𝜇1(𝑑2, 𝛾𝑢∗−1) = 0 for 𝑞 = 0, a contradiction to (4.5). Therefore, we have 
�̄�, �̄� > 0 on [0, 𝐿]. Now, we can conclude that the global bifurcation 
branch 𝛤  must intersect with the branch {(0, 𝑢, 𝑣) ∶ 𝑢, 𝑣 > 0} at the 
point (0, �̄�, �̄�) as 𝑞 → 0. The proof is completed. □
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6. Discussion

In this paper, we investigated a reaction–diffusion–advection system 
modeling consumer-resource interactions between stationary mussels 
and their drifting algal food source, incorporating biologically moti-
vated nonlinear boundary conditions. Our analysis revealed several 
significant theoretical findings. The introduction of nonlinear boundary 
fluxes creates a mathematically richer and biologically more realistic 
framework, fundamentally altering the system’s qualitative behavior. 
Unlike classical models with homogeneous boundary conditions, sys-
tem (1.1) admits neither trivial nor spatially constant steady states. 
This crucial distinction renders classical linearization and eigenvalue-
based approaches inapplicable for analyzing semi-trivial steady states. 
To address this, we developed a non-variational framework based 
on carefully constructed super- and sub-solutions, which establishes 
the global existence of solutions, the existence and stability of semi-
trivial steady states, and key qualitative properties of the system under 
nonlinear boundary constraints.

In addition to resolving well-posedness challenges posed by nonlin-
ear boundaries, we identified and corrected certain technical limita-
tions in earlier work by Qu et al. [35], particularly regarding solution 
properties. Our Proposition  3.1(iii) extends and generalizes results from 
Qu et al. [35] and Wang et al. [22], establishing a crucial connection 
between systems with linear boundary conditions and those governed 
by more realistic nonlinear fluxes. This bridge reinforces the robustness 
of our framework and highlights the novel theoretical insights gained 
by moving beyond linear boundary assumptions.

Furthermore, we examined the joint influence of advection and 
boundary reactions on system dynamics. We identified two distinct 
dynamical regimes depending on the relative magnitudes of the ad-
vection rate 𝑞 and the boundary flux 𝑔(𝑢). In advection-dominated 
settings (i.e., |𝑔(𝑢)| < 𝑞), the positive steady-state solution for algae 
decreases monotonically with increasing flow, while under stronger 
boundary retention (i.e., |𝑔(𝑢)| > 𝑞), solutions exhibit increasing depen-
dence on boundary effects. These findings reveal parameter sensitivities 
not fully captured in prior studies [22,35], providing a more com-
plete theoretical characterization of transport-boundary coupling in 
consumer-resource systems.

A central contribution of this work is the derivation of precise 
threshold conditions governing the global extinction or persistence of 
the mussel population under assumptions (H1)–(H2). These thresholds 
are linked to the principal eigenvalue of an associated boundary value 
problem and depend intricately on model parameters, including algal 
and mussel diffusion coefficients (𝑑1, 𝑑2), the energy conversion effi-
ciency 𝛾, the advection rate 𝑞, and the boundary reaction term 𝑔(𝑢). 
Theorem  4.1 yields a particularly sharp result: when advection dom-
inates boundary effects (𝑞 > |𝑔(𝑢)|), low energy conversion efficiency 
(i.e., 𝛾 ≤ 1) inevitably results in mussel extinction, regardless of flow 
velocity. This generalizes Theorem 4.3 in Wang et al. [22], which was 
restricted to the special case of free-flow boundaries (𝑔(𝑢) = −𝑞).

A more comprehensive view of the systems long-term dynamics 
is provided by Theorem  4.2, which identifies multiple biologically 
meaningful regimes:

(i) High conversion efficiency (𝛾 > 1): Mussel invasion and sta-
ble coexistence are possible when boundary retention exceeds 
advection, i.e., |𝑔(𝑢)| > 𝑞.

(ii) Low conversion efficiency (𝛾 ≤ 1): Mussel persistence depends 
on limited dispersal; large diffusion (𝑑2) leads to extinction, 
while persistence is attainable when mussel mobility is restricted 
(i.e., small 𝑑2).

These results offer theoretical support for key ecological mechanisms: 
(i) the critical role of boundary retention in sustaining populations 
in flowing environments, (ii) the interaction of physiological traits 
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(notably 𝛾) with environmental transport processes, and (iii) the trade-
off between dispersal and resource acquisition under advective con-
straints. Overall, our analysis highlights the ecological significance of 
nonlinear boundary effects, a feature largely unexplored in earlier mod-
els assuming homogeneous or linear boundary fluxes. These insights 
have practical implications for understanding population structure and 
management in rivers, estuaries, and other flow-dominated ecosystems.

While our work provides a detailed analytical framework for cons-
umer-resource systems with nonlinear boundary conditions, several 
important challenges remain:

(i) Role of algal diffusion: The influence of the algal diffusion coeffi-
cient 𝑑1 on global dynamics remains only partially understood. 
In the single-species algae model, nonlinear boundary conditions 
can induce non-monotonic dependence on 𝑑1, arising from in-
teractions between diffusion and nonlinear fluxes. A complete 
analytical characterization of this behavior remains a topic for 
future study.

(ii) Uniqueness and global stability: Although Theorem  5.1 estab-
lishes the existence of coexistence steady states via global bi-
furcation theory, the uniqueness and global stability of these 
solutions remain open. Classical techniques such as Lyapunov 
functionals and integral estimates [48] are inapplicable due to 
the non-Lotka–Volterra structure and the presence of nonlinear 
boundary terms. Novel techniques are needed to address these 
stability challenges.

(iii) Asymptotic diffusion limits: Investigating the asymptotic be-
havior of steady states as 𝑑1 → 0 (revealing boundary-layer 
phenomena) and 𝑑1 → ∞ (where homogenization effects may 
dominate) could provide further insight into the role of spatial 
heterogeneity in shaping ecological outcomes.

(iv) General boundary fluxes: The present analysis assumes that 𝑔(𝑢)
is decreasing. It would be of theoretical and ecological interest 
to study cases where 𝑔′(𝑢) > 0, or where 𝑔 is non-monotone or 
piecewise-defined. Such generalizations may better reflect real-
world ecological boundary interactions, though they introduce 
additional analytical complexity that would likely require new 
mathematical frameworks.

Addressing these open problems will require the development of new 
tools for analyzing nonlinear parabolic systems with complex bound-
ary conditions. Future research in these directions promises both the-
oretical advances and practical relevance for understanding species 
persistence in flowing environments.
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