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 A B S T R A C T

Bitumen extraction for the production of synthetic crude oil in Canada’s Athabasca Oil Sands industry has 
recently come under spotlight for being a significant source of greenhouse gas emissions. A major cause of 
concern is methane, a greenhouse gas produced by the anaerobic biodegradation of hydrocarbon in oil sands 
residues, or tailing, stored in settle basins commonly known as oil sands tailing ponds. In this work, we build 
a data-driven modeling framework to determine the methane emitting potential of these tailing ponds and 
have future methane projections using a Dispersion based Recurrent Neural Network (DIRNN). We show that 
our method can predict both methane emissions and concentrations by considering the transport of methane 
emissions in air, thereby outperforming existing other deep learning approaches. Using a reverse dispersion 
modeling approach, we use our trained model to identify active ponds and estimate about 56,303 tonnes of 
methane (1.5 million tonnes of carbon dioxide equivalent) emissions from the Athabasca oil sands tailings. Our 
results are consistent with previously reported emission estimates from various studies, and indicate atleast 
three times underestimation in official reports.
1. Introduction

Anthropogenic sources of greenhouse gases (GHGs) are the major 
drivers of climate change with methane (CH4) having the second 
largest share of emissions in the atmosphere after carbon dioxide (CO2). 
Although the comparative impact of CH4 is 28 times greater than CO2
over a 100-year period (US EPA, 2024), it has a shorter lifespan of 
12 years, which makes CH4 mitigation policies a cost-effective short-
term approach to combat global warming (Flannigan et al., 2009; 
Sysoeva et al., 2025). Oil sands activities contribute significantly to 
GHG emissions and in particular are regarded as sources of pollu-
tion (Schindler, 2014; Liggio et al., 2016; Yu and Zahidi, 2023). The 
mining and extraction of oil sands is directly associated with deforesta-
tion and release of sulfur oxides, nitrogen oxides, hydrocarbons, and 
fine particulate matter, etc. The oil sand tailing ponds (OSTPs) contain 
toxic industrial wastes that can leak into fresh water sources affecting 
aquatic ecosystems. Moreover, OSTPs emit significant quantities of 
CH4 from toxin degradation by anaerobic bacteria (Siddique et al., 
2007; Michel et al., 2024) leading to elevated levels of CH4 in the air. 
Frequent onsite data collection for a detailed understanding of OSTPs 
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is often infeasible due to expensive measurement technology, toxic air 
quality or hard to obtain permit requirements (Sysoeva et al., 2025).

Prior OSTP related methane modeling efforts involve controlled 
laboratory experiments, whose results are used to build mechanis-
tic models (MM) of CH4 emissions (total mass of CH4 released in 
atmosphere from source in a time interval) from toxin/hydrocarbon 
degradation by bacteria in OSTPs (Kong et al., 2019; Venegas Gar-
cia, 2024). Since experimental limitations lead to exclusion of many 
relevant parameters such as temperature, pressure, wind speed, etc., 
MMs cannot be used to accurately assess methane concentration levels 
(the amount of CH4 in the air at a given place and time). Infact, 
the relationship between emissions and concentrations can be better 
described by atmospheric dispersion models (ADMs) (Stockie, 2011; 
Das et al., 1998; Mohan and Siddiqui, 2002). However, simple ADMs 
like the Gaussian plume or puff models (Stockie, 2011; Mikkelsen et al., 
1987) are unrealistic due to multiple modeling assumptions, while 
the realistic formulations are highly complex and non-linear, and may 
require high computational resources to be solved numerically. For 
example, refer to the model formulation of AERMOD (Cimorelli et al., 
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2005), a well-known software developed by Environmental Protection 
Agency (EPA). One needs an understanding and data availability of 
multiple parameters woven through 30+ equations in order to solve the 
model. Other similar softwares include CALPUFF, FLEXPART, Wind-
Trax, etc (Bakels et al., 2024; Bonifacio et al., 2013; Tagliaferri et al., 
2022).

Data-driven techniques, on the other hand, offer a cost-effective and 
powerful alternative to classical modeling in the field of Environmental 
Sciences, both from the perspective of modeling complex phenomenon 
as well from the socio-economic modeling of policy gains. From a socio-
economic and policy standpoint, data-driven approaches can enable 
low-cost, high-resolution tracking of industrial methane emissions, es-
sential for stakeholders such as regulators, environmental agencies, and 
oil sands operators. Moreover, machine learning techniques are increas-
ingly being applied to stock markets and energy pricing models (Kumar 
et al., 2025; Basher and Sadorsky, 2025; Jin and Xu, 2024; Cheng 
et al., 2025) including coal and carbon pricing models. These models 
help policymakers and analysts simulate the effects of emissions-based 
taxation under various economic conditions by capturing the non-
linear dependencies between fuel demand, carbon markets, and policy 
shifts (Islam et al., 2025; Jin and Xu, 2024a; D’Orazio and Pham, 2025; 
Jin and Xu, 2025). These applications not only inform government 
strategy but also assist energy firms in optimizing operations.

For applications in modeling environmental phenomenon, some 
well-known machine learning architectures used for analyzing and 
predicting various atmospheric gases include Random Forests (RFs), 
neural networks(NN), recurrent neural networks (RNNs), long short-
term memory (LSTM), bidirectional LSTM, stacked LSTM, and gated 
recurrent unit (GRU) (Xie et al., 2019; Tong et al., 2019; Luo et al., 
2023; Hu et al., 2021; Hamrani et al., 2020; Meng et al., 2022; Hou 
et al., 2022). Other data-driven methods use satellite images as an 
effective way to build a dataset for the purpose of training classifiers 
to identify active OSTPs so that only high risk ponds may be closely 
monitored (Yu and Zahidi, 2023; Psomouli et al., 2023; Qu et al., 2024). 
Some recent works have used satellite data to detect CH4 emissions 
across Canada (Yazdinejad et al., 2025; Zambrano-Luna et al., 2025). 
However, data collected by satellites is expensive, hard to process and 
sparse making them less useful for models where frequent data collec-
tion is the key to proper model training. Machine learning models can 
also be trained for effective risk prediction of OSTPs as an alternative to 
standard monitoring systems, which are often expensive and have poor 
lightning protection abilities (Yang et al., 2020). While most existing 
models (both mechanistic and data-driven) can perform well on esti-
mating emissions from tailing ponds or predicting concentrations, an 
understanding of how atmospheric concentrations of CH4 gets affected 
by emission sources are limited (Koushafar et al., 2023).

In order to fill this gap and track emission sources, we propose a 
novel Dispersion based Recurrent Neural Network (DIRNN) framework 
that can successfully use the dynamics of CH4 emissions from OSTPs 
to predict concentrations in the atmosphere by preserving the physics 
of CH4 dispersion in air. With an unique hybrid approach yet to be 
used widely in environmental modeling, given a dataset consisting 
of atmospheric variables (collected from weather monitoring stations 
around an OSTP) and hydrocarbon degradation (simulated from solving 
MMs) in an OSTP, our dispersion informed trained model can success-
fully predict CH4 emissions and concentration levels near the OSTPs, 
outperforming other deep learning models. Instead of treating these 
two quantities separately, the proposed model enforces constraints 
based on atmospheric dispersion (advection–diffusion dynamics) to tie 
together emission and concentration. Model training using constrained 
optimization with penalty ensures balance between data fitting and 
physical consistency. Further, we show that our trained model is ca-
pable of giving emission estimates for various OSTPs, irrespective of 
whether they were included in the training dataset or not, as long 
as they are in a close proximity to each other. This is made possible 
due to the reverse dispersion penalty from physical equations that 
2 
enables daily emission estimation from multiple directions around 
weather stations, without direct sampling of each site. The novelty 
of our proposed model lies in various aspect of the framework which 
include (but are not limited to) model design (physics-constrained neu-
ral network using atmospheric transport), emission inference (inverse 
modeling of CH4 sources from ambient data and wind direction), source 
attribution (directional decomposition of emissions), joint modeling 
(emissions and concentrations estimated simultaneously) and discovery 
of underestimated emissions, including from inactive ponds.

The paper is arranged as follows. We discuss the region of interest, 
data collection techniques and processing in Section 2, followed by the 
model framework in Section 3. The results are discussed in Section 4 
with the discussion and conclusions in Sections 5 and 6, respectively.

2. Study area, data collection and preprocessing

Oil sands tailings are the by-products generated after separating 
bitumen from oil sands. These tailings are stored in large engineered 
reservoirs known as oil sands tailings ponds (OSTPs) (Foght et al., 
2017). They are composed of a mixture of sand, silt, clay fines, pro-
cess water, and small amounts of unrecovered hydrocarbons from the 
extraction process (Gosselin et al., 2010). When first deposited into 
an OSTP, fresh tailings are mostly water (∼ 85%), containing about 
8% mineral fines and less than 1% unrecovered hydrocarbons. Over 
time, the fine particles gradually consolidate, eventually forming dense 
layers called mature fine tailings (MFT) with more than 30% solids 
near the pond bottom (Foght et al., 2017). Tailings temperature varies 
with depth, ranging from roughly 12 ◦C at 6 m (m) to about 22 ◦C 
at 30 m below the mudline (Penner and Foght, 2010; Ramos-Padrón 
et al., 2011). The process water is typically alkaline, with a pH of about 
8.5. Chemically, tailings contain residual hydrocarbons and soluble 
electron acceptors such as sulfate and iron; in some cases, gypsum is 
added to accelerate consolidation. Direct data collection from OSTPs is 
challenging due to hard to obtain permit requirements.

Given a dataset consisting of atmospheric variables (collected from 
weather monitoring stations around an OSTP) and hydrocarbon degra-
dation (simulated from solving the MMs built using laboratory con-
trolled experiments) in an OSTP, we are interested in building a ma-
chine learning model that can predict both methane concentration and 
emission simultaneously. Thus, the input to the proposed framework 
includes various parameters that directly or indirectly affect atmo-
spheric methane concentrations. The model considers three types of 
input data: (i) 𝐱𝑑𝑖𝑙 denoting the degradation of hydrocarbons in OSTPs 
and obtained from solving MMs in literature; (ii) 𝐱𝑎𝑡𝑚 representing 
atmospheric parameters such as ambient temperature, wind speed, 
wind direction, solar activity, etc; and (iii) time vector 𝐭. These three 
inputs 𝐱𝑑𝑖𝑙, 𝐱𝑎𝑡𝑚, and 𝐭 together form the input 𝐱 and are used to 
define the model and its corresponding minimization problem. In this 
section, we discuss the study area (Section 2.1) and the technique 
of dataset building. The meteorological data collection from weather 
monitoring stations is discussed in Section 2.2 and simulated data from 
experimentally validated MM (which estimates methane emissions and 
hydrocarbon degradation in active OSTPs) is discussed in Section 2.3.

2.1. Study area

Our region of interest is located in the industrial area around Syn-
crude and Suncor Base Plants in the Athabasca Oil Sands deposits. The 
region contains multiple weather monitoring stations (some located 
near the oil sands mining areas) under the Wood Buffalo Environmental 
Association (WBEA) (Wood Buffalo Enviornmental Association, 2024) 
that measures hourly data of the ambient air quality and meteorological 
parameters. Overall elevation of the WBEA region is about 200–300 m 
above sealevel. Lower Camp is located by the Athabasca River Valley 
at about 115 m south of the Syncrude pump house and 238 m above 
sealevel. It has an active OSTP ‘Pond 2/3’ approximately at a distance 
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Fig. 1. Region of Wood Buffalo with all the weather monitoring stations of interest and main OSTPs and/or EPLs. Selected stations: Mannix (‘Pond 2/3’ 
approximately 1.4 km northwest of the station); Lower Camp (‘Pond 2/3’ approximately 3.5 kms southwest and ‘Pond 5’ about 1.4 kms west of the station, 
respectively); Mildred Lake (‘Mildred Lake Settling Basin’/MLSB approximately 1.7 kms northwest and ‘Pond 5’ approximately 2.1 kms southeast of the station, 
respectively); Buffalo (‘West-In-Pit’/WIP at 0.8 kms northwest of the station). The orange polygons depict the oil sands tailings ponds. The blue water inside 
the orange polygons depict the main water body. However, since tailings also include a semi-solid mixture of sand, silt, clay fines, and unrecovered industrial 
chemicals around the water-filled area, the overall area of tailings may differ and is highlighted separately in orange.
of 3.5 kms southwest of the station and an abandoned OSTP ‘Pond 5’ 
approximately at 1.4 kms, both owned by Suncor. Located at 332 m 
above sea level, Mannix station is less than 5 km from the Suncor 
base plant whose land use segregation is between 0–180 degrees of the 
station. There are no airflow restrictions and an active OSTP ‘Pond 2/3’ 
owned by Suncor is located approximately 1.4 kms northwest of the 
station. Mildred Lake is Located within 400 m of the Syncrude airstrip, 
the station sits at 314 m above sea level and within 5 km from the 
Syncrude base plant on West. There is partial restriction of airflow in 
North, South and West of the station by buildings and/or trees which 
lie within 40–160 m. It has been measuring methane from December 
2019 onwards. An active OSTP ‘Mildred Lake Settling Basin’/MLSB is 
approximately 1.7 kms northwest of the station, owned by Syncrude, 
and inactive ‘Pond 5’ is approximately 2.1 kms owned by Suncor. 
Buffalo station sits at 315 m above sea level and less than 5 km from the 
Syncrude base plant and 0.8 km from an OSTP. There is no restriction 
of airflow. The land use segregation reports oil sands plant in 0–90 
degrees and 271–360 degrees of the station. It is nearest pond, ‘West-
In-Pit’/WIP is presently converted to an EPL and sits at a distance of 
0.8 kms northwest of the station. The study area is given in Fig.  1.

Note that out of the four selected stations, we build datasets using 
the stations that are associated with ‘active’ OSTPs only, because source 
estimations using MMs are based on experiments modeled after ‘active’ 
OSTPs. We classify an OSTP to be ‘active’ if it there is continuous 
inflow of diluents (industrial residues). Based on available data and 
information on OSTPs, we select stations Mannix with Pond 2/3, Lower 
Camp with Pond 2/3 and Mildred Lake with MLSB for building the 
dataset.
3 
2.2. Dataset creation from on-field data

For 𝑑 > 1 and number of days 𝑘, suppose the input–output pairs are 
denoted by {(𝐱𝑛, 𝐲𝑛)}𝑘𝑛=1, with 𝐱 = [𝐱𝑎𝑡𝑚, 𝐱𝑑𝑖𝑙] ∈ R𝑑 and 𝐲 = [𝑦𝑐𝑜𝑛𝑐 , 𝑦𝑒𝑚𝑚] ∈
R2. The vector 𝐱𝑛 consists of various input variables sampled across 
𝑘 timesteps (days) and the two-dimensional vector 𝐲𝑛 consists of the 
CH4 emissions, and concentrations. For each 𝑘, the input vector 𝐱𝑛
is built using data from two sources: atmospheric variables 𝐱𝑎𝑡𝑚 and 
industrial/chemical component variables 𝐱𝑑𝑖𝑙. Dataset for atmospheric 
parameters 𝐱𝑎𝑡𝑚 and methane concentrations 𝑦𝑐𝑜𝑛𝑐𝑛  is built from data col-
lected by the Wood Buffalo Environmental Association (WBEA) (Wood 
Buffalo Enviornmental Association, 2024). The training dataset is built 
only for stations near an active OSTP (MLSB and Pond 2/3 as reported 
in Burkus et al. (2014)) (as the mechanistic models can only mimic 
the kinetics of an active tailings pond). We pick the stations in a close 
proximity to these active OSTPs that have no other methane sources 
(for example, wetlands) between them.

For each station, we build the dataset by filtering observations with 
wind direction ranges based on location of active OSTPs i.e., Mannix 
(300–320 degrees), Lower Camp (160–180 degrees), and Mildred Lake 
(300–340 degrees). The data from atmospheric variables denoted by 
𝐱𝑎𝑡𝑚 includes temperature, pressure, relative humidity, solar radiation, 
etc and is collected hourly by weather monitoring stations under con-
sideration. Similarly, the WBEA dataset reporting CH4 concentrations 
is used to build one of the output dataset samples, 𝑦𝑐𝑜𝑛𝑐𝑛 . The map of 
the weather stations and OSTPs is given in Fig.  1. All variables used in 
the input 𝐱  is summarized in Table C.6.
𝑎𝑡𝑚
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2.3. Data from experimentally validated model(s)

To build dataset for 𝐱𝑑𝑖𝑙 and source emissions 𝑦𝑒𝑚𝑚𝑛 , we solve 
MMs describing the properties and dynamics of methane production 
in OSTPs, with appropriate parameters and initial conditions (Kong 
et al., 2019; Siddique et al., 2008; Venegas Garcia, 2024). These 
experimentally validated models are developed by considering the 
most labile hydrocarbons present in the diluents/solvents used by each 
of the oil sands companies. The models are generally represented 
by a dynamical system whose general form is described in Eq. (1). 
The system describes the degradation dynamics of each of the labile 
hydrocarbon by methanogenic bacteria. For each fixed 𝑖 (the value of 𝑖
depends on the number of labile hydrocarbons considered), the system 
of equations are given as
𝑑𝐶𝑖
𝑑𝑡

= 𝑓 (𝐶𝑖, 𝑡, 𝑦1,… , 𝑦𝑘)

𝑑𝑦𝑗
𝑑𝑡

= 𝑔𝑗 (𝐶𝑖, 𝑡, 𝑦𝑗 ) for 𝑗 = 1,… , 𝑘 (1)

CH4 = ℎ(𝐶𝑖, 𝑦1,… , 𝑦𝑘, 𝜇𝑖, 𝑡)

where 𝐶𝑖 denotes each of the hydrocarbons, 𝑦𝑗 denotes other variables 
in consideration (for example, other nutrients, biomass of microbes, 
etc.) and 𝜇𝑖 denotes the set of constants corresponding to methane 
production (for example, microbial efficacy, stoichiometric factor, etc.). 
The exact nature of the functions 𝑓, 𝑔 and ℎ along with the other 
parameters can be found in prior works on modeling methane emissions 
from OSTPs (Kong et al., 2019; Siddique et al., 2008; Venegas Garcia, 
2024).

In order to solve the MM, we use the monthly ‘Flared and Wasted’ 
category of ‘‘diluents’’ from (Alberta Energy Regulator, 2023) as the 
total monthly inflow of hydrocarbons into the ponds. Based on prior 
works that have studied possible chemical composition of these dilu-
ents (Kong et al., 2019; Siddique et al., 2006), we split this diluent 
data into about 20 labile hydrocarbons. Note that we consider only a 
small fraction of the diluents based on the OSTP Fine Fluid Tailings 
(FFT) volume (20% for MLSB and 15% for Pond 2/3 i.e., only this 
much amount of total reported diluents is assumed to be tossed into 
the OSTPs) and divide it by the number of days per month to estimate 
daily inflow of diluents in the MM. These hydrocarbons are assumed to 
be subsequently used up by methanogenic bacteria leading to methane 
emissions. A constant daily inflow of diluents is assumed i.e. the total 
monthly diluent reported in Alberta Energy Regulator (2023) is divided 
equally by the number of days in the month (to obtain the initial 
conditions). The system is solved with a timestep of one day for a 
month. This is done for all the months from January 2020 to December 
2023 in order to build the dataset. This approach is similar to the tech-
nique followed in Venegas Garcia (2024). The hydrocarbon degradation 
described by the MMs forms the dataset 𝐱𝑑𝑖𝑙. We experiment with 𝐱𝑑𝑖𝑙
built based on two methanogenesis models (Venegas Garcia, 2024; 
Kong et al., 2019). The CH4 values obtained using these models form 
𝑦𝑒𝑚𝑚. Note that when generating the data using the model proposed 
in Kong et al. (2019), we identified a small number of generated daily 
values (about 1% of values) that were not biologically realistic. We 
considered these values to be numerical artifacts of simulation driven 
by the stiffness of the model, and hence replaced each one with the 
generated value for the day before it for the sake of simplicity and 
biological fidelity.

Once all types of data is obtained, they are averaged and interpo-
lated to obtain sample points at the frequency of one data per day. For 
example, variables from 𝐱𝑎𝑡𝑚 are collected hourly, so they are averaged 
over 24 h to obtain one sample per day. On the other hand, diluent data 
is reported monthly by companies and hence interpolation technique is 
used to fit a spline function and sample daily data points.
4 
3. Problem formulation and framework

The goal of the proposed research is to train a parameterized model 
to track emissions from OSTPs using CH4 concentrations.  We incorpo-
rate the dynamics from MMs of OSTPs and physical constraints from 
atmospheric dispersion models to train a machine learning framework 
over a give period of time. The idea is to model the interactions 
depicted in Fig.  2.

• Diluents directly affect emissions from OSTPs. For example, more 
diluents would directly lead to more hydrocarbon degradation 
and thus more CH4 emissions.

• CH4 emissions and concentrations are directly related to each 
other. Increase in one of the quantities will automatically lead 
to an increase in the other and vice versa.

• Atmospheric parameters directly affect the concentration of CH4
but do not significantly affect the formation of CH4 in the OSTPs 
(for example, the wind direction or speed has nothing to do with 
how the microbes degrade hydrocarbons at the bottom layer of 
the OSTPs).

• Diluents indirectly affect the concentrations by increasing emis-
sions which in turn increases the concentrations.

Thus, we combine all the variables (diluents and atmospheric data) 
and use it as an input to a machine learning model. The output is then 
combined with the data from atmospheric variables (only) and used 
as an input to another machine learning model which is defined using 
the atmospheric dispersion model equation(s). A detailed flowchart is 
given in Fig.  2.

To optimize the weights and biases of DIRNN, the dispersion con-
strained optimization problem (Xu and Darve, 2022; Saha et al., 2023a; 
Kashinath et al., 2021; Antonion et al., 2024) is modified to include 
information from MMs as well as real-time data affecting concentra-
tions. For each 𝑖th observations in the set 𝑜𝑏𝑠, suppose 𝐱𝑖 denotes the 
(𝑑 +1)−dimensional input vector and 𝑢𝑖 denotes observed output. Then 
given a fixed function 𝑞 ∶ R𝑑+1 → R describing emission dynamics 
(from MMs), our modified constrained optimization problem aims to 
find a function 𝑢 ∶ R𝑑+1 → R by solving the problem, 

min
𝜙

1
|𝑜𝑏𝑠|

∑

𝑖∈𝑜𝑏𝑠

(𝑢(𝐱𝑖) − 𝑢𝑖)2 subject to 𝐹 (𝜙(𝐱, 𝑢), 𝑢, 𝑞) = 0, (2)

where 𝐹  is the physical constraint with unknown function 𝜙. Since 
we want to learn 𝑢 from given measurements and 𝜙 is unknown, we 
parameterize them with 𝑢𝛩̄(𝐱) and 𝜙𝛩̂(𝐱, 𝑢), respectively where 𝛩̂ and 
𝛩̄ denote the unknown parameters to be learned through training. 
Different function representation models such as sparse polynomial 
approximation (Schaeffer et al., 2018), random feature models (Saha 
et al., 2023b; Saha and Tran, 2023), or neural networks (McCulloch 
and Pitts, 1943) may be used. Converting Eq. (2) to an unconstrained 
optimization problem we get, 

min
𝛩̄,𝛩̂

1
|𝑜𝑏𝑠|

∑

𝑖∈𝑜𝑏𝑠

[

(𝑢𝛩̄(𝐱𝑖) − 𝑢𝑖)2 + 𝜆
(

𝐹 (𝜙𝛩̂(𝐱𝑖, 𝑢𝛩̄), 𝑢𝛩̄, 𝑞(𝐱𝑖))
)2
]

, (3)

where 𝜆 ∈ (0,∞). An advantage of using this method (also known as 
penalty method) is that it avoids solving the constraint 𝐹 (𝜙, 𝑢, 𝑞) =
0 (Xu and Darve, 2022). However, the physical constraints may not 
be satisfied exactly i.e., theoretically, 𝐹 (𝜙, 𝑢, 𝑞) = 0 will hold only when 
𝜆 → ∞ (Xu and Darve, 2022). While optimizing the choice of 𝜆, it is 
important to remember that a large value of 𝜆 places less weight on 
the objective function. Hence, a proper choice of 𝜆 is based on the 
desirable trade-off between fitting the observed value and satisfying 
the constraint. This technique a has been adapted in numerous works 
involving learning of systems of PDEs/ODEs from data (Raissi et al., 
2019). Our choice of the constraint 𝐹  is derived from an atmospheric 
dispersion models called Gaussian Plume Model (GPM) (Stockie, 2011),
𝜕𝑢 + ∇.𝐽 = 𝑞,

𝜕𝑡
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Fig. 2. Graphical representation of the proposed modeling framework. Left: Representation of how the different input variables interact. Solid lines depict a 
direct connection and the dashed lines represent an indirect affect. Right: A flowchart of DIRNN.
where 𝑢(𝑥⃗, 𝑡) is the mass concentration, 𝑞(𝑥⃗, 𝑡) is a source (or sink) and 
𝐽 is mass flux due to diffusion (𝐽𝐷) and advection (𝐽𝐴), and 𝑥⃗ and 
𝑡 denote space and time respectively. Assuming negligible sinks, the 
function 𝑞 defined from the MMs acts as the source term. Since we fix 
the coordinates of the source (OSTPs) and weather stations in space, 𝑢
and 𝑞 are independent of spatial coordinates. Thus, we are interested 
in exploring the relationship of these two functions (𝑢 and 𝑞) to various 
input variables involving atmospheric parameters and/or hydrocarbon 
degradation.

Given the input dataset 𝐱 = [𝐱𝑎𝑡𝑚, 𝐱𝑑𝑖𝑙 , 𝐭]𝑇 ∈ R𝑑+1, where 𝐱𝑑𝑖𝑙 is 
built from simulated data from MMs and 𝐱𝑎𝑡𝑚 is built from the real-time 
weather station measurements, the CH4 concentrations and emissions 
are trained using the parameterization below in Eq. (4) and (5). Output 
of the first network 𝑢𝛩̄ gives the predicted methane concentration. We 
then concatenate this output with atmospheric parameters 𝐱𝑎𝑡𝑚 (since 
those are the only variables that can potentially affect diffusion/advec-
tion), and use it as an input to the second neural network that estimates 
∇.𝐽 . The exact form of the outputs are given by

𝑢𝛩̄ = 𝛩̄4𝜎
(

𝛩̄3𝜎
(

𝛩̄2𝜎
(

𝛩̄1𝐱
)))

(4)

𝑞𝜃(𝐱, 𝑡) = Grad𝑡
(

𝑢𝛩̄
)

+ 𝛩̂3𝜎
(

𝛩̂2𝜎
(

𝛩̂1
[

𝑢𝛩̄, 𝐱𝑎𝑡𝑚
]))

, (5)

where 𝜎 denotes the activation function, Grad𝑡(⋅) denotes the partial 
time derivative of the output 𝑢𝛩̄ and 𝑞𝜃(𝐱, 𝑡) denotes the learned param-
eterized source emissions. Alternatively, the function to define ∇.𝐽 can 
also be represented with a known basis such as a polynomial basis. This 
can be used when trying to decipher the important variables affecting 
the diffusion/advection terms. Eq. (5) thus modifies to
𝑞𝜃(𝐱, 𝑡) = Grad𝑡

(

𝑢𝛩̄
)

+ 𝛩̂1
([

𝑢𝛩̄, 𝐱𝑎𝑡𝑚
])

,

where ([𝑧1,… , 𝑧𝑛]) = [1, 𝑧1,… , 𝑧𝑛, 𝑧1𝑧2,… , 𝑧𝑛−1𝑧𝑛, 𝑧21,… , 𝑧2𝑛].

3.1. Inverse dispersion based framework (iDIRNN) for emission estimates

In order to estimate source emissions and identify active tailing, 
we modify the constraint to satisfy inverse dispersion models that aim 
to quantify emissions when concentrations are given. Given a source 
emitting gas at a continuous and unknown rate 𝑞 kg/s, suppose the 
time-average gas concentration above background denoted by 𝐶 − 𝐶𝑏
(where 𝐶 is the measured concentration and 𝐶𝑏 is the background 
concentration) is measured at some point 𝑀 . Then the emission using 
inverse dispersion modeling is given as
𝑞 = (𝐶∕𝑄)−1𝑠𝑖𝑚(𝐶 − 𝐶𝑏),

where (𝐶∕𝑄)𝑠𝑖𝑚 denotes the ratio of concentration at 𝑀 to the source 
emission rate predicted by an atmospheric dispersion model. While the 
equation seems pretty straightforward, prediction of (𝐶∕𝑄)𝑠𝑖𝑚 is not 
trivial and often ill-conditioned. Different types of dispersion models 
(e.g., Gaussian plume, K-theory) make this calculation with different 
levels of sophistication. Realistically, models should take into account 
average wind and turbulence statistics of the atmosphere along with 
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possible dispersion of the source and how it relates to the concentra-
tions. Various numerical methods as well as prior emission estimates 
may be needed to solve the problem (Vojta et al., 2022).

In iDIRNN, using inputs [𝐱𝑑𝑖𝑙 , 𝐱𝑎𝑡𝑚, 𝐭]𝑇 ∈ R𝑑+1 we still learn 𝑢𝛩̄ from 
fitting the model to observed concentrations as in Eq. (4), however the 
constraint is now based on finding source emissions 𝑞 from the above 
equation. We parameterize the inverse of influence function (𝐶∕𝑄)𝑠𝑖𝑚
as a neural network so that the constraint in Eq. (5) becomes, 
𝑞𝜃(𝐱, 𝑡) = 𝛩̂3𝜎

(

𝛩̂2𝜎
(

𝛩̂1
[

𝑢𝛩̄, 𝐱𝑎𝑡𝑚
]))

. (6)

Note that in this formulation, the term 𝐶𝑏 term is balanced out by 
the bias terms present in estimating emissions and concentrations. This 
offers multiple advantages: (1) the formulation lets the model automat-
ically learn from given data; (2) it is useful for various applications 
where data and understanding of the dynamics is limited. We first 
train the model on our datasets. In order to get emission estimates, 
we replace 𝑢𝛩̄ in Eq. (4) with the concentration data measured by the 
weather station into the trained model. The emission estimates per day 
are then added up to get cumulative emissions over a given year.

3.2. Model architecture, training and validation analysis

Algorithm 1 Model training using proposed framework
Require: Input data 𝐱 = [𝐱𝑑𝑖𝑙 , 𝐱𝑎𝑡𝑚, 𝐭], observed data 𝑢, emission func-

tion 𝑞(𝐱), observations indices set 𝑜𝑏𝑠, physical constraint 𝐹 , model 
architectures for learning 𝑢𝛩̄ and 𝜙𝛩̄, penalty parameter 𝜆.

1: for 𝑗 in epochs do
2:  𝑦 = 𝑢𝛩̄(𝐱); 𝑧 = 𝜙𝛩̄(𝑦, 𝐱𝑎𝑡𝑚).
3:  Update 𝛩 = [𝛩̄, 𝛩̂] by minimizing the loss,

1
|𝑜𝑏𝑠|

‖𝑦 − 𝑢‖22 +
𝜆

|𝑜𝑏𝑠|
‖𝐹 (𝑧, 𝑦, 𝑞)‖22

4:  if Sparse Parameters == True then
5:  for k in size(𝛩̂) do
6:  if |𝛩̂𝑘| < 10−4 then
7:  𝛩̂𝑘 = 0
8:  end if
9:  end for
10:  end if
11: end for

Output: Concentrations 𝑦 and emissions 𝑧

The entire dataset contains 1096 daily measurements dated between 
January 1, 2020 to December 31, 2022. Dataset for the year 2023 is 
built separately for testing the trained model(s), consisting of 365 sam-
ples to predict emissions and concentrations from the trained model. 
The training dataset is standardized between 0 and 1 to avoid unneces-
sary bias of input features with a larger scale. The conversion between 
different units of measurement between emission and concentration 
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data are implicitly taken care of while model training. The model was 
trained on 80% of the samples from the dataset with up to 10,000 
iterations. The training loss for all the stations fell below 10−4.

Given the size of our dataset, we use three layers with 500 and 
200 neurons each to learn 𝑢𝛩̄ and 𝜙𝛩̂, respectively. For optimizing the 
weights, we use a stochastic gradient descent (SGD) algorithm with 
learning rate optimized between 10−2 and 10−3, and momentum 0.9. 
Since the data from weather monitoring stations are noisy, we use an 
𝓁2 based weight decay parameter of 10−3 in the SGD algorithm to avoid 
overfitting. For 10 random initializations, we train the iDIRNN model 
and calculate the estimated emissions using real concentration data 
for the years 2020 and 2021 (true emission data from companies is 
only available for these two years). The model whose cumulative CH4
estimations are closest to the true emissions as reported in official doc-
uments is picked for further analysis. All codes were written in Python 
3.10.9 and can be found at https://github.com/esha-saha/champ. The 
pseudocode for model training is given in Algorithm 1. We extrapolate 
our results to obtain total emissions from all OSTPs using the sample 
mean of emissions computed for the selected OSTPs. Since official 
statistical data reports CH4 emissions in terms CO2 equivalent, we 
convert our estimations to similar units accordingly for comparison.

4. Results

We discuss the model simulation outcomes with respect to two 
objectives: (i) forecasting methane emissions and concentrations from 
tailing ponds jointly; (ii) identifying active OSTPs and their emissions 
levels to analyze their impacts with respect to the overall CH4 emissions 
in Canada.

4.1. Methane forecasts from tailing ponds

Given the mass of industrial waste in a given OSTP and the meteoro-
logical conditions around them, DIRNN is trained to predict CH4 emis-
sions from the pond and its corresponding concentration at the closest 
weather monitoring station. Fig.  3 and Table  1 suggest that different 
representations have similar predictive power. Other representations 
such as a simple Recurrent Neural Network (RNN) without dispersion 
constraints, Long-Short-Term-Memory (LSTM) (as defined in Appendix 
A) performed poorly in comparison to our proposed model. The results 
demonstrate a seasonal and diluent-dependent relationship between 
methane concentrations and source emissions using a data-driven ADM. 
We found an increasing/decreasing trend of methane concentration and 
emissions based on input data consisting of atmospheric variables and 
hydrocarbon degradation data. A direct connection between emissions 
and concentrations is established through our model indicating a rise in 
atmospheric CH4 concentration levels right after increased emissions. 
Majority of our predictions fall within the 95% confidence bound, 
which was found to be narrower on training data as expected, and 
comparatively wider for the validation set as those predictions are 
based on unseen data. Since the concentration data is noisy, we also 
see noise/oscillations in fitting of the emission data, which is discussed 
in detail in Section 5.

As with any machine learning algorithm, the model training is 
affected by the quality of training data which is what creates a dif-
ference in performance depending on the station under consideration. 
For CH4 concentration data station Mannix has the highest variance of 
0.12 with maximum and average CH4 concentrations being 4.56 ppm 
and 2.21 ppm respectively, followed by station Mildred Lake with a 
variance of 0.05, and maximum and average CH4 concentrations being 
3.95 ppm and 2.1 ppm respectively. Station Lower Camp has lowest 
variance of 0.03 with maximum and average CH4 concentrations being 
3.36 ppm and 2.001 ppm respectively. From the relative errors in Table 
1, it can be seen that lower the variance, better the performance of the 
models. This happens as data-driven models tend to have larger biases 
in predicting the extreme values, especially in data-scarce training 
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Table 1
Average of relative training and validation errors for predicting concentrations 
and emissions from each station and its corresponding tailing pond. For each 
column (station), the two lowest errors are highlighted. DIRNN𝑓𝑜𝑟𝑤𝑎𝑟𝑑 and 
DIRNN𝑝𝑜𝑙𝑦 denotes the training framework that uses forward dispersion model 
to predict concentrations from emissions. iDIRNN refers to the framework us-
ing reverse dispersion model that learns the emissions given the concentrations.
 Concentration Emission

 Mannix LC ML Mannix LC ML  
 DIRNN𝑓𝑜𝑟𝑤𝑎𝑟𝑑 0.5425 0.3101 0.5814 0.0992 0.1615 0.0517 
 iDIRNN 0.6566 0.4301 0.5702 0.1085 0.1369 0.0543 
 DIRNN𝑝𝑜𝑙𝑦 0.4624 0.3140 0.4225 0.5380 0.1977 0.0942  
 RNN 0.6239 0.4314 2.1859 0.0661 0.0737 0.7127  
 LSTM 0.6454 0.3914 0.5550 0.2426 0.2568 0.0711  

regimes such as in this scenario. However, as we use other physical 
constraints in our framework, the model can outperform other models 
even with datasets with higher levels of noise and variation.

To test our model’s long term CH4 concentration predictive capac-
ity, we obtain predictions for the year 2023 and compare it with the 
observed data. Fig.  4 shows that the trained model accurately estimates 
emissions from OSTPs up to one year ahead. For predicting concentra-
tions, the model can suggest future trends, with better data fitting when 
the true data is closer to the mean CH4 levels. However, the variation 
is larger (for higher recorded observation) since the real-time data 
is noisy and the model ignores extreme large values as outliers. Our 
results indicate that with current levels of oil sands activity and similar 
meteorological parameter readings (temperature, humidity, etc.), there 
will be no improvement in CH4 concentrations in the region.

4.2. Identification of CH4 sources around weather stations

Due to the Athabasca region being located so further up in the 
North, a lot of the existing remote sensing methods for continuous 
monitoring of emissions are not directly applicable. The satellite data 
is often of poor quality (due to low sunlight, especially during winters 
and/or cloud cover). Other data measurement techniques (example, 
airplanes or drones) generally do not differentiate between multiple 
sources of emissions and are mostly expensive to carry out on a regular 
basis. Thus, to build a CH4 emission monitoring method, we train the 
proposed model using the reverse formulation of ADM to estimate daily 
emissions 360 degrees around a selected weather station. Once trained, 
we replace the input 𝑢𝛩̄ in Eq. (6) with true CH4 concentration data 
from weather monitoring stations to obtain daily emission estimates 
from the tailing ponds. Daily predicted emissions are summed up to 
obtain cumulative emissions for each year between 2020 to 2023 and 
is given as a radial plot in Figure C.27. To compare emission levels 
over a period of three years, we plot the emissions for the year 2020 
and 2023 in Fig.  5. The two major reported OSTPs (MLSB and Pond 
2/3) and abandoned pond/EPLs (Pond 5 and WIP) are marked on 
the map. For weather monitoring stations in the vicinity of inactive 
ponds, we used a trained model from another appropriate station to 
get emission estimates. For example, since WIP lake (an inactive pond) 
near station Buffalo is owned by Syncrude, we can use a model trained 
with Syncrude’s data to get emission estimates around it. Here we used 
the model trained for the Mildred Lake station. For each station we see 
the estimated emissions are highest from the direction of tailing ponds. 
Both Mannix and Lower Camp indicate that CH4 emissions from Pond 
2/3 are more than 850 tonnes (t) per year every 20 degree interval. 
Each year, station Mildred Lake captures more than 4500 t of CH4
emissions from the direction of MLSB. The other inactive ponds (WIP 
and Pond 5) are often ignored as a significant sources of CH4 emissions 
as there is no inflow of diluents. However, using the dataset of station 
Buffalo, iDIRNN estimates more than 2000 t of emissions coming from 
the direction of WIP lake and about 1900 t of CH  from Pond 5. These 
4
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(a) Mannix

(b) Lower Camp

(c) Mildred Lake

Fig. 3. Results for predicting CH4 concentrations and emissions using a neural network based representation of the dispersion/advection terms in ADM. The green 
dashed line indicates the data split between training and validation set. For concentrations, the model accurately captures the seasonal nature of concentrations 
as well as the emissions based on given input data. The model predictions always fall within the 95% confidence of interval.
 
(a) Mannix

  
(b) Lower Camp

  
(c) Mildred Lake

 

Fig. 4. Scaled values (between 0 and 1) of true versus predicted CH4 concentrations and emissions in 2023 for stations Mannix, Lower Camp and Mildred Lake 
using a neural network representation of the dispersion/advection terms in the ADM. The trained model accurately forecasts concentrations and emissions for 
one year when trained on historical data, suggesting future trends based on different levels of input data.
significant levels of emissions from Pond 5 can also be cross-verified 
with the results obtained for stations Lower Camp and Mildred Lake. 
While perfect sectoral disaggregation of sources is challenging, the 
choice of weather stations (close to OSTPs with no other CH4 source 
in between), use of radial wind directions as established in prior works 
and the fact that CH4 is generally measured within 5–15 m from the 
ground (indicating that CH  does not disperse very far from its source, 
4
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thus the concentration recorded at the station has a source nearby) 
gives a strong indication of OSTPs being CH4 emission sources.

Upon comparing the plots for the years 2020 (left) and 2023 (right) 
in Fig.  5, we see that there has been a significant increase in emissions 
over the three years by at least 100 t in each of the 20 degree wind 
direction interval near the tailing ponds. Both MLSB and Pond 2/3 have 
started contributing higher amounts of CH . For year 2023, we also 
4
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Fig. 5. Estimation of yearly CH4 emissions (in t) from all wind directions around each station for 2020 (left) and 2023 (right). Estimated emissions are highest 
from the direction of OSTPs, with MLSB emitting 4500t per year and Pond 2/3 emitting more than 850 tonnes (t) per year every 20 degree interval. Abandoned 
lakes such as WIP and Pond 5 also emits more than 2000t of CH4 per year. Please note that the round plots are for demonstration purpose and are not to scale. 
Latitude and longitude coordinate ranges given in 𝑋 and 𝑌  axis.
find elevated emissions for both Mannix and Lower Camp with wind 
directions 20–140 degrees and 60–140 degrees respectively, coming 
from OSTPs (such as Pond 8 owned by Suncor or similar sources in 
the area) south-east of the stations across the Athabasca river. Some 
other directions with lower emission levels of about 700–900 t (West 
of Mannix, South-East of Buffalo, SW of Lower Camp), all correspond to 
either in-situ facilities, industrial activity or inactive tailing ponds. Note 
that, the confidence interval for the emission predictions were similar 
to that obtained earlier in Fig.  3. However, since visualization of the 
interval is challenging in a radial plot, we have not included them in 
Fig.  5.

5. Discussion

Atmospheric CH4 can be affected by natural as well as anthro-
pogenic factors. In order to build a reliable framework, DIRNN was 
trained by connecting all possible dynamics connected to CH4 emissions 
from OSTPs and the air quality in the region: MM of hydrocarbon 
degradation (Venegas Garcia, 2024; Kong et al., 2019), ADMs for 
CH4 dispersion (Stockie, 2011) and atmospheric data that drives at-
mospheric diffusion and advection. The two OSTPs used for dataset 
building are appropriate choices for representing majority of the OSTPs 
in the region mainly because of two reasons: (i) both of these ponds 
are not only big in terms of area but have also been previously found 
to emit much larger amounts of CH4 in comparison to other ponds; (ii) 
an important aspect of CH4 emissions from OSTPs is based on diluent 
composition which is determined by the owner company. Both these 
ponds take into account two of the major companies: Syncrude (now 
Suncor) and Suncor for our studies. These two ponds have been used 
in prior works frequently to study the extent of OSTP emissions (You 
et al., 2020; Small et al., 2015).

The model performances are compared based on both, plots and rel-
ative errors. Table  1 shows that for predicting concentrations, different 
parameterization of the ∇.𝐽 term can have similar predictive capabil-
ities (Andoni et al., 2014). The differences in the model performances 
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between stations are attributed to the quality and quantity of data 
available for building the dataset. External factors such as the proximity 
of OSTPs to the weather stations, height of measurement sensors, 
etc. can affect data quality. For example, hypothetically if one of the 
stations were to be on a cliff (e.g. WBEA Stony Mountain, not used in 
the paper) it is more likely to be affected by high wind speeds (Solano 
et al., 2021), thus leading to a noisy dataset. Since the concentration 
data is noisy, we also see noise/oscillations in fitting of the emission 
data (also known as Gibbs phenomenon oscillations in literature) which 
is common in literature with model learning using noisy data (Berry 
and Harlim, 2016). Underlying model can be successfully recovered 
even with noisy data as long as the variation of noise is low (Tran 
and Ward, 2017) and the fitted function lies within the confidence 
of interval, thus controlling range within which the true values are 
expected to lie. Previous works have showed that Gibbs phenomenon 
does not majorly affect global generalizability of model approxima-
tion, and that different techniques of filtering illogical approximations 
(for example, negative values in a positive function approximation) 
is acceptable (Gottlieb and Shu, 1997; Berry and Harlim, 2016). The 
CH4 concentration data collected for station Mannix has the highest 
variance of 0.12, followed by station Mildred Lake with a variance of 
0.05, and then station Lower Camp with a variance at 0.03. From the 
table of relative errors (Table  1), it can be seen that a lower the variance 
improves the performance of the models. This happens as data-driven 
models tend to have larger biases in predicting the extreme values, 
especially in data-scarce training regimes such as in this scenario. 
Superior model performance for the station Lower Camp can also be 
attributed to its restricted range of wind direction during the dataset 
building stage, making the input dataset more less noisy in comparison 
to other stations. Note that since the ponds are owned by different 
companies, the hydrocarbon degradation dynamics can differ based on 
the chemical composition of diluents used, as well as the accuracy of 
the data reported by the companies. Although emission predictions are 
slightly noisy, it does not affect the generalization power of our trained 
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Table 2
Comparison of CH4 emission estimates for Pond 2/3 obtained from prior works 
and inverse dispersion modeling software WindTrax. Note that all the estimates 
are made for different years and may not be comparable directly. Units from 
original works are converted to tonnes per year for the 2.8 km2 OSTP Pond 
2/3.
 Name/Method Year Emission (t/y) 
 Small et al. (2015) 2015 2657.2  
 You et al. (2020) 2016 3876.6  
 You et al. (2020) 2018 11344.2  
 Windtrax (Crenna, 2016) 2021 5518  
 DIRNN 2020–2023 3498.75  

model as it preserves the overall trends on unseen data for both the 
quantities.

In the reverse formulation of the model, we use the trained model 
to monitor emissions from all the direction around each weather mon-
itoring station. We consider the real concentration data along with 
the weather parameters inside the trained model to track emissions 
and possible sources (replace the input 𝑢𝛩̄ in Eq. (6) with true CH4
concentration data). Thus, for sources such as OSTPs (or other sources 
emitting CH4 from diluent degradation) the model can be used as a 
tool to monitor emissions around weather stations. Since abandoned 
ponds and EPLs are often ignored as sources, our goal is also to monitor 
these tailings for emissions. A thorough analysis of emissions over four 
years in Figure C.27 shows that emissions from active OSTPs are not 
only increasing every year, some of the other inactive ponds/EPLs 
such as WIP and Pond 5 could also be significant sources of CH4
emissions. Overall, our estimates show an underestimation in official 
reports (Canadian Centre for Energy Information, 2025; Government 
of Alberta, 2022) atleast by a factor of three.

5.1. Comparison to other works and data

In order to put our emission estimates into the context of existing 
literature, we take a look at the trend of emission estimates from 
previous works in Table  2. Note that since these studies were con-
ducted across a span of last ten years, the emission estimates vary. In 
fact, they may also vary for different methods within the same year 
depending on the estimation method used. We include estimates using 
WindTrax (Crenna, 2016), a Lagrangian stochastic particle based model 
and calculated with parameters in You et al. (2020). Note that using 
WindTrax with limited weather station input data for 2020–2023 (such 
as from Lower Camp) leads to highly unstable results, with unrealistic 
outputs varying over 105t per year. Thus, the outputs from those years 
are excluded from Table  2. Our estimates are based on emissions 
averaged over the four years 2020–2023 calculated from the station 
Lower Camp (or Mannix; both give similar estimates). CH4 emissions 
using iDIRNN fall within the overall range of what is suggested by 
previous works. Our estimations of 3498.75 t/y are close to results 
showed by most of the estimations in You et al. (2020), Small et al. 
(2015). Note that due to different time periods, it may be hard to 
pinpoint which technique is the most accurate one.

The results underscore the need to increase efforts in accurately 
estimating CH4 emissions and concentrations owing to its environmen-
tal and health impacts. Oil sands activities contribute significantly to 
GHG emissions and in particular are regarded as sources of pollu-
tion (Schindler, 2014; Liggio et al., 2016; Yu and Zahidi, 2023). From 
the perspective of environmental effects, mining and extraction of oil 
sands is directly associated with deforestation and release of sulfur 
oxides, nitrogen oxides, hydrocarbons, and fine particulate matter, etc. 
Further, CH4 reacts with hydroxyl radical leading to the formation of 
ground-level ozone, which is a harmful and toxic air pollutant. While 
current levels of CH4 concentration do not have direct health impact 
(∼ 2 ppm–4.5 ppm), consequent displacement of oxygen, and ozone 
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formation can cause symptoms such rapid heart rate, fatigue and other 
health affects from lack of oxygen and increased air pollution (Adgate 
et al., 2014; Government of Canada, C. C. for O. H. and S., 2024). 

Our study also aims to extend the growing body of research empha-
sizing on the role of machine learning in promoting sustainable prac-
tices, and efficient resource utilization. By integrating physics-informed 
deep learning into the monitoring and estimation of methane emissions 
from oil sands tailings ponds, our work contributes to the advancement 
of cost-effective environmental monitoring systems, offering tools for 
improving accountability, resource management, and regulatory com-
pliance within the oil and gas sector industries. By making emission es-
timation scalable, accurate, and physically grounded, our methodology 
enhances decision-making capacity for governments, industries, and 
communities alike, promoting a fairer distribution of environmental 
responsibilities and better-informed climate governance. 

5.2. Model uncertainties, limitations and future work

Being significantly data dependent, the training and results of our 
framework are limited to quality and quantity of available data. The 
data can be highly variable and prone to noise. For example, calibration 
errors, human recording errors, etc. The averaging step of processing 
the atmospheric data helps to ensure that noise in the data is reduced. 
The hybrid machine learning model also has a possibility of overfitting 
and unstable training. To avoid this, the results were based on the 
median values of multiple rounds of model training and validation with 
carefully tuned hyperparameters. Also note that the same trained model 
may not be applicable to other OSTPs without retraining. A model 
trained on one OSTP (and weather station) can be used on another 
location only if all the following conditions are met: (a) the OSTP 
under consideration is owned by the same company ensuring that the 
chemical composition of diluents remain the same; (b) it is located in a 
region with similar distribution of input parameters (similar weather 
conditions and/or diluent composition); (c) close proximity to the 
original OSTP and the weather monitoring station. For example, in 
order to get results for OSTPs owned by Shell or CNRL, we would need 
to retrain the model as (a) diluent composition of these companies 
are different; (b) they are far from the OSTPs we trained our model 
on. Since the model training is quick, if data is available, we would 
always recommend retraining to get the most accurate and reliable 
results. Future potential of this work is vast and includes improving 
MMs through advanced lab experiments, incorporating data from all 
directions around the weather stations to account for all possible CH4
emitting sources and modeling the affects of these emissions on climate 
change. 

6. Conclusions

In this paper, we developed a hybrid machine learning approach 
for predicting methane emissions and concentrations jointly. Our model 
formulation was based on learning the atmospheric methane concentra-
tions using data obtained from weather monitoring stations subject to 
atmospheric dispersion models. We use a recurrent neural network style 
formulation to learn both, methane concentrations and the unknown 
functions in the constraints. Our input dataset included measurements 
from weather monitoring stations located within 4 km of active OSTPs 
and emission data obtained from solving different methanogenesis 
models. Along with providing accurate forecasts for CH4 emissions and 
concentrations, our model results indicated significant emissions from 
both active and abandoned OSTPs, suggesting atleast three times under-
estimation in existing official reports. Our results using the proposed 
approach were consistent with existing estimates and outperformed 
other classical machine learning approaches. As a part of future work, 
we plan to incorporate sources from all the wind directions into the 
framework by either using additional constraints based on existing 
mathematical models of various methane sources or by incorporating 
aspects of remote sensing to gather data of methane emissions around 
the OSTPs.
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