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Abstract
In the process of malaria transmission, natural recovery individuals are slightly infec-
tious compared with infected individuals. Our concern is whether the infectivity of
natural recovery category can be ignored in areas with limited medical resources, so
as to reveal the epidemic pattern of malaria with simpler analysis. To achieve this, we
incorporate saturated treatment into two-compartment and three-compartmentmodels,
and the infectivity of natural recovery category is only reflected in the latter. The non-
spatial two-compartment model can admit backward bifurcation. Its spatial version
does not possess rich dynamics. Besides, the non-spatial three-compartmentmodel can
undergo backward bifurcation, Hopf bifurcation and Bogdanov–Takens bifurcation.
For spatial three-compartment model, due to the complexity of characteristic equation,
we apply Shengjin’s Distinguishing Means to realize stability analysis. Further, the
model exhibits Turing instability, Hopf bifurcation and Turing–Hopf bifurcation. This
makes the model may admit bistability or even tristability when its basic reproduction
number less than one. Biologically, malaria may present a variety of epidemic trends,
such as elimination or inhomogeneous distribution in space and periodic fluctuation
in time of infectious populations. Notably, parameter regions are given to illustrate
substitution effect of two-compartment model for three-compartment model in both
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scenarios without or with spatial movement. Finally, spatial three-compartment model
is used to present malaria transmission in Burundi. The application of efficiency index
enables us to determine the most effective method to control the number of cases in
different scenarios.

Keywords Malaria · Natural recovery category · Saturated treatment · Stability ·
Bifurcation · Substitution effect

Mathematics Subject Classification 34C23 · 35B35 · 35K57 · 37N25

1 Introduction

Malaria is a fatal disease spread to human population through contact with infected
female Anopheles mosquitoes. Five kinds of Plasmodium are responsible for malaria,
among which Plasmodium falciparum and Plasmodium vivax pose the greatest threat
(Becker et al. 2010; World Health Organization 2023). Unfortunately, malaria is
endemic in about 100 countries in the America, Southeast Asia and Africa (Gutierrez
et al. 2015). About 247 million individuals were infected and 619 000 cases died in
2021 (World Health Organization 2023). Malaria directly threatens public health and
has a huge adverse impact on local economies (Bai et al. 2018). It is therefore of great
significance to study the transmission of malaria.

Mathematical modelling is a powerful tool to explain and predict epidemic trends.
The mathematical model for malaria spread has a long history, first formed by Ross
(1911) and then amended by Macdonald (1952, 1957). Thereafter, researchers have
made significant progress in applying mathematical models to understand this disease
(An and Jäger 2014; Lou and Zhao 2011; Takoutsing et al. 2014; Shi and Zhao 2021;
Zhao et al. 2022; Shi et al. 2022, 2023;Wanget al. 2023a, b). In recent years, convenient
transportation has facilitated the spatial diffusion of humans and vectors, which may
contribute to the spread of malaria (Schlagenhauf 2004; Tatem et al. 2006). As far as
we know, reaction-diffusion equations are often used to describe populationmovement
(Xin and Wang 2021; Zha and Jiang 2023; Wang and Wang 2021; Xiang et al. 2023;
Shen et al. 2023; Li et al. 2023; Zhang et al. 2023; Wang et al. 2022). Nevertheless,
there are still several shortcomings in the current research on reaction-diffusionmalaria
model.

On the one hand,malaria is a curable infectious disease. In some areas of developing
countries, with the expansion of scale for infected persons, it may not be possible to
treat emerging cases in time as the shortage of medical resources (Gao et al. 2017;
Laman et al. 2014; Mtove et al. 2018). Zhang et al. Zhang and Liu (2008) proposed a
continuously differentiable function

T (I ) = r I

1 + α I
, r > 0, α ≥ 0, (1)

to represent the number of persons who recover from therapy. Here r denotes the cure
rate, α stands for the extent of the delayed effect for treatment, and I is the number
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of infected humans. Moreover, they defined the basic reproduction number R0, and
observed that with weak delayed effect for treatment, R0 = 1 is a threshold condition
of disease elimination; while the model underdoes backward bifurcation as such effect
is strong. Later, the above treatment function was discussed in Gao et al. (2017); Zhou
and Fan (2012); Zhou et al. (2014); Wang and Zhao (2022). However, little attention
has been paid to the effect of saturated treatment on dynamics for reaction–diffusion
model.

On the other hand, individuals who recover naturally contain low levels of gametes
in the blood, which can infect mosquitoes (Bousema et al. 2010). In Wang and Zhao
(2022), Lou and Zhao (2010), the authors incorporated this fact into model, and made
dynamics analysis. But, they did not make further exploration. For example, what
impact does ignoring the infectivity of natural recovery individuals have on dynamic
behaviors? In addition, they also overlooked spatial movement. In view of these issues,
we establish two-compartment and three-compartment reaction-diffusionmodels with
saturated treatment, which correspond to ignoring and emphasizing the infectivity of
natural recovery individuals, respectively. For completeness, their non-spatial ver-
sions are also introduced. Our aim is to investigate whether/when we can neglect the
infectivity of these individuals in both scenarios without and with spatial diffusion.
Concretely, in each scenario, explore (i) under what conditions two-component model
can be used instead of three-component model; and (ii) under what conditions it is
inevitable to investigate three-component model, since its dynamics are irreplaceable
and differ significantly from that of two-component model.

The highlights and contributions of this work are briefly summarized as follows. For
spatial three-compartment model, it is difficult to determine the signs of some coef-
ficients related to the characteristic equation, which becomes an obstacle to stability
analysis. Fortunately, the application of Shengjin’s Distinguishing Means enables us
to overcome this difficulty. Moreover, the normal form of Turing–Hopf bifurcation
is given, in which the details are different from those of Turing–Hopf bifurcation for
two-compartment one (Song et al. 2016). Spatial three-compartment model exhibits
abundant dynamics near bifurcation point. That makes the model may allow tristabil-
ity phenomena when its basic reproduction number less than one, which seems to be
new discovery compared with the previous research on reaction-diffusion epidemic
model (Sun 2012; Wang et al. 2018; Zhu and He 2022). What’s more, in each sce-
nario, two-compartment model may reveal, underestimate, overestimate or misjudge
the prevalence of malaria compared to the three-compartment model. Note that in
scenario without spatial diffusion, the misjudgment is caused by Hopf bifurcation and
Bogdanov–Takens bifurcation in three-compartmentmodel. However, in scenariowith
spatial diffusion, the misjudgment is caused by Turing instability, Hopf bifurcation
and Turing–Hopf bifurcation in three-compartment model. These outcomes provide
new insight into the impact of infectivity of natural recovery category on malaria
transmission.

The rest of this paper is organized as follows. The two-compartment and
three-compartment reaction-diffusion models are formulated in Sect. 2. In Sect. 3,
two-compartment models without and with spatial diffusion are analyzed. Section4
investigates three-compartment models without and with spatial diffusion. Further,
parameter areas are given to illustrate substitution outcomes. In Sect. 5, the theoretical
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results are verifiedbynumerical simulations.Moreover,we compare two-compartment
and three-compartment models in both scenarios without and with spatial movement.
In Sect. 6, spatial three-compartment model is applied to present the transmission of
malaria in Burundi. Finally, Sect. 7 presents a brief discussion.

2 Model formulation

We first formulate a three-compartment reaction-diffusion malaria model with satura-
tion treatment. The human population is divided into three compartments: susceptible
category Sh(t, x), infected category Ih(t, x) (the body contains schizozoites and
gametophytes) and natural recovery category Rh(t, x) (the body contains only game-
tophytes, while the individual is slightly contagious), where t and x represent
time and position respectively. Assume that the total density for human population
NH (t, x) = Sh(t, x) + Ih(t, x) + Rh(t, x) can be confirmed by

∂ NH (t, x)

∂t
= d1�NH (t, x) + H − dh NH (t, x), t > 0, x ∈ �, (2)

where d1 > 0 is the diffusion coefficient, H denotes the recruitment rate, dh stands for
the natural death rate for humans and � is the spatial habitat with smooth boundary
∂�. For convenience, let � = (0, lπ) with l > 0. For system (2), take homogeneous
Neumann boundary condition

∂ NH (t, x)

∂n
= 0, t > 0, x ∈ ∂�, (3)

inwhich n is the outward unit normal vector on ∂� and ∂
∂n represents the differentiation

along n to ∂�. System (2)–(3) allows a globally asymptotically stable steady state
Nh = H

dh
(Lou and Zhao 2011). In light of Bai et al. (2018); Shi and Zhao (2021);

Xin and Wang (2021), suppose that the total density of human population stabilizes at
Nh . The mosquito population consists of susceptible and infected classes with spatial
densities Sv(t, x) and Iv(t, x), respectively. Let NV (t, x) = Sv(t, x)+ Iv(t, x) be the
total density for mosquitoes, which satisfies equation

⎧
⎪⎨

⎪⎩

∂ NV (t, x)

∂t
= d2�NV (t, x) + � − dv NV (t, x), t > 0, x ∈ �,

∂ NV (t, x)

∂n
= 0, t > 0, x ∈ ∂�,

(4)

where d2 > 0 is the diffusion coefficient, � denotes the recruitment rate and dv

represents the natural death rate for mosquitoes. Analogously, assume that the total
density for mosquitoes stabilizes at Nv = �

dv
, which is consistent with Anita and

Capasso (2012), Zha and Jiang (2023). Below, without causing confusion, remove
(t, x) from the state variables. In addition, Sh and Sv are expressed as Nh − Ih − Rh

and Nv − Iv respectively.
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Susceptible humans acquire malaria via effective bite of infected mosquitoes at a
rate bβh

Iv
Nh

. It follows from Bousema et al. (2010) that treatment can significantly
shorten the carrying time of gamete cells. The reasonable hypothesis is that if an
infected person takes the medicine according to advice, then all parasites in the body
will be cleared (An and Jäger 2014). Hence infected individuals enter into susceptible
category at a rate δ

1+α Ih
and enter into natural recovery category at a rate r . Natural

recovery persons become susceptible after gametophyte carrying period 1
v
. Besides,

susceptible mosquitoes infect malaria at a rate bβv
Ih+θ Rh

Nh
because of effective contact

with infectious individuals. Flow diagram of malaria transmission is shown in Fig. 1a.
See Table 1 for descriptions of all parameters. In view of the discussions above,
introduce the following reaction-diffusion malaria model

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ Ih

∂t
= d1�Ih + bβh

Iv
Nh

(Nh − Ih − Rh) − δ Ih

1 + α Ih
− r Ih − dh Ih, t > 0, x ∈ �,

∂ Rh

∂t
= d1�Rh + r Ih − dh Rh − vRh, t > 0, x ∈ �,

∂ Iv
∂t

= d2�Iv + bβv

Ih + θ Rh

Nh
(Nv − Iv) − dv Iv, t > 0, x ∈ �,

∂ Ih

∂n
= ∂ Rh

∂n
= ∂ Iv

∂n
= 0, t > 0, x ∈ ∂�,

Ih(0, x) := I 0h (x) ≥ 0, Rh(0, x) := R0
h(x) ≥ 0,

Iv(0, x) := I 0v (x) ≥ 0, x ∈ �̄.

(5)
Since natural recovery class is slightly infectious in the process of malaria trans-

mission (Wang and Zhao 2022; Lou and Zhao 2010), we are interested in whether
neglecting the infectivity of natural recovery persons can simplify analysis and pre-
serve dynamical behaviors of three-compartment model. In this case, natural recovery
persons directly return to susceptible category. Figure1b exhibits flow diagram of
disease transmission. Accordingly, the following two-compartment model is obtained

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ Ih

∂t
= d1�Ih + bβh

Iv
Nh

(Nh − Ih) − δ Ih

1 + α Ih
− r Ih − dh Ih, t > 0, x ∈ �,

∂ Iv
∂t

= d2�Iv + bβv

Ih

Nh
(Nv − Iv) − dv Iv, t > 0, x ∈ �,

∂ Ih

∂n
= ∂ Iv

∂n
= 0, t > 0, x ∈ ∂�,

Ih(0, x) := I 0h (x) ≥ 0, Iv(0, x) := I 0v (x) ≥ 0, x ∈ �̄.

(6)
In the following, we devote ourselves to analyzing system (5), system (6) and

corresponding non-spatial versions, so as to explore what impact will be caused by
neglecting the infectivity of natural recovery individuals on malaria transmission?
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Fig. 1 Schematic diagram of malaria spread for a system (5) with Sh = Nh − Ih − Rh and Sv = Nv − Iv
and b system (6) with Sh = Nh − Ih and Sv = Nv − Iv

Table 1 Parameter descriptions

Parameter Description

H Recruitment rate of human population ((km2Day)−1)

dh Natural death rate of human population (Day−1)

r Natural recovery rate of human population (Day−1)

δ Treatment recovery rate of human population (Day−1)

α The extent of the delayed effect for treatment

1/v Time for natural recovery individuals to carry gamete cells (Day)

θ Infectious reduction factor

� Recruitment rate of adult mosquitoes ((km2Day)−1)

dv Natural death rate of adult mosquitoes (Day−1)

b Biting rate of mosquitoes (Day−1)

βv Transmission probability from infected humans to susceptible mosquitoes

βh Transmission probability from infected mosquitoes to susceptible humans

d1 Human diffusion rate (km2Day−1)

d2 Mosquito diffusion rate (km2Day−1)

3 Dynamics analysis for system (6) and its non-spatial system

This part aims to explore the dynamical behaviors of system (6) and its non-spatial
system.Firstly, the existenceof equilibria is discussed, then the stability andbifurcation
for non-spatial system are explored, and finally the stability for system (6) is analyzed.

With the aid of Lou and Zhao (2011), Shi and Zhao (2021), Shi et al. (2021), one
acquires the following outcome.

Theorem 1 System (6) possesses a unique global classical solution (Ih, Iv)T for t ≥
0, x ∈ �̄. Moreover, if I 0h (x) �≡ 0, I 0v (x) �≡ 0, then Ih > 0, Iv > 0 for t > 0, x ∈ �̄.
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3.1 Existence of equilibria for system (6)

In this subsection, give the distribution of equilibria for system (6). Apparently, system
(6) always has a disease-free equilibrium (DFE) Ē0 = (0, 0)T.

In light of Wang and Zhao (2012), introduce the basic reproduction number

R̄M =
√

bβv Nv

Nh
· 1

r + dh + δ
· bβh · 1

dv

. (7)

Biologically, R̄M stands for the average number of secondary cases produced by one
infected person or mosquito during its infection period in a completely susceptible
population. The average number of infected mosquitoes generated by one infected
person contacting mosquitoes at a rate bβv Nv

Nh
during its infection period 1

r+dh+δ
is

bβv Nv

Nh(r+dh+δ)
. The average number of infected persons produced by an infectedmosquito

contactinghumans at a ratebβh during its infectionperiod 1
dv

is bβh
dv

.As twogenerations

are required to transmit malaria, R̄M is formula (7). Moreover, due to the fact that
the delayed effect for treatment only occurs when there are a large number of infected
individuals, the delayed effect for treatment does not affect R̄M .

To simplify the discussion, denote R̄0 = (R̄M )2. Apparently,

R̄M > 1 ⇔ R̄0 > 1; R̄M = 1 ⇔ R̄0 = 1; R̄M < 1 ⇔ R̄0 < 1. (8)

Consider equation ḡ(Ih) = 0, where

ḡ(Ih) = Q̄2 I 2h + Q̄1 Ih + Q̄0, (9)

with

Q̄2 = α
bβv

Nh
(r + dh) + b2βhβv

N 2
h

Nvα, Q̄0 = dv(r + dh + δ)(1 − R̄0),

Q̄1 = αdv(r + dh + δ)(1 − R̄0) − δαdv + bβv

Nh
(r + dh + δ) + b2βhβv

N 2
h

Nv.

Accordingly, when α > 0 and Q̄2
1 − 4Q̄0 Q̄2 ≥ 0, denote

Īh1 =
−Q̄1 −

√

Q̄2
1 − 4Q̄0 Q̄2

2Q̄2
, Īh2 =

−Q̄1 +
√

Q̄2
1 − 4Q̄0 Q̄2

2Q̄2
.

Define Ē1 = ( Īh1, Īv1)T and Ē2 = ( Īh2, Īv2)T with Īvi = bβv Nv Īhi

bβv Īhi +dv Nh
, i = 1, 2. Then

Ē1 and Ē2 are candidates for the endemic equilibrium of system (6).
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In addition, denote

ᾱ0 = bβv Nh(r + dh + δ) + b2βhβv Nv

δdv N 2
h

,

P̄0 = 1 + −δαdv N 2
h + bβv Nh(r + dh + δ) + b2βhβv Nv

αdv(r + dh + δ)N 2
h

.

For α > ᾱ0, define

R̄+
0 = 1 − 1

αdv(r + dh + δ)

(√

αdvδ − bβv

Nh
δ −

√
bβv

Nh
(r + dh) + b2βhβv

N 2
h

Nv

)2

,

R̄−
0 = 1 − 1

αdv(r + dh + δ)

(√

αdvδ − bβv

Nh
δ +

√
bβv

Nh
(r + dh) + b2βhβv

N 2
h

Nv

)2

.

Through calculations, when α > ᾱ0, one arrives

max{0, R̄−
0 } < P̄0 < R̄+

0 < 1.

Theorem 2 When α > 0, we have

(i) For R̄0 > 1, system (6) has a unique endemic equilibrium Ē2;
(ii) For R̄+

0 < R̄0 < 1 and α > ᾱ0, system (6) has two endemic equilibria Ē1 and
Ē2;

(iii) For R̄0 = 1 and α > ᾱ0, system (6) has a unique endemic equilibrium Ē2;
(iv) For R̄0 = R̄+

0 and α > ᾱ0, two endemic equilibria of system (6) coalesce at Ě;
(v) For R̄0 < R̄+

0 and α > ᾱ0, system (6) has no endemic equilibrium;
(vi) For R̄0 ≤ 1 and α ≤ ᾱ0, system (6) has no endemic equilibrium.

Proof of Theorem 2 is given in Appendix A.

Theorem 3 When α = 0, if R̄0 > 1, then system (6) admits a unique endemic equilib-
rium Ē3 = ( Īh3, Īv3)T; otherwise, system (6) admits no endemic equilibrium, where

Īh3 = − Q̄0

Q̄1
, Īv3 = bβv Īh3Nv

bβv Īh3 + dv Nh
.

3.2 Stability and bifurcation analysis for non-spatial system

The part is devoted to exploring the dynamics of non-spatial system

⎧
⎪⎪⎨

⎪⎪⎩

dIh

dt
= bβh

Iv
Nh

(Nh − Ih) − δ Ih

1 + α Ih
− r Ih − dh Ih,

dIv
dt

= bβv

Ih

Nh
(Nv − Iv) − dv Iv.

(10)
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Clearly, for system (10), �̄ = {(Ih, Iv)T
∣
∣0 ≤ Ih ≤ Nh, 0 ≤ Iv ≤ Nv} is positively

invariant.

3.2.1 Stability of equilibria

Let any equilibrium of system (10) be Ē∗ = ( Ī ∗
h , Ī ∗

v )T. Take ȳ = (ȳ1, ȳ2)T with
ȳ1 = Ih − Ī ∗

h , ȳ2 = Iv − Ī ∗
v . Linearizing system (10) at equilibrium Ē∗, one has

d ȳ

dt
= J (Ē∗)ȳ, (11)

where

J (Ē∗) =
(−β̄h Ī ∗

v − dh − r − δ

(1+α Ī ∗
h )2

β̄h(Nh − Ī ∗
h )

β̄v(Nv − I ∗
v ) −β̄v Ī ∗

h − dv

)

with

β̄h = bβh

Nh
, β̄v = bβv

Nh
.

The characteristic equation associated with Ē∗ is

λ2 + Ā0(Ē∗)λ + B̄0(Ē∗) = 0, (12)

in which

Ā0(Ē∗) = β̄h Ī ∗
v + r + dh + δ

(1 + α Ī ∗
h )2

+ β̄v Ī ∗
h + dv,

B̄0(Ē∗) =
(

β̄h Ī ∗
v + r + dh + δ

(1 + α Ī ∗
h )2

)

(β̄v Ī ∗
h + dv) − β̄h β̄v(Nh − Ī ∗

h )(Nv − Ī ∗
v ).

Note that

B̄0(Ēk) = Īhk

1 + α Īhk
ḡ′( Īhk), k = 1, 2, (13)

in which ḡ(Ih) is definded in (9). Moreover, one has that ḡ′( Īh1) < 0 and ḡ′( Īh2) > 0.
Hence, B̄0(Ē1) < 0 and B̄0(Ē2) > 0. Besides, B̄0(Ē0) = (r + dh + δ)dv(1 − R̄0).

Theorem 4 Consider system (10) with α > 0.

(i) Ē0 is locally asymptotically stable if R̄0 < 1 and unstable if R̄0 > 1. Moreover,
Ē0 is globally asymptotically stable in �̄ when it is a unique equilibrium for
R̄0 < 1.

(ii) Ē1 is unstable whenever it exists.
(iii) When Ē2 exists, Ē2 is locally asymptotically stable. Moreover, it is globally

asymptotically stable in �̄ \ {Ē0} if R̄0 > 1.

Proof of Theorem 4 is given in Appendix B.
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Corollary 1 Consider system (10) with α = 0.

(i) Ē0 is globally asymptotically stable in �̄ if R̄0 < 1 and unstable if R̄0 > 1.
(ii) If R̄0 > 1, then Ē3 is globally asymptotically stable in �̄ \ {Ē0}.
Remark 1 (i) Based on the relationship between R̄M and R̄0 (8) and the biological
significance of R̄M , R̄M is used to explain the biological significance of dynamics.
Theorem4gives the stability of equilibria for system (10) in the presence of the delayed
effect for treatment. Biologically, when the basic reproduction number R̄M is small

(i.e., R̄M < R̄+
M =

√

R̄+
0 ) or the delayed effect for treatment is weak (i.e., α ≤ ᾱ0),

malaria can be eliminated. And when R̄M increases above R̄+
M but below one, and the

treatment delay effect is strong (i.e., α > ᾱ0), system (10) allows for bistability. That
is, the stable DFE Ē0 coexist with a stable endemic equilibrium Ē2. Under this case, if
the initial infection level is different, then malaria may have different epidemic trends,
and whether malaria can break out depends on the initial infection level. When R̄M

is further increased to more than one, no matter whether the treatment delay effect is
strong or weak, malaria breaks out.
(ii) Corollary 1 shows the stability of equilibria for system (10) in the absence of the
delayed effect for treatment. In the case, malaria can be eliminated if R̄M is less than
one. As R̄M is greater than one, malaria is prevalent.
(iii) Combining Theorem 4 and Corollary 1, if R̄M is less than R̄+

M (or greater than
one), then the disease is extinct (or exists) regardless of including the delayed effect
for treatment. However, as R̄M is greater than R̄+

M and less than one, the existence of
this effect makes the disease not necessarily extinct, depending on the strength of this
effect and the initial level of infection. Accordingly, the delayed effect for treatment
is the fundamental reason for the occurrence of bistability in system (10).

3.2.2 Backward bifurcation

By Theorem 2, when R̄+
0 < R̄0 < 1 and α > ᾱ0, system (10) has two epidemic

equilibria. Consequently, backward bifurcation may occur. In view of Zhao et al.
(2020), one arrives the following outcome.

Theorem 5 System (10) undergoes, at R̄0 = 1, a backward bifurcation for α > ᾱ1,

and a forward bifurcation for α < ᾱ1, where

ᾱ1 = dv + β̄v Nh

δ̄1Nhdv

(r + dh + δ̄1), (14)

in which δ̄1 = β̄h β̄v Nh Nv

dv
− r − dh.

Proof of Theorem 5 is given in Appendix C.

Remark 2 (i) Biologically, α < ᾱ1 indicates weak delayed effect for treatment. Under
the scenario, the basic reproduction number R̄M = 1 regards as threshold quantity to
determine whether malaria will eventually die out or not. Conversely, α > ᾱ1 means
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that such effect is strong. Under the situation, unless R̄M is reduced below a new
threshold R̄+

M , it may not be possible to eliminate disease by reducing R̄M below
one. This is because when R̄M is greater than R̄+

M and less than one, system (10)
shows bistability. From a biological point of view, if there is a difference in the initial
infection level, then there may be different epidemic trends, and the disease extinction
and outbreak depend on the initial infection level. Besides, if there is no delayed
effect for treatment, then system (10) only exhibits forward bifurcation and does not
exhibit backward bifurcation. This indicates that the delayed effect for treatment is
the fundamental cause of backward bifurcation in system (10). Neglecting the delayed
effect for treatment may underestimate the risk of malaria.
(ii) With the aid of (12), Ā0(Ē∗) > 0. It infers that system (6) does not undergo
Hopf bifurcation and Bogdanov–Takens bifurcation at Ē∗. Hence, whenR0 < 1, the
prevalence level of malaria is mainly extinction or bistability, and does not involve
periodic cycle.

3.3 Stability of equilibria for system (6)

This part aims to investigate stability of equilibria for system (6). Denote N0 =
{0, 1, 2, · · · }. The linearization of system (6) at equilibrium Ē∗ reads as

∂ ȳ

∂t
=

(
d1 0
0 d2

)

�ȳ + J (Ē∗)ȳ.

Accordingly, the characteristic equation associated with Ē∗ is

λ2 + Ā(i)(Ē∗)λ + B̄(i)(Ē∗) = 0, i ∈ N0, (15)

in which

Ā(i)(Ē∗) = (d1 + d2)ui + β̄h Ī ∗
v + r + dh + δ

(1 + α Ī ∗
h )2

+ β̄v Ī ∗
h + dv,

B̄(i)(Ē∗) = d1d2u2
i +

(

d1(β̄v Ī ∗
h + dv) + d2

(

β̄h Ī ∗
v + r + dh + δ

(1 + α Ī ∗
h )2

))

ui

+
(

β̄h Ī ∗
v + r + dh + δ

(1 + α Ī ∗
h )2

)

(β̄v Ī ∗
h + dv)

− β̄h β̄v(Nh − Ī ∗
h )(Nv − Ī ∗

v ),

where ui = i2

l2
is the eigenvalues of −� under homogeneous Neumann boundary

condition.

Theorem 6 For system (6) with α > 0, we acquire

(i) Ē0 is locally asymptotically stable if R̄0 < 1 and unstable if R̄0 > 1;
(ii) Ē1 is unstable whenever it exists;

123



   33 Page 12 of 56 J. Wang et al.

(iii) If Ē2 exists, then it is locally asymptotically stable.

Corollary 2 Consider system (6) with α = 0.

(i) Ē0 is locally asymptotically stable if R̄0 < 1 and unstable if R̄0 > 1.
(ii) If R̄0 > 1, then Ē3 is locally asymptotically stable.

Remark 3 (i) Considering the delayed effect for treatment, Theorem 6 provides the
stability of equilibria when both humans and mosquitoes have dispersal. Biologically,
when the basic reproduction number R̄M is less than one, if the initial infection level
is low (i.e., near the DFE Ē0), then malaria dies out. In addition, when the endemic
equilibrium Ē2 exists, as the initial infection level is near Ē2, malaria is prevalent.
Specifically, according to Theorem 2, when R̄+

M < R̄M < 1 and α > ᾱ0, system (6)
may exhibit bistability. The epidemic trend of the disease at this time is closely related
to the initial infection level. When the initial infection level is near Ē0 (or Ē2), the
disease becomes extinct (or erupts).
(ii) Excluding the delayed effect for treatment, Corollary 2 gives the stability of equi-
libria when both human and mosquito populations have spread. Biologically, as the
initial infection level is low, malaria is eliminated if R̄M is less than one. When R̄M

is greater than one, if the initial infection level is near Ē3, then the disease breaks out.
(iii) Theorem6andCorollary 2 suggest that,when R̄M is greater thanone and the initial
infection level is near the endemic equilibrium, the delayed effect for treatment has
negligible impact on the evolutionary outcome of malaria. However, when R̄M is less
than one, the presence of this effect may increase the possibility of malaria outbreak
since Ē2 is locally asymptotically stable. Besides, note that system (6) withα ≥ 0 does
not exhibit complex dynamical behaviors, such as Turing instability, Hopf bifurcation
and Turing–Hopf bifurcation. Biologically, regardless of whether the delayed effect
for treatment, the malaria may eventually stabilize at a constant level, which means
that malaria may not exhibit uneven distribution in space or periodic fluctuation in
time.

4 Dynamics analysis for system (5) and its non-spatial system

In this section, we offer the existence of equilibria, and then analyze the stability and
bifurcation of system (5) and its non-spatial system.

In view of Lou and Zhao (2011), Shi and Zhao (2021), Shi et al. (2021), one arrives
the following result.

Theorem 7 System (5) admits a unique global classical solution (Ih, Rh, Iv)T for t ≥
0, x ∈ �̄. Further, if I 0h (x) �≡ 0, R0

h(x) �≡ 0, I 0v (x) �≡ 0, then Ih > 0, Rh > 0, Iv >

0 for t > 0, x ∈ �̄.
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4.1 Existence of equilibria

Obviously, system (5) always has a DFE E0 = (0, 0, 0)T. According to Wang and
Zhao (2012), define the basic reproduction number

RM = √RIh + RRh , (16)

where

RIh = bβv Nv

Nh
· 1

r + dh + δ
· bβh · 1

dv

,

RRh = r

r + dh + δ
· bθβv Nv

Nh
· 1

v + dh
· bβh · 1

dv

.

The interpretation of RM is similar to that of R̄M . Note that RM and the delayed
effect for treatment are irrelevant, because the delayed effect for treatment is only
present when the infected persons are more numerous.

Remark 4 (i) In view of (7) and (16), one has R̄M < RM . The reason is that the
infectivity of natural recovery individuals is neglected in the modeling of system
(10). This may lead to R̄M < 1 and RM > 1.

(ii) According to (16), RIh monotonically decreases with respect to r , while RRh

monotonically increases with respect to r . The inconsistency between the mono-
tonicity of RIh and RRh makes monotonicity of the basic reproduction number
RM about r variable. Recall that for system (6), the basic reproduction number
R̄M is monotonically decreasing with respect to r . Thereby, there is significant
difference between monotonicity of R̄M and RM about r .

For brevity, denote R0 = (RM )2. One has that

RM > 1 ⇔ R0 > 1; RM = 1 ⇔ R0 = 1; RM < 1 ⇔ R0 < 1. (17)

Define α1 = r
v+dh

. As similar to the previous analysis, consider g(Ih) = 0, in which

g(Ih) = Q2 I 2h + Q1 Ih + Q0, (18)

with

Q2 = α
bβv

Nh
(r + dh)(1 + θα1) + b2βhβv

N 2
h

Nvα(1 + θα1)(1 + α1),

Q0 = dv(r + dh + δ)(1 − R0),

Q1 = αdv(r + dh + δ)(1 − R0) − δαdv + bβv

Nh
(r + dh + δ)(1 + θα1)

+ b2βhβv

N 2
h

Nv(1 + θα1)(1 + α1).
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For α > 0 and Q2
1 − 4Q0Q2 ≥ 0, define

Ih1 =
−Q1 −

√

Q2
1 − 4Q0Q2

2Q2
, Ih2 =

−Q1 +
√

Q2
1 − 4Q0Q2

2Q2
.

Denote E1 = (Ih1, Rh1, Iv1)T and E2 = (Ih2, Rh2, Iv2)T, in which

Rhi = α1 Ihi , Ivi = bβv(Ihi + θ Rhi )Nv

bβv(Ihi + θ Rhi ) + dv Nh
, i = 1, 2.

Thereby, E1 and E2 are candidates for the endemic equilibrium of system (5).
For brevity, introduce

α0 = bβv Nh(r + dh + δ)(1 + θα1) + b2βhβv Nv(1 + θα1)(1 + α1)

δdv N 2
h

,

P0 = 1 + −δαdv N 2
h + bβv Nh(r + dh + δ)(1 + θα1) + b2Nvβhβv(1 + θα1)(1 + α1)

αdv(r + dh + δ)N 2
h

.

For α > α0, define

R+
0 = 1 −

(√
m1 −√

m2
)2

αdv(r + dh + δ)
, R−

0 = 1 −
(√

m1 +√
m2

)2

αdv(r + dh + δ)
,

with

m1 = αdvδ − bβv

Nh
δ(1 + θα1),

m2 = bβv

Nh
(r + dh)(1 + θα1) + b2βhβv

N 2
h

Nv(1 + θα1)(1 + α1).

When α > α0, one can obtain

max{0, R−
0 } < P0 < R+

0 < 1.

Theorem 8 With α > 0, the following conclusions are valid.

(i) When R0 > 1, system (5) possesses a unique endemic equilibrium E2.
(ii) When R+

0 < R0 < 1 and α > α0, system (5) possesses two endemic equilibria
E1 and E2.

(iii) When R0 = 1 and α > α0, system (5) possesses a unique endemic equilibrium
E2.

(iv) When R0 = R+
0 and α > α0, two endemic equilibria of system (5) coalesce at

Ê .
(v) When R0 < R+

0 and α > α0, system (5) possesses no endemic equilibrium.
(vi) When R0 ≤ 1 and α ≤ α0, system (5) possesses no endemic equilibrium.
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Theorem 9 For α = 0, if R0 > 1, then system (5) admits a unique endemic equi-
librium E3 = (Ih3, Rh3, Iv3)T; otherwise, system (5) admits no endemic equilibrium,
where

Ih3 = − Q0

Q1
, Rh3 = −α1

Q0

Q1
, Iv3 = bβv(Ih3 + θ Rh3)Nv

bβv(Ih3 + θ Rh3) + dv Nh
.

4.2 Stability and bifurcation analysis for non-spatial system

This part focuses on dynamics analysis for non-spatial system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dIh

dt
= bβh

Iv
Nh

(Nh − Ih − Rh) − δ Ih

1 + α Ih
− r Ih − dh Ih,

dRh

dt
= r Ih − dh Rh − vRh,

dIv
dt

= bβv

Ih + θ Rh

Nh
(Nv − Iv) − dv Iv.

(19)

Obviously, for system (19), � = {(Ih, Rh, Iv)T
∣
∣0 ≤ Ih ≤ Nh, 0 ≤ Rh ≤ Nh, 0 ≤

Iv ≤ Nv} is positively invariant.

4.2.1 Stability of equilibria

Let any equilibrium be E∗ = (I ∗
h , R∗

h , I ∗
v )T. Set y = (y1, y2, y3)T with y1 = Ih −

I ∗
h , y2 = Rh − R∗

h , y3 = Iv − I ∗
v . Linearizing system (19) at equilibrium E∗, we

obtain the following linear system

dy

dt
= J (E∗)y,

where

J (E∗) =
⎛

⎜
⎝

−β̄h I ∗
v − dh − r − δ

(1+α I ∗
h )2

−β̄h I ∗
v β̄h(Nh − I ∗

h − R∗
h)

r −(v + dh) 0
β̄v(Nv − I ∗

v ) θβ̄v(Nv − I ∗
v ) −β̄v(I ∗

h + θ R∗
h) − dv

⎞

⎟
⎠ .

The characteristic equation associated with E∗ is

λ3 + A0(E∗)λ2 + B0(E∗)λ + C0(E∗) = 0, (20)
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in which

A0(E∗) = β̄h I ∗
v + r + dh + δ

(1 + α I ∗
h )2

+ v + dh + β̄v(I ∗
h + θ R∗

h) + dv,

B0(E∗) = (v + dh)

(

β̄h I ∗
v + r + dh + δ

(1 + α I ∗
h )2

)

+ (β̄v(I ∗
h + θ R∗

h) + dv)

(

β̄h I ∗
v + r + 2dh + δ

(1 + α I ∗
h )2

+ v

)

+ r β̄h I ∗
v − β̄h β̄v(Nv − I ∗

v )(Nh − I ∗
h − R∗

h),

C0(E∗) = (v + dh)(β̄v(I ∗
h + θ R∗

h) + dv)

(

β̄h I ∗
v + r + dh + δ

(1 + α I ∗
h )2

)

+ r β̄h I ∗
v (β̄v(I ∗

h + θ R∗
h) + dv) − rθβ̄h β̄v(Nv − I ∗

v )(Nh − I ∗
h − R∗

h)

− β̄h β̄v(v + dh)(Nv − I ∗
v )(Nh − I ∗

h − R∗
h).

Similar to (13), one acquires

C0(Ek) = (v + dh)Ihk

1 + α Ihk
g′(Ihk), k = 1, 2, (21)

in which g(Ih) is definded in (18). Further, g′(Ih1) < 0 and g′(Ih2) > 0 if g(Ih) = 0
admits two real roots Ih1 and Ih2.

Hence, C0(E1) < 0 and C0(E2) > 0. In addition, C0(E0) = (v + dh)dv(r + dh +
δ)(1 − R0).

Theorem 10 For system (19) with α > 0,

(i) E0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1; Moreover,
E0 is globally asymptotically stable in � when it is a unique equilibrium for
R0 < 1;

(ii) E1 is unstable whenever it exists;
(iii) When E2 exists, E2 is locally asymptotically stable if D0(E2) > 0 and unstable

if D0(E2) < 0, where D0(E2) = A0(E2)B0(E2) − C0(E2).

Proof of Theorem 10 is given in Appendix D.

Corollary 3 For system (19) with α = 0,

(i) E0 is globally asymptotically stable in � if R0 < 1 and unstable if R0 > 1;
(ii) If R0 > 1, then E3 is globally asymptotically stable in �\{E0}.

Proof of Corollary 3 is given in Appendix E.

Remark 5 (i) According to the relationship between RM and R0 (17) and the bio-
logical significance ofRM , we next useRM to explain the biological significance of
dynamical behaviors. Theorem 10 provides the stability of equilibria for system (19) in
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the presence of the delayed effect for treatment. Biologically,malaria can be eradicated

when the basic reproduction number RM is small (i.e., RM < R+
M =

√

R+
0 ) or the

delayed effect for treatment is weak (i.e., α ≤ α0). WhenRM is greater thanR+
M but

less than one, and the treatment delay effect is strong (i.e., α > α0), orRM is greater
than one, if the initial infection level is near the endemic equilibrium E2, then malaria
outbreak may occur. Furthermore, in the first case (i.e., R+

M < RM < 1, α > α0),
system (19) may exhibit bistability. This implies that different initial infection levels
may lead to different epidemic trends, and whether malaria becomes extinct or erupts
is closely related to the initial infection level.
(ii) The stability of equilibria for system (19) in the absence of the delayed effect for
treatment is given in Corollary 3. In the case, the eradication and outbreak of malaria
only depend on whether RM is less than one or greater than one.
(iii) In view of Theorem 10 and Corollary 3, malaria becomes extinct when RM is
small (i.e.,RM < R+

M ), regardless of the existence of the delayed effect for treatment.
WhenRM is greater thanR+

M , the presence of this effect may alter the epidemic state
of malaria, by affecting the existence and stability of equilibria. Specifically, when
RM is greater than R+

M and less than one, the existence of this effect makes malaria
not necessarily extinct, which is related to the strength of this effect and the initial
infection level.WhenRM is further greater than one, if the initial infection level is near
E2, then the presence of this effect may change the epidemic pattern of the disease.
Accordingly, the delayed effect for treatment plays important role in the complex
dynamics of system (19).
(iv) It is worthmentioning that the difference between system (10) and system (19) lies
in whether the infectivity of natural recovery humans is ignored. Based on Theorems
2 and 8, the existence of equilibria in system (10) is highly similar to that in system
(19), while the stability of the endemic equilibrium Ē2 in system (10) differs from
that of the endemic equilibrium E2 in system (19) (see Theorems 4 and 10). This
means that system (10) may misjudge the prevalence pattern of malaria compared to
system (19). Therefore, considering the infectivity of natural recovery category can
yield more accurate and diverse results.

4.2.2 Backward bifurcation

Thanks to Theorem 8, if R+
0 < R0 < 1 and α > α0, then system (19) possesses two

epidemic equilibria. Consequently, backward bifurcation may appear.

Theorem 11 System (19) exhibits, at R0 = 1, a backward bifurcation for α > α̃1,

and a forward bifurcation for α < α̃1, where α̃1 = dv(1+α1)+β̄v Nh(1+θα1)
δ1Nhdv

(r + dh + δ1)

with δ1 = β̄h β̄v Nh Nv

dv
+ rθβ̄h β̄v Nh Nv

dv(v+dh)
− r − dh.

Remark 6 (i) Biologically, when the delayed effect for treatment is weak (i.e.,α < α̃1),
the basic reproduction number RM = 1 is taken as threshold quantity for malaria
elimination. When the delayed effect for treatment is strong (i.e., α > α̃1), if RM

is less than one, then the disease outbreak may occur, unless it is further reduced

below the new thresholdR+
M =

√

R+
0 . The reason is that bistability may occur when
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RM > R+
M , which means that different initial infection levels may lead to different

epidemic trends, and whether malaria outbreak depends on the initial infection state.
There are methods to reduce RM , such as investing treatment efforts and decreasing
the total density of mosquitoes. Neglecting the delayed effect for treatment results in
only forward bifurcation and no backward bifurcation in system (19). This implies that
the delayed effect for treatment is the fundamental source of system (19) experiencing
backward bifurcation.
(ii) δ̄1 < δ1 infers that with different values of δ, R̄0 and R0 are equal to one,
respectively. This may lead to different dynamical behaviors. For example, for δ̄1 <

δ < δ1, one arrives R̄0 < 1 and R0 > 1. System (10) may underestimate the
emergence of malaria.

4.2.3 Hopf bifurcation

We now discuss Hopf bifurcation at E2 of system (19) and choose α as bifurcation
parameter. For certain critical values α̃, if

D0(E2)(α̃) = 0, (22)

and the transversality condition holds, then Hopf bifurcation can occur. In fact, if there
exists α̃ such that (22) is valid, then the characteristic equation (20) takes the following
form

(λ + A0(E2)(α̃))(λ2 + B0(E2)(α̃)) = 0,

which admits a pair of purely imaginary roots λ1,2 = ±i
√

B0(E2)(α̃) and a negative
real root λ3 = −A0(E2)(α̃).

Next, give the transversal condition. Let

λ1 = v0(α) + i
0(α), λ2 = v0(α) − i
0(α),

with v0(α̃) = 0 and 
0(α̃) = √
B0(E2)(α̃). Substituting λ1 into (20) and taking the

derivative with respect to α, we have

Z1(α)
dv0(α)

dα
− Z2(α)

d
0(α)

dα
+ Z3(α) = 0,

Z2(α)
dv0(α)

dα
+ Z1(α)

d
0(α)

dα
+ Z4(α) = 0,

where

Z1(α) = 3(v20(α) − 
 2
0 (α)) + 2A0(E2)(α)v0(α) + B0(E2)(α),

Z2(α) = 2A0(E2)(α)
0(α) + 6v0(α)
0(α),

Z3(α) = (C0(E2)(α))′ + (A0(E2)(α))′(v20(α) − 
 2
0 (α)) + (B0(E2)(α))′v0(α),

Z4(α) = (B0(E2)(α))′
0(α) + 2(A0(E2)(α))′v0(α)
0(α).

By some computations, one has dv0(α)
dα

∣
∣
α=α̃

�= 0 if dD0(E2)(α)
dα

∣
∣
α=α̃

�= 0.
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Theorem 12 When E2 exists, if there is α̃ such that D0(E2)(α̃) = 0, dD0(E2)(α)
dα

∣
∣
α=α̃

�=
0, then system (19) undergoes Hopf bifurcation at E2 as α = α̃.

Remark 7 Based on Corollary 3, Theorems 4 and 12, regardless of whether the basic
reproduction numberRM is less than or greater than one, only when considering both
the delayed effect for treatment and the infectivity of natural recovery category can
system (19) experience Hopf bifurcation, thereby diversifying the prevalence patterns
of malaria. When the extent of the delayed effect for treatment α is near the critical
value α̃, system (19) may posses periodic solution. Biologically, malaria exists in the
form of periodic outbreaks if the initial infection level is within a certain range.

4.2.4 Bogdanov–Takens bifurcation

The part is dedicated to discuss Bogdanov–Takens bifurcation of system (19) through
selecting δ and α as bifurcation parameters. To achieve this, it is assumed that there
are δ̂ and α̂ that satisfy the following conditions.

(A1) R0 = R+
0 and α > α0.

ExploitingTheorem8, system (19) possesses a unique endemic equilibrium Ê . Further,
one arrives C0(Ê) = 0.

(A2) B0(Ê) = 0.

According to (A1) and (A2), λ1,2 = 0 and λ3 = −A0(Ê) are the eigenvalues of J (Ê),
resulting in that Bogdanov–Takens bifurcation may occur. In view of Wang and Zhao
(2022), Zhao et al. (2020), yield the following consequence.

Theorem 13 Suppose that (A1), (A2), c20 �= 0 and c11 +2b20 �= 0 hold. Then system
(19) undergoes Bogdanov–Takens bifurcation, where b20, c11 and c20 are defined in
Appendix F.

Remark 8 (i) Under the combined impacts of the delayed effect for treatment and the
infectivity of natural recovery humans, system (19) may exhibit Bogdanov–Takens
bifurcationwhen the basic reproduction numberRM is less than one. Froma biological
perspective, the prevalence trend of malaria is highly sensitive to treatment recovery
rate δ, the extent of the delayed effect for treatment α and the initial infection state. To
be specific, the goal of disease control may be achieved by improving δ so thatRM is
less than R+

M , or timely treating infected individuals so that α is not greater than α0.
However, whenRM is greater thanR+

M and the delayed effect for treatment is strong
(i.e., α > α0), malaria may present bistability and periodic outbreaks. At this point,
the initial infection level determines whether malaria will eventually erupt or not.
(ii) Even if the number of equilibria for system (10) is the same as that for system (19),
system (10) may misjudge the epidemic pattern of malaria because of the occurrence
of Hopf bifurcation and Bogdanov–Takens bifurcation in system (19). In view of the
previous discussion, Table 2 summarizes whether system (10) can replace system (19)
in different parameter regions.
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Table 2 Substitution results under different parameter regions

Parameter region Substitution result

α ≤ ᾱ0 R̄0 < 1 R0 < 1 Yes

R0 > 1 No (may underestimate)

R̄0 > 1 R0 < 1 Does not existent

R0 > 1 No (may misjudge)

ᾱ0 < α ≤ α0 R̄0 < R̄+
0 R0 < 1 Yes

R0 > 1 No (may underestimate)

R̄+
0 < R̄0 < 1 R0 < 1 No (may overestimate)

R0 > 1 No (may underestimate)

R̄0 > 1 R0 < 1 Does not existent

R0 > 1 No (may misjudge)

α > α0 R̄0 < R̄+
0 R0 < R+

0 Yes

R+
0 < R0 < 1 No (may underestimate)

R0 > 1 No (may underestimate)

R̄+
0 < R̄0 < 1 R0 < R+

0 No (may overestimate)

R+
0 < R0 < 1 No (may misjudge)

R0 > 1 No (may underestimate)

R̄0 > 1 R0 < 1 Does not existent

R0 > 1 No (may misjudge)

4.3 Stability and bifurcation analysis for system (5)

This part analyzes the dynamics of system (5), including stability of equilibria, Turing
instability, Hopf bifurcation and Turing–Hopf bifurcation.

4.3.1 Stability of equilibria

Linearizing system (5) at equilibrium E∗ yields

∂ y

∂t
= D�y + J (E∗)y,

where

D =
⎛

⎝
d1 0 0
0 d1 0
0 0 d2

⎞

⎠ .

Accordingly, the characteristic equation is

Ji (E∗) = λ3 + A(i)(E∗)λ2 + B(i)(E∗)λ + C (i)(E∗) = 0, i ∈ N0, (23)
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in which

A(i)(E∗) = A1(E∗)ui + A0(E∗), B(i)(E∗) = B2(E∗)u2
i + B1(E∗)ui + B0(E∗),

C (i)(E∗) = C3(E∗)u3
i + C2(E∗)u2

i + C1(E∗)ui + C0(E∗),

where

A1(E∗) = 2d1 + d2, B2(E∗) = d2
1 + 2d1d2, C3(E∗) = d2

1d2,

B1(E∗) = d1

(

v + dh + β̄h I ∗
v + r + dh + δ

(1 + α I ∗
h )2

+ 2β̄v(I ∗
h + θ R∗

h) + 2dv

)

+ d2

(

β̄h I ∗
v + r + dh + δ

(1 + α I ∗
h )2

)

+ d2(v + dh),

C2(E∗) = d2
1 (β̄v(I ∗

h + θ R∗
h) + dv) + d1d2

(

v + 2dh + β̄h I ∗
v + r + δ

(1 + α I ∗
h )2

)

,

C1(E∗) = d1

(

β̄h I ∗
v + r + 2dh + δ

(1 + α I ∗
h )2

+ v

)

(β̄v(I ∗
h + θ R∗

h) + dv)

+ d2r β̄h I ∗
v + d2(v + dh)

(

β̄h I ∗
v + r + dh + δ

(1 + α I ∗
h )2

)

− d1β̄h β̄v(Nv − I ∗
v )(Nh − I ∗

h − R∗
h).

Next, give the stability of E0 and E1.

Theorem 14 Consider system (5) with α > 0.

(i) E0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.
(ii) E1 is unstable whenever it exists.

Now pay attention to the stability of E2. Denote D(i) = A(i)(E2)B(i)(E2) −
C (i)(E2), i ∈ N0. Through calculations, one has

D(i) = D3(E2)u
3
i + D2(E2)u

2
i + D1(E2)ui + D0(E2), i ∈ N0, (24)

where

D3(E2) = d1d2(d1 + d2) + d1d2(2d1 + d2) + d2
1 (2d1 + d2),

D2(E2) = d1(d1 + d2)m3 + d2(d1 + d2)(v + dh) + d1d2(m3 + v + dh)

+d1(2d1 + d2)m3 + (d1 + d2)(2d1 + d2)m4

+d1d2

(

m3 + v + 2dh + β̄h Iv2 + δ

(1 + α Ih2)2

)

+ rd1d2

+d1(2d1 + d2)(v + dh) + d2
1 (m3 + v + dh + m4) ,

D0(E2) = (m3 + v + dh) (v + dh)m3 + m3

(

r + dh + δ

(1 + α Ih2)2

)
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+m3m4

(

m3 + v + 2dh + β̄h Iv2 + δ

(1 + α Ih2)2

)

+(v + dh)m4 (m3 + v + dh + m4) + r β̄h Iv2 (m3 + v + dh + m4)

+rθβ̄h β̄vm5(Nv − Iv2) − β̄h β̄vm5(Nv − Iv2) (m3 + m4) ,

D1(E2) = (d1 + d2)(v + dh)m3 + d1(m3 + v + dh)m3 + d2(m3 + v + dh)(v + dh)

+(2d1 + d2)m3m4 + d1m3

(

m3 + v + 2dh + β̄h Iv2 + δ

(1 + α Ih2)2

)

+d2m4

(

m3 + v + 2dh + β̄h Iv2 + δ

(1 + α Ih2)2

)

+ rd1m3

+rd2

(

r + dh + δ

(1 + α Ih2)2

)

+ (2d1 + d2)(v + dh)m4

+(2d1 + d2)r β̄h Iv2 − m5(d1 + d2)β̄h β̄v(Nv − Iv2)

+ (v + dh + m4) (m3 + v + dh + m4) , (25)

withm3 = β̄v(Ih2+θ Rh2)+dv ,m4 = β̄h Iv2+r+dh+ δ
(1+α Ih2)

2 , m5 = Nh−Ih2−Rh2.
Further, define

AC = (C2(E2))
2 − 3C1(E2)C3(E2), BC = C1(E2)C2(E2) − 9C0(E2)C3(E2),

CC = (C1(E2))
2 − 3C0(E2)C2(E2), �C = B2

C − 4ACCC ,

AD = (D2(E2))
2 − 3D1(E2)D3(E2), BD = D1(E2)D2(E2) − 9D0(E2)D3(E2),

CD = (D1(E2))
2 − 3D0(E2)D2(E2), �D = B2

D − 4ADCD.

(26)

Theorem 15 For system (5) with α > 0, when E2 exists, if D0(E2) > 0 and the
following conditions hold:

(a) C1(E2) ≥ 0 or C1(E2) < 0 and �C > 0;
(b) D1(E2) ≥ 0 or D1(E2) < 0 and �D > 0,

then E2 is locally asymptotically stable.

Proof At E2, the characteristic equation is

λ3 + A(i)(E2)λ
2 + B(i)(E2)λ + C (i)(E2) = 0, i ∈ N0, (27)

where A(i)(E2), B(i)(E2) and C (i)(E2) are defined in (23) by replacing E∗ with
E2. Note that A(i)(E2) > 0, i ∈ N0. If C (i)(E2) > 0 and D(i)(E2) > 0, then
B(i)(E2) > 0, i ∈ N0. Hence, the stability of E2 is determined by the signs of
C (i)(E2) and D(i)(E2), i ∈ N0.

Apparently, C3(E2) > 0 and C2(E2) > 0. Further, it can be obtained from (21)
that C0(E2) > 0. Next, we explore the influence of C1(E2) on the sign of C (i)(E2)

for i ∈ N0\{0}.
Case (I) C1(E2) ≥ 0.
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Fig. 2 The distribution of roots
for C(u) = 0 with C1(E2) < 0

Obviously, C (i)(E2) > 0, i ∈ N0\{0}.
Case (II) C1(E2) < 0.
Define C(u) = C3(E2)u3 + C2(E2)u2 + C1(E2)u + C0(E2). Then C ′(u) =

3C3(E2)u2 + 2C2(E2)u + C1(E2). Moreover, C ′(u) = 0 has two different real roots
ū1 and ū2. Without loss of generality, assume ū1 < ū2. Accordingly, ū1 < 0 < ū2.
Notice that ū1 and ū2 are inflection points of functionC(u). Thus, applying Shengjin’s
Distinguishing Means (Zhao et al. 2020; Hu et al. 2012), the following results can be
acquired:

(i) If �C > 0, then there is no positive root for C(u) = 0 (see Fig. 2);
(ii) If �C = 0, then C(u) = 0 has three real roots, denoted by ũ1, ũ2 and ũ3,

respectively. Without loss of generality, assume ũ1 ≤ ũ2 ≤ ũ3. Moreover, ũ1 <

ū1 < 0 < ū2 = ũ2 = ũ3 (see Fig. 2);
(iii) If �C < 0, then C(u) = 0 has three real roots, denoted by ũ1, ũ2 and ũ3,

respectively. Suppose ũ1 ≤ ũ2 ≤ ũ3. Then, ũ1 < ū1 < 0 < ũ2 < ū2 < ũ3 (see
Fig. 2).

Hence, when �C > 0, one has C(u) > 0 for u > 0. Thereby, for �C > 0, we obtain
C (i)(E2) > 0, i ∈ N0\{0}.

Analogously, for D0(E2) > 0, if the condition (b) holds, then D(i)(E2) > 0, i ∈
N0\{0}. Consequently, when D0(E2) > 0 and the conditions (a) and (b) hold, E2 is
locally asymptotically stable. We complete the proof. ��

Corollary 4 For system (5) with α = 0,

(i) E0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1;
(ii) If R0 > 1, then E3 is locally asymptotically stable.

Remark 9 (i) As incorporating the delayed effect for treatment, Theorems 14 and
15 show the stability of equilibria when both humans and mosquitoes have spread.
Biologically, when the initial infection level is low (i.e., near the DFE E0), if the basic
reproduction number RM is less than one, then malaria becomes extinct.

Besides, based on Theorem 8, as R+
M < RM < 1 and α > α0 or RM > 1, if the

initial infection level approaches the endemic equilibrium E2, then malaria outbreak
may occur. Note that in the first scenario, bistability may occur, which means that
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different initial levels may lead to different evolution trends. To be specific, if the
initial infection level is near E0 (or E2), malaria becomes extinct (or may erupt).
(ii) Without taking into account the delayed effect for treatment, Corollary 4 gives the
stability of equilibriawhenboth human andmosquito populations spread.Biologically,
if the initial infection level is low, then the extinction of malaria occurs if RM is less
than one. When RM is greater than one, if the initial infection level is near E3, then
malaria is prevalent.
(iii) Theorems 14 and 15 and Corollary 4 indicate that when RM is less than one
and the initial infection level is low, the delayed effect for treatment has negligible
impact on the evolutionary outcome ofmalaria. However, it is worth noting that system
(5) without this effect does not exhibit complex dynamics, such as Turing instability,
Hopf bifurcation and Turing–Hopf bifurcation. Biologically, malaria may eventually
stabilize at a constant level, without uneven distribution in space or periodic fluctuation
in time. The inclusion of this effect makes both the above complex dynamics and
spatiotemporal patterns possible. In particular, when R+

M < RM < 1 and α > α0,
the inclusion of this effect may increase the likelihood of malaria outbreak due to the
existence of the endemic equilibria.
(iv) Note that the difference between systems (5) and (6) is whether the infectivity of
natural recovery persons is overlooked. In light of the above discussion, the existence
of equilibria for system (5) is highly similar to that for system (6) (see Theorems 2 and
8), however the stability of the endemic equilibrium E2 for system (5) is quite different
from that of the endemic equilibrium Ē2 for system (6) (see Theorem 15 and Corollary
4). Specifically, system (6) does not exhibit bifurcation at Ē2, however system (5) may
experience bifurcation at E2. This shows that it is possible to obtain more accurate
and rich results by incorporating the infectivity of natural recovery category.

4.3.2 Turing instability

The subsection presents conditions that may lead to Turing instability of E2 for system
(5). For non-spatial system (19), when E2 exists, E2 is stable if D0(E2) > 0. In
the following, assume D0(E2) > 0. If there is a certain i0 ∈ N0\{0} resulting in
C (i0)(E2) < 0, then E2 of spatial system (5) is unstable and Turing instability occurs.

Theorem 16 When E2 exists, if D0(E2) > 0 and C (i0)(E2) < 0 for some i0 ∈ N0\{0},
then E2 is Turing unstable.

Remark 10 When both the infectivity of natural recovery class and the delayed effect
for treatment are included, the introduction of diffusion may change the stability of
the equilibrium, and both are indispensable. Biologically, the emergence of Turing
instability means that when both humans and mosquitoes spread, malaria may not
eventually stabilize at a constant equilibrium, but rather exhibit an uneven distribution
in space. That is to say, there may be different prevalence levels in different locations.

4.3.3 Hopf bifurcation

With the aid of Song et al. (2016), choose α as bifurcation parameter to explore Hopf
bifurcation at E2 of system (5).
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Theorem 17 When E2 exists, if there are i1 ∈ N0 and ᾱ such that C (i1)(E2)(ᾱ) >

0, D(i1)(E2)(ᾱ) = 0, dD(i1)(E2)(α)
dα

∣
∣
α=ᾱ

�= 0, and for i ∈ N0\{i1}, C (i)(E2)(ᾱ) �=
0, D(i)(E2)(ᾱ) �= 0, then system (5) undergoes Hopf bifurcation at E2 as α = ᾱ.
Further, Hopf bifurcation is spatially homogeneous if i1 = 0 and spatially nonhomo-
geneous if i1 ∈ N0\{0}.
Remark 11 Only when considering both the infectivity of natural recovery class and
the delayed effect for treatment can system (5) undergo Hopf bifurcation. From a bio-
logical perspective, the occurrence of the spatially homogeneous Hopf bifurcation in
system (5) indicates that malaria may exhibit periodic outbreaks, and the prevalence
level does not vary due to regional differences. The appearance of spatially nonho-
mogeneous Hopf bifurcation in system (5) implies that malaria may not only exhibit
periodic outbreaks, but the prevalence level may also vary by region.

4.3.4 Turing–Hopf bifurcation

The part is dedicated to investigate Turing–Hopf bifurcation at E2 of system (5). To
this end, make some hypotheses.

(B1) D(0)(E2) = 0.

By (B1), J0(E2) = 0 possesses a pair of purely imaginary roots±iω0 and a negative
real root.

(B2) There is a positive integer i∗ satisfying that C (i∗)(E2) = 0 and D(i∗)(E2) > 0.

Based on (B2), Ji∗(E2) = 0 admits a simple zero root and all other roots having
negative real parts.

(B3) For i ∈ N0\{0, i∗}, C (i)(E2) > 0, D(i)(E2) > 0.

According to (B3), when i ∈ N0\{0, i∗}, all roots of Ji (E2) = 0 have negative real
parts.

Based on the previous analysis, the delayed effect for treatment and the inclusion
of natural recovery compartment play significant role in the complex dynamics of sys-
tem (5). Accordingly, we take the extent of the delayed effects for treatment α and the
transformation rate from the infected compartment to the natural recovery compart-
ment (i.e., natural recovery rate) r as bifurcation parameters, and offer transversality
conditions. To simplify the discussion, define

�1 =
{

(α11, r11)
∣
∣ D(0)(E2)(α11, r11) = 0,

dD(0)(E2)(α, r)

dα

∣
∣
(α,r)=(α11,r11)

�= 0

}

,

�2 =
{
(α21, r21)

∣
∣ C (i∗)(E2)(α21, r21) = 0, D(i∗)(E2)(α21, r21) > 0,

dC (i∗)(E2)(α, r)

dα

∣
∣
(α,r)=(α21,r21)

�= 0

}

.

Suppose that �1 and �2 are non-empty. By the implicit function theorem, in some
neighborhood of (α11, r11) ((α21, r21)), there is a unique continuous function α =
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F1(r) (α = F2(r)) satisfying D(0)(E2)(F1(r), r) = 0 (C (i∗)(E2)(F2(r), r) =
0). Moreover, let λ1 = v0(α, r) + i
0(α, r), λ2 = v0(α, r) − i
0(α, r) with
v0(F1(r), r) = 0, 
0(F1(r), r) = √

B(0)(E2)(F1(r), r), and λ̃1 = v1(α, r) with
v1(F2(r), r) = 0. Through calculations, acquire

dv0(α, r)

dα

∣
∣
∣
∣
α=F1(r)

= − 2

Â

dD(0)(E2)(α, r)

dα

∣
∣
∣
∣
α=F1(r)

�= 0,

dv1(α, r)

dα

∣
∣
∣
∣
α=F2(r)

= − 1

B̂

dC (i∗)(E2)(α, r)

dα

∣
∣
∣
∣
α=F2(r)

�= 0,

(28)

where Â = (A(0)(E2)(F1(r), r))2 + B(0)(E2)(F1(r), r), B̂ = B(i∗)(E2)(F2(r), r).
Hence, the transversality conditions hold. Accordingly, establish the following theo-
rem.

Theorem 18 When E2 exists, if there are α∗, r∗ and i∗ satisfying (B1)–(B3) and
transversality conditions, then system (5) exhibits (i∗, 0)-mode Turing–Hopf bifurca-
tion at E2 as (α, r) = (α∗, r∗).

Applying the method in Song et al. (2016) to system (5), we derive the normal form
of Turing–Hopf bifurcation at E2. More details can be found in Appendix G.

Remark 12 (i) Simultaneously considering the infectivity of natural recovery class
and the delayed effect for treatment leads to Turing–Hopf bifurcation in system
(5). This indicates that system (5) has rich dynamical behaviors near (α∗, r∗).
There may be spatially inhomogeneous steady state, spatially homogeneous and
inhomogeneous periodic solutions. From a biological point of view, malaria may
exhibit spatiotemporal patterns, such as uneven distribution in space, or period-
icity in time and uniform distribution in space, or periodicity in time and uneven
distribution in space. In particular, if system (5) admits Turing–Hopf bifurca-
tion as the basic reproduction number RM is less than one, then system (5) may
exhibit multistability, that is, the DFE E0 may coexist with spatially inhomoge-
neous steady state, spatially homogeneous or inhomogeneous periodic solution,
respectively. Biologically, different initial infection levels may lead to different
epidemic trends, meaning that malaria can become extinct or erupt and exhibit
spatiotemporal patterns. In the case, the epidemic pattern of malaria is highly sen-
sitive to the extent of the delayed effect for treatment α, natural recovery rate r , as
well as the initial infection level.

(ii) With the aid of Theorems 16-18, for the endemic equilibrium E2 of system (5),
Turing instability, Hopf bifurcation and Turing–Hopf bifurcation may appear.
However, for system (6), these dynamic behaviors are not present. The results
reveal that the dynamics of system (5) are more complicated and richer than that
of system (6). In different parameter areas, whether system (6) can achieve the
substitution effect for system (5) is the same as that in Table 2. It is worth men-
tioning that when comparing non-spatial systems (10) and (19), system (10) may
cause misjudgment, as Hopf bifurcation and Bogdanov–Takens bifurcation appear
in system (19). At this time, malaria may break out in a periodic pattern. When
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comparing spatial systems (6) and (5), system (6) may lead to misjudgment due to
Turing instability, Hopf bifurcation and Turing–Hopf bifurcation in system (5). In
this case, the disease may stabilize at spatial inhomogeneous steady state, spatially
homogeneous or inhomogeneous periodic solution. These results provide new per-
spective for understanding the influence of the infectivity of natural recovery class
on malaria transmission.

5 Numerical simulations

The goal of this part is to carry out numerical simulations, so as to confirm the analytic
outcomes and acquire some epidemiological insights.

5.1 Bifurcation diagram and dynamics of system (10)

According to the above discussion, system (10) can exhibit forward bifurcation and
backward bifurcation. In this part, we describe the bifurcation diagram, and further
discuss the existence and stability of equilibria.

Set

Nh = 110, Nv = 220, b = 0.4, βh = 0.02, βv = 0.4, θ = 0.1,

r = 0.00144, v = 0.0007, dh = 1

70 × 365
, dv = 1

25
,

(29)

which are adjusted on the basis of Bousema et al. (2010), Wang et al. (2017), Chitnis
et al. (2008).

5.1.1 Bifurcation diagram in (˛,ı) plane and dynamics for system (10)

Under the above parameters, Fig. 3 presents the bifurcation diagram in (α, δ) plane of
system (10). To be specific, L̄∗: δ = δ̄1 meets R̄0 = 1. Moreover, W1 = (ᾱ1, δ̄1) ≈
(0.047, 0.062) divides L̄∗ into two parts L̄∗− (α < ᾱ1) and L̄∗+ (α > ᾱ1). In view
of Theorem 5, system (10) exhibits forward bifurcation and backward bifurcation on
L̄∗− and L̄∗+, respectively. Next, give description of the remaining curves. Curve L̄0

satisfies R̄0 = R̄+
0 . Curve L̄1 holds α = ᾱ0. Further, denote

H̄0 = H̄0−1 ∪ H̄0−2, H̄1 = {(α, δ)| R̄+
0 < R̄0 < 1, α > ᾱ0}, H̄2 = {(α, δ)| R̄0 > 1},

where H̄0−1 = {(α, δ)| R̄0 < 1, α ≤ ᾱ0}, H̄0−2 = {(α, δ)| R̄0 < R̄+
0 , α >

ᾱ0}. With the aid of Theorem 2 and Theorem 4, the dynamics for system (10) are
summarized in Table 3.

5.1.2 Bifurcation diagram in (R̄0, Ih) plane and dynamics for system (10)

As R̄0 a significant indicator, the bifurcation diagram in (R̄0, Ih) plane is drawn. To
show all bifurcation types in (R̄0, Ih) plane, choose α = 0.04 and α = 0.2.
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Fig. 3 Bifurcation diagram in
(α, δ) plane for system (10)

Table 3 The dynamics of
system (10)

Ē0 Ē1 Ē2

H̄0 LAS Non Non

H̄1 LAS US LAS

H̄2 US Non LAS

For α = 0.04, system (10) undergoes forward bifurcation at R̄0 = 1 (see Fig. 4a).
Under the case, system (10) possesses no endemic equilibrium as R̄0 < 1. The result
infers that R̄0 = 1 serves as threshold quantity for malaria eradication if α < ᾱ1.

In Fig. 4b, α = 0.2 is selected such that α > ᾱ1. Then backward bifurcation appears
at R̄0 = 1. For R̄0 < 1, malaria may not be eliminated. This has significance impact
on malaria control. As R̄0 < 1 and α > ᾱ1, if there are enough infected persons at
the initial stage of malaria, then malaria is likely to be prevalent and stabilize at Ē2.
Malaria may be eliminated if a few infected individuals are introduced. Accordingly,
unless R̄0 is lower than the new threshold value R̄+

0 , it may not be successful to
eliminate disease by reducing R̄0 below one.

5.2 Bifurcation diagram and dynamics of system (19)

Based on the above discussion, system (19) can undergo Bogdanov–Takens bifurca-
tion. This part is devoted to demonstrating the dynamics of system (19). The parameter
values are the same as (29).

5.2.1 Bifurcation diagram in (˛,ı) plane and dynamics for system (19)

Using the above parameters, one arrives BT = (α̂, δ̂) ≈ (0.13, 0.089) satisfying
(A1), (A2), c20 < 0 and c11 + 2b20 < 0. From Theorem 13, system (19) exhibits
Bogdanov–Takens bifurcation. The bifurcation diagram in (α, δ) plane for system (19)
is shown in Fig. 5. More specifically, the blue, green and black solid lines stand for
the bifurcation curves of saddle-node (SN ), Hopf (Hop f ) and homoclinic (Hom),
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Fig. 4 Bifurcation diagram in (R̄0, Ih) plane of system (10) for different α. The solid (dashed) curve stands
for stable (unstable) equilibria. FB (BB) represents forward (backward) bifurcation

Fig. 5 Bifurcation diagram in
(α, δ) plane for system (19)

respectively. BT , the intersection of Hop f and Hom with SN , divides SN into
attractive (SN−) and repulsive (SN+) saddle-node bifurcation curves.

In addition, curve L∗: δ = δ1 is defined by solving R0 = 1. In light of Theorem
11, L∗ is divided into the bifurcation curves of forward (L∗−) and backward (L∗+) by
W2 = (α̃1, δ1) ≈ (0.072, 0.075). Curve L1 meets α = α0. Moreover, introduce

H0 = H0−1 ∪ H0−2, H1 = {(α, δ)| R+
0 < R0 < 1, α > α0}, H2 = {(α, δ)| R0 > 1},

in which

H0−1 = {(α, δ)| R0 < 1, α ≤ α0}, H0−2 = {(α, δ)| R0 < R+
0 , α > α0}.

Based on the outcomes in Sect. 4.2, one arrives the dynamics for system (19) shown
in Table 4.
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Table 4 The dynamics of
system (19)

E0 E1 E2

H0 LAS Non Non

H1 LAS US Various

H2 US Non LAS

HereLAS,USandNon stand for locally asymptotically stable, unstable
and nonexistent, respectively

Fig. 6 Bifurcation diagrams in (R0, Ih) plane of system (19) for different α. The solid (dashed) curve
stands for stable (unstable) equilibria. FB (BB) represents forward (backward) bifurcation

5.2.2 Bifurcation diagram in (R0, Ih) plane and dynamics for system (19)

In this part, set α = 0.05, α = 0.1 and α = 0.2 to illustrate all bifurcation diagrams
in (R0, Ih) plane.

When α = 0.05, the forward bifurcation at R0 = 1 arises, which is illustrated in
Fig. 6a. There is no endemic equilibrium if R0 < 1. This concludes that with weak
delayed effect for treatment, R0 = 1 is used as critical value of disease extinction.

Choose α = 0.1 and α = 0.2, making α > α̃1. Saddle-node and backward bifurca-
tions appear (see Fig. 6b, c). Besides, since the appearance of forwardHopf bifurcation,
the endemic equilibrium E2 changes from unstable to stable, and an unstable limit
cycle is generated around E2. Subsequently, it is broken by homoclinic loop (see
Fig. 6c). Moreover, Fig. 6b, c indicate that malaria may not die out asR0 < 1. Biolog-
ically, due to strong delayed effect for treatment, there may be bistability in malaria
epidemic level if R+

0 < R0 < 1. In the case, the outbreak or extinction of disease
is closely related to the initial infection level. As a result, in order to cope with the
outbreak of malaria, measures should be implemented to decrease R0 below R+

0 ,
otherwise malaria may not be successfully eliminated.

5.3 The comparison between systems (10) and (19)

On the basis of the discussion in Sects. 5.1-5.2, we are in a position to compare dynam-
ics of systems (10) and (19). For convenience, define

D00 = H̄0 ∩ H0, D01 = H̄0 ∩ H1, D02 = H̄0 ∩ H2, D10 = H̄1 ∩ H0,

D11 = H̄1 ∩ H1, D12 = H̄1 ∩ H2, D22 = H̄2 ∩ H2.
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Fig. 7 The subregions of (α, δ)

plane

Furthermore, the bifurcation curves of Hopf and homoclinic of system (19) are used as
boundary to produce three subsets of D11: D11−1, D11−2 and D11−3. Figure7 shows
the distribution of these nine regions in (α, δ) plane. The substitution results of system
(10) for (19) in nine regions are summarized in Table 5.

In detail, two systems have zero, one and two endemic equilibria in regions D00,
D22 and D11−3, respectively. Furthermore, the dynamical behaviors of system (10)
are similar to that of system (19). However, system (10) may not be able to replace
system (19) in other regions. In regions D01 and D02, system (10) may underestimate
the outbreak of malaria. The reason is that for system (10), when (α, δ) ∈ D01 ∪ D02,
malaria can be eliminated. As for system (19), bistability arises if (α, δ) ∈ D01.
Accordingly, the outbreak or eradication of malaria and the level of initial infection is
vitally interrelated. When (α, δ) ∈ D02, the endemic equilibrium E2 of system (19) is
the unique stable equilibrium,which implies outbreak ofmalaria. It isworth noting that
for (α, δ) ∈ D10, system (10) may overestimate the outbreak of disease. That is caused
by the fact that system (10) possesses two endemic equilibria. Moreover, due to the
occurrence of Bogdanov–Takens bifurcation, when the parameters change from region
D11−1 to region D11−2, the endemic equilibrium E2 changes from unstable to stable;
for (α, δ) ∈ D11−2, the unstable periodic solution appears and surrounds E2, and
it ruptures through homoclinic loop. Hence system (10) may generate misjudgment.
Figure7 indicates that parameter area determines whether the dynamics of system (19)
can be revealed by the dynamics of system (10).

5.4 Bifurcation diagram and dynamical behaviors for system (5)

According to the results in Sect. 4.3, system (5) can exhibit Turing–Hopf bifurcation at
E2. In this part, setting � = (0, 3.5π), α and r are selected as bifurcation parameters
to depict bifurcation diagram.

Take

Nh = 110, Nv = 220, b = 0.4, βh = 0.07, βv = 0.4, θ = 0.018,

δ = 0.232, v = 0.00065, dh = 1

70 × 365
, dv = 1

25
, d1 = 0.4

30
, d2 = 0.02

30
,

(30)
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Table 5 Substitution results under different parameter regions

Parameter region D00 D01 D02

Substitution result Yes No No

(may underestimate) (may underestimate)

Parameter region D10 D11−1 D11−2

Substitution result No No No

(may overestimate) (may misjudge) (may misjudge)

Parameter region D11−3 D12 D22

Substitution result Yes No Yes

(may underestimate)

which are adjusted on the basis of Bai et al. (2018), Bousema et al. (2010), Wang et al.
(2017), Chitnis et al. (2008).

Four critical curves in (α, r) plane are shown in Fig. 8a. It is easy to obtain L∗ :
r = r1 by solving R0 = 1. Clearly, ∂R0

∂r = b2Nvβhβv

Nhdv(r+dh+δ)2
(
θ(dh+δ)
v+dh

− 1). For these

given parameters, ∂R0
∂r > 0. Then R0 < 1 if r < r1 and R0 > 1 if r > r1. Note that

α > α0 holds when r < r1. The curve L0 is defined by solving R0 = R+
0 . Further,

introduce

�0 = {(α, r)| R0 < R+
0 }, �1 = {(α, r)| R+

0 < R0 < 1}, �2 = {(α, r)| R0 > 1}.
(31)

Hence based on Theorem 8, system (5) admits zero, two and one endemic equi-
libria in regions �0, �1 and �2, respectively. Moreover, it follows from (B2)
that i∗ = 1. Besides, the black curve and blue curve represent Turing bifurca-
tion and Hopf bifurcation, respectively. These two curves intersect at the point
T H = (α∗, r∗) ≈ (0.07504, 0.00144) satisfying the conditions in Theorem 18.
Thereupon, for R0 < 1, system (5) admits (1,0)-mode Turing–Hopf bifurcation at
E2 ≈ (2.9382, 6.1467, 21.9562)T when (α, r) = (α∗, r∗).

Moreover, normal form (G6) for (1,0)-mode Turing–Hopf bifurcation is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz1
dt

= 0.0005i z1 + ((0.0129 − 0.1004i)ε1 + (−0.1392 + 0.64i)ε2)z1

+ (−1.293 × 10−7 − 1.2152 × 10−7i)z21z2

+ (3.5435 × 10−7 − 1.4481 × 10−7i)z1z23,

dz2
dt

= −0.0005i z2 + ((0.0129 + 0.1004i)ε1 + (−0.1392 − 0.64i)ε2)z2

+ (−1.293 × 10−7 + 1.2152 × 10−7i)z1z22

+ (3.5435 × 10−7 + 1.4481 × 10−7i)z2z23,

dz3
dt

= (0.0386ε1 − 0.6832ε2)z3 − 5.704 × 10−7z1z2z3 − 7.0563 × 10−8z33.

(32)

123



The role of natural recovery category in malaria dynamics… Page 33 of 56    33 

To discuss the dynamics, consider the transformations z1 = R cos�+ i R sin�, z2 =
R cos� − i R sin�, z3 = P , and rescale ρ1 = √

1.293 × 10−7R, ρ2 =√
7.0563 × 10−8P . Dropping the differential equation of �, (32) is transformed into

⎧
⎪⎨

⎪⎩

dρ1
dt

= (0.0129ε1 − 0.1392ε2)ρ1 − ρ3
1 + 5.0218ρ1ρ

2
2 ,

dρ2
dt

= (0.0386ε1 − 0.6832ε2)ρ2 − 4.4115ρ2
1ρ2 − ρ3

2 .

(33)

Notably, ρ1 ≥ 0 and ρ2 is arbitrarily real number. Then system (33) admits equilibria

J0 = (0, 0)T, for all ε1, ε2,

J1 =
(√

0.0129ε1 − 0.1392ε2, 0
)T

, for ε2 < 0.0927ε1,

J±
2 =

(
0,±√

0.0386ε1 − 0.6832ε2
)T

, for ε2 < 0.0565ε1,

J±
3 = 1√

23.1536

(√−0.0184ε1 − 0.0692ε2,±
√
0.2067ε1 − 3.5698ε2

)T
,

for ε2 < −0.266ε1, ε2 < 0.0579ε1.

Consequently, acquire critical bifurcation curves

F0 : ε2 = 0.0927ε1, T1 : ε2 = 0.0565ε1,

K1 : ε2 = −0.266ε1, K2 : ε2 = 0.0579ε1.

Based on Guckenheimer and Holmes (1983), the unfolding for (33) is Case III.
These critical lines F0, T1, K1 and K2 divide ε1 − ε2 plane into six regions shown in
Fig. 8b. In each region, we list the existence and stability of these six equilibria for
system (33), as shown in Table 6. Inspired by Song et al. (2016), the corresponding
relationship between the equilibrium of system (33) and the equilibrium of system
(5) is obtained. That is, J0 represents the endemic equilibrium E2 of system (5), and
J1 corresponds to spatially homogeneous periodic solution. Moreover, J±

2 stand for
spatially inhomogeneous steady states and J±

3 match with spatially inhomogeneous
periodic solutions. In view of Theorem 14, E0 is locally asymptotically stable when
R0 < 1. As a result, system (5) may exhibit bistability or tristability forR0 < 1. That
is, the stable disease-free equilibrium may coexist with a stable endemic equilibrium
E2, or a stable spatial homogeneous periodic solution, or a pair of stable spatial
inhomogeneous periodic solutions, or a pair of stable spatial inhomogeneous steady
states. Biologically,malariamay showavariety of epidemic trends, such as elimination
or inhomogeneous distribution in space and periodic fluctuation in time of infectious
populations. Figures14, 15 and 16 show multi-stability of system (5) in regions II, IV
and VI, respectively.
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Fig. 8 Bifurcation curves of system (5) in a (α, r) plane, and b (ε1, ε2) plane

Table 6 The existence and stability of equilibria for system (33)

Region\Equilibria J0 J1 J±
2 J±

3

I Stable Noexistence Noexistence Noexistence

II Unstable Stable Noexistence Noexistence

III Unstable Stable Unstable Noexistence

IV Unstable Unstable Unstable Stable

V Unstable Noexistence Unstable Stable

VI Unstable Noexistence stable Noexistence

5.5 The comparison between systems (5) and (6)

Theprevious analysis indicates thatwhen (α, r)belongs to different regions, system (5)
exhibits significantly different dynamic behaviors. While for two-compartment model
(6), when the parameter takes value of (30), one arrives (α, r) ∈ �̄1 = {(α, r)| α >

ᾱ0, R̄+
0 < R̄0 < 1}. This infers that system (6) always admits two endemic equilibria

Ē1 and Ē2, which coexist with the DFE Ē0.
In order to further compare systems (5) and (6), introduce

N1 = �̄1 ∩ �2, N2 = �̄1 ∩ �0, N3 = �̄1 ∩ �1−1, N4 = �̄1 ∩ �1−2,

in which �1−1 and �1−2 represent stable and unstable regions of the endemic equi-
librium E2, respectively. Accordingly, four subregions in (α, r) plane are shown in
Fig. 9. If (α, r) ∈ N3, then the dynamics of system (6) are similar to that of system
(5). While when (α, r) belongs to other regions, the dynamic behaviors of system (6)
are significantly different from that of system (5). More specifically, for (α, r) ∈ N1,
system (6) may underestimate the emergence of malaria. When (α, r) ∈ N2, system
(6) may overestimate the outbreak of disease. Besides, if (α, r) ∈ N4, system (6) may
misjudge the epidemic pattern of malaria. Thereby, parameter region has profound
influence on whether the dynamics of system (6) can replace that of system (5).
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Fig. 9 The subregions of (α, r)

plane

6 A numerical application to Burundi

Burundi, located in sub-Saharan Africa, is a country ravaged by malaria. This section
is devoted to exploring the spread and control of malaria in Burundi. Firstly, based
on surveillance data from Burundi (Burundi Ministry of Public Health and the Fight
Against AIDS 2023), we estimate unknown parameter vector and calculate the basic
reproduction numberRM . Subsequently, sensitivity analysis is carried out to reveal the
key parameters affectingmalaria epidemic. At last, we assess the impact of parameters
on malaria spread.

6.1 Data fitting

Use system (5) to fit cumulative malaria data. In the following, take � = (0, 1).
The values of some parameters are shown in Table 7, however we are unable to
obtain the values of remaining parameters since the lack of detailed information about
malaria spread in Burundi. Motivated by Wang and Zhao (2022), Burundi Ministry
of Public Health and the Fight Against AIDS (2023), take Nv = gNh , Ih(0) =
c1Nh(−156.2x5 + 390.6x4 − 333.3x3 + 115.6x2 − 17.7x + 4), Rh(0) = r Ih(0) and
Iv(0) = c2 Ih(0). Hence, g, c1, c2 are treated as parameters for estimation.

Inspired by Shi et al. (2021), we design an algorithm based on BP neural network to
estimate parameter vector� = (α, g, c1, c2). Table 7 lists the estimation results.Under
the baseline parameter values, Fig. 10 shows that system (5) matches the data reported
by Burundi well. We calculate the basic reproduction number RM ≈ 1.71. Theorem
15 infers that the endemic equilibrium E2 ≈ (1288277, 7513551, 6933902)T is stable.
It verifies that malaria is prevalent in Burundi.

6.2 Sensitivity analysis toR0 andR+
0

Theorem 8 illustrates thatR0 andR+
0 play important role in the existence of equilib-

ria. Now we identify key parameters that have significant impact on R0 and R+
0 by

applying partial rank correlation coefficient (PRCC) method. As shown in Fig. 11a,
the biting rate b and the total density of mosquitoes Nv are highly positively correlated
with R0, while the cure recovery rate δ and the natural death rate of mosquito pop-
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Table 7 Parameter values

Parameter Value References

Nh 1.25 × 107 (Wang and Zhao 2022)

dv 0.026 (Chitnis et al. 2008)

b 0.28 (Chitnis et al. 2008)

βv 0.48 (Chitnis et al. 2008)

βh 0.02 (Chitnis et al. 2008)

dh
1

63.5∗365 (Wang and Zhao 2022)

r 0.009 (Wang and Zhao 2022; Chitnis et al. 2008)

v 0.0015 (Wang and Zhao 2022; Chitnis et al. 2008)

δ 0.01 (Wang and Zhao 2022; Feng et al. 2004)

θ 0.1 (Wang and Zhao 2022; Chitnis et al. 2008)

d1
0.4
30 (Bai et al. 2018)

d2
0.02
30 (Bai et al. 2018)

α 0.00001 Estimation

g 1.2 Estimation

c1 0.018 Estimation

c2 1.001 Estimation

Fig. 10 The fitting results of real
data in Burundi from 31 January
2021 to 31 December 2022

ulation dv are highly negatively correlated with R0. R0 is moderate or insensitive to
the change of remaining parameters. In addition, the natural recovery rate r is highly
positively correlated withR+

0 . The cure recovery rate δ and the extent of the delayed
effect for treatment α are highly negatively correlated withR+

0 . Other parameters have
little effect on R+

0 (see Fig. 11b).

6.3 The contour plots ofR0

In order to cope with the outbreak of malaria, humans can reduce the total density
of mosquitoes Nv by spraying insecticides, reduce the biting rate b by strengthening
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Fig. 11 Sensitivity analysis of a R0; bR+
0

personal protection, increase cure recovery rate δ by improving medical services and
reduce the extent of the delayed effect for treatment α by increasing medical resources
to cure patients in time. Besides, in view of Nv = gNh , variation of Nv is reflected by
variation of g. Next, illustrate the dependence ofR0 on controllable parameters (i.e.,
g, b, δ and α).

Figure12 shows the contour plots of R0 with respect to controllable parameters.
Curves L0 and L1 stand for R0 = R+

0 and α = α0, respectively. Further, define
parameter regions

W1 = {(k1, k2)| α > α0, R0 < R+
0 }, W2 = {(k1, k2)| α < α0, R0 < 1},

where (k1, k2) ∈ {(g, b), (g, δ), (b, δ), (g, α), (b, α), (δ, α)}. Based on the previous
analysis,whenparameters belong toW0 = W1∪W2, theDFE E0 is unique equilibrium,
which is locally asymptotically stable. Accordingly, it is beneficial to eliminatemalaria
by adjusting the parameters to within W0. In detail, when g is kept at the current level,
(g, b) ∈ W0 if b < 0.14. If b is fixed at the current level, then (g, b) ∈ W0 for g < 0.33.
In addition, for any b ∈ [0.1, 1], we haveR0 > 1 as g > 3.21 (see Fig. 12a). Keeping
g unchanged, (g, δ) ∈ W0 if δ > 0.13 (see Fig. 12b). Figure12c indicates that for
any δ ∈ [0.001, 0.25], we obtain R0 > 1 as b > 0.61. Figure12d–f illustrate that α

does not affect R0. While, it can be used for disease control. Therefore, reducing the
total density of mosquitoes, reducing the biting rate and reducing the delayed effect
for treatment, as well as improving the treatment recovery rate have profound impact
on malaria control.

6.4 The impact of controllable parameters onmalaria spread

This part aims to assess the effect of controllable parameters onR0 and the number of
cases under the same change percentage. Here change percentage refers to percentage
of decrease for g, b and α, and percentage of increase for δ. Inspired by Abboubakar
et al. (2018), introduce the efficiency index B to evaluate the influence of parameters
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Fig. 12 The contour plots ofR0 with respect to a g and b, b g and δ, c b and δ, d g and α, e b and α and f
δ and α. Here red dot indicates the current level (color figure online)

on the number of cases. B is defined as follows

B =
(

1 − Ac
h

A0
h

)

× 100%,

where A0
h = ∫ T

0

∫

�
I 0h (t, x)dxdt and Ac

h = ∫ T
0

∫

�
I c
h (t, x)dxdt , in which T = 699

represents the time interval from 31 January 2021 to 31 December 2022, I 0h (t, x)

and I c
h (t, x) stand for infected persons under the baseline parameter values and that

under adjusted parameter values, respectively. Further, in order to achieve the above
objective, three scenarios are proposed:

Scenario 1 : only one controllable parameter is changed.
Scenario 2 : two controllable parameters are changed.
Scenario 3 : more than two controllable parameters are changed.
Figure13 reveals the relationship between change percentage of parameters andR0

as well as B in each scenario. In scenario 1, when g is reduced by more than 73% or
b is reduced by more than 49%, malaria can be eliminated (see Fig. 13a). Figure13d
implies that when parameters g, b, δ and α change by 95%, B is 95.7%, 96.4%, 3.6%
and 30.4%, respectively. Besides, reducing the biting rate has the greatest influence
on B, followed by reducing the total density of mosquitoes, then reducing the delayed
effect of treatment and finally improving the treatment rate. Accordingly, in scenario
1, reducing the biting rate is the most effective for malaria control.

In scenario 2, except for the combination of δ and α, the other combinations are
beneficial to the elimination of malaria. Moreover, the combination with b has greater
influence on R0 than the combination without b. Specifically, if g and b change by
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Fig. 13 The value of R0 under different change percentage of parameters among a scenario 1, b scenario
2 and c scenario 3. The efficiency index under different change percentage of parameters among d scenario
1, e scenario 2 and f scenario 3

more than 36% or g and δ change by more than 67%, malaria can be eliminated (see
Fig. 13b). As shown in Fig. 13 (e), when the variation intensity is less than 73%, the
influence on B is combination of g and b, b and α, b and δ, g and α, g and δ and δ

and α in descending order. If the change of b and α is more than 73%, or that of b
and δ is more than 76%, or that of g and α is more than 89%, or that of g and δ is
more than 93%, then the corresponding value of B will exceed the value of B under
the combination of g and b, nevertheless the difference between the values of B is
less than 1%. From the perspective of reducing the number of cases, when the change
percentage is less than 73%, the most effective way is to reduce the biting rate and
the total density of mosquitoes; otherwise, the combination of reducing the biting rate
and reducing the delayed effect for treatment is the most effective.

In scenario 3, each combination can eliminate malaria under suitable percentage
of change. The combination of g, b, δ and α requires variation of more than 32%.
For the combination of g, δ and α, the variation needs to exceed 60%. In addition,
when three controllable parameters are adjusted, the combination of g, b and δ has
greater influence onR0 than other three combinations (see Fig. 13c). Moreover, when
the change percentage is less than 66%, this combination has the greatest influence
on B. When the change percentage is higher than 66%, the value of B under this
combination may be lower than that of B under the other three combinations, but the
difference between B values not exceed 1.5%. Notably, in scenario 3, combining all
availablemeasures is themost effectiveway to reduce the number of cases. If only three
controllable parameters are adjusted, when the change percentage is less than 66%, the
most effective combination is to reduce the biting rate, the total density of mosquitoes
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and the delayed effect for treatment; otherwise, the combination of improving the
treatment recovery rate, reducing the biting rate and reducing the delayed effect for
treatment is the most effective.

7 Discussion

In view of the slight infectivity of natural recovery persons, our interest is whether
neglecting this factor in areas with limitedmedical resources can simplify analysis and
retain significant dynamics. In order to answer this problem, introduce and analyze
two-compartment and three-compartment models in both scenarios without and with
spatial diffusion. This enables us to find key parameters that possess important influ-
ence on malaria epidemic trends, thus providing insights for transmission and control
of malaria.

In the absence of spatial movement, there are significant differences between the
dynamics of two-compartment model (10) and three-compartment model (19). More
specifically, model (10) can undergo backward bifurcation. However, model (19) can
admit not only backward bifurcation, but also Hopf bifurcation and Bogdanov–Takens
bifurcation. Further, parameter regions are given to illustrate whether the dynamics
of model (19) can be revealed by that of model (10). When there is no endemic
equilibrium in both models (10) and (19), model (10) can replace model (19). In
this case, the infectivity of natural recovery individuals can be neglected. Otherwise,
compared to model (19), model (10) may underestimate, overestimate or misjudge the
prevalence of malaria. Under the case, the infectivity of natural recovery persons may
not be overlooked. It is necessary to set up suitable compartments for malaria model,
since the epidemic mode of malaria cannot be presented by simpler analysis.

The analysis and dynamics of spatial two-compartmentmodel (6) are relatively sim-
ple, while that of spatial three-compartment model (5) are complex and interesting.
For model (5), with the help of Shengjin’s Distinguishing Means, the stability analy-
sis is better completed. In addition, it can admit Turing instability, Hopf bifurcation
and Turing–Hopf bifurcation. Further, the normal form of Turing–Hopf bifurcation
is given, in which the details are different from those of Turing–Hopf bifurcation for
two-compartment model (Song et al. 2016). Numerically, when the basic reproduc-
tion number RM is less than one, model (5) may allow the appearance of bistable or
even tristable phenomena. Here, bistable and tristable patterns imply that the stable
disease-free equilibrium may coexist with a stable endemic equilibrium, or a stable
spatial homogeneous periodic solution or a pair of stable spatial inhomogeneous peri-
odic solutions, or a pair of stable spatial inhomogeneous steady states, respectively.
Biologically, for RM < 1, there may be various epidemic trends of malaria, such as
elimination or inhomogeneous distribution in space and cyclic fluctuation in time of
infectious classes. In the previous research on reaction-diffusion epidemic model (Sun
2012; Wang et al. 2018; Zhu and He 2022), under the same parameters, the model can
exhibit bistability, but rarely show tristability. Accordingly, the tristable phenomenon
in our model seems to be a new discovery.

Notice that the replacement results of spatial two-compartment model for spa-
tial three-compartment model are similar to that of their corresponding non-spatial
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versions. The difference is that in the presence of spatial diffusion, spatial two-
compartment model (6) may bring misjudgment due to Turing instability, Hopf
bifurcation and Turing–Hopf bifurcation for spatial three-compartment model (5).
While in the absence of spatial diffusion, non-spatial two-compartment model (10)
may cause misjudgment due to Hopf bifurcation and Bogdanov–Takens bifurcation
for non-spatial three-compartment (19). Compared with Wang and Zhao (2022), Lou
and Zhao (2010), our results provide new perspective for understanding the role of the
infectivity of natural recovery category in malaria spread in both scenarios without
and with spatial diffusion.

In addition, the delayed effect for treatment does not affect the basic reproduction
number of the model, but may affect the existence and stability of equilibria. To be
specific, if there is no delayed effect for treatment in non-spatial two-compartment
and three-compartment models, then these two models do not experience any other
bifurcations except for the forward bifurcation. When the delayed effect for treatment
is not considered in spatial two-compartment and three-compartment models, the
dynamics of these two models are relatively simple, without Turing instability, Hopf
bifurcation and Turing–Hopf bifurcation. These results mean that ignoring the delayed
effect for treatment may underestimate the emergence of malaria and misjudge the
epidemic pattern at the time of disease outbreak. Therefore, the delayed effect for
treatment plays significant role in malaria transmission.

At last, spatial three-compartment model is applied to exhibit the transmission of
malaria in Burundi. Based on the cumulative malaria data reported in Burundi, the
unknown parameters are estimated, thus acquiring RM ≈ 1.71. This demonstrates
that malaria is prevalent in Burundi. The critical thresholds (i.e., R0 and R+

0 ) are
used to determine the preferred strategy for eliminating malaria. The efficiency index
is applied to identify the preferred method for reducing malaria cases. Specifically,
it is the most effective to simultaneously take all available measures to improve the
treatment recovery rate and reduce the total density of mosquitoes, the biting rate
and the delayed effect for treatment. If only three types of measures are taken, when
the change percentage is less than 66%, the most effective combination is to reduce
the biting rate, the total density of mosquitoes and the delayed effect for treatment;
otherwise, the combination of improving the treatment recovery rate, reducing the
biting rate and reducing the delayed effect for treatment is the most effective. When
only two types of measures are implemented, if the change percentage is less than
73%, then the most effective way is to reduce the biting rate and the total density of
mosquitoes; otherwise, the combination of reducing the biting rate and reducing the
delayed effect for treatment is the most effective. If only one type of measure is taken,
then reducing the biting rate is the most effective. We hope that these conclusions can
provide theoretical basis for malaria control in Burundi.
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Appendix A: Proof of Theorem2

Proof Due to

Q̄0 > 0 ⇔ R̄0 < 1; Q̄0 = 0 ⇔ R̄0 = 1; Q̄0 < 0 ⇔ R̄0 > 1,

ḡ(Ih) = 0 admits a unique positive solution for Q̄0 < 0. Thereby, as R̄0 > 1, system
admits a unique endemic equilibrium Ē2.

If R̄0 < 1, then (9) has two positive roots when Q̄1 < 0 and � > 0, and (9) has no
positive roots when Q̄1 ≥ 0. Moreover, Q̄1 < 0 if and only if R̄0 > P̄0. Clearly, if
P̄0 ≥ 1, then system has no endemic equilibrium when R̄0 < 1. In addition, one
yields that

P̄0 < 1 ⇔ α > ᾱ0, � > 0 ⇔ 0 < R̄0 < max{0, R̄−
0 } or R̄0 > R̄+

0 .

Thus, for α > ᾱ0 and R̄+
0 < R̄0 < 1, there are two endemic equilibria Ē1 and Ē2.

For R̄0 = 1 and α > ᾱ0, Q̄0 = 0 and Q̄1 < 0. Hence, system admits a unique
endemic equilibrium Ē2.

When R̄0 = R̄+
0 and α > ᾱ0, we have � = 0, Q̄0 > 0 and Q̄1 < 0. So, there is a

unique endemic equilibrium Ē1 = Ē2.
When α > ᾱ0, � < 0 if P̄0 < R̄0 < R̄+

0 and Q̄1 ≥ 0 if R̄0 ≤ P̄0. Accordingly,
for R̄0 < R̄+

0 and α > ᾱ0, system has no endemic equilibrium.
If R̄0 ≤ 1 and α ≤ ᾱ0, then Q̄1 ≥ 0 and Q̄0 ≥ 0. Accordingly, there is no endemic

equilibrium. Thereby, we complete the proof. ��

Appendix B: Proof of Theorem 4:

Proof Direct calculation yields the local stability of equilibria. Below,wemainly prove
the global stability of Ē0 and Ē2.

When Ē0 is a unique equilibrium of system (10), according to Poincaré-Bendixson
Theorem, there is no periodic orbits in �̄. The local stability of Ē0 implies that it is
globally asymptotically stable (Brauer and Castillo-Chavez 2012). Thus, Theorem 4
(i) is valid.

Next, Bendixson’s theorem is applied to illustrate the nonexistence of the limit
cycle. Let

P̌1(Ih, Iv) = bβh
Iv
Nh

(Nh − Ih) − δ Ih

1 + α Ih
− r Ih − dh Ih,

Q̌1(Ih, Iv) = bβv

Ih

Nh
(Nv − Iv) − dv Iv.
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One can get

∂ P̌1

∂ Ih
+ ∂ Q̌1

∂ Iv
= −bβh

Nh
Iv − δ

(1 + α Ih)2
− r − dh − bβv Ih

Nh
− dv < 0 in �̄.

This implies that there is no limit cycle in �̄. When R̄0 > 1, Ē2 is a unique locally
asymptotically stable equilibrium of system (10). Accordingly, it must be globally
asymptotically stable in �̄ \ {Ē0} (Brauer and Castillo-Chavez 2012). Thus, Theorem
4 (iii) is established. ��

Appendix C: Proof of Theorem 5:

Proof System (10) can be written as

dw

dt
= f̄ (w)

with w = (w1, w2)
T = (Ih, Iv)T, and f̄ = ( f̄1, f̄2)T is shown below

⎧
⎨

⎩

f̄1 = β̄hw2(Nh − w1) − δw1

1 + αw1
− rw1 − dhw1,

f̄2 = β̄vw1(Nv − w2) − dvw2.

Select δ as the bifurcation parameter. From R̄0 = 1, we have δ = δ̄1. Let φ = δ̄1 − δ.
At φ = 0, the Jacobian matrix of system (10) at the DFE Ē0, denoted by J (Ē0)|φ=0,
admits a zero eigenvalue and an eigenvalue with negative real part.

The left and right eigenvectors of J (Ē0)|φ=0 related to zero eigenvalue are

p = (p1, p2) =
(

β̄v Nv

r + dh + δ̄1
, 1

)

p2, q = (q1, q2)
T =

(
dv

β̄h Nh
, 1

)T

q2,

respectively, where q2 > 0 satisfying Theorem 4.1 in Castillo-Chavez and Song

(2004). Furthermore, p2 andq2 canbe selected to satisfy p2q2 = (r+dh+δ̄1)β̄h Nh

β̄v Nvdv+(r+dh+δ̄1)β̄h Nh
> 0 such that p · q = 1.

In addition,

∂2 f̄1
∂w2

1

(0, 0) = 2αδ̄1,
∂2 f̄1

∂w1∂w2
(0, 0) = ∂2 f̄1

∂w2∂w1
(0, 0) = −β̄h,

∂2 f̄2
∂w1∂w2

(0, 0) = ∂2 f̄2
∂w2∂w1

(0, 0) = −β̄v,
∂2 f̄1

∂w1∂φ
(0, 0) = 1,

and remaining derivatives are equal to zero.
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Based on Theorem 4.1 in Castillo-Chavez and Song (2004), the coefficients ã and
b̃ are

ã =
2∑

k,i, j=1

pkqi q j
∂2 f̄k

∂wi∂w j
(0, 0) = 2β̄h δ̄1Nhdv

(r + dh + δ̄1)2
p2q2

2 (α − ᾱ1),

b̃ =
2∑

k,i=1

p̄k q̄i
∂2 f̄k

∂wi∂φ
(0, 0) = β̄h β̄v Nh Nv

(r + dh + δ̄1)2
p2q2 > 0.

Accordingly, system (10) undergoes, at R̄0 = 1, a backward bifurcation as α > ᾱ1,
and a forward bifurcation as α < ᾱ1. ��

Appendix D: Proof of Theorem 10:

Direct calculation can obtain the local stability of equilibria. Next, applying geometric
singular perturbation theory (Feng et al. 2004; Fenichel 1979), introduce the reduced
system corresponding to system (19)

⎧
⎪⎪⎨

⎪⎪⎩

dIh

ds
= β̄h

β̄v(Ih + θ Rh)Nv

β̄v(Ih + θ Rh) + dv

(Nh − Ih − Rh) − r̄ Ih − δ̄ Ih

1 + α Ih
− d̄h Ih,

dRh

ds
= r̄ Ih − v̄Rh − d̄h Rh,

(D1)

where ε = dh
dv
, s = εt , dh = εd̄h ,

bβh
Nh

= εβ̄h , δ = εδ̄, v = εv̄, r = εr̄ , β̄v = bβv

Nh
. Due

to the facts that systems (19) and (D1) in this work correspond to systems (58) and (27)
in Wang and Zhao (2022), and Wang and Zhao (2022) provides detailed derivation of
the dynamics for reduced system (27) that can reveal the dynamics of system (58), we
directly apply these results. Specifically, the stability of Ê0 = (0, 0)T in system (D1)
is consistent with that of E0 in system (19). Hence, the global stability of the DFE
E0 in system (19) is demonstrated by studying the global stability of the DFE Ê0 in
reduced system (D1).

For system (D1), �̂ = {(Ih, Rh)T
∣
∣0 ≤ Ih ≤ Nh, 0 ≤ Rh ≤ Nh} is positively

invariant. If E0 is a unique equilibrium of system (19), then Ê0 is a unique equilibrium
of system (D1) Wang and Zhao (2022). According to Poincaré-Bendixson Theorem,
system (D1) admits no periodic orbits in �̂. Since the local stability of E0 means the
local stability of Ê0, the local stability of Ê0 implies that it is globally asymptotically
stable in �̂ (Brauer and Castillo-Chavez 2012). Thus, Theorem 10 is valid.

Appendix E: Proof of Corollary 3:

After some calculations, we obtain the local stability of equilibria. For α = 0, similar
to the proof of Theorem 10, the global stability of E0 and E3 in system (19) is obtained
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by proving the global stability of Ê0 and Ê3 = (Ih3, Rh3)
T in reduced system (D1)

(Wang and Zhao 2022).
When E0 is a unique equilibrium of system (19), Ê0 is a unique equilibrium of

system (D1). Similar to the proof of Theorem 4 (i) and Theorem 10 (i), its local
stability means its global stability. Thus, Corollary 3 (i) is valid.

In the following, Dulac’s criterion is applied to prove the nonexistence of the limit
cycle. Let

P̌2(Ih, Rh) = β̄h
β̄v(Ih + θ Rh)Nv

β̄v(Ih + θ Rh) + dv

(Nh − Ih − Rh) − r̄ Ih − δ̄ Ih − d̄h Ih,

Q̌2(Ih, Rh) = r̄ Ih − v̄Rh − d̄h Rh,

and take Dulac function Ď = β̄v(Ih+θ Rh)+dv

Ih+θ Rh
. We have

∂(Ď P̌2)

∂ Ih
+ ∂(Ď Q̌2)

∂ Iv
= −β̄h β̄v Nv − β̄v(δ̄ + r̄ + d̄h) − dv(δ̄ + r̄ + d̄h)

θ Rh

(Ih + θ Rh)2

− dv(r̄θ + v̄ + d̄h)
Ih

(Ih + θ Rh)2
− β̄v(v̄ + d̄h) < 0 in �̂\{Ê0}.

This implies that there is no limit cycle in �̂\{Ê0}. When R0 > 1, E3 is a unique
locally asymptotically stable equilibrium of system (19) with α = 0. Then Ê3 is a
unique locally asymptotically stable equilibrium of system (D1) with α = 0. Hence,
Ê3 must be globally asymptotically stable in �̂\{Ê0} (Brauer and Castillo-Chavez
2012). Therefore, Corollary 3 (ii) holds.

Appendix F: The definitions of b20, c20 and c11

a1
1 = −β̄h I ∗

v − dh − r − δ

(1 + α I ∗
h )2

, a1
2 = −β̄h I ∗

v , a1
3 = β̄h(Nh − I ∗

h − R∗
h), a2

1 = r ,

a2
2 = −(v + dh), a3

1 = β̄v(Nv − I ∗
v ), a3

2 = θβ̄v(Nv − I ∗
v ), a3

3 = −β̄v(I ∗
h + θ R∗

h) − dv,

a1
11 = δα

(1 + α I ∗
h )3

, a1
13 = −β̄h, a1

23 = −β̄h, a3
13 = −β̄v, a3

23 = −θβ̄v,

v11 = a2
2a3

3 , v21 = −a2
1a3

3 , v31 = −a3
1a2

2 + a3
2a2

1 , v12 = −a3
3 , v22 = 0, v32 = a3

3(a
2
2 + a1

1)

a1
3

,

v13 = (a1
1 + a3

3)(a
1
1 + a2

2), v23 = a2
1(a

1
1 + a2

2), v33 = a3
1(a

1
1 + a3

3) + a3
2a2

1 ,

T11 = −v32v23

|T | , T21 = v31v23 − v21v33

|T | , T13 = v12v23

|T | , T23 = v21v13 − v11v23

|T | ,

b20 = T11(a
1
11v

2
11 + a1

13v11v31 + a1
23v21v31) + T13(a

3
13v11v31 + a3

23v21v31),

c20 = T21(a
1
11v

2
11 + a1

13v11v31 + a1
23v21v31) + T23(a

3
13v11v31 + a3

23v21v31),

c11 = T21(2a1
11v11v12 + a1

13(v12v31 + v11v32) + a1
23(v31v22 + v21v32))

+ T23(a
3
13(v12v31 + v11v32) + a3

23(v31v22 + v21v32))
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with |T | = v12(v31v23 − v21v33) + v32(v21v13 − v11v23).

Appendix G: The normal form of Turing–Hopf bifurcation at E2

Using the method in Song et al. (2016), we derive the normal form of Turing–Hopf
bifurcation at E2. We first introduce perturbation vector ε = (ε1, ε2) and make α =
α∗ + ε1 and r = r∗ + ε2. Then system (5) reads as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ Ih

∂t
= d1�Ih + β̄h Iv(Nh − Ih − Rh) − δ Ih

1 + (α∗ + ε1)Ih

− (r∗ + ε2)Ih − dh Ih, t > 0, x ∈ �,

∂ Rh

∂t
= d1�Rh + (r∗ + ε2)Ih − dh Rh − vRh, t > 0, x ∈ �,

∂ Iv
∂t

= d2�Iv + β̄v(Ih + θ Rh)(Nv − Iv), t > 0, x ∈ �,

∂ Ih

∂n
= ∂ Rh

∂n
= ∂ Iv

∂n
= 0, x ∈ ∂�.

(G2)
Note that E2 is still the endemic equilibrium of system (G2).

Taking the transformation ξ1 = Ih − Ih2, ξ2 = Rh − Rh2, ξ3 = Iv − Iv2, one has

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ξ1

∂t
= d1�ξ1 + f1(ξ1 + Ih2, ξ2 + Rh2, ξ3 + Iv2), t > 0, x ∈ �,

∂ξ2

∂t
= d1�ξ2 + f2(ξ1 + Ih2, ξ2 + Rh2, ξ3 + Iv2), t > 0, x ∈ �,

∂ξ3

∂t
= d2�ξ3 + f3(ξ1 + Ih2, ξ2 + Rh2, ξ3 + Iv2), t > 0, x ∈ �,

∂ξ1

∂n
= ∂ξ2

∂n
= ∂ξ3

∂n
= 0, t > 0, x ∈ ∂�,

(G3)

with

f1(ξ1 + Ih2, ξ2 + Rh2, ξ3 + Iv2) = β̄h(ξ3 + Iv2)(Nh − ξ1 − Ih2 − ξ2 − Rh2)

− δ(ξ1 + Ih2)

1 + (α∗ + ε1)(ξ1 + Ih2)

− (r∗ + ε2)(ξ1 + Ih2) − dh(ξ1 + Ih2),

f2(ξ1 + Ih2, ξ2 + Rh2, ξ3 + Iv2) = (r∗ + ε2)(ξ1 + Ih2) − (dh + v)(ξ2 + Rh2),

f3(ξ1 + Ih2, ξ2 + Rh2, ξ3 + Iv2) = β̄v (ξ1 + Ih2 + θ(ξ2 + Rh2)) (Nv − ξ3 − Iv2)

− dv(ξ3 + Iv2).
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Letting U = (ξ1, ξ2, ξ3)
T and

L(ε) =
⎛

⎝
−β̄h Iv2 − δ

(1+(α∗+ε1)Ih2)
2 − r∗ − ε2 − dh −β̄h Iv2 β̄hm5

r∗ + ε2 −v − dh 0
β̄v(Nv − Iv2) θβ̄v(Nv − Iv2) −m3

⎞

⎠ ,

system (G3) takes the following form

∂U

∂t
= LU + f̃ (U , ε), t > 0, x ∈ �, (G4)

where

LU =
⎛

⎝
d1� 0 0
0 d1� 0
0 0 d2�

⎞

⎠ U + L(0)U ,

and

f̃ (U , ε) = L(ε)U − L(0)U + f (U , ε)

= ∑

j1+ j2+ j3+ j4+ j5≥2

1
j1! j2! j3! j4! j5! f j1 j2 j3 j4 j5ξ

j1
1 ξ

j2
2 ξ

j3
3 ε

j4
1 ε

j5
2

with

f (U , ε) =
⎛

⎝
f (1)(U , ε)

f (2)(U , ε)

f (3)(U , ε)

⎞

⎠ ,

in which

f (1)(U , ε) = f1(ξ1 + Ih2, ξ2 + Rh2, ξ3 + Iv2) + β̄h Iv2ξ2 − β̄h(Nh − Ih2 − Rh2)ξ3

+
(

β̄h Iv2 + δ

(1 + (α∗ + ε1)Ih2)2
+ r∗ + ε2 + dh

)

ξ1,

f (2)(U , ε) = 0,

f (3)(U , ε) = f3(ξ1 + Ih2, ξ2 + Rh2, ξ3 + Iv2) − β̄v(Nv − Iv2)ξ1 − θβ̄v(Nv − Iv2)ξ2

+ (
β̄v(Ih2 + θ Rh2) + dv

)
ξ3.

For i ∈ N0, denote

Mi =
⎛

⎝
−d1ui − β̄h Iv2 − dh − r∗ − δ

(1+α∗ Ih2)
2 −β̄h Iv2 β̄hm5

r∗ −d1ui − (v + dh) 0
β̄v(Nv − Iv2) θβ̄v(Nv − Iv2) −d2ui − m3

⎞

⎠ .

For any two vectors ϕ, ψ ∈ R
3, define the product as 〈ψT, ϕ〉 = ψTϕ. Let

�0 = (ϕ0, ϕ0), �i∗ = ϕi∗ , �0 = col(ψT
0 , ψ

T
0 ), �i∗ = ψT

i∗ ,
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where ϕ0 = (ϕ01, ϕ02, ϕ03)
T ∈ C

3, ϕi∗ = (ϕi∗1, ϕi∗2, ϕi∗3)T ∈ R
3 are the eigen-

vectors relevant to the eigenvalues iω0 and 0, respectively; ψ0 = (ψ01, ψ02, ψ03)
T ∈

C
3, ψi∗ = (ψi∗1, ψi∗2, ψi∗3)T ∈ R

3 are the corresponding adjoint eigenvectors. After
some computations, acquire

ϕ01 = 1, ϕ02 = r∗

iω0 + dh + v
, ψ01 = 1

c1
, ψ03 = β̄hm5

c1(m3 − iω0)
,

ϕ03 = r∗β̄h Iv2
β̄hm5(iω0 + dh + v)

+ (β̄h Iv2 + iω0 + dh + r∗)(1 + α∗ Ih2)
2 + δ

β̄hm5(1 + α∗ Ih2)2
,

(G5)

ψ02 = 1

c1r∗

(

β̄h Iv2 + dh + r∗ + δ

(1 + α∗ Ih2)2
− iω0 − β̄vβ̄hm5(Nv − Iv2)

m3 − iω0

)

,

ϕi∗1 = 1, ϕi∗2 = r∗

d1ui∗ + dh + v
, ψi∗1 = 1

c2
, ψi∗3 = β̄hm5

c2(d2ui∗ + m3)
,

ϕi∗3 = r∗β̄h Iv2
β̄hm5(d1ui∗ + dh + v)

+ (β̄h Iv2 + d1ui∗ + dh + r∗)(1 + α∗ Ih2)
2 + δ

β̄hm5(1 + α∗ Ih2)2
,

ψi∗2 = 1

c2r∗

(

d1ui∗ + β̄h Iv2 + dh + r∗ + δ

(1 + α∗ Ih2)2
− β̄vβ̄hm5(Nv − Iv2)

d2ui∗ + m3

)

,

where c1, c2 satisfy 〈�0,�0〉 = I2 and 〈�i∗ ,�i∗〉 = 1, respectively, in which I2 is
2 × 2 identity matrix.

Carrying out Taylor expansion on f (U , ε), the coefficients of second and third
order terms are

f20000 =
⎛

⎝

2δα∗
(1+α∗ Ih2)

3

0
0

⎞

⎠ , f10100 =
⎛

⎝
−β̄h

0
−β̄v

⎞

⎠ ,

f01100 =
⎛

⎝
−β̄h

0
−θβ̄v

⎞

⎠ , f30000 =
⎛

⎜
⎝

−6δ(α∗)2
(1+α∗ Ih2)

4

0
0

⎞

⎟
⎠ ,

and all other coefficients equal (0, 0, 0)T. In light of the results in Song et al. (2016),
acquire the following third-order truncated normal form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dz1
dt

= iω0z1 + (B11ε1 + B21ε2)z1 + B210z21z2 + B102z1z23,

dz2
dt

= −iω0z2 + (B̄11ε1 + B̄21ε2)z2 + B̄210z1z22 + B̄102z2z23,

dz3
dt

= (B13ε1 + B23ε2)z3 + B111z1z2z3 + B003z33,

(G6)

where

B210 = C210 + 3

2
(D210 + E210), B102 = C102 + 3

2
(D102 + E102),
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B111 = C111 + 3

2
(D111 + E111), B003 = C003 + 3

2
(D003 + E003),

with

C210 = 1

6lπ
ψT
0 A210, C102 = 1

6lπ
ψT
0 A102, C111 = 1

6lπ
ψT

i∗ A111, C003 = 1

4lπ
ψT

i∗ A003,

D210 = 1

6lπω0i

(

−(ψT
0 A200)(ψ

T
0 A110) + |ψT

0 A110|2 + 2

3
|ψT

0 A020|2
)

,

D102 = 1

6lπω0i

(
−2(ψT

0 A200)(ψ
T
0 A002) + (ψT

0 A110)(ψ
T
0 A002) + 2(ψT

0 A002)(ψ
T
i∗ A101)

)
,

D111 = − 1

3lπω0
I m((ψT

i∗ A101)(ψ
T
0 A110)), D003 = − 1

3lπω0
I m((ψT

i∗ A101)(ψ
T
0 A002)),

E210 = 1

3
√

lπ
ψT
0

(
( f20000ϕ01 + f11000ϕ02 + f10100ϕ03)h

(1)
0110

+( f11000ϕ01 + f02000ϕ02 + f01100ϕ03)h
(2)
0110

+( f10100ϕ01 + f01100ϕ02 + f00200ϕ03)h
(3)
0110

+( f20000ϕ01 + f11000ϕ02 + f10100ϕ03)h
(1)
0200

+( f11000ϕ01 + f02000ϕ02 + f01100ϕ03)h
(2)
0200

+( f10100ϕ01 + f01100ϕ02 + f00200ϕ03)h
(3)
0200

)
,

E102 = 1

3
√

lπ
ψT
0

(
( f20000ϕ01 + f11000ϕ02 + f10100ϕ03)h

(1)
0002

+( f11000ϕ01 + f02000ϕ02 + f01100ϕ03)h
(2)
0002

+( f10100ϕ01 + f01100ϕ02 + f00200ϕ03)h
(3)
0002

+( f20000ϕi∗1 + f11000ϕi∗2 + f10100ϕi∗3)h
(1)
i∗101

+( f11000ϕi∗1 + f02000ϕi∗2 + f01100ϕi∗3)h
(2)
i∗101

+( f10100ϕi∗1 + f01100ϕi∗2 + f00200ϕi∗3)h
(3)
i∗101

)
,

E111 = 1

3
√

lπ
ψT

i∗
(
( f20000ϕ01 + f11000ϕ02 + f10100ϕ03)h

(1)
i∗011

+( f11000ϕ01 + f02000ϕ02 + f01100ϕ03)h
(2)
i∗011

+( f10100ϕ01 + f01100ϕ02 + f00200ϕ03)h
(3)
i∗011

+( f20000ϕ01 + f11000ϕ02 + f10100ϕ03)h
(1)
i∗101

+( f11000ϕ01 + f02000ϕ02 + f01100ϕ03)h
(2)
i∗101

+( f10100ϕ01 + f01100ϕ02 + f00200ϕ03)h
(3)
i∗101

)

+ ψT
i∗( f20000ϕi∗1 + f11000ϕi∗2 + f10100ϕi∗3)

(
1

3
√

lπ
h(1)
0110 + 1

3
√
2lπ

h(1)
(2i∗)110

)

+ ψT
i∗( f1100ϕi∗1 + f02000ϕi∗2 + f01100ϕi∗3)

(
1

3
√

lπ
h(2)
0110 + 1

3
√
2lπ

h(2)
(2i∗)110

)

+ ψT
i∗( f10100ϕi∗1 + f01100ϕi∗2 + f00200ϕi∗3)

(
1

3
√

lπ
h(3)
0110 + 1

3
√
2lπ

h(3)
(2i∗)110

)

,
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E003 = ψT
i∗( f20000ϕi∗1 + f11000ϕi∗2 + f10100ϕi∗3)

(
1

3
√

lπ
h(1)
0002 + 1

3
√
2lπ

h(1)
(2i∗)002

)

+ ψT
i∗( f11000ϕi∗1 + f02000ϕi∗2 + f01100ϕi∗3)

(
1

3
√

lπ
h(2)
0002 + 1

3
√
2lπ

h(2)
(2i∗)002

)

+ ψT
i∗( f10100ϕi∗1 + f01100ϕi∗2 + f00200ϕi∗3)

(
1

3
√

lπ
h(3)
0002 + 1

3
√
2lπ

h(3)
(2i∗)002

)

,

with

h0200 = 1√
lπ

(2ω0iI − M0)
−1(A200 − ψT

0 A200ϕ0 − ψ
T
0 A200ϕ0),

h0020 = 1√
lπ

(−2ω0iI − M0)
−1(A020 − ψT

0 A020ϕ0 − ψ
T
0 A020ϕ0),

h0002 = 1√
lπ

(−M0)
−1(A002 − ψT

0 A002ϕ0 − ψ
T
0 A002ϕ0),

h0110 = 1√
lπ

(−M0)
−1(A110 − ψT

0 A110ϕ0 − ψ
T
0 A110ϕ0),

hi∗101 = 1√
lπ

(iω0I − Mi∗)
−1(A101 − ψT

i∗ A101ϕi∗),

hi∗011 = 1√
lπ

(−iω0I − Mi∗)
−1(A011 − ψT

i∗ A011ϕi∗),

h(2i∗)002 = 1√
2lπ

(−M2i∗)
−1A002, h(2i∗)110 = (0, 0, 0)T.

Moreover,

A200 = f20000ϕ
2
01 + 2 f11000ϕ01ϕ02 + 2 f10100ϕ01ϕ03 + f02000ϕ

2
02

+ 2 f01100ϕ02ϕ03 + f00200ϕ
2
03 = A020,

A002 = f20000ϕ
2
i∗1 + 2 f11000ϕi∗1ϕi∗2 + 2 f10100ϕi∗1ϕi∗3 + f02000ϕ

2
i∗2

+ 2 f01100ϕi∗2ϕi∗3 + f00200ϕ
2
i∗3,

A110 = 2( f20000|ϕ01|2 + 2 f11000Re(ϕ01ϕ02) + 2 f10100Re(ϕ01ϕ03) + f02000|ϕ02|2
+ 2 f01100Re(ϕ02ϕ03) + f00200|ϕ03|2),

A101 = 2 ( f20000ϕi∗1ϕ01 + f11000(ϕi∗2ϕ01 + ϕi∗1ϕ02) + f10100(ϕi∗3ϕ01 + ϕi∗1ϕ03)

+ f02000ϕi∗2ϕ02 + f01100(ϕi∗3ϕ02 + ϕi∗2ϕ03) + f00200ϕi∗3ϕ03) = A011,

and

A210 = 3
(

f30000|ϕ01|2ϕ01 + f03000|ϕ02|2ϕ02 + f00300|ϕ03|2ϕ03

+ f21000(2|ϕ01|2ϕ02 + ϕ2
01ϕ02) + f20100(2|ϕ01|2ϕ03 + ϕ2

01ϕ03)

+ f12000(2ϕ01|ϕ02|2 + ϕ01ϕ
2
02) + f10200(2ϕ01|ϕ03|2 + ϕ01ϕ

2
03)

+ f02100(2|ϕ02|2ϕ03 + ϕ2
02ϕ03) + f01200(2ϕ02|ϕ03|2 + ϕ02ϕ

2
03)
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Fig. 14 When (ε1, ε2) = (8.0559×10−4, 5.2207×10−5) ∈ II, there are a stable E0 and a stable spatially
homogeneous periodic solution

+2 f11100(ϕ01ϕ02ϕ03 + ϕ01ϕ02ϕ03 + ϕ01ϕ02ϕ03)) ,

A102 = 3
(

f30000ϕ01ϕ
2
i∗1 + f03000ϕ02ϕ

2
i∗2 + f00300ϕ03ϕ

2
i∗3

+ f21000(2ϕ01ϕi∗1ϕ02 + ϕ2
i∗1ϕ02) + f20100(2ϕ01ϕi∗1ϕ03 + ϕ2

i∗1ϕ03)

+ f12000(2ϕi∗1ϕ02ϕi∗2 + ϕ01ϕ
2
i∗2) + f10200(2ϕi∗1ϕ03ϕi∗3 + ϕ01ϕ

2
i∗3)

+ f02100(2ϕ02ϕi∗2ϕi∗3 + ϕ2
i∗2ϕ03) + f01200(2ϕi∗2ϕ03ϕi∗3 + ϕ02ϕ

2
i∗3)

+2 f11100(ϕ01ϕi∗2ϕi∗3 + ϕi∗1ϕ02ϕi∗3 + ϕi∗1ϕi∗2ϕ03)) ,

A003 = f30000ϕ
3
i∗1 + f03000ϕ

3
i∗2 + f00300ϕ

3
i∗3 + 3 f21000ϕ

2
i∗1ϕi∗2 + 3 f20100ϕ

2
i∗1ϕi∗3

+3 f12000ϕi∗1ϕ
2
i∗2 + 3 f10200ϕi∗1ϕ

2
i∗3 + 3 f02100ϕ

2
i∗2ϕi∗3

+3 f01200ϕi∗2ϕ
2
i∗3 + 6 f11100ϕi∗1ϕi∗2ϕi∗3,

A111 = 6
(

f30000|ϕ01|2ϕi∗1 + f03000|ϕ02|2ϕi∗2 + f00300|ϕ03|2ϕi∗3

+ f21000(2Re(ϕ01ϕ02)ϕi∗1 + |ϕ01|2ϕi∗2)

+ f20100(2Re(ϕ01ϕ03)ϕi∗1 + |ϕ01|2ϕi∗3)

+ f12000(2Re(ϕ01ϕ02)ϕi∗2 + |ϕ02|2ϕi∗1)

+ f10200(2Re(ϕ01ϕ03)ϕi∗3 + |ϕ03|2ϕi∗1)

+ f02100(2Re(ϕ02ϕ03)ϕi∗2 + |ϕ02|2ϕi∗3)

+ f01200(2Re(ϕ02ϕ03)ϕi∗3 + |ϕ03|2ϕi∗2)
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Fig. 15 When (ε1, ε2) = (−7.7102× 10−4, −7.27× 10−5) ∈ IV, system (5) has a stable E0 and a pair of
stable spatially inhomogeneous periodic solutions

+2 f11100(Re(ϕ01ϕ02)ϕi∗3 + Re(ϕ01ϕ03)ϕi∗2 + Re(ϕ02ϕ03)ϕi∗1)) .

In addition,
B11 = ψT

0 L(1,0)
1 (ϕ0), B21 = ψT

0 L(0,1)
1 (ϕ0),

B13 = ψT
i∗ L(1,0)

1 (ϕi∗), B23 = ψT
i∗ L(0,1)

1 (ϕi∗),

where

L(1,0)
1 =

⎛

⎝

2δ Ih2
(1+α∗ Ih2)

3 0 0

0 0 0
0 0 0

⎞

⎠ , L(0,1)
1 =

⎛

⎝
−1 0 0
1 0 0
0 0 0

⎞

⎠ .
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Fig. 16 When (ε1, ε2) = (−8.9791 × 10−4,−5.17 × 10−5) ∈ VI, E0 and spatial inhomogeneous steady
states are stable

Appendix H: Multi-stability of system (5) in regions II, IV and VI:

The part is devoted to presenting dynamics of system (5) in regions II, IV and VI.
If (ε1, ε2) ∈ II, then system (33) admits an unstable equilibrium J0 and a stable
equilibrium J1. Correspondingly, when the parameter vector (ε1, ε2) passes through
curve F0 from I to II, the stability of E2 for system (5) changes and a stable spatially
homogeneous periodic solution appears. This indicates that system (5) presents peri-
odic pattern for appropriate initial value. In the case, malaria is mainly manifested as
disappearance or periodic outbreak (see Fig. 14).

When (ε1, ε2) ∈ IV, system (33) admits four unstable equilibria J0, J1, J±
2 , and a

pair of stable equilibria J±
3 . Accordingly, as the parameters ε1, ε2 pass through curve
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K1 from III to IV, a pair of stable spatially inhomogeneous periodic solutions emerge,
and the spatially homogeneous periodic solution becomes unstable at the same time.
Besides, the stability of E0 and E2 is same as that in II. This concludes that system
(5) exhibits tristability and spatiotemporal patterns with appropriate initial conditions
shown in Fig. 15.

When (ε1, ε2) ∈ VI, system (33) admits a unstable equilibria J0, and a pair of
stable equilibria J±

2 . Then, as the parameter vector (ε1, ε2) passes through curve K2
and moves to VI, the stable spatially inhomogeneous periodic solution disappears.
There are a pair of stable spatial inhomogeneous steady states. Besides, the stability
of E0 and E2 is same as that in II. In this case, system (5) also exhibits tristability (see
Fig. 16).
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