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ARTICLE INFO ABSTRACT

Dataset link: https://github.com/esha-saha/ch Bitumen extraction for the production of synthetic crude oil in Canada’s Athabasca Oil Sands industry has
amp recently come under spotlight for being a significant source of greenhouse gas emissions. A major cause of
concern is methane, a greenhouse gas produced by the anaerobic biodegradation of hydrocarbon in oil sands
residues, or tailing, stored in settle basins commonly known as oil sands tailing ponds. In this work, we build
a data-driven modeling framework to determine the methane emitting potential of these tailing ponds and
have future methane projections using a Dispersion based Recurrent Neural Network (DIRNN). We show that
our method can predict both methane emissions and concentrations by considering the transport of methane
emissions in air, thereby outperforming existing other deep learning approaches. Using a reverse dispersion
modeling approach, we use our trained model to identify active ponds and estimate about 56,303 tonnes of
methane (1.5 million tonnes of carbon dioxide equivalent) emissions from the Athabasca oil sands tailings. Our
results are consistent with previously reported emission estimates from various studies, and indicate atleast
three times underestimation in official reports.
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1. Introduction is often infeasible due to expensive measurement technology, toxic air

quality or hard to obtain permit requirements (Sysoeva et al., 2025).

Anthropogenic sources of greenhouse gases (GHGs) are the major
drivers of climate change with methane (CH,) having the second
largest share of emissions in the atmosphere after carbon dioxide (CO,).
Although the comparative impact of CH, is 28 times greater than CO,
over a 100-year period (US EPA, 2024), it has a shorter lifespan of
12 years, which makes CH, mitigation policies a cost-effective short-
term approach to combat global warming (Flannigan et al., 2009;
Sysoeva et al., 2025). Oil sands activities contribute significantly to
GHG emissions and in particular are regarded as sources of pollu-
tion (Schindler, 2014; Liggio et al., 2016; Yu and Zahidi, 2023). The
mining and extraction of oil sands is directly associated with deforesta-
tion and release of sulfur oxides, nitrogen oxides, hydrocarbons, and
fine particulate matter, etc. The oil sand tailing ponds (OSTPs) contain
toxic industrial wastes that can leak into fresh water sources affecting
aquatic ecosystems. Moreover, OSTPs emit significant quantities of
CH, from toxin degradation by anaerobic bacteria (Siddique et al.,
2007; Michel et al., 2024) leading to elevated levels of CH, in the air.
Frequent onsite data collection for a detailed understanding of OSTPs
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Prior OSTP related methane modeling efforts involve controlled
laboratory experiments, whose results are used to build mechanis-
tic models (MM) of CH, emissions (total mass of CH, released in
atmosphere from source in a time interval) from toxin/hydrocarbon
degradation by bacteria in OSTPs (Kong et al., 2019; Venegas Gar-
cia, 2024). Since experimental limitations lead to exclusion of many
relevant parameters such as temperature, pressure, wind speed, etc.,
MMs cannot be used to accurately assess methane concentration levels
(the amount of CH, in the air at a given place and time). Infact,
the relationship between emissions and concentrations can be better
described by atmospheric dispersion models (ADMs) (Stockie, 2011;
Das et al., 1998; Mohan and Siddiqui, 2002). However, simple ADMs
like the Gaussian plume or puff models (Stockie, 2011; Mikkelsen et al.,
1987) are unrealistic due to multiple modeling assumptions, while
the realistic formulations are highly complex and non-linear, and may
require high computational resources to be solved numerically. For
example, refer to the model formulation of AERMOD (Cimorelli et al.,
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2005), a well-known software developed by Environmental Protection
Agency (EPA). One needs an understanding and data availability of
multiple parameters woven through 30+ equations in order to solve the
model. Other similar softwares include CALPUFF, FLEXPART, Wind-
Trax, etc (Bakels et al., 2024; Bonifacio et al., 2013; Tagliaferri et al.,
2022).

Data-driven techniques, on the other hand, offer a cost-effective and
powerful alternative to classical modeling in the field of Environmental
Sciences, both from the perspective of modeling complex phenomenon
as well from the socio-economic modeling of policy gains. From a socio-
economic and policy standpoint, data-driven approaches can enable
low-cost, high-resolution tracking of industrial methane emissions, es-
sential for stakeholders such as regulators, environmental agencies, and
oil sands operators. Moreover, machine learning techniques are increas-
ingly being applied to stock markets and energy pricing models (Kumar
et al., 2025; Basher and Sadorsky, 2025; Jin and Xu, 2024; Cheng
et al., 2025) including coal and carbon pricing models. These models
help policymakers and analysts simulate the effects of emissions-based
taxation under various economic conditions by capturing the non-
linear dependencies between fuel demand, carbon markets, and policy
shifts (Islam et al., 2025; Jin and Xu, 2024a; D’Orazio and Pham, 2025;
Jin and Xu, 2025). These applications not only inform government
strategy but also assist energy firms in optimizing operations.

For applications in modeling environmental phenomenon, some
well-known machine learning architectures used for analyzing and
predicting various atmospheric gases include Random Forests (RFs),
neural networks(NN), recurrent neural networks (RNNs), long short-
term memory (LSTM), bidirectional LSTM, stacked LSTM, and gated
recurrent unit (GRU) (Xie et al., 2019; Tong et al., 2019; Luo et al.,
2023; Hu et al., 2021; Hamrani et al., 2020; Meng et al., 2022; Hou
et al,, 2022). Other data-driven methods use satellite images as an
effective way to build a dataset for the purpose of training classifiers
to identify active OSTPs so that only high risk ponds may be closely
monitored (Yu and Zahidi, 2023; Psomouli et al., 2023; Qu et al., 2024).
Some recent works have used satellite data to detect CH, emissions
across Canada (Yazdinejad et al., 2025; Zambrano-Luna et al., 2025).
However, data collected by satellites is expensive, hard to process and
sparse making them less useful for models where frequent data collec-
tion is the key to proper model training. Machine learning models can
also be trained for effective risk prediction of OSTPs as an alternative to
standard monitoring systems, which are often expensive and have poor
lightning protection abilities (Yang et al., 2020). While most existing
models (both mechanistic and data-driven) can perform well on esti-
mating emissions from tailing ponds or predicting concentrations, an
understanding of how atmospheric concentrations of CH, gets affected
by emission sources are limited (Koushafar et al., 2023).

In order to fill this gap and track emission sources, we propose a
novel Dispersion based Recurrent Neural Network (DIRNN) framework
that can successfully use the dynamics of CH, emissions from OSTPs
to predict concentrations in the atmosphere by preserving the physics
of CH, dispersion in air. With an unique hybrid approach yet to be
used widely in environmental modeling, given a dataset consisting
of atmospheric variables (collected from weather monitoring stations
around an OSTP) and hydrocarbon degradation (simulated from solving
MMs) in an OSTP, our dispersion informed trained model can success-
fully predict CH, emissions and concentration levels near the OSTPs,
outperforming other deep learning models. Instead of treating these
two quantities separately, the proposed model enforces constraints
based on atmospheric dispersion (advection—diffusion dynamics) to tie
together emission and concentration. Model training using constrained
optimization with penalty ensures balance between data fitting and
physical consistency. Further, we show that our trained model is ca-
pable of giving emission estimates for various OSTPs, irrespective of
whether they were included in the training dataset or not, as long
as they are in a close proximity to each other. This is made possible
due to the reverse dispersion penalty from physical equations that
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enables daily emission estimation from multiple directions around
weather stations, without direct sampling of each site. The novelty
of our proposed model lies in various aspect of the framework which
include (but are not limited to) model design (physics-constrained neu-
ral network using atmospheric transport), emission inference (inverse
modeling of CH, sources from ambient data and wind direction), source
attribution (directional decomposition of emissions), joint modeling
(emissions and concentrations estimated simultaneously) and discovery
of underestimated emissions, including from inactive ponds.

The paper is arranged as follows. We discuss the region of interest,
data collection techniques and processing in Section 2, followed by the
model framework in Section 3. The results are discussed in Section 4
with the discussion and conclusions in Sections 5 and 6, respectively.

2. Study area, data collection and preprocessing

Oil sands tailings are the by-products generated after separating
bitumen from oil sands. These tailings are stored in large engineered
reservoirs known as oil sands tailings ponds (OSTPs) (Foght et al.,
2017). They are composed of a mixture of sand, silt, clay fines, pro-
cess water, and small amounts of unrecovered hydrocarbons from the
extraction process (Gosselin et al., 2010). When first deposited into
an OSTP, fresh tailings are mostly water (~ 85%), containing about
8% mineral fines and less than 1% unrecovered hydrocarbons. Over
time, the fine particles gradually consolidate, eventually forming dense
layers called mature fine tailings (MFT) with more than 30% solids
near the pond bottom (Foght et al., 2017). Tailings temperature varies
with depth, ranging from roughly 12 °C at 6 m (m) to about 22 °C
at 30 m below the mudline (Penner and Foght, 2010; Ramos-Padrén
et al., 2011). The process water is typically alkaline, with a pH of about
8.5. Chemically, tailings contain residual hydrocarbons and soluble
electron acceptors such as sulfate and iron; in some cases, gypsum is
added to accelerate consolidation. Direct data collection from OSTPs is
challenging due to hard to obtain permit requirements.

Given a dataset consisting of atmospheric variables (collected from
weather monitoring stations around an OSTP) and hydrocarbon degra-
dation (simulated from solving the MMs built using laboratory con-
trolled experiments) in an OSTP, we are interested in building a ma-
chine learning model that can predict both methane concentration and
emission simultaneously. Thus, the input to the proposed framework
includes various parameters that directly or indirectly affect atmo-
spheric methane concentrations. The model considers three types of
input data: (i) x,;; denoting the degradation of hydrocarbons in OSTPs
and obtained from solving MMs in literature; (ii) x,, representing
atmospheric parameters such as ambient temperature, wind speed,
wind direction, solar activity, etc; and (iii) time vector t. These three
inputs Xz, Xgm» and t together form the input x and are used to
define the model and its corresponding minimization problem. In this
section, we discuss the study area (Section 2.1) and the technique
of dataset building. The meteorological data collection from weather
monitoring stations is discussed in Section 2.2 and simulated data from
experimentally validated MM (which estimates methane emissions and
hydrocarbon degradation in active OSTPs) is discussed in Section 2.3.

2.1. Study area

Our region of interest is located in the industrial area around Syn-
crude and Suncor Base Plants in the Athabasca Oil Sands deposits. The
region contains multiple weather monitoring stations (some located
near the oil sands mining areas) under the Wood Buffalo Environmental
Association (WBEA) (Wood Buffalo Enviornmental Association, 2024)
that measures hourly data of the ambient air quality and meteorological
parameters. Overall elevation of the WBEA region is about 200-300 m
above sealevel. Lower Camp is located by the Athabasca River Valley
at about 115 m south of the Syncrude pump house and 238 m above
sealevel. It has an active OSTP ‘Pond 2/3’ approximately at a distance
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Fig. 1. Region of Wood Buffalo with all the weather monitoring stations of interest and main OSTPs and/or EPLs. Selected stations: Mannix (‘Pond 2/3’
approximately 1.4 km northwest of the station); Lower Camp (‘Pond 2/3’ approximately 3.5 kms southwest and ‘Pond 5’ about 1.4 kms west of the station,
respectively); Mildred Lake (‘Mildred Lake Settling Basin’/MLSB approximately 1.7 kms northwest and ‘Pond 5’ approximately 2.1 kms southeast of the station,
respectively); Buffalo (‘West-In-Pit’/WIP at 0.8 kms northwest of the station). The orange polygons depict the oil sands tailings ponds. The blue water inside
the orange polygons depict the main water body. However, since tailings also include a semi-solid mixture of sand, silt, clay fines, and unrecovered industrial
chemicals around the water-filled area, the overall area of tailings may differ and is highlighted separately in orange.

of 3.5 kms southwest of the station and an abandoned OSTP ‘Pond 5’
approximately at 1.4 kms, both owned by Suncor. Located at 332 m
above sea level, Mannix station is less than 5 km from the Suncor
base plant whose land use segregation is between 0-180 degrees of the
station. There are no airflow restrictions and an active OSTP ‘Pond 2/3’
owned by Suncor is located approximately 1.4 kms northwest of the
station. Mildred Lake is Located within 400 m of the Syncrude airstrip,
the station sits at 314 m above sea level and within 5 km from the
Syncrude base plant on West. There is partial restriction of airflow in
North, South and West of the station by buildings and/or trees which
lie within 40-160 m. It has been measuring methane from December
2019 onwards. An active OSTP ‘Mildred Lake Settling Basin’/MLSB is
approximately 1.7 kms northwest of the station, owned by Syncrude,
and inactive ‘Pond 5’ is approximately 2.1 kms owned by Suncor.
Buffalo station sits at 315 m above sea level and less than 5 km from the
Syncrude base plant and 0.8 km from an OSTP. There is no restriction
of airflow. The land use segregation reports oil sands plant in 0-90
degrees and 271-360 degrees of the station. It is nearest pond, ‘West-
In-Pit’/WIP is presently converted to an EPL and sits at a distance of
0.8 kms northwest of the station. The study area is given in Fig. 1.

Note that out of the four selected stations, we build datasets using
the stations that are associated with ‘active’ OSTPs only, because source
estimations using MMs are based on experiments modeled after ‘active’
OSTPs. We classify an OSTP to be ‘active’ if it there is continuous
inflow of diluents (industrial residues). Based on available data and
information on OSTPs, we select stations Mannix with Pond 2/3, Lower
Camp with Pond 2/3 and Mildred Lake with MLSB for building the
dataset.

2.2. Dataset creation from on-field data

For d > 1 and number of days k, suppose the input—output pairs are
denoted by {(x,.y,)}*_,, With x = [x,,,, Xz;] € R? and y = [y*", y*""] &
R2. The vector x, consists of various input variables sampled across
k timesteps (days) and the two-dimensional vector y, consists of the
CH, emissions, and concentrations. For each k, the input vector x,
is built using data from two sources: atmospheric variables x,,, and
industrial/chemical component variables x,;,. Dataset for atmospheric
parameters x,,, and methane concentrations y;** is built from data col-
lected by the Wood Buffalo Environmental Association (WBEA) (Wood
Buffalo Enviornmental Association, 2024). The training dataset is built
only for stations near an active OSTP (MLSB and Pond 2/3 as reported
in Burkus et al. (2014)) (as the mechanistic models can only mimic
the kinetics of an active tailings pond). We pick the stations in a close
proximity to these active OSTPs that have no other methane sources
(for example, wetlands) between them.

For each station, we build the dataset by filtering observations with
wind direction ranges based on location of active OSTPs i.e., Mannix
(300-320 degrees), Lower Camp (160-180 degrees), and Mildred Lake
(300-340 degrees). The data from atmospheric variables denoted by
X, includes temperature, pressure, relative humidity, solar radiation,
etc and is collected hourly by weather monitoring stations under con-
sideration. Similarly, the WBEA dataset reporting CH, concentrations
is used to build one of the output dataset samples, y;°". The map of
the weather stations and OSTPs is given in Fig. 1. All variables used in
the input x,,,, is summarized in Table C.6.
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2.3. Data from experimentally validated model(s)

To build dataset for x,; and source emissions yo"”, we solve
MMs describing the properties and dynamics of methane production
in OSTPs, with appropriate parameters and initial conditions (Kong
et al, 2019; Siddique et al., 2008; Venegas Garcia, 2024). These
experimentally validated models are developed by considering the
most labile hydrocarbons present in the diluents/solvents used by each
of the oil sands companies. The models are generally represented
by a dynamical system whose general form is described in Eq. (1).
The system describes the degradation dynamics of each of the labile
hydrocarbon by methanogenic bacteria. For each fixed i (the value of i
depends on the number of labile hydrocarbons considered), the system
of equations are given as

dc;

ar = f(Ci,t,y15 -5 W)

dy; .

- = g(Cpt,y) forj=1,....k (@]
CHy = WCi,yp, . s Vi M5 )

where C; denotes each of the hydrocarbons, y; denotes other variables
in consideration (for example, other nutrients, biomass of microbes,
etc.) and p; denotes the set of constants corresponding to methane
production (for example, microbial efficacy, stoichiometric factor, etc.).
The exact nature of the functions f,g and h along with the other
parameters can be found in prior works on modeling methane emissions
from OSTPs (Kong et al., 2019; Siddique et al., 2008; Venegas Garcia,
2024).

In order to solve the MM, we use the monthly ‘Flared and Wasted’
category of “diluents” from (Alberta Energy Regulator, 2023) as the
total monthly inflow of hydrocarbons into the ponds. Based on prior
works that have studied possible chemical composition of these dilu-
ents (Kong et al., 2019; Siddique et al., 2006), we split this diluent
data into about 20 labile hydrocarbons. Note that we consider only a
small fraction of the diluents based on the OSTP Fine Fluid Tailings
(FFT) volume (20% for MLSB and 15% for Pond 2/3 i.e., only this
much amount of total reported diluents is assumed to be tossed into
the OSTPs) and divide it by the number of days per month to estimate
daily inflow of diluents in the MM. These hydrocarbons are assumed to
be subsequently used up by methanogenic bacteria leading to methane
emissions. A constant daily inflow of diluents is assumed i.e. the total
monthly diluent reported in Alberta Energy Regulator (2023) is divided
equally by the number of days in the month (to obtain the initial
conditions). The system is solved with a timestep of one day for a
month. This is done for all the months from January 2020 to December
2023 in order to build the dataset. This approach is similar to the tech-
nique followed in Venegas Garcia (2024). The hydrocarbon degradation
described by the MMs forms the dataset x,;,;. We experiment with x;,
built based on two methanogenesis models (Venegas Garcia, 2024;
Kong et al., 2019). The CH, values obtained using these models form
ye"". Note that when generating the data using the model proposed
in Kong et al. (2019), we identified a small number of generated daily
values (about 1% of values) that were not biologically realistic. We
considered these values to be numerical artifacts of simulation driven
by the stiffness of the model, and hence replaced each one with the
generated value for the day before it for the sake of simplicity and
biological fidelity.

Once all types of data is obtained, they are averaged and interpo-
lated to obtain sample points at the frequency of one data per day. For
example, variables from x,,,, are collected hourly, so they are averaged
over 24 h to obtain one sample per day. On the other hand, diluent data
is reported monthly by companies and hence interpolation technique is
used to fit a spline function and sample daily data points.

Journal of Environmental Management 395 (2025) 127748
3. Problem formulation and framework

The goal of the proposed research is to train a parameterized model
to track emissions from OSTPs using CH, concentrations. We incorpo-
rate the dynamics from MMs of OSTPs and physical constraints from
atmospheric dispersion models to train a machine learning framework
over a give period of time. The idea is to model the interactions
depicted in Fig. 2.

+ Diluents directly affect emissions from OSTPs. For example, more
diluents would directly lead to more hydrocarbon degradation
and thus more CH, emissions.

CH, emissions and concentrations are directly related to each
other. Increase in one of the quantities will automatically lead
to an increase in the other and vice versa.

Atmospheric parameters directly affect the concentration of CH,
but do not significantly affect the formation of CH, in the OSTPs
(for example, the wind direction or speed has nothing to do with
how the microbes degrade hydrocarbons at the bottom layer of
the OSTPs).

Diluents indirectly affect the concentrations by increasing emis-
sions which in turn increases the concentrations.

Thus, we combine all the variables (diluents and atmospheric data)
and use it as an input to a machine learning model. The output is then
combined with the data from atmospheric variables (only) and used
as an input to another machine learning model which is defined using
the atmospheric dispersion model equation(s). A detailed flowchart is
given in Fig. 2.

To optimize the weights and biases of DIRNN, the dispersion con-
strained optimization problem (Xu and Darve, 2022; Saha et al., 2023a;
Kashinath et al., 2021; Antonion et al., 2024) is modified to include
information from MMs as well as real-time data affecting concentra-
tions. For each ith observations in the set 7, suppose x; denotes the
(d + 1)—dimensional input vector and u; denotes observed output. Then
given a fixed function ¢ : RY*' — R describing emission dynamics
(from MMs), our modified constrained optimization problem aims to
find a function u : R%*! - R by solving the problem,

min —— 2 (u(x;) — u;)? subject to F(p(x,u),u,q) =0, )
¢ 1 Tops] €L

where F is the physical constraint with unknown function ¢. Since
we want to learn u from given measurements and ¢ is unknown, we
parameterize them with ug(x) and ¢4(x, u), respectively where O and
6 denote the unknown parameters to be learned through training.
Different function representation models such as sparse polynomial
approximation (Schaeffer et al., 2018), random feature models (Saha
et al., 2023b; Saha and Tran, 2023), or neural networks (McCulloch
and Pitts, 1943) may be used. Converting Eq. (2) to an unconstrained
optimization problem we get,

min
0.6 | Lopsl

> [wot) - ) + 4 (F@ox, ug)ug.ax )| ©)
i€ s
where 1 € (0,0). An advantage of using this method (also known as
penalty method) is that it avoids solving the constraint F(¢,u,q) =
0 (Xu and Darve, 2022). However, the physical constraints may not
be satisfied exactly i.e., theoretically, F(¢,u,q) = 0 will hold only when
A = oo (Xu and Darve, 2022). While optimizing the choice of 4, it is
important to remember that a large value of A places less weight on
the objective function. Hence, a proper choice of A is based on the
desirable trade-off between fitting the observed value and satisfying
the constraint. This technique a has been adapted in numerous works
involving learning of systems of PDEs/ODEs from data (Raissi et al.,
2019). Our choice of the constraint F is derived from an atmospheric

dispersion models called Gaussian Plume Model (GPM) (Stockie, 2011),
du

M ivy=yq
o1 a4
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Fig. 2. Graphical representation of the proposed modeling framework. Left: Representation of how the different input variables interact. Solid lines depict a
direct connection and the dashed lines represent an indirect affect. Right: A flowchart of DIRNN.

where u(%,?) is the mass concentration, g(X,?) is a source (or sink) and
J is mass flux due to diffusion (J,) and advection (J4), and X and
t denote space and time respectively. Assuming negligible sinks, the
function q defined from the MMs acts as the source term. Since we fix
the coordinates of the source (OSTPs) and weather stations in space, u
and ¢ are independent of spatial coordinates. Thus, we are interested
in exploring the relationship of these two functions (« and ¢) to various
input variables involving atmospheric parameters and/or hydrocarbon
degradation.

Given the input dataset X = [X,,,,Xz,t]T € R, where x,; is
built from simulated data from MMs and x,,, is built from the real-time
weather station measurements, the CH, concentrations and emissions
are trained using the parameterization below in Eq. (4) and (5). Output
of the first network ug gives the predicted methane concentration. We
then concatenate this output with atmospheric parameters x,,, (since
those are the only variables that can potentially affect diffusion/advec-
tion), and use it as an input to the second neural network that estimates
V.J. The exact form of the outputs are given by

ug = 6,0 (030 (6,0 (6,x))) @
dp(x.1) = Grad, (ug) + 30 (6,0 (6, [ug. Xum])) - ©

where ¢ denotes the activation function, Grad,(-) denotes the partial
time derivative of the output ug and ¢,(x, ) denotes the learned param-
eterized source emissions. Alternatively, the function to define V.J can
also be represented with a known basis such as a polynomial basis. This
can be used when trying to decipher the important variables affecting
the diffusion/advection terms. Eq. (5) thus modifies to

qp(x,1) = Grad, (u@) + (:)17’ ([u@,xa,m]) ,

where P([zy,...,z,]) = [l,zl,...,zn,zlzz,A..,zn,lzn,z%,“.,zﬁ].

3.1. Inverse dispersion based framework (iDIRNN) for emission estimates

In order to estimate source emissions and identify active tailing,
we modify the constraint to satisfy inverse dispersion models that aim
to quantify emissions when concentrations are given. Given a source
emitting gas at a continuous and unknown rate g kg/s, suppose the
time-average gas concentration above background denoted by C — C,
(where C is the measured concentration and C, is the background
concentration) is measured at some point M. Then the emission using
inverse dispersion modeling is given as

q=(C/Q);} -y,

where (C/Q),;, denotes the ratio of concentration at M to the source
emission rate predicted by an atmospheric dispersion model. While the
equation seems pretty straightforward, prediction of (C/Q), is not
trivial and often ill-conditioned. Different types of dispersion models
(e.g., Gaussian plume, K-theory) make this calculation with different
levels of sophistication. Realistically, models should take into account
average wind and turbulence statistics of the atmosphere along with

possible dispersion of the source and how it relates to the concentra-
tions. Various numerical methods as well as prior emission estimates
may be needed to solve the problem (Vojta et al., 2022).

In iDIRNN, using inputs [X,;;, X, t]7 € R¥*! we still learn ug from
fitting the model to observed concentrations as in Eq. (4), however the
constraint is now based on finding source emissions ¢ from the above
equation. We parameterize the inverse of influence function (C/Q);,
as a neural network so that the constraint in Eq. (5) becomes,

q5(x,1) = 036 (0,0 (0 [ug. Xym])) - (6)

Note that in this formulation, the term C, term is balanced out by
the bias terms present in estimating emissions and concentrations. This
offers multiple advantages: (1) the formulation lets the model automat-
ically learn from given data; (2) it is useful for various applications
where data and understanding of the dynamics is limited. We first
train the model on our datasets. In order to get emission estimates,
we replace ug in Eq. (4) with the concentration data measured by the
weather station into the trained model. The emission estimates per day
are then added up to get cumulative emissions over a given year.

3.2. Model architecture, training and validation analysis

Algorithm 1 Model training using proposed framework

Require: Input data x = [X,;;, X, t], Observed data u, emission func-
tion ¢(x), observations indices set Z ,,, physical constraint F, model
architectures for learning ug and ¢4, penalty parameter A.

1: for j in epochs do
y=ug(x); z= ¢(;2(y, Xatm)-
3: Update O = [0, 8] by minimizing the loss,

1

Tyl + ﬁ IF Gz .92

4: if Sparse Parameters == True then
5: for k in size(®) do
6: if |6,| < 10~ then
7: 6,=0
8: end if
9: end for
10: end if
11: end for

Output: Concentrations y and emissions z

The entire dataset contains 1096 daily measurements dated between
January 1, 2020 to December 31, 2022. Dataset for the year 2023 is
built separately for testing the trained model(s), consisting of 365 sam-
ples to predict emissions and concentrations from the trained model.
The training dataset is standardized between 0 and 1 to avoid unneces-
sary bias of input features with a larger scale. The conversion between
different units of measurement between emission and concentration
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data are implicitly taken care of while model training. The model was
trained on 80% of the samples from the dataset with up to 10,000
iterations. The training loss for all the stations fell below 104,

Given the size of our dataset, we use three layers with 500 and
200 neurons each to learn ug and ¢, respectively. For optimizing the
weights, we use a stochastic gradient descent (SGD) algorithm with
learning rate optimized between 10~2 and 103, and momentum 0.9.
Since the data from weather monitoring stations are noisy, we use an
¢, based weight decay parameter of 10~2 in the SGD algorithm to avoid
overfitting. For 10 random initializations, we train the iDIRNN model
and calculate the estimated emissions using real concentration data
for the years 2020 and 2021 (true emission data from companies is
only available for these two years). The model whose cumulative CH,
estimations are closest to the true emissions as reported in official doc-
uments is picked for further analysis. All codes were written in Python
3.10.9 and can be found at https://github.com/esha-saha/champ. The
pseudocode for model training is given in Algorithm 1. We extrapolate
our results to obtain total emissions from all OSTPs using the sample
mean of emissions computed for the selected OSTPs. Since official
statistical data reports CH, emissions in terms CO, equivalent, we
convert our estimations to similar units accordingly for comparison.

4. Results

We discuss the model simulation outcomes with respect to two
objectives: (i) forecasting methane emissions and concentrations from
tailing ponds jointly; (ii) identifying active OSTPs and their emissions
levels to analyze their impacts with respect to the overall CH, emissions
in Canada.

4.1. Methane forecasts from tailing ponds

Given the mass of industrial waste in a given OSTP and the meteoro-
logical conditions around them, DIRNN is trained to predict CH, emis-
sions from the pond and its corresponding concentration at the closest
weather monitoring station. Fig. 3 and Table 1 suggest that different
representations have similar predictive power. Other representations
such as a simple Recurrent Neural Network (RNN) without dispersion
constraints, Long-Short-Term-Memory (LSTM) (as defined in Appendix
A) performed poorly in comparison to our proposed model. The results
demonstrate a seasonal and diluent-dependent relationship between
methane concentrations and source emissions using a data-driven ADM.
We found an increasing/decreasing trend of methane concentration and
emissions based on input data consisting of atmospheric variables and
hydrocarbon degradation data. A direct connection between emissions
and concentrations is established through our model indicating a rise in
atmospheric CH, concentration levels right after increased emissions.
Majority of our predictions fall within the 95% confidence bound,
which was found to be narrower on training data as expected, and
comparatively wider for the validation set as those predictions are
based on unseen data. Since the concentration data is noisy, we also
see noise/oscillations in fitting of the emission data, which is discussed
in detail in Section 5.

As with any machine learning algorithm, the model training is
affected by the quality of training data which is what creates a dif-
ference in performance depending on the station under consideration.
For CH, concentration data station Mannix has the highest variance of
0.12 with maximum and average CH, concentrations being 4.56 ppm
and 2.21 ppm respectively, followed by station Mildred Lake with a
variance of 0.05, and maximum and average CH, concentrations being
3.95 ppm and 2.1 ppm respectively. Station Lower Camp has lowest
variance of 0.03 with maximum and average CH, concentrations being
3.36 ppm and 2.001 ppm respectively. From the relative errors in Table
1, it can be seen that lower the variance, better the performance of the
models. This happens as data-driven models tend to have larger biases
in predicting the extreme values, especially in data-scarce training
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Table 1

Average of relative training and validation errors for predicting concentrations
and emissions from each station and its corresponding tailing pond. For each
column (station), the two lowest errors are highlighted. DIRNN,,,,,, and
DIRNN,,,;, denotes the training framework that uses forward dispersion model
to predict concentrations from emissions. iDIRNN refers to the framework us-
ing reverse dispersion model that learns the emissions given the concentrations.

Concentration Emission

Mannix LC ML Mannix LC ML
DIRNN /44 0.5425 0.3101 0.5814 0.0992 0.1615 0.0517
iDIRNN 0.6566 0.4301 0.5702 0.1085 0.1369 0.0543
DIRNN,,;, 0.4624 0.3140 0.4225 0.5380 0.1977 0.0942
RNN 0.6239 0.4314 2.1859 0.0661 0.0737 0.7127
LSTM 0.6454 0.3914 0.5550 0.2426 0.2568 0.0711

regimes such as in this scenario. However, as we use other physical
constraints in our framework, the model can outperform other models
even with datasets with higher levels of noise and variation.

To test our model’s long term CH, concentration predictive capac-
ity, we obtain predictions for the year 2023 and compare it with the
observed data. Fig. 4 shows that the trained model accurately estimates
emissions from OSTPs up to one year ahead. For predicting concentra-
tions, the model can suggest future trends, with better data fitting when
the true data is closer to the mean CH, levels. However, the variation
is larger (for higher recorded observation) since the real-time data
is noisy and the model ignores extreme large values as outliers. Our
results indicate that with current levels of oil sands activity and similar
meteorological parameter readings (temperature, humidity, etc.), there
will be no improvement in CH, concentrations in the region.

4.2. Identification of CH, sources around weather stations

Due to the Athabasca region being located so further up in the
North, a lot of the existing remote sensing methods for continuous
monitoring of emissions are not directly applicable. The satellite data
is often of poor quality (due to low sunlight, especially during winters
and/or cloud cover). Other data measurement techniques (example,
airplanes or drones) generally do not differentiate between multiple
sources of emissions and are mostly expensive to carry out on a regular
basis. Thus, to build a CH, emission monitoring method, we train the
proposed model using the reverse formulation of ADM to estimate daily
emissions 360 degrees around a selected weather station. Once trained,
we replace the input ug in Eq. (6) with true CH, concentration data
from weather monitoring stations to obtain daily emission estimates
from the tailing ponds. Daily predicted emissions are summed up to
obtain cumulative emissions for each year between 2020 to 2023 and
is given as a radial plot in Figure C.27. To compare emission levels
over a period of three years, we plot the emissions for the year 2020
and 2023 in Fig. 5. The two major reported OSTPs (MLSB and Pond
2/3) and abandoned pond/EPLs (Pond 5 and WIP) are marked on
the map. For weather monitoring stations in the vicinity of inactive
ponds, we used a trained model from another appropriate station to
get emission estimates. For example, since WIP lake (an inactive pond)
near station Buffalo is owned by Syncrude, we can use a model trained
with Syncrude’s data to get emission estimates around it. Here we used
the model trained for the Mildred Lake station. For each station we see
the estimated emissions are highest from the direction of tailing ponds.
Both Mannix and Lower Camp indicate that CH, emissions from Pond
2/3 are more than 850 tonnes (t) per year every 20 degree interval.
Each year, station Mildred Lake captures more than 4500 t of CH,
emissions from the direction of MLSB. The other inactive ponds (WIP
and Pond 5) are often ignored as a significant sources of CH, emissions
as there is no inflow of diluents. However, using the dataset of station
Buffalo, iDIRNN estimates more than 2000 t of emissions coming from
the direction of WIP lake and about 1900 t of CH, from Pond 5. These
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significant levels of emissions from Pond 5 can also be cross-verified
with the results obtained for stations Lower Camp and Mildred Lake.
While perfect sectoral disaggregation of sources is challenging, the
choice of weather stations (close to OSTPs with no other CH, source
in between), use of radial wind directions as established in prior works
and the fact that CH, is generally measured within 5-15 m from the
ground (indicating that CH, does not disperse very far from its source,

thus the concentration recorded at the station has a source nearby)
gives a strong indication of OSTPs being CH, emission sources.

Upon comparing the plots for the years 2020 (left) and 2023 (right)
in Fig. 5, we see that there has been a significant increase in emissions
over the three years by at least 100 t in each of the 20 degree wind
direction interval near the tailing ponds. Both MLSB and Pond 2/3 have
started contributing higher amounts of CH,. For year 2023, we also
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find elevated emissions for both Mannix and Lower Camp with wind
directions 20-140 degrees and 60-140 degrees respectively, coming
from OSTPs (such as Pond 8 owned by Suncor or similar sources in
the area) south-east of the stations across the Athabasca river. Some
other directions with lower emission levels of about 700-900 t (West
of Mannix, South-East of Buffalo, SW of Lower Camp), all correspond to
either in-situ facilities, industrial activity or inactive tailing ponds. Note
that, the confidence interval for the emission predictions were similar
to that obtained earlier in Fig. 3. However, since visualization of the
interval is challenging in a radial plot, we have not included them in
Fig. 5.

5. Discussion

Atmospheric CH, can be affected by natural as well as anthro-
pogenic factors. In order to build a reliable framework, DIRNN was
trained by connecting all possible dynamics connected to CH, emissions
from OSTPs and the air quality in the region: MM of hydrocarbon
degradation (Venegas Garcia, 2024; Kong et al., 2019), ADMs for
CH, dispersion (Stockie, 2011) and atmospheric data that drives at-
mospheric diffusion and advection. The two OSTPs used for dataset
building are appropriate choices for representing majority of the OSTPs
in the region mainly because of two reasons: (i) both of these ponds
are not only big in terms of area but have also been previously found
to emit much larger amounts of CH4 in comparison to other ponds; (ii)
an important aspect of CH, emissions from OSTPs is based on diluent
composition which is determined by the owner company. Both these
ponds take into account two of the major companies: Syncrude (now
Suncor) and Suncor for our studies. These two ponds have been used
in prior works frequently to study the extent of OSTP emissions (You
et al., 2020; Small et al., 2015).

The model performances are compared based on both, plots and rel-
ative errors. Table 1 shows that for predicting concentrations, different
parameterization of the V.J term can have similar predictive capabil-
ities (Andoni et al., 2014). The differences in the model performances

between stations are attributed to the quality and quantity of data
available for building the dataset. External factors such as the proximity
of OSTPs to the weather stations, height of measurement sensors,
etc. can affect data quality. For example, hypothetically if one of the
stations were to be on a cliff (e.g. WBEA Stony Mountain, not used in
the paper) it is more likely to be affected by high wind speeds (Solano
et al., 2021), thus leading to a noisy dataset. Since the concentration
data is noisy, we also see noise/oscillations in fitting of the emission
data (also known as Gibbs phenomenon oscillations in literature) which
is common in literature with model learning using noisy data (Berry
and Harlim, 2016). Underlying model can be successfully recovered
even with noisy data as long as the variation of noise is low (Tran
and Ward, 2017) and the fitted function lies within the confidence
of interval, thus controlling range within which the true values are
expected to lie. Previous works have showed that Gibbs phenomenon
does not majorly affect global generalizability of model approxima-
tion, and that different techniques of filtering illogical approximations
(for example, negative values in a positive function approximation)
is acceptable (Gottlieb and Shu, 1997; Berry and Harlim, 2016). The
CH, concentration data collected for station Mannix has the highest
variance of 0.12, followed by station Mildred Lake with a variance of
0.05, and then station Lower Camp with a variance at 0.03. From the
table of relative errors (Table 1), it can be seen that a lower the variance
improves the performance of the models. This happens as data-driven
models tend to have larger biases in predicting the extreme values,
especially in data-scarce training regimes such as in this scenario.
Superior model performance for the station Lower Camp can also be
attributed to its restricted range of wind direction during the dataset
building stage, making the input dataset more less noisy in comparison
to other stations. Note that since the ponds are owned by different
companies, the hydrocarbon degradation dynamics can differ based on
the chemical composition of diluents used, as well as the accuracy of
the data reported by the companies. Although emission predictions are
slightly noisy, it does not affect the generalization power of our trained
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Table 2

Comparison of CH, emission estimates for Pond 2/3 obtained from prior works
and inverse dispersion modeling software WindTrax. Note that all the estimates
are made for different years and may not be comparable directly. Units from
original works are converted to tonnes per year for the 2.8 km*> OSTP Pond
2/3.

Name/Method Year Emission (t/y)
Small et al. (2015) 2015 2657.2

You et al. (2020) 2016 3876.6

You et al. (2020) 2018 11344.2
Windtrax (Crenna, 2016) 2021 5518

DIRNN 2020-2023 3498.75

model as it preserves the overall trends on unseen data for both the
quantities.

In the reverse formulation of the model, we use the trained model
to monitor emissions from all the direction around each weather mon-
itoring station. We consider the real concentration data along with
the weather parameters inside the trained model to track emissions
and possible sources (replace the input ug in Eq. (6) with true CH,
concentration data). Thus, for sources such as OSTPs (or other sources
emitting CH, from diluent degradation) the model can be used as a
tool to monitor emissions around weather stations. Since abandoned
ponds and EPLs are often ignored as sources, our goal is also to monitor
these tailings for emissions. A thorough analysis of emissions over four
years in Figure C.27 shows that emissions from active OSTPs are not
only increasing every year, some of the other inactive ponds/EPLs
such as WIP and Pond 5 could also be significant sources of CH,
emissions. Overall, our estimates show an underestimation in official
reports (Canadian Centre for Energy Information, 2025; Government
of Alberta, 2022) atleast by a factor of three.

5.1. Comparison to other works and data

In order to put our emission estimates into the context of existing
literature, we take a look at the trend of emission estimates from
previous works in Table 2. Note that since these studies were con-
ducted across a span of last ten years, the emission estimates vary. In
fact, they may also vary for different methods within the same year
depending on the estimation method used. We include estimates using
WindTrax (Crenna, 2016), a Lagrangian stochastic particle based model
and calculated with parameters in You et al. (2020). Note that using
WindTrax with limited weather station input data for 2020-2023 (such
as from Lower Camp) leads to highly unstable results, with unrealistic
outputs varying over 10°t per year. Thus, the outputs from those years
are excluded from Table 2. Our estimates are based on emissions
averaged over the four years 2020-2023 calculated from the station
Lower Camp (or Mannix; both give similar estimates). CH, emissions
using iDIRNN fall within the overall range of what is suggested by
previous works. Our estimations of 3498.75 t/y are close to results
showed by most of the estimations in You et al. (2020), Small et al.
(2015). Note that due to different time periods, it may be hard to
pinpoint which technique is the most accurate one.

The results underscore the need to increase efforts in accurately
estimating CH, emissions and concentrations owing to its environmen-
tal and health impacts. Oil sands activities contribute significantly to
GHG emissions and in particular are regarded as sources of pollu-
tion (Schindler, 2014; Liggio et al., 2016; Yu and Zahidi, 2023). From
the perspective of environmental effects, mining and extraction of oil
sands is directly associated with deforestation and release of sulfur
oxides, nitrogen oxides, hydrocarbons, and fine particulate matter, etc.
Further, CH, reacts with hydroxyl radical leading to the formation of
ground-level ozone, which is a harmful and toxic air pollutant. While
current levels of CH, concentration do not have direct health impact
(~ 2 ppm-4.5 ppm), consequent displacement of oxygen, and ozone
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formation can cause symptoms such rapid heart rate, fatigue and other
health affects from lack of oxygen and increased air pollution (Adgate
et al., 2014; Government of Canada, C. C. for O. H. and S., 2024).
Our study also aims to extend the growing body of research empha-
sizing on the role of machine learning in promoting sustainable prac-
tices, and efficient resource utilization. By integrating physics-informed
deep learning into the monitoring and estimation of methane emissions
from oil sands tailings ponds, our work contributes to the advancement
of cost-effective environmental monitoring systems, offering tools for
improving accountability, resource management, and regulatory com-
pliance within the oil and gas sector industries. By making emission es-
timation scalable, accurate, and physically grounded, our methodology
enhances decision-making capacity for governments, industries, and
communities alike, promoting a fairer distribution of environmental
responsibilities and better-informed climate governance.

5.2. Model uncertainties, limitations and future work

Being significantly data dependent, the training and results of our
framework are limited to quality and quantity of available data. The
data can be highly variable and prone to noise. For example, calibration
errors, human recording errors, etc. The averaging step of processing
the atmospheric data helps to ensure that noise in the data is reduced.
The hybrid machine learning model also has a possibility of overfitting
and unstable training. To avoid this, the results were based on the
median values of multiple rounds of model training and validation with
carefully tuned hyperparameters. Also note that the same trained model
may not be applicable to other OSTPs without retraining. A model
trained on one OSTP (and weather station) can be used on another
location only if all the following conditions are met: (a) the OSTP
under consideration is owned by the same company ensuring that the
chemical composition of diluents remain the same; (b) it is located in a
region with similar distribution of input parameters (similar weather
conditions and/or diluent composition); (c) close proximity to the
original OSTP and the weather monitoring station. For example, in
order to get results for OSTPs owned by Shell or CNRL, we would need
to retrain the model as (a) diluent composition of these companies
are different; (b) they are far from the OSTPs we trained our model
on. Since the model training is quick, if data is available, we would
always recommend retraining to get the most accurate and reliable
results. Future potential of this work is vast and includes improving
MMs through advanced lab experiments, incorporating data from all
directions around the weather stations to account for all possible CH,
emitting sources and modeling the affects of these emissions on climate
change.

6. Conclusions

In this paper, we developed a hybrid machine learning approach
for predicting methane emissions and concentrations jointly. Our model
formulation was based on learning the atmospheric methane concentra-
tions using data obtained from weather monitoring stations subject to
atmospheric dispersion models. We use a recurrent neural network style
formulation to learn both, methane concentrations and the unknown
functions in the constraints. Our input dataset included measurements
from weather monitoring stations located within 4 km of active OSTPs
and emission data obtained from solving different methanogenesis
models. Along with providing accurate forecasts for CH, emissions and
concentrations, our model results indicated significant emissions from
both active and abandoned OSTPs, suggesting atleast three times under-
estimation in existing official reports. Our results using the proposed
approach were consistent with existing estimates and outperformed
other classical machine learning approaches. As a part of future work,
we plan to incorporate sources from all the wind directions into the
framework by either using additional constraints based on existing
mathematical models of various methane sources or by incorporating
aspects of remote sensing to gather data of methane emissions around
the OSTPs.
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