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a b s t r a c t

Population cycles in small mammals have attracted the attention of several generations of theoretical and
experimental biologists and continue to generate controversy. Top-down and bottom-up trophic regula-
tions are two recent competing hypotheses. The principal purpose of this paper is to explore the relative
contributions of a variety of ecological factors to predator–prey population cycles. Here we suggest that
for some species – collared lemmings, snowshoe hares and moose in particular – maturation delay of pre-
dators and the functional response of predation appear to be the primary determinants. Our study sug-
gests that maturation delay alone almost completely determines the cycle period, whereas the functional
response greatly affects its amplitude and even its existence. These results are obtained from sensitivity
analysis of all parameters in a mathematical model of the lemming–stoat delayed system, which is an
extension of Gilg’s model. Our result may also explain why lemmings have a 4-year cycle whereas snow-
shoe hares have a 10-year cycle. Our parameterized model supports and extends May’s assertion that
time delay impacts cycle period and amplitude. Furthermore, if maturation periods of predators are
too short or too long, or the functional response resembles Holling Type I, then population cycles do
not appear; however, suitable intermediate predator maturation periods and suitable functional
responses can generate population cycles for both prey and predators. These results seem to explain
why some populations are cyclic whereas others are not. Finally, we find parameterizations of our model
that generate a 38-year population cycle consistent with the putative cycles of the moose–wolf interac-
tions on Isle Royale, Michigan.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The search for the cause of mammalian population cycles, most
notably of voles, lemmings, snowshoe hares (Lepus americanus),
mice and their predators [14], has become one of the greatest
adventures in all of science. Recent advances have uncovered at
least an outline of the underlying causes [12,14], although many
details remain obscure. In particular, the precise roles played by
the amount and quality of food for primary consumers, along with
predation – so-called ‘bottom-up’ and ‘top-down’ mechanisms,
respectively – are still open for debate. This uncertainty is reflected
in three questions posed by Hudson and Björnstad [7]. First, what
precise ecological mechanisms generate population cycles? Sec-
ond, do these mechanisms apply to all cyclic populations? Finally,
do these mechanisms explain why some populations are cyclic
whereas others are not?
ll rights reserved.

.nagy@sccmail.maricopa.edu
Over the years, a variety of ecological mechanisms have been
proposed as causes of population cycles [10]. Some researchers
have argued that the ‘cycles’ are nothing more than stochastic fluc-
tuations, but this view is undermined by obvious synchrony across
broad, even continental, geographic regions [11]. Ecological dis-
persal, cyclic weather patterns, parasitic and other diseases and
even the sun spot cycle have all joined food supply, predation
and stochasticity as potential causes. Recently, however, the evi-
dence appears to point increasingly towards trophic interactions,
either bottom-up or top-down, as the primary culprits [14].

For example, cycles in brown lemming (Lemmus trimucronatus)
populations at Point Barrow, Alaska, appear to be driven by bot-
tom-up regulation [34,33]. Turchin and coworkers found evidence
for this conclusion in the shape of the population density curve at
its peaks. If cycles were driven primarily by predators, then prey
peaks should be ‘blunt’, because by the time predator density in-
creases sufficiently to cause a decline in prey population size, the
prey would have spent a prolonged period of time at its peak.
However, lemming populations exhibit very sharp peaks, with
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rarely more than one observation period at the peak [33]. There-
fore, predators are probably not causing cycles in the Point Barrow
brown lemming population.

In contrast, evidence suggests that cycles in collared lemming
(Discrostonyx groenlandicus) populations in Northeast Greenland
are driven by predation. This system is well studied and astound-
ingly simple, with this single prey species hunted essentially by
only four predator species [4]. A mathematical model studied by
Gilg et al. [3] predicted cycles with a periodicity that matched field
data very well over a 15 year time span, a remarkable result pri-
marily because the model was parameterized with independent
field data instead of being fit to the field data with a statistical pro-
cedure. In the model, cycles were driven by stoat or short-tailed
weasel (Mustela ermina) predation, although predation from other
species was necessary to keep the lemming population under con-
trol in models with no other regulation mechanism.

To make matters more complicated, recent evidence has forced
ecologists to examine hypotheses that include both bottom-up and
top-down forces acting together. These ideas were introduced
mainly by Oksanen et al. [24], and summarized nicely by Korpi-
maki et al. [14]. They conclude that, at least for voles, lemmings
and snowshoe hares, the increase phase of the cycle occurs largely
because individuals are more likely to survive, not because females
increase reproductive output. Population density plateaus when
food becomes scarce and is driven into the decrease phase as pred-
ator populations become so dense that the prey population can no
longer sustain predation losses.

In this paper, we introduce a series of mathematical models that
extend earlier models of this complex phenomenon. The models are
founded on the collared lemming system studied earlier by [3].
First, in Section 3, we extend a simple ordinary differential equation
model to include a time delay in the predator equations represent-
ing the time it takes for predators – stoats in this instance – to ma-
ture. The results predict field data reasonably well when the
lemming’s intrinsic growth is described by a generalized logistic
model and the predation term takes a Holling Type III form. The car-
rying capacity in the logistic growth includes food limitation and
also three other more generalist predators. Through sensitivity
analysis, we obtain four key parameters whose effects on the period
are strongest. In addition, we show that the type of functional re-
sponse also strongly affects the existence of the population cycle.
We modify the model for the snowshoe hare–lynx (Lynx canadensis)
interaction of boreal North America in Section 4 and parameterize
the modified model with field data to fit the observed 10-year
snowshoe hare cycle. Comparing those four key parameters in Sec-
tion 5 for the 4-year lemming cycle and the 10-year snowshoe hare
cycle, we conclude that cycle periodicity may be primarily con-
trolled by the delay in predator maturation. This conclusion may
explain why lemmings have a 4-year cycle whereas hares have a
10-year cycle. Further, we explore whether this delay in maturation
of predators can explain why some species cycle and others do not.
Finally, to test our hypothesis, we determine if our model can
Table 1
Parameters in lemming–stoat system.

Parameters Meaning

b Maximal growth rate of lemmings
K Lemming carrying capacity
g Maximum per capita predation rate of the stoat
D Half-saturation constant of the stoat’s functional re
n Conversion rate of lemming to stoat
dh The maximal stoat death rate
dl The lowest stoat death rate
Nc The lemming density at which stoat mortality is ðd
b1 The slope of the S-shaped mortality function
s Stoat maturation delay
dj Stoat juvenile mortality rate
generate 38-year population cycles observed in the moose–wolf
interactions on Isle Royale National Park in Lake Superior.

2. Formulation of the lemming–stoat model

We begin by first modeling the collared lemming system stud-
ied by Gilg et al. [3]. Collared lemmings live on the tundra of arctic
North American, Siberia and Greenland. In the area of the study [3],
approximately 30% of the females breed monthly, producing, on
average, four young per litter, giving this population a relatively
large reproductive potential. Juveniles mature in about 2 months
[2,40]. The major sources of mortality include predation by stoats,
arctic foxes (Alopex lagopus), snowy owls (Nyctea scandiaca) and
long-tailed skuas (Stercorarius longicaudus).

All four major predators play key roles in the lemming cycle.
However, stoats appear to have the most profound impact. Stoats
are the most specialized predator, and the only one with a clearly
delayed numerical response. Indeed, stoat populations cycle with
the lemmings’, tending to hit minimal density in the winter just
before the lemming population’s peak, and in turn peaking the
winter before the lemming’s hit bottom [4]. Further evidence sug-
gests that the lemming density is held down for at least two suc-
cessive years by stoat predation, which may help explain why, at
the low point, the lemming population density tends to become
exceedingly small, far smaller than in most other cyclic species.

In a previous paper [39], we considered several mathematical
model formulations of the moss–lemming interaction. If the lem-
ming density is relatively low, then its death is still induced by pre-
dation, because food supply is abundant, which is the case for
collared lemmings in Greenland. However, we also follow [3] by
describing the functional response of stoat predation on lemmings
as Holling Type III. This form reflects the difficulty predators have
finding lemmings when their density reaches its low point and
prey becomes extremely scarce – less than 10 animals per km2; in-
deed, evidence suggests that in such conditions stoats will switch
to alternate prey or disappear from the study area [4]. This
assumption tends to underestimate rather than overestimate the
predators’ responses, so the estimated impact of predation on lem-
ming population dynamics should be conservative. In the model,
we denote the maximum predation rate as g and the ‘half-satura-
tion’ constant as D. (Notations are summarized in Table 1.)

In the simplest model, with no time delay, we assume that in the
absence of predation, lemming populations will grow logistically
with intrinsic growth rate b and ‘carrying capacity’ K. In addition,
stoats suffer a per capita mortality rate that also depends on prey
availability, generally reflecting the physiological effects of starva-
tion. These assumptions lead us to the following simple model:

dx
dt
¼ bx 1� x

K

� �
� gx2

D2 þ x2
y;

dy
dt
¼ ngx2

D2 þ x2
y� dðxÞy;

8>>><
>>>:

ð1Þ
Median value Range

3.92/year N.A.
17 ind./ha P12
730 ind./year 600–1000

sponse 0.1 0.08–0.12
0.004 0.002–0.01
4/year 3.5–4.5
0.1/year 0–0.2

l þ dhÞ=2 0.1 N.A.
25 N.A.
1/4 year 0–0.5
4/year 0–6
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where x represents the lemming density and y that of stoats. The
first equation is identical to the model of spruce budworm out-
breaks studied by Ludwig et al. [15]. Parameter n is the conversion
rate of lemming mass to stoat mass. Stoat mortality is described by
the function dðxÞ. In particular, we set

dðxÞ ¼ dh � ðdh � dlÞ
1
2
þ arctanðb1ðx� NcÞÞ

p

� �
ð2Þ

to match Gilg et al. [3]. Because stoats are top predators in this food
chain, we ignore stoat self-limitation. Lemming self-limitation is
represented by the logistic form of the basic growth term.

2.1. Parametrization of the lemming–stoat model

Values for parameters D; dh; dl;Nc and b1 in Eqs. (1) and (2) were
obtained from Gilg et al. [3] and its supporting online material, and
are summarized in Table 1. The carrying capacity, K, is necessarily
above 12 per ha, which is a value one of us (Gilg) has observed in
the field. The maximal growth rate of collared lemmings is about
3.92/year. A stoat is often considered, according to its physiological
needs, to kill and consume two rodents per day (i.e., g ¼ 730=year).
However, stoats are also known to ‘surplus kill’ on a regular basis –
kill and hide more prey than needed; some prey are eventually ea-
ten later, but some probably also rot and are therefore ‘lost’. Hence,
considering that surplus killing might account for as much as 1/3 of
the total number of prey killed, the maximum per capita predation
rate may be as high as 1000/year. On the other hand, stoats do not
feed exclusively on lemmings. Therefore, we choose the maximal
per capital predation rate of stoats in the range 600–1000.

2.2. Behavior of the simple lemming–stoat system

The numerical solution of model (1), with parameter values
from Table 1, is shown in Fig. 1. Realistic parameter values gener-
ate population cycles in both predator and prey with suitable peri-
odicity, but with amplitudes far larger than the field data suggest.
Therefore, we hypothesize that sustained 4-year oscillations result
from different mechanisms than those modeled in (1). In particu-
lar, we propose that the time delay caused by maturation of the
predator is necessary to explain the cycle amplitude and periodic-
ity. The predator maturation delay is the time lag required for a
newly born predator to reach sexual maturity and start
reproducing. We explore this hypothesis in more detail in the next
section.
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Fig. 1. A typical solution of the simple lemming–stoat ODE system with parameter value
for stoats. In the right panel, the typical solution is compared to the region of field data
3. The lemming–stoat model with delay

To evaluate the hypothesis that lemming population cycles are
controlled by the delay associated with predator maturation, we
have extended model (1) as follows:

dx
dt ¼

bxð1�ðx=KÞhÞ
ð1�K�hÞ �

gx2

D2þx2 y;

dy
dt ¼ ng expð�djsÞ x2ðt�sÞyðt�sÞ

D2þx2ðt�sÞ

h i
� dðxÞy;

8<
: ð3Þ

where s is the time delay associated with predator maturation. The
exponential term in the stoat equation represents juvenile mortal-
ity, so dj is the per capita juvenile mortality rate. We also generalize
lemming self-limitation. Here, we use a generalized logistic form
primarily because the standard logistic tends to produce population
minima ð10�3Þ that may be too low. The relationship between a
population size and its growth rate is recently estimated by Sibly
et al. [29]. For mammals, h should be negative in the growth term
of x-equation. We find h ¼ �0:3 produces an excellent fit to the
empirical data. Parameter values used in numerical solutions are
listed in Table 1.

3.1. Dynamics of the lemming–stoat model with delay

All simulations of model (3) were run for 20 years. However, for
data fitting we used only 6.2–20 year segments in regions where
the dynamics had settled into its asymptotic behavior. The model
produces cycles with reasonable period and amplitude compared
to the field data (Fig. 2). However, the lemming peaks are lower
than the actual data suggests, probably because the model is still
a simplification of the system and is not designed to provide de-
tailed numerical predictions. The population minima are also low-
er than the data, but the field data points are annual maxima
(density at snowmelt) while the model provides continuous esti-
mates. If we plot all summer trappings as Gilg et al. did (Fig. 2 in
Gilg et al. [4]), we can actually see a strong summer decrease, con-
sistent with the model results. The model predicts a periodicity of
just over 4 years, which may be the actual average, since most lem-
ming cycles in NE Greenland have a 4 year period but some have 5.

Sharp peaks in the data arise because the breeding population
strongly declines after the snowmelt as predation by nomadic
and migratory predators increases. However, the model’s peaks
are rounded because this seasonality and additional predation
are not included. Hence, we cannot use peak shape to infer regula-
tion mode – top-down or bottom-up – as in Turchin et al. [34],
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because in our case sharp peaks in annual census data may still be
consistent with ‘blunt’ peaks predicted by the model.

Stoat predation remains very low during the lemming increase
phase but then eventually causes the lemming population to col-
lapse as young stoats mature and become independent predators
(Fig. 2). Biologically, juvenile dispersal and acquisition of territories
marks the end of the maturation delay period [9,30]. After the lem-
ming population reaches its minimum and begins to rebound, the
stoat population continues to decline over the subsequent year un-
til the following breeding season. Since breeding occurs in a dis-
crete season, the decline might continue for a few months to
1 year at most.

3.2. Sensitivity analysis

To determine the model’s sensitivity to parameter estimates,
we perturbed each parameter by 50% both up and down, and as-
sessed the perturbation’s effect on cycle period and amplitude.
We also performed a similar analysis to determine the model’s sen-
sitivity to assumptions on predation functional response. In partic-
ular, we compared all three Holling Type functions. Figs. 3 and 4
show the results. The (red) horizontal lines represent period and
amplitude in the default model.1

Fig. 3 suggests that the cycle period is the most sensitive to
dj; s;g and n. Increasing maturation death rate ðdjÞ and delay ðsÞ,
or decreasing predation rate ðgÞ and conversion rate/yield constant
ðnÞ, enlarge the period of the lemming cycle (Fig. 3). Assuming a
Holling Type II instead of the Holling Type III functional response
also increases the period.

Amplitude of the lemming cycle is largely insensitive to changes
in parameters (Fig. 4), but the type of functional response has a
large effect. Using the Holling Type II instead of the Holling Type
III increases the amplitude of the cycle from 2 to 6 orders of mag-
1 For interpretation of the references to color in the text, the reader is referred to
the web version of this paper.
nitude. In addition, decreasing dj; s or h changes cycle amplitude
from 2 orders of magnitude to 1.

This analysis suggests that g; n; dj and s are key parameters,
as they have large impacts on periodicity. This conclusion is
supported by bifurcation analysis (Fig. 5), which shows that, in-
deed, maturation death rate ðdjÞ and delay ðsÞ are strongly pos-
itively related to cycle period, whereas predation rate ðgÞ and
conversion rate/yield constant ðnÞ are strongly negatively related
to cycle period. In addition, panel (a) of Fig. 5 supports an
intriguing hypothesis. As maturation delay for the predator in-
creases by only a couple of months, the period increases dra-
matically. The snowshoe hare–lynx predator–prey system of
Boreal Canada famously has a 10-year period, and lynx mature
more slowly than stoats. Could this difference in maturation de-
lay explain why one system cycles with a 4-year period and the
other with a 10-year period? To realistically answer this ques-
tion, we should carefully examine other parameters and the
type of functional response for the hare–lynx interactions (see
the next section).
4. 10-year snowshoe hare cycle

To evaluate the viability of this hypothesis, we modify model
(3) to represent the lynx–hare system. The 10-year cycle of this
system is thought to result from the interaction between predation
and food supplies [13,12], although here we focus on predation.
We are particularly interested in the effect of predator maturation
time on the cycle period. Stenseth et al. [32], using a combined ap-
proach of empirical, statistical and mathematical modeling, dem-
onstrated that lynx–hare interactions cause delayed density-
dependent regulation of population growth. Lynx is a hare special-
ist, so we only explicitly model predation by lynx. Additional pre-
dation on hares, by coyotes (Canis latrans) for example, will be
lumped with other causes of mortality. Also, the functional re-
sponse of lynx is well described by Holling Type II [22]. These con-
siderations yield the following model:
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dx
dt ¼

bxð1�ðx=KÞhÞ
1�K�h � gx

Dþx y;

dy
dt ¼ ng expð�djsÞ xðt�sÞyðt�sÞ

Dþxðt�sÞ

h i
� dy:

8><
>: ð4Þ

Reproductive output in snowshoe hares varies throughout the
cycle from a low of 6.9 young per female during the decline phase
to a maximum of 18.9 during the second year of the low and early
increase phases [31]. Hence, the maximal growth rate of snowshoe
hares is less than 9.5/year assuming a sex ratio of 1:1.

Hares are killed by coyotes at a rate that varies from 0.3 to 2.3
hares/day, with the greatest predation pressure occurring 1 year
before the cycle peaks. Lynx predation varies from 0.3 to 1.2
hares/day, with the highest pressure 1 year after the peak. Coyote
predation rates are highest early in the winter [22]. Assuming coy-
otes kill hares at rate 0.3/day for 9 months (spring-fall) and with
rate 2.3/day for 3 months (winter), then the additional annual
mean predation rate by coyotes is 0.8(/day). The maximum preda-
tion rate g equals the maximum lynx kill rate plus the additional
predation rate by coyotes. Since the maximum lynx predation rate
is 1.2/day, g=730/year.

From Fig. 5 of O’Donoghue et al. [22], we can calculate the
half-saturation constant, D. When x ¼ D, the per capita predation
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Table 2
Parameter values for the snowshoe hare–lynx system.

Parameters Median value Range Reference

b 5/year 6 9:5 Stefan anjd Krebs [31]
K 8 ind./ha 2–10 Krebs et al. [12]
g 730 ind./year 400–1000 O’Donoghue et al. [22]
D 0.7 0.1–1 O’Donoghue et al. [22]
ng 2.5/year 0.25–4 Literature
d 0.3/year 0–0.5 Literature
dj 0.5/year 0.3–0.5 Literature
s 1.5 year N.A. Murdoch et al. [19]
h �0.1 (�0.3)–0 Numerical test
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rate is g=2 ¼ 365=year ¼ 1=day. When the killing rate is 1/day,
x ¼ 70= ð100 haÞ ¼ 0:7=ha, which is just the value of D. Therefore,
D ¼ 0:7.

Female lynx give birth to up to five offspring per litter, with only
one litter each year. Therefore, assuming a 1:1 sex ratio,
ng ¼ 5=2 ¼ 2:5(/year).

We estimate the lynx maturation delay s ¼ 1:5 years from Mur-
doch et al. [19]. Note that this maturation delay may be affected by
the near absence of the coyote and lynx (especially juveniles) that
occurs just after the hare population crashes [21,23].

Numerical solutions of model (4) with these parameter values
(summarized in Table 2) produce cycles with a 10-year period
(Fig. 6).

5. Comparison and interpretation

From Fig. 3, one can see that increasing maturation death rate
ðdjÞ and delay ðsÞ, or decreasing predation rate ðgÞ and conversion
rate/yield constant ðnÞ, can enlarge the period of population cycles,
so at first glance any of these parameters may explain the different
cycle periods of lemmings and snowshoe hares. The values of g and
n are very close for both systems, so they are unlikely explanations.
The juvenile mortality rate, dj, of lynx (0.5/year) is much smaller
than that of stoats (4/year). This difference would tend to make
the period of the hare cycle shorter than the lemming’s, in contra-
diction to reality. However, the maturation delay, s, of lynx
(1.5 years) is much larger than that of stoats (3 months). This dif-
ference tends to oppose the effect of juvenile mortality, making
the period of the hare cycle much longer than that of the lemming
cycle as observed in reality.

Furthermore, assuming a Holling Type II functional response, as
in the snowshoe hare–lynx model, instead of the Holling Type III,
as in the lemming model, also increases the period, as is clear from
the sensitivity analysis (Fig. 3). Therefore, functional response can
potentially explain, at least in part, why lemming cycles have a 4-
year period whereas hares cycle every 10 years.

Our models suggest that both maturation delay of predators
and type of functional response are key determinants of the period
length of population cycles. Which of these factors is more impor-
tant can be inferred from Fig. 3. Because lynx mature much more
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slowly than stoats, the value of s used in the hare–lynx model is
much larger than its maximum value in Fig. 3, which only repre-
sents a 50% increase from s for stoats. The longer period of the
snowshoe hare cycle compared to the lemmings, therefore, is ex-
plained more by maturation delay than type of functional response
(Fig. 5(a)). This observation suggests that the maturation delay of
predators almost completely determines the period of population
cycles.

In addition to its effects on period, functional response also
plays a dominant role in determining the amplitude of population
cycles (Fig. 4). In particular, a Holling Type II functional response,
as opposed to the Holling Type III, greatly increases the cycle
amplitude. This observation may explain why the amplitude of
the snowshoe hare cycle is larger than that of the lemming cycle,
probably because the functional response of lynx to snowshoe hare
is Holling Type II while that of stoat to lemming is Holling Type III.

Simple mathematical stability analysis shows that predator
maturation periods that are either too short or too long actually in-
hibit generation of population cycles. Intuitively, if the time to
maturation is too short, then the cycle period is zero; if too long,
then the period appears to approach infinity for finite s, above
which, solutions approach the interior (positive) steady state. If
even longer than this threshold s, then solutions approach the
predator extinction steady state, and prey approach their carrying
capacity K (see below). Also, even if the predator maturation period
is intermediate and able to produce cycles, but the functional re-
sponse is the Holling Type I, then no cycles will arise (Figs. 3 and
4). These observations may explain why only a few species have
well-defined population fluctuations.

These results match those of Gourley and Kuang [5], who ana-
lyzed a similar delayed prey–predator system. Their model differed
from ours in that they assumed h ¼ 1, a constant predator death
rate and a general functional response. Since our simulations sug-
gest that both h and the prey-dependent predator death rate, d,
only affect the system slightly, our results should coincide with
those of Gourley and Kuang [5]. From their stability curve of the
interior steady state, one can see that there exists three threshold
values of the maturation delay, 0 < s1 < s2 < s3, such that no cy-
cles exist when s < s1; cycles arise when s1 < s < s2; and cycles
disappear again when s2 < s < s3. If the delay is so large that
s > s3, then the interior steady state disappears and the predator
extinction steady state ðK;0Þ becomes globally asymptotically sta-
ble; hence, there are no cycles in this case either – more precisely,
there exist no globally asymptotically stable limit cycles. Fig. 7
shows that all four of these cases also exist in our lemming–stoat
delay system (model (3)). If the functional response resembles
either the Holling Type II or III, then there is a range in which
the maturation delay, s1 < s < s2, allows the existence of popula-
tion cycles. This range depends on all the other parameters and
the type of functional response.

6. Multi-decade moose cycle on Isle Royale

The well-studied moose–wolf predator–prey system on Isle
Royale in Lake Superior provides another opportunity to test pre-
dictions generated by this modeling approach. Wolves (Canis lupus)
are the top predator on the island, and moose (Alces americanus)
are their primary prey. Importantly, no other predators capable
of taking down a moose – notably black bears (Ursus americanus)
– exist on the island to compete with the wolves for moose [27].
Also, the Isle Royale ecosystem has been under essentially contin-
uous study since the late 1950s [25,1,8,35]. Therefore, not only do
the conditions fit the basic assumptions of the model, but essen-
tially all parameters can be estimated from the outstanding data
these ongoing studies have produced.

Moose calves on Isle Royale are born typically in May and June
[20,1], although in the model we make no provision for a pulsed
reproductive season. Therefore, we interpret b as the maximum
per moose birth rate under ideal conditions. Moose typically have
one calf, occasionally two. Therefore, the largest realistic upper
limit for b would be 0.7/year, assuming all cows have twins, all
adults survive and the sex ratio is 1:1. However, this number is al-
most certainly high, given that on Isle Royale, over 80% of cows
bearing young will lose their calves. On the other hand, in 1982,
the fraction of the Isle Royale moose population made up of 8-
month-old calves reached a peak of about 24% of the total popula-
tion [27,35].

The remaining parameters for the moose equation are easier to
decipher. The Isle Royale moose population reached an observed
peak of about 3000 before wolves were introduced to the island
[20]. Therefore, we set k ¼ 3000. (Note: in this model our density
is scaled in units of number of individuals on the island.)

Although Vucetich et al. [38] and Jost et al. [8] suggested a ratio-
dependent functional response for the moose–wolf system on Isle
Royale, here we opt for a Holling Type II functional response, with
the form

gx
xþ D

;

as suggested by Hayes and Harestad [6] for moose in the Yukon. We
choose the Holling function to make contact with our previous
models; clearly, the data support density-dependent predation on
Isle Royale.

The wolf population growth rate as a function of kills was ana-
lyzed by Vucetich and Peterson [36]. The simplest model they con-
sider – a linear relationship between per capita kill rate and per
capita wolf population growth rate – performed reasonably well
based on their criteria, so we use it to generate our (first approxi-
mation) estimate of n. In particular, the slope parameter (estimated
from their Fig. 2) is approximately 0.48; that is, if one assumes that.

1
y

dy
dt
¼ b0 þ b1f ðx; yÞ;

with b0 and b1 constants and f ðx; yÞ the kill rate (estimate of the
functional response), then b1 � 0:48. Inasmuch as the data from
Vicetich and Peterson [36] includes both wolf reproduction and
mortality, and our n represents wolf reproduction only, equating
n ¼ b1 yields a lower bound. Therefore, we somewhat arbitrarily
set our default value to 0.35. Wolf mortality on Isle Royale peaked
at 54% in both 1981 and 1998 [37,35], which equates to a rate of
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Fig. 7. The qualitative effect of the maturation delay in our lemming–stoat delay system (model (3)). The solid lines are for lemmings while the dash-dot lines are for stoats.

Table 3
Parameter values for the moose–wolf system on Isle Royale National Park.

Parameters Value we choose Range Reference

b 0.68 <0:7 Vucetich and Peterson [35]
K 3000 2500–3000 Murie [20]
g 80 NA Literature
D 5 NA Literature
n 0.35 <0:48 Vucetich and Peterson [36]
dh 0.78 NA Vucetich and Peterson [35]
dl 0 NA Vucetich and Peterson [35]
Nc 855 500–1500 Published data
b1 0.48 NA Vucetich and Peterson [36]
s 1 1–4 Mech [18]
dj 2.9 2.88–6.82 Mech [18]
h �0.3 NA Numerical test
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0.78/year for dh. In other years, no wolves died, suggesting dl ¼ 0. To
estimate Nc we used data published on the Isle Royale moose–wolf
study website maintained by John Vucetich to regress percent wolf
mortality on moose population size, which yields the following
regression equation:

%Mortality ¼ �9:095� 10�3xþ 34:778

with x the moose population size. Since Nc represents the moose
population at which wolf mortality reaches half maximum (given
that dl ¼ 0), this regression equation yields the estimate Nc � 855.
However, this value must be used with caution given the great
amount of noise evident in the data, and the obvious effect of demo-
graphic stochasticity and other random processes affecting the sys-
tem [36]. Therefore, we recommend a broad range for this
parameter.

Mech [18] reports that wolves begin exhibiting breeding behav-
ior at 22 months of age, suggesting s ¼ 1:8 years given that wolves
breed in a discrete season. Thus, we assume 1–4 years as the range
for s. Our model best fits the 38-year period when s is the lower
boundary value. Note that the maturation period of wolves is usu-
ally longer than 1 year. This observation leads to a question
whether 38 year is the realistic period of moose–wolf cycles. The
38-year cycle was originally suggested by Peterson et al. [26].
However, the evidence was rather weak and has a large uncer-
tainty (±13 years). The later paper by Post et al. [28] paints a more
complex picture. They found that the period was much shorter –
20–21 years – than that suggested by Peterson et al. [26].
Mortality of young wolves varies greatly with age. Puppies in
their first 5–10 months suffer mortality ranging from 57% to 94%,
whereas older juveniles – from this range to between 17 and
22 months – experience mortality of about 45% [18]. So, in the
worst case, juvenile mortality (through 22 months) can reach
1� ð0:06Þð0:55Þ ¼ 0:967 (96.7%), and in the best case can approach
76.4%. These values generate an estimate of dj ranging from 2.88 to
6.82.

Numerical solutions of our delayed predator–prey model with
realistic parameter values from Isle Royale (summarized in Table
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3) can produce cycles with a 38-year period (Fig. 8), as originally
suggested by Peterson et al. [26].

7. Summary and discussion

In this paper, we construct and parameterize a series of mathe-
matical models to explore why some predator–prey interactions
exhibit population cycles while others do not, and what deter-
mines the period and amplitude of such cycles should they exist.
Many similar studies using mathematical models exist. Ours is un-
ique because it combines an extension of the traditional logistic
growth of prey with a discrete delay representing predator matu-
ration, a prey-dependent death rate among predators and both
Holling Type II and III functional responses. We also estimate
parameters and the functional response from field data for three
independent predator–prey systems: lemming–stoat (arctic North
America, Greenland and Europe), snowshoe hare–lynx (boreal Can-
ada) and wolf–moose (Isle Royale National Park).

Reasonable parameterizations of our models for all three sys-
tems can generate cyclic behavior with the proper period in each
case, namely 4, 10 and 20–40 years for lemmings, hares and
moose, respectively. Sensitivity and bifurcation analyses identified
four key parameters that could possibly determine cycle period
and amplitude in these models. We found that one of these four
parameters, predator maturation delay, along with the type of
functional response, are the key determining factors of the period
and amplitude of cycles in all three systems. These observations
lead to the primary hypothesis generated by this study – the de-
tails of predator–prey cycles, especially the period and amplitude,
are determined primarily by the length of time it takes for preda-
tors to mature and how predation responds to changes in prey
density (functional response). Furthermore, the predator matura-
tion delay primarily determines cycle periodicity, and functional
response controls amplitude.

The idea that a predator maturation delay can cause population
cycles is nothing new. Indeed, May [16,17] also studied general
mathematical models of predator–prey systems, concluding that
time delay, cycle period and cycle amplitude were all correlated.
Our work, with more tactical models parameterized to represent
specific systems, support May’s conclusion.

Gourley and Kuang [5] showed, in similar models to the ones
studied here, that predator maturation delay generated cyclic
behavior. These researchers also observed that time delays that
were either too short or too long obliterated the cycles. Our results
confirm these observations – cycles are generated only by interme-
diate time delays. In addition, as generally known from previous
predator–prey models, sufficient nonlinearity in function response
is required to generate cycles – cyclic behavior is impossible for
Holling Type I functional response.

As more and more data on predator–prey systems accumulates,
the hope of a simple ‘smoking gun’ explanation of population cy-
cles fades. For example, it has become fairly clear that both top-
down and bottom-up mechanisms are required to explain the
10-year snowshoe hare cycles, and which mechanisms predomi-
nate depends on the phase of both predator and prey populations
[13,12]. Similarly, on Isle Royale, density-dependent mechanisms
appear to limit the moose population when the wolf population
is in decline, but when wolf numbers are increasing, moose enter
a cyclic dynamic driven by predator–prey interaction [28]. Thus,
we take care here not to suggest that we have an explanation of
population cycles. Nevertheless, our results highlight the potential
roles of predator maturation delay and functional response as uni-
versal causal mechanisms of population cycles in most mammalian
predator–prey systems.
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