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Abstract
In this paper, we propose a two-patch SIRS model with a nonlinear incidence rate:
βi (1+νi Ii )Ii Si and nonconstant dispersal rates, where the dispersal rates of suscepti-
ble and recovered individuals depend on the relative disease prevalence in two patches.
In an isolated environment, the model admits Bogdanov–Takens bifurcation of codi-
mension 3 (cusp case) and Hopf bifurcation of codimension up to 2 as the parameters
vary, and exhibits rich dynamics such as multiple coexistent steady states and periodic
orbits, homoclinic orbits and multitype bistability. The long-term dynamics can be
classified in terms of the infection rates βi (due to single contact) and νi (due to dou-
ble exposures). In a connected environment, we establish a threshold R0 = 1 between
disease extinction and uniform persistence under certain conditions. We numerically
explore the effect of population dispersal on disease spread when νi = 0 and patch 1
has a lower infection rate, our results indicate: (i) R0 can be nonmonotonic in disper-
sal rates and R0 ≤ max{R01, R02} (R0i is the basic reproduction number of patch i)
may fail; (ii) the constant dispersal of susceptible individuals (or infective individuals)
between two patches (or from patch 2 to patch 1) will increase (or reduce) the overall
disease prevalence; (iii) the relative prevalence-based dispersal may reduce the over-
all disease prevalence. When νi > 0 and the disease outbreaks periodically in each
isolated patch, we find that: (a) small unidirectional and constant dispersal can lead
to complex periodic patterns like relaxation oscillations or mixed-mode oscillations,
whereas large ones can make the disease go extinct in one patch and persist in the
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form of a positive steady state or a periodic solution in the other patch; (b) relative
prevalence-based and unidirectional dispersal can make periodic outbreak earlier.

Keywords SIRS patch model · Nonlinear incidence rate · Nonconstant dispersal ·
Bogdanov–Takens bifurcation · Hopf bifurcation · Disease prevalence · Mixed-mode
oscillations

Mathematics Subject Classification 92D30 · 34C23

1 Introduction

Infectious diseases pose a serious threat to global public health and economic growth.
Over the past few decades, globalization, urbanization and the development of rapid
transit networks have pushedmigration and tourism to an unprecedented level until the
emergence of COVID-19. For example, the degree of urbanization, i.e., the percentage
of total population lives in cities, in the world increased from 47% of 6.11 billion peo-
ple in 2000 to 56.2% of 7.75 billion people in 2020 (The World Bank Group 2022b).
Meanwhile, the total number of air passengers increased from 1.67 billion in 2000
to 4.56 billion in 2019, but dropped dramatically to 1.81 billion in 2020 (The World
BankGroup 2022a).Massive populationmovement is a key factor for the introduction,
transmission and spread of infectious diseases. On the one hand, increasing human
mobility makes emerging and re-emerging pathogens easily spread from one location
to another. The first Zika virus infection inBrazil was reported inMay 2015 and the dis-
ease spread to more than 60 countries in the Americas, the Pacific Islands, South-east
Asia andAfrica byApril 2016.On the other hand, persistent imported cases constitute a
major challenge for achieving and maintaining disease elimination status in low trans-
mission regions. This is the reason why many countries have lifted travel restrictions
and chosen to live alongside COVID-19. There is an urgent need for policy makers to
understand the impact of population dispersal on the spread of infectious diseases.

Many mathematical models with the consideration of population movement and
spatial heterogeneity have been developed and analyzed in recent years. When host
movement in a discrete space is considered, multi-patch epidemic models in the form
of ordinary differential equations are widely adopted. For instance, Wang andMulone
(2003) formulated a two-patch SIS model and showed that population dispersal can
lead to disease persistence in both patches even if the disease disappears in one patch
and persists in the other patch in isolation. Later on,Wang and Zhao (2004) and Jin and
Wang (2005) investigated a similar SIS model except that the incidence rate is bilinear
and the number of patches is arbitrary. They found that a disease can spread/die out in
all patches, even though it is extinct/persistent in each isolated patch. Based on amulti-
patch SISmodel,Allen et al. (2007) discovered that the endemic equilibriumconverges
to a spatially inhomogeneous disease-free equilibrium as the diffusion rate of the
susceptible population approaches zero. van den Driessche and coauthors extended
the SIS patchmodel by incorporating latency and acquired immunity (Salmani and van
den Driessche 2006; Hsieh et al. 2007). Cosner et al. (2009) constructed two classes
of epidemic patch models for vector-borne diseases using Lagrangian and Eulerian

123



Relative prevalence-based dispersal... Page 3 of 35    52 

approaches, respectively. Arino et al. (2012) built a multi-patch malaria model with
SIRS and SI structures for hosts and vectors, respectively, and identified infection
reservoirs for disease eradication. Gao et al. (2013) developed a three-patch epidemic
model to describe the spatial spread ofRiftValley fever inEgypt. Recently (Zhang et al.
2023a) formulated and analyzed multi-patch models under memory-based dispersal,
and Zhang et al. (2023b) studied perceptive movement of susceptible individuals
with memory, following the recent PDE guidance for cognitive movement (Wang and
Salmaniw 2022). These theoretical studies mainly focus on establishing threshold
dynamic results in terms of the basic reproduction number R0 and bifurcations (Wang
and Mulone 2003; Wang and Zhao 2004; Jin and Wang 2005; Salmani and van den
Driessche 2006; Hsieh et al. 2007; Gao et al. 2013; Zhang et al. 2023b, a), analyzing
the dependence of R0 on model parameters especially the travel-related parameters
(Allen et al. 2007; Gao and Ruan 2012; Hsieh et al. 2007), and exploring the impact of
population dispersal and cognitive memory on the endemic equilibrium (Allen et al.
2007; Gao 2020; Gao and Lou 2021; Zhang et al. 2023b, a). In addition, during the
early phase of theCOVID-19 pandemic,metapopulationmodels have been extensively
used to simulate the epidemics across different areas (Chinazzi et al. 2020; Wu et al.
2020). During the late phase of the COVID-19 pandemic, metapopulationmodels have
been applied with sufficient data to explore infectivity and fatality of SARS-CoV-2
mutations (Xue et al. 2022).

The standard/bilinear incidence rate is a good approximation for a large/small pop-
ulation. There are few exceptions but under which the disease dynamics are not fully
understood (Arino et al. 2012; Hsieh et al. 2007). In recent years, researchers have
proposed quite a few novel incidence rates such as saturated incidence rate and non-
monotone incidence rate. The interested readermay refer to the introduction of a recent
paper byLu et al. (2019, 2021) andPan et al. (2022) for somedetails. The other factor is
the changes in travel behavior caused by infections. During a serious disease outbreak,
public health agencies issue travel alerts and advise citizens to avoid non-essential and
non-urgent travel to high-risk countries or regions. In some extreme cases, strict bor-
der restrictions even border closure could be implemented to contain disease spread.
Many people choose to work from home and shop online where possible, postpone or
cancel business trips, change leisure and tourism destinations, and flee the epicenter.
According to the International Organization for Migration (International Organiza-
tion for Migration 2020), 219 countries, territories or areas had issued 98,717 travel
restrictions in response to COVID-19 as of October 12, 2020. In the United States,
the total number of domestic air passengers had year-over-year decreases of 51.0%
in March 2020, 95.7% in April 2020 and 88.4% in May 2020 Hotle and Mumbower
(2021).

Most spatial models assume that individuals from different disease states travel at
different but constant rates (Wang and Mulone 2003; Salmani and van den Driessche
2006; Hsieh et al. 2007; Gao and Ruan 2012). In other words, they do address the
infection-induced variation inmobility but disregard the change in travel behaviorwith
the progression of an epidemic. Recently, Yang et al. (2020) developed an SIS patch
modelwhere the travel rate depends on the number of infectives of the destination patch
but the incidence rate is standard, and Wang et al. (2022) formulated and compared
different spatially heterogeneous diffusion operators for cognitive movement in SIS
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epidemicmodels. This paper follows a similar idea of cognitivemovement inWang and
Salmaniw (2022) to model the relative prevalence-based movement between patches.

To explore the joint effect of nontrivial incidence rate and infection-dependent
dispersal on disease dynamics, we propose a two-patch SIRS model:

dS1
dt

= b1 − d1S1 − λ1(I1)I1S1 + γ1R1 − a12

(
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)
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(1.1)
where Si (t), Ii (t) and Ri (t) denote the number of susceptible, infectious and recovered
individuals in patch i at time t , respectively, and Ni = Si (t)+ Ii (t)+ Ri (t) is the total
population size of patch i at time t . In patch i ∈ {1, 2}, the parameter bi represents
the recruitment rate, di is the natural death rate, αi is the recovery rate, γi is the rate
of loss of immunity, and λi (Ii ) is the transmission rate. The rate at which susceptible,
infectious and recovered individuals migrate from patch i to patch j for i �= j is
denoted by ai j

( I1
N1

, I2
N2

)
, bi j and ci j

( I1
N1

, I2
N2

)
, respectively. The ratio Ii

Ni
is called the

disease prevalence of patch i , that is, the fraction of people being infected. Here the
travel rates of infectives, b12 and b21, are assumed to be constant, since infected people
may no longer care about the epidemic or their travel is essential.

The nonlinear incidence rate we will adopted is of the form

λi (Ii )Ii Si = βi (1 + νi Ii )Ii Si with βi > 0 and νi ≥ 0, (1.2)

where βi Ii Si represents the new infections caused by single contacts and βiνi I 2i Si
is the new infective individuals arising from double exposures. The rate (1.2) was
initially proposed by van den Driessche and Watmough (2000), later used by van den
Driessche and Watmough (2003) and Jin et al. (2007) for SIRS model, Alexander and
Moghadas (2004) for SIV model, Li et al. (2007, 2015) for SI model, and Li et al.
(2014) for SIS model.

Furthermore, we assume that

a12

(
I1
N1

,
I2
N2

)
= a12(x) with x = θ S

12

(
I1
N1

− I2
N2

)
,

where θ S
12 ∈ [0, 1] measures the degree to which the travel rate of the susceptible

population from patch 1 to patch 2 depends on the relative severity of the epidemic on

123



Relative prevalence-based dispersal... Page 5 of 35    52 

the two patches, and the travel rate function a12(x) satisfies

(A1) a12(x) is an increasing function of x;
(A2) a12(−1) = 0;
(A2) a12(0) = MS

12 with MS
12 > 0.

(1.3)

The first assumption (A1) means that susceptible individuals of patch 1 leave more
quickly as the relative disease severity of patch 1 to patch 2 becomes more serious.
Assumption (A2) guarantees the positivity of the travel rate. Indeed, I1

N1
− I2

N2
= −1

occurs if and only if no one in patch 1 is infected while everyone in patch 2 is infected.
In this case, susceptible individuals do not move from patch 1 to patch 2. The last
assumption (A3) implies that the travel rate for susceptible individuals from patch
1 to patch 2 equals a constant MS

12, the normal travel rate without considering the
impact of travel behavior change, if the two patches have the same disease prevalence
or the travel rate is independent of the relative severity, i.e., θ S

12 = 0. The follow-
ing three types of dispersal rate a12(x) with x = θ S

12

( I1
N1

− I2
N2

)
satisfy the above

assumptions:

Type I : a12(x) = k(1 + x), with k = MS
12;

Type II : a12(x) = k(1 + x)

a + (1 + x)
, with k = MS

12(a + 1) and a > 0;

Type III : a12(x) = k(1 + x)2

1 + a(1 + x) + b(1 + x)2
, with k = MS

12(1 + a + b) and a, b > 0.

(1.4)
Similarly,a21

( I2
N2

, I1
N1

) = a21(x)
(
x = θ S

21

( I2
N2

− I1
N1

))
has the sameproperties asa12(x)

in (1.3) with a21(0) = MS
21. The travel rate ci j

( Ii
Ni

,
I j
N j

) = ci j (x)
(
x = θ R

i j

( Ii
Ni

− I j
N j

))
for i �= j has the same properties as ai j (x) with ci j (0) = MR

i j .
When two patches are disconnected, the disease dynamics of patch i ∈ {1, 2} are

described by

dSi
dt

= bi − di Si − λi (Ii )Ii Si + γi Ri ,

d Ii
dt

= λi (Ii )Ii Si − (di + αi )Ii ,

dRi

dt
= αi Ii − (di + γi )Ri . (1.5)

For system (1.5), it follows from the next generation matrix method (Diekmann
et al. 2010; van den Driessche and Watmough 2002) that the basic reproduction num-
ber is R0i = biβi

di (di+αi )
. When infections induced by double exposures are ignored,

i.e., νi = 0, the incidence rate is bilinear and the dynamic behavior of system (1.5)
is clear. Namely, the disease-free equilibrium is globally asymptotically stable (i.e.,
the disease cannot invade the population) if R0i ≤ 1, whereas there exists a unique
endemic equilibrium which is globally asymptotically stable (i.e., the disease can
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invade a susceptible population) if R0i > 1. However, R0i may no longer serve as a
sharp threshold quantity and the disease dynamics can be complex as νi > 0. van den
Driessche and Watmough (2003) showed the existence of saddle-node bifurcation,
but they only focused on numerical examples to demonstrate the existence of Hopf
bifurcation, homoclinic orbit and the attractive basin of an endemic equilibrium. Jin
et al. (2007) theoretically obtained the existence of backward bifurcation, Hopf bifur-
cation and Bogdanov–Takens bifurcation. So far the complete bifurcation phenomena
of system (1.5) is still unclear, especially for the high codimension bifurcations, such
as degenerate Bogdanov–Takens bifurcation and Hopf bifurcations.

In this paper, for system (1.5) with νi > 0, we will show that the codimension
for degenerate Bogdanov–Takens bifurcation is up to 3 and the codimension for Hopf
bifurcation is up to 2. The organizing center of bifurcation set is the cusp of codi-
mension 3, originating from which there exist a series of bifurcations with lower
codimension, such as codimension-1: saddle-node, Hopf, homoclinic bifurcations and
bifurcation of a double limit cycle; codimension-2: Bogdanov–Takens bifurcation,
degenerate Hopf bifurcation, degenerate homoclinic bifurcation, simultaneous occur-
rence of Hopf and homoclinic bifurcation. Moreover, (1.5) can exhibit rich dynamics
such as multiple coexistent steady states or periodic orbits, homoclinic orbits and mul-
titype bistability, etc. Our results indicate that we can classify the long-time dynamics
of system (1.5) by the infection rates βi (due to single contact) and νi (due to double
exposures). More precisely, it is shown that there exists two critical values β∗ and β∗
with β∗ < β∗ for βi and two critical values di

bi
and ν∗ with di

bi
< ν∗ for νi , which

determine whether the disease dies out or persists in the form of coexistent positive
periodic oscillations or coexistent steady states under different initial densities.

In a connected environment, we will first calculate the basic reproduction number
R0 for two-patch model (1.1), and then show the global asymptotic stability of the
disease-free equilibrium if R0 < 1 and ν1 = ν2 = 0, and the travel rates are indepen-
dent of disease status and disease prevalence. Moreover, system (1.1) admits at least
one endemic equilibrium and the disease is uniformly persistent if R0 > 1 and the
dispersal rates of infective individuals are positive. Therefore, we establish a threshold
between extinction and uniformpersistence of the disease formodel (1.1) under certain
conditions. By numerical simulations, we explored the effect of human migration on
extinction, persistence and endemic level of infectious diseases. When the incidence
rate is bilinear, i.e., νi = 0 (i = 1, 2), we will show that the relative prevalence-based
dispersal for susceptible and recovered individuals may reduce the overall prevalence
of the disease; when the incidence rate is nonlinear, i.e., νi > 0 (i = 1, 2), the
relative prevalence-based and unidirectional dispersal for susceptible and recovered
individuals can make periodic outbreak earlier.

The remaining parts of this paper is organized as follows. In Sect. 2, we study
the global dynamics and bifurcations of the single-patch model (1.5) with νi > 0.
In Sect. 3, we investigate the dynamics of the two-patch model (1.1), we establish a
threshold between extinction and uniform persistence of the disease in restricted con-
ditions. Then, by numerical simulations, we analyze the effect of population dispersal
on extinction, persistence and disease prevalence. A brief discussion is given in the
last section.
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2 Dynamics in isolated environment

We can clearly see that the total population of an isolated patch tends to a constant
due to no disease-caused mortality.

Lemma 2.1 The plane Ni := Si + Ii + Ri = bi
di

is an invariant manifold of system
(1.5), which is attracting in the first octant.

The limit set of system (1.5) is contained in the plane Ni = bi
di
, on which system

(1.5) can be reduced to the 2-dimensional system

d Ii
dt

= βi (1 + νi Ii )Ii (
bi
di

− Ii − Ri ) − (di + αi )Ii ,

dRi

dt
= αi Ii − (di + γi )Ri .

(2.1)

By letting I = βi Ii/(di + γi ), R = βi Ri/(di + γi ), and t̄ = (di + γi )t , system (2.1)
can be rewritten as (still denote t̄ by t)

d I

dt
= I (1 + pI )(A − I − R) − A

R0i
I ,

dR

dt
= q I − R,

(2.2)

where

p = νi (di + γi )

βi
≥ 0, A = biβi

di (di + γi )
> 0, R0i = biβi

di (di + αi )
> 0,

q = αi

di + γi
> 0.

(2.3)

It is easy to verify that the inequality qR0i < A < (q + 1)R0i holds.
Denote

� = {(R0i , p) ∈ R
2 : R0i > 0, p ≥ 0},

	 = {(A, q) ∈ R
2 : qR0i < A < (q + 1)R0i , q > 0}. (2.4)

We can check that


 =
{
(I , R) | 0 ≤ I ≤ A, 0 ≤ R ≤ q A

}

is a positively invariant and bounded region for system (2.2).
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2.1 Preliminary results

System (2.2) always has a trivial equilibrium E0 = (0, 0) which corresponds to the
disease-free equilibrium (

bi
di

, 0, 0) of system (1.5). By Zhang et al. (1992), we have
the following results.

Lemma 2.2 The boundary equilibrium E0(0, 0) of system (2.2) is

(i.1) a hyperbolic stable node if R0i < 1;
(i.2) a saddle-node with a stable parabolic sector in the right (or left) half plane of

R
2 if R0i = 1, and p <

1+q
A (or p >

1+q
A );

(i.3) a stable degenerate node if R0i = 1 and p = 1+q
A ;

(i.4) a hyperbolic saddle if R0i > 1.

If E(I , R) is a positive equilibrium of system (2.2), then R = q I and hence I
satisfies

p(q + 1)I 2 + (1 + q − Ap)I + A

R0i
− A = 0 (2.5)

in the interval (0, A). The discriminant of (2.5) is

� = (1 + q − Ap)2 − 4Ap(q + 1)(1 − R0i )/R0i .

Solving � = 0 in terms of R0i gives

R∗
0 = 4Ap(1 + q)

(1 + q + Ap)2
. (2.6)

Clearly, R∗
0 ≤ 1 with equality if and only if p = q+1

A , and � ≥ 0 ⇐⇒ R0i ≥ R∗
0 . We

can see that (2.5) has at most two positive roots, denoted by I− and I+, which may
coalesce into a unique root I∗ if R0i = R∗

0 , where

I− = Ap − q − 1 − √
�

2p(q + 1)
, I+ = Ap − q − 1 + √

�

2p(q + 1)
, I∗ = Ap − q − 1

2p(q + 1)
. (2.7)

Correspondingly, system (2.2) has at most two positive equilibria: E−(I−, R−) and
E+(I+, R+),whichmaycoalesce into a uniquepositive equilibrium E∗(I∗, R∗),where
R− = q I−, R+ = q I+ and R∗ = q I∗.

The Jacobian matrix of system (2.2) at a positive equilibrium E(I , R) is given by

J (E) =
(−I

[
1 − Ap + pI (2 + q)

] −I (1 + pI )
q −1

)
.

The determinant and trace of J (E) have the same signs as SD(I ) and ST (I ), respec-
tively, where

SD(I ) = 2p(1+q)I +1+q− Ap, ST (I ) = −1+ (Ap−1)I − p(2+q)I 2. (2.8)
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Fig. 1 The partition of (R0i , p)-plane. The number and type of equilibria for system (2.2) at each region
are listed in Table 1

Table 1 Number and types of equilibria of system (2.2)

Case Region Number Type

(a) �0 × 	 1 E0: globally asymptotically stable

(b) �10 × 	 2 E0: unstable, E+: globally asymptotically stable

(c) �11 × 	 2 E0: unstable, E+: elementary and anti-saddle

(d) �∗ × 	 2 E0: stable, E∗: degenerate
(e) �2 × 	 3 E0: stable, E−: hyperbolic saddle, E+: elementary and anti-saddle

Define

�0 :=
{
(R0i , p) ∈ R

2 | 0 < R0i ≤ 1, 0 ≤ p ≤ q + 1

A

}

⋃{
(R0i , p) ∈ R

2 | 0 < R0i < R∗
0 , p >

q + 1

A

}
,

�10 =
{
(R0i , p) ∈ R

2 | R0i > 1, 0 ≤ p ≤ 1

A

}
,

�11 =
{
(R0i , p) ∈ R

2 | R0i > 1, p >
1

A

} ⋃{
(R0i , p) ∈ R

2 | R0i = 1, p >
q + 1

A

}
,

�∗ :=
{
(R0i , p) ∈ R

2 | R0i = R∗
0 , p >

q + 1

A

}
,

�2 =
{
(R0i , p) ∈ R

2 | R∗
0 < R0i < 1, p >

q + 1

A

}
. (2.9)

The partition of (Ri
0, p)-plane is illustrated in Fig. 1. We summarize the number of

equilibria for system (2.2) and their basic properties in Table 1 (see Jin et al. (2007)
for partial results).
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Remark 2.3 Following Table 1(a) and (b), and using the original parameters, we have
R0i ≤ 1 ⇐⇒ βi ≤ β∗, p ≤ 1+q

A ⇐⇒ νi ≤ ν∗, and R0i ≤ R∗
0 ⇐⇒ βi ≤ β∗, where

β∗ � di (di+αi )
bi

, ν∗ � di
bi

(1 + αi
γi+di

), β∗ � β∗
(
1 − (νi−ν∗)2

(νi+ν∗)2
)

. (2.10)

The disease will die out for all positive initial conditions if one of the following two
cases holds:

(i.1) νi ≤ ν∗ and βi ≤ β∗, i.e., infection rate (due to double exposures) νi is smaller
than or equal to a critical value ν∗ and infection rate (due to single contacts) βi
is smaller than or equal to a critical value β∗;

(i.2) νi > ν∗, βi < β∗, i.e., νi is greater than ν∗ and βi is smaller than a smaller
critical value β∗.

The disease will persist in the form of a positive steady state for all positive initial
conditions if

(i.3) νi ≤ di
bi

and βi > β∗, where di
bi

< ν∗.

Remark 2.4 When νi ≤ di
bi
, Remark 2.3 (i.1) and (i.3) imply that whether the disease

persists or dies out for all positive initial conditions depends on the relative magnitude
of βi and β∗. Thus, when νi >

di
bi
, system (1.5) may exhibits richer dynamics, such

as backward bifurcation and Hopf bifurcation.

Next we consider the detailed property of equilibrium E∗ for case (d) in Table 1.
Let

A∗ = (q+1)
√
4p+q

p
√
q , p∗ = 1

4

(
q3 + 2q2

)
. (2.11)

Theorem 2.5 When (R0i , p, A, q) ∈ �∗ ×	, system (2.2) has a unique positive equi-
librium E∗(I∗, R∗), which is a saddle-node with a stable (or an unstable) parabolic
sector if 0 < A < A∗ (or A > A∗). Moreover, when A = A∗, E∗ is a cusp of
codimension 2 if p �= p∗; a cusp of codimension 3 if p = p∗.

Proof Step 1. From (2.8), we have SD(I∗) = 0 if R0i = R∗
0 and p >

1+q
A hold. When

A �= A∗, by Zhang et al. (1992), E∗ is a saddle-node with a stable (or an unstable)
parabolic sector if 0 < A < A∗ (or A > A∗).

Step 2. When R0i = R∗
0 , p >

1+q
A and A = A∗ hold, the change of variables

I = 1
q X + 1

q Y + I∗, R = X + R∗ (2.12)

allow us to rewrite system (2.2) as

Ẋ = Y ,

Ẏ = ∑
2≤i+ j≤3

ai j XiY j . (2.13)

where

a20 = − (q + 1)
(√

4p + q − √
q
)

2q3/2
, a11 = −

√
4p + q

q3/2
+ 1

q
+ 1,
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a02 = q
√
4p + q − √

4p + q + q3/2 + √
q

2q3/2
,

a30 = − p(q + 1)

q2
, a21 = − p(2q + 3)

q2
, a12 = − p(q + 3)

q2
, a03 = − p

q2
.

(2.14)

By introducing

X = x + a02
2

x2, Y = y + a02xy,

system (2.13) becomes

ẋ = y,
ẏ = b20x2 + b11xy + ∑

3≤i+ j≤4
bi j xi y j + o(|x, y|4). (2.15)

where

b20 = − (q + 1)
(√

4p + q − √
q
)

2q3/2
and b11 = −

√
4p + q

q3/2
+ 1

q
+ 1,

and other expressions of bi j are omitted here for brevity. Obviously, b20 < 0. Direct
computation shows that b11 = 0 if p = p∗. Therefore, E∗ is a cusp of codimension 2
if p �= p∗.

Step 3. When R0i = R∗
0 , p >

1+q
A , A = A∗ and p = p∗, we shall prove that E∗

is a cusp of codimension at most 3. Following Lemma 2.4 in Lu et al. (2023), system
(2.15) near the origin is equivalent to the following system

ẋ = y,
ẏ = x2 + q(q+2)

4
√
2
√
q+1

x3y + o(|x, y|4). (2.16)

This completes the proof. 
�
Remark 2.6 It follows from Theorem 2.5 that the chance of disease outbreak depends
on νi , the recovery rate αi and the initial conditions.More precisely, when βi = β∗ and
νi > ν∗ i.e., (R0i , p, A, q) ∈ �∗ × 	, system (1.5) has two equilibria: a disease-free
equilibrium E0 and an endemic equilibrium E∗. Moreover, the disease will die out for
almost all positive initial conditions if αi > α∗ and νi ≥ ν∗ ( i.e. A ≥ A∗), where

α∗ � 1

2

(
γi +

√
5γ 2

i + 4d2i + 8γi di

)
,

ν∗ � ν∗
αi (αi + di ) + (di + γi )(di + γi + αi )

αi (αi + di ) − (di + γi )(di + γi + αi )
. (2.17)

Otherwise, the disease will persist in the form of a positive steady state for some
positive initial conditions if αi ≤ α∗, or αi > α∗ and νi < ν∗ (i.e., A < A∗).
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2.2 Degenerate Bogdanov–Takens bifurcation of codimension 3

From Theorem 2.5, we know that system (2.2) may exhibit Bogdanov–Takens bifur-
cation of codimension 3 around E∗(I∗, R∗). In this section, we will explore rigorously
whether a Bogdanov–Takens bifurcation of codimension 3 can be fully unfolded inside
the class of system (2.2). We choose R0i , A and p as bifurcation parameters, and con-
sider the following unfolding system

d I
dt = I (1 + (p∗ + r3)I )(A∗ + r2 − I − R) − A∗+r2

R∗
0+r1

I ,
dR
dt = q I − R,

(2.18)

where r = (r1, r2, r3) ∼ (0, 0, 0).

Theorem 2.7 System (2.2) can undergo degenerate Bogdanov–Takens bifurcation of
codimension 3 around E∗ as (R0i , A, p) varies near (R∗

0 , A∗, p∗). There exist two
limit cycles appearing in a Hopf bifurcation of codimension 2 and dying in a homo-
clinic bifurcation of codimension 2. The cusp of codimension 3 is the organizing
center of bifurcation sets, i.e., there exist a series of bifurcations with lower codimen-
sion: codimension-1: saddle-node, Hopf, homoclinic bifurcations and bifurcation of
a double limit cycle; codimension-2: Bogdanov–Takens bifurcation, degenerate Hopf
bifurcation, degenerate homoclinic bifurcation, simultaneous occurrence of Hopf and
homoclinic bifurcation.

Proof First, let (I , R) = ( 1q X + 1
q Y + I∗, X + R∗), system (2.18) becomes

Ẋ = Y ,

Ẏ = ∑
0≤i+ j≤3

āi j X iY j , (2.19)

where

ā00 = (q + 2)2

2q2
r1 + q

2q + 2
r2 + 8(q + 1)

q3(q + 2)2
r3 + O(r2),

ā10 = (q + 2)3

4q2
r1 + q(3q + 4)

4(q + 1)
r2 + 4(q + 1)(q + 4)

q3(q + 2)2
r3 + O(r2),

ā01 = (q + 2)3

4q2
r1 + q(3q + 4)

4(q + 1)
r2 + 4

(
2q2 + 5q + 4

)
q3(q + 2)2

r3 + O(r2),

ā11 = 1

2
q(q + 2)r2 + 4

q3
r3 + O(r2),

ā20 = 1

2
(−q − 1) + O(r), ā02 = q + 1

2
+ O(r),

ā30 = −1

4
(q + 1)(q + 2) + O(r),

ā21 = −1

4
(q + 2)(2q + 3) + O(r), ā12 = −1

4
(q + 2)(q + 3) + O(r),
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ā03 = 1

4
(−q − 2) + O(r).

Next, following similar steps as inArsie et al. (2022), Li et al. (2015) andXiang et al.
(2019) and performing a sequence of near-identity transformations and time rescaling
(preserving orientations of orbits), we can reduce system (2.19) to the following form:

dx1
dt

= y1,

dy1
dt

= γ1 + γ2y1 + γ3x1y1 + x21 + x31 y1 + R(x1, y1, r), (2.20)

where R(x1, y1, r) = y21O(|x1, y1|2)+O(|x1, y1|5)+O(r)(O(y21 )+O(|x1, y1|3))+
O(r2)O(|x1, y1|).

A direct but tedious algebraic computation shows that

∣∣∣∣∂(γ1, γ2, γ3)

∂(r1, r2, r3)

∣∣∣∣
r=0

= − (q + 2)5

2(−q − 1)17/5(−q(q + 2))11/5
< 0

due to q > 0. Therefore, by the results of Dumortier et al. (1987) and Chow et al.
(1994), we know that system (2.20) is the versal unfolding of Bogdanov–Takens
singularity (cusp case) of codimension 3. The remainder term R(x1, y1, r) has no
influence on the bifurcation analysis. 
�

Remark 2.8 In Jin et al. (2007), Jin et al. only showed the existence of Bogdanov–
Takens bifurcation of codimension 2. In this paper, we have shown that the highest
codimension of the cusp E∗ is 3, and system (2.2) can undergo degenerate Bogdanov–
Takens bifurcation of codimension 3.

2.3 Hopf bifurcation with codimension up to 2

From Table 1 (c) and (e), we know that E+(I+, R+) is an elementary and anti-saddle
equilibrium. In Theorem 3.1 of Jin et al. (2007), Jin et al. found that the positive equi-
librium E+(I+, R+) can be a center-type equilibrium if ST (I+) = 0, and discussed
the existence of Hopf bifurcation of codimension 1. However, is it a center or focus
when ST (I+) = 0?What is the exact order of E+ when it is a weak focus? Can system
(2.2) exhibit Hopf bifurcation with corresponding order? These problems related to
the number of small-amplitude limit cycles remain open.

In this subsection, we show that E+(I+, R+) is a weak focus with multiplicity at
most 2 if ST (I+) = 0, and system (2.2) can undergo Hopf bifurcation of codimension
2. To simplify the notation, we denote I+ � x and

F(x) � p(q + 1)x2 + (1 + q − Ap)x + A
R0i

− A. (2.21)

123



   52 Page 14 of 35 M. Lu et al.

Then (I+, R+) = (x, qx). From F(x) = 0 in (2.21) and ST (x) = 0 in (2.8), we can
express R0i and A by p, q and x as follows

R0i = RH
0 := A

(px+1)(A−qx−x) and A = AH := pqx2+2px2+x+1
px . (2.22)

From the above and (2.8), we have

Det(x) := xSD(x) = qx(px + 1) − 1. (2.23)

It can be shown that F(x) = 0, ST (x) = 0 and (R0i , p, A, q) ∈ � × 	 ⇐⇒
(R0i , p, A, q, x) ∈ D, where

D =
{
(R0i , p, A, q, x) ∈ R

5+ | R0i = RH
0 ,

A = AH ,
p2x3 + 2px2 + x + 1

px
< q <

p2x3 + 2px2 + px + x + 1

px

}
.

Similarly, F(x) = 0, ST (x) = 0 and (R0i , p, A, q) ∈ �11 × 	 (or �2 × 	)
⇐⇒ (R0i , p, A, q, x) ∈ D1 (or D2), where

D1 �
{
(R0i , p, A, q, x) ∈ R

5+
∣∣ q ≥ 1 + px2

x

}
∩ D,

D2 �
{
(R0i , p, A, q, x) ∈ R

5+
∣∣ 1

x(px + 1)
< q <

1 + px2

x

}
∩ D. (2.24)

We next compute the first two focal values of system (2.2) around E+ when
(R0i , p, A, q, x) ∈ D1 (or D2), under which Det(x) > 0. With the following trans-
formations

I = 2y1 + x, R = 2y1
x(px+1) + 2

√
qx(px+1)−1
x(px+1) y2 + qx, and t = τ√

Det(x)
,

then system (2.2) becomes (still denote τ by t)

dy1
dt

= −y2 − 2p
(
px2 + x + 1

)
(px + 1)

√
Det(x)

y21 − 2(2px + 1)

x(px + 1)
y1y2

− 4p
(
px2 + x + 1

)
x(px + 1)

√
Det(x)

y31 − 4p

x(px + 1)
y21 y1,

dy2
dt

= y1 + 2p
(
px2 + x + 1

)
(px + 1)Det(x)

y21 + 2(2px + 1)

x(px + 1)
√
Det(x)

y1y2

+4p
(
px2 + x + 1

)
x(px + 1)Det(x)

y31 + 4p

x(px + 1)
√
Det(x)

y21 y1. (2.25)
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According to successive function method (Chow et al. 1994), we get the first focal
value

σ1 = p
(
2p2x3+p(2x+3)x+1−q

(
p2x3+3px2+2x+1

))
2(px+1)(Det(x))3/2

. (2.26)

Obviously, σ1 has the same sign as

σ11 := 2p2x3 + p(2x + 3)x + 1 − q
(
p2x3 + 3px2 + 2x + 1

)
.

When (R0i , p, A, q, x) ∈ D1, we have σ11 < 0, then E+ is a stable weak focus
with order 1. When (R0i , p, A, q, x) ∈ D2, solving σ11 = 0 with respect to q gives

q = qH � 2p2x3 + 2px2 + 3px + 1

p2x3 + 3px2 + 2x + 1
, (2.27)

and we obtain the second focal value

σ2 = p2
(
px2 + x + 1

)2 (
2p2x3 + 2px2 − 1

) (
3p3x4 + 9p2x3 + 6px2 + 6px + 2

)
3x(px + 1)2

(
p2x3 + 3px2 + 2x + 1

)2
(Det(x))5/2

> 0,

since (R0i , p, A, q, x) ∈ D2 and q = qH .
Moreover, we have

dST (x)

d A

∣∣∣
A=AH

= px > 0,
dσ11

dq

∣∣∣
q=qH

= −
(
p2x3 + 3px2 + 2x + 1

)
< 0,

and

det

(
∂(ST (x), σ11)

∂(A, q)

) ∣∣∣
A=AH ,q=qH

= −px
(
p2x3 + 3px2 + 2x + 1

)
< 0.

then we can get the following results.

Theorem 2.9 (I) When (R0i , p, A, q, x) ∈ D1, E+ is a stable weak focus with order
1, and system (2.2) can exhibit supercritical Hopf bifurcation.

(II) When (R0i , p, A, q, x) ∈ D2, E+ is a weak focus with order at most 2.Moreover,

(i) if q > qH , then E+ is a stable weak focus with order 1, and system (2.2) can
exhibit supercritical Hopf bifurcation;

(ii) if q < qH , then E+ is an unstable weak focus with order 1, and system (2.2)
can exhibit subcritical Hopf bifurcation;

(iii) if q = qH , then E+ is an unstable weak focus with order exactly 2, and system
(2.2) can undergo Hopf bifurcation of codimension 2. Thus, system (2.2) has
two limit cycles (the inner one is stable).

Remark 2.10 The existence of a stable limit cycle arising from supercritical Hopf
bifurcation around E+ in system (2.2) is given in Fig. 2a, where x = 1, p = 8,
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Fig. 2 a A stable limit cycle of system (2.2). b Two limit cycles of system (2.2) (the inner one is stable)

q = 11, A = 53
4 + 1

10 , R0i = 133
117 . The existence of two limit cycles arising from

degenerate Hopf bifurcation of codimension 2 around E+ in system (2.2) is given in
Fig. 2b, where the inner one is stable, x = 1

4 , p = 8, q = 5
2 + 1

10 , A = 71
40 + 4

10000 ,
R0i = 2959

4377 .

Remark 2.11 From Theorem 2.9 and (2.10), if βi > β∗ and νi ≥ di
bi
, or βi = β∗

and νi > ν∗ (i.e., (R0i , p, A, q) ∈ �11 × 	), then system (1.5) may exhibit super-
critical Hopf bifurcation, crossing which a stable limit cycle arising, at this moment,
disease-free equilibrium E0 and the unique endemic equilibrium E+ are both unstable.
Thus, the disease will tend to stable periodic outbreaks for almost all positive initial
conditions.

Remark 2.12 From Theorem 2.9, Fig. 2b and (2.10), we can see that, if β∗ < βi < β∗
and νi > ν∗ (i.e., (R0i , p, A, q) ∈ �2 ×	), then E0 is stable, E− is a saddle, E+ may
be stable or unstable, system (1.5) may have a stable or an unstable limit cycle, or two
limit cycles around E+. There exist two kinds of bistability: E0 and E+, or E0 and
a limit cycle. Whether the disease dies out or persists will not only depends on more
parameters but also on the initial conditions.

3 Dynamics in connected environment

The total population size in two patches is N (t) = N1(t) + N2(t). Let

X = {(S1, I1, R1, S2, I2, R2) : Si ≥ 0, Ii ≥ 0, Ri ≥ 0, i = 1, 2}.

The model (1.1) is mathematically and epidemiologically well-posed in the domain
X .
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Theorem 3.1 There exists a unique solution, defined for all time t ≥ 0, for system
(1.1) with Si (0) ≥ 0, Ii (0) ≥ 0 and Ri (0) ≥ 0. Moreover, X is positively invariant
with respect to (1.1), and the total population N (t) is bounded.

Proof The uniqueness and nonnegativity of state variables can be easily checked. By
a comparison principle, the fact

b1 + b2 − max{d1, d2}N ≤ dN

dt
= b1 + b2 − d1N1 − d2N2 ≤ b1 + b2 − min{d1, d2}N

implies N (t) is bounded above by max

{
b1+b2

min{d1,d2} , N (0)

}
and below by min{

b1+b2
max{d1,d2} , N (0)

}
. 
�

3.1 Threshold dynamics

For system (1.1), there always exists a disease-free equilibrium E0 = (S10, 0, 0, S20,
0, 0), where

S10 = b2MS
21 + b1MS

21 + b1d2

d2MS
12 + d1MS

21 + d1d2
, S20 = b2MS

12 + b1MS
12 + d1b2

d2MS
12 + d1MS

21 + d1d2
. (3.1)

Wefirst consider the local stability of E0. Following the next generationmatrixmethod
in Diekmann et al. (2010) and van den Driessche and Watmough (2002), we have

F =
(

β1S10 0
0 β2S20

)
, V =

(
d1 + α1 + b12 −b21

−b12 d2 + α2 + b21

)
,

and

FV−1 = 1

�0

(
�11S10 �12S10
�21S20 �22S20

)
,

where

�0 = (d2 + α2 + b21)(d1 + α1 + b12) − b21b12, �11 = β1(d2 + α2 + b21),

�12 = β1b21, �21 = β2b12, �22 = β2(d1 + α1 + b12). (3.2)

The basic reproduction number of model (1.1) is

R0 = ρ(FV−1) = �11S10 + �22S20 + √
(�11S10 − �22S20)2 + 4�12S10�21S20

2�0
,

(3.3)
where ρ is the spectral radius of a square matrix.
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Remark 3.2 Note that R0 in (3.3) depends on the travel rates of susceptible and infec-
tive individuals (MS

i j and bi j ), but it is independent of the travel rates of recovered

individuals (MR
i j ), and the parameters γi and νi . Moreover,

(1) if the infective individuals in patch 1 do not travel to patch 2, i.e., b12 = 0, then

R0 = max

{
β1S10
d1+α1

,
β2S20

d2+α2+b21

}
, which depends on the travel rates MS

i j and b21;

(2) if the infective individuals in patch 2 do not travel to patch 1, i.e., b21 = 0, then

R0 = max

{
β1S10

d1+α1+b12
,

β2S20
d2+α2

}
, which depends on the travel rates MS

i j and b12;

(3) if the infective individuals do not travel between two patches, i.e., b12 = b21 = 0,

then R0 = max

{
β1S10
d1+α1

,
β2S20
d2+α2

}
, which depends on the travel rates MS

i j .

Remark 3.3 If the disease transmission is depicted by standard incidence: βi
Si
Ni
Ii , then

R0 = �11 + �22 + √
(�11 − �22)2 + 4�12�21

2�0
, (3.4)

which does not depend on the travel rates of susceptible and recovered individuals.
Moreover, if the infective individuals does notmove between patches, i.e., b12 = b21 =
0, then R0 = max

{
β1

d1+α1
,

β2
d2+α2

}
, which is unaffected by the travel rates. Thus, the

dependence of R0 on travel rates becomes more complex when the incidence rate is
nonstandard.

Following Theorem 2 in van den Driessche andWatmough (2002), we immediately
have the following result on the local stability of the disease-free equilibrium.

Lemma 3.4 The disease-free equilibrium E0 of system (1.1) is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

We next consider the global asymptotic stability of E0 of system (1.1) under the
case where the travel rates are independent of disease status and disease prevalence,
i.e., θ S

i j = θ R
i j = 0 and MS

i j = MR
i j = bi j for i, j = 1, 2, i �= j , and infections due to

double exposures are ignored, i.e., νi = 0 for i = 1, 2. For example, a disease like the
common cold has a mild effect on the mobility of infected individuals.

Theorem 3.5 The disease-free equilibrium E0 of system (1.1) is globally asymp-
totically stable in X, i.e., the disease becomes extinct in two patches, if R0 < 1,
θ S
i j = θ R

i j = 0, MS
i j = MR

i j = bi j and νi = 0 for i, j = 1, 2, i �= j .

Proof When θ S
i j = θ R

i j = 0, MS
i j = MR

i j = bi j , i, j = 1, 2, i �= j , the total population
sizes in patches 1 and 2 satisfy

dN1

dt
= b1 − d1N1 − b12N1 + b21N2,
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dN2

dt
= b2 − d2N2 + b12N1 − b21N2. (3.5)

System (3.5) has a unique equilibrium (N∗
1 , N∗

2 ) = (S10, S20), which is a stable node.
It is easy to show that (N∗

1 , N∗
2 ) is globally asymptotically stable for (N1, N2) ∈ R

2+.
It then follows that for any given ε > 0, we have Si (t) ≤ Ni (t) < Si0 + ε (i = 1, 2)
for sufficiently large t . Thus, if t is sufficiently large and νi = 0, we have

d I1
dt

≤ [β1(S10 + ε) − (d1 + α1 + b12)]I1 + b21 I2,

d I2
dt

≤ b12 I1 + [β2(S20 + ε) − (d2 + α2 + b21)]I2. (3.6)

Define an auxiliary linear system:

d Ī1
dt

= [β1(S10 + ε) − (d1 + α1 + b12)] Ī1 + b21 Ī2,

d Ī2
dt

= b12 Ī1 + [β2(S20 + ε) − (d2 + α2 + b21)] Ī2, (3.7)

or equivalently,

d

dt

(
Ī1
Ī2

)
= (F − V + εD)

(
Ī1
Ī2

)

with D = diag(fi1,fi2). We have R0 < 1 ⇐⇒ σ(F − V ) < 0, where σ(M) is the
stability modulus of matrix M [see van den Driessche and Watmough (2002)]. Thus,
when R0 < 1, we can fix an ε > 0 small enough such that σ(F − V + εD) < 0,
since σ(F − V + εD) is continuous for small ε. Then all non-negative solutions
of system (3.7) satisfy lim

t→∞ Īi = 0 (i = 1, 2). By a standard comparison principle

and the nonnegativity of Ii , when R0 < 1, all non-negative solutions of (1.1) satisfy
lim
t→∞ Ii = 0 (i = 1, 2). Then we have

dR1

dt
= −(d1 + γ1)R1 − b12R1 + b21R2,

dR2

dt
= −(d2 + γ2)R2 + b12R1 − b21R2. (3.8)

This linear system has a unique equilibrium (0, 0), which is globally asymptotically
stable. Thus lim

t→∞ Ri = 0 (i = 1, 2). Since Ii and Ri tend to 0 as t → ∞, system (1.1)

is an asymptotically autonomous system with limit affine system

dS1
dt

= b1 − d1S1 − b12S1 + b21S2,

dS2
dt

= b2 − d2S2 + b12S1 − b21S2, (3.9)
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from which lim
t→∞ Si = Si0 (i = 1, 2) is obvious. The proof is complete. 
�

On the other hand, R0 > 1 actually implies that system (1.1) admits at least one
endemic equilibrium and the disease is uniformly persistent.

Theorem 3.6 When R0 > 1 and bi j > 0 (i, j = 1, 2, i �= j), system (1.1) is uniformly
persistent, namely, there exists a positive constant ε such that every solution φt (x0) ≡
(S1(t), I1(t), R1(t), S2(t), I2(t), R2(t)) of (1.1) satisfies

lim inf
t→∞ Si (t) ≥ ε, lim inf

t→∞ Ii (t) ≥ ε, lim inf
t→∞ Ri (t) ≥ ε, i = 1, 2,

for initial condition x0 ≡ (S1(0), I1(0), R1(0), S2(0), I2(0), R2(0)) ∈ X satisfying
I1(0) + I2(0) > 0, and system (1.1) admits at least one endemic equilibrium.

Proof Clearly, Si (t) is always ultimately lower bounded by some positive constant,
which is independent of initial values. If both I1 and I2 are ultimately lower bounded
by some positive constant independent of initial values, then Ri is also ultimately lower
bounded by some positive constant which is independent of initial values. Therefore
it suffices to prove that lim inf

t→∞ Ii (t) ≥ ε, i = 1, 2.

Let

X0 = {(S1, I1, R1, S2, I2, R2) ∈ X : I1 > 0, I2 > 0},
∂X0 = X \ X0 = {(S1, I1, R1, S2, I2, R2) ∈ X : I1 = 0 or I2 = 0}.

It then suffices to show that system (1.1) is uniformly persistent with respect to
(X0, ∂X0), i.e., there exists η > 0, such that lim inf

t→∞ d(φt (x0), ∂X0) ≥ η for x0 ∈ X0

(see Thieme (1993), Zhao (2003)). Clearly, ∂X0 is relatively closed in X , and X , X0
are positive invariant. Denote

M∂ = {x0 ∈ ∂X0 : φt (x0) ∈ ∂X0 for t ≥ 0},
X1 = {x0 ∈ X : I1(0) = I2(0) = 0}.

We now show that M∂ = X1. Obviously, X1 ⊂ M∂ . On the other hand, we have
I1(0) + I2(0) > 0 for any x0 ∈ ∂X0 \ X1. Without losing generality, we assume
I1(0) > 0 and I2(0) = 0. If b12 > 0, then

d I2
dt

∣∣∣∣
t=0

= b12 I1(0) > 0. (3.10)

It follows that there exits a δ0 > 0 such that I2(t) > 0 for t ∈ (0, δ0).Moreover, we can
restrict δ0 to be small enough such that I1(t) > 0 for t ∈ (0, δ0). Thus, φt (x0) ∈ X0
for t ∈ (0, δ0), then x0 /∈ M∂ . Therefore, M∂ ⊂ X1, which implies that M∂ = X1.
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Restricting system (1.1) on M∂ gives

dS1
dt

= b1 − d1S1 + γ1R1 − MS
12S1 + MS

21S2,

dR1

dt
= −(d1 + γ1)R1 − MR

12R1 + MR
21R2,

dS2
dt

= b2 − d2S2 + γ2R2 + MS
12S1 − MS

21S2,

dR2

dt
= −(d2 + γ2)R2 + MR

12R1 − MR
21R2,

(3.11)

It is easy to verify that system (3.11) has a unique equilibrium E1(S10, 0, S20, 0). Thus,
the disease free equilibrium E0 is the unique equilibrium of system (1.1) on M∂ . It is
easy to check that E1 of system (3.11) is locally asymptotically stable. Hence it is also
globally asymptotically stable since system (3.11) is linear. Denote the omega limit set
of the solutions of system (1.1) with x0 ∈ M∂ by ω(x0). Thus, ∪

x0∈M∂

ω(x0) = {E0}.
E0 is isolated (since E0 is the unique equilibrium) and is acyclic (since there exists
no solution on M∂ which links E0 to itself).

Let Ws(E0) be the stable manifold of E0. We now show that Ws(E0) ∩ X0 = ∅
when R0 > 1. Suppose not, then there exists a solution φt (x0) ∈ X0 for t ≥ 0 with
initial value x0 ∈ X0 such that

lim
t→∞ φt (x0) = E0, i = 1, 2. (3.12)

Namely, for any fixed δ > 0, there exists t1 > 0 such that

Si0 − δ < Si (t) < Si0 + δ, 0 < Ii (t) < δ, 0 < Ri (t) < δ, t ≥ t1, i = 1, 2.
(3.13)

Hence

d I1
dt

≥ β1 I1(S10 − δ) − (d1 + α1)I1 − b12 I1 + b21 I2,

d I2
dt

≥ β2 I2(S20 − δ) − (d2 + α2)I2 + b12 I1 − b21 I2. (3.14)

Define an auxiliary linear system:

d Ī1
dt

= [β1(S10 − δ) − (d1 + α1 + b12)] Ī1 + b21 Ī2,

d Ī2
dt

= b12 Ī1 + [β2(S20 − δ) − (d2 + α2 + b21)] Ī2, (3.15)

i.e.,

d

dt

(
Ī1
Ī2

)
= (F − V − δD)

(
Ī1
Ī2

)
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Table 2 Parameter values of system (1.1)

Parameter b1 b2 d1 d2 α1 α2 γ1 γ2 ν1 ν2

Value 1000 200 0.001 0.002 0.8 0.5 0.1 0.1 0 0

with D = diag(fi1,fi2). Since R0 > 1⇐⇒ σ(F−V ) > 0, where σ(M) is the stability
modulus ofmatrixM (see vandenDriessche andWatmough (2002)). Thus,when R0 >

1, we can fix an δ1 > 0 small enough such that σ(F − V − δD) > 0 for 0 ≤ δ ≤ δ1.
Notice that F−V−δD has a positive eigenvalueσ(F−V−δD) associated to a positive
eigenvector. It follows from a comparison theorem that lim

t→∞ Ii (t) = ∞ (i = 1, 2),

which induces to a contradiction. By Theorem 4.6 in Thieme (1993), system (1.1) is
uniformly persistent with respect to (X0, ∂X0).

A continuous mapping f : X → X is dissipative if there is a bounded set B0
in X such that B0 attracts each point in X . Theorem 3.1 implies that φt (x0) is point
dissipative. Therefore, by Theorem 2.4 in Zhao (1995), we know that system has an
equilibrium Ē = (S̄1, Ī1, R̄1, S̄2, Ī2, R̄2) ∈ X0. The differential equations governing
Si and Ri ensure that S̄i > 0 and R̄i > 0 for i = 1, 2. This means that Ē is an endemic
equilibrium of system (1.1). 
�
Remark 3.7 Note that if two patches are isolated and double exposures do not influence
the infection rate (i.e., νi = 0), then the disease spreads in the i th patch if R0i > 1 and
goes extinct if R0i < 1 (see (2.9) and Table 1). If individuals disperse between two
patches, and all travel rates for susceptible, infective and recovered individuals are
positive constants and equal (i.e., θ S

i j = θ R
i j = 0, MS

i j = MR
i j = bi j > 0, i, j = 1, 2,

i �= j) and νi = 0, i = 1, 2 in system (1.1), we still have a threshold dynamic result
(see Theorems 3.5 and 3.6):

(a) The disease will die out for all positive initial populations if R0 < 1;
(b) The disease will persist for all positive initial populations if R0 > 1.

3.2 Numerical simulations when �1 = �2 = 0

In the following numerical simulations, we choose the travel rates as Type I in (1.4)
if they depend on the disease prevalence. When ν1 = ν2 = 0, the incidence rate in
system (1.1) is bilinear incidence: λi (Ii )Ii Si = βi Ii Si , under which the isolated patch
model (2.2) admits simple threshold dynamics.

In this subsection, to investigate the effect of population dispersal on disease spread,
we always assume ν1 = ν2 = 0, initial values: N1(0) = 1 × 106, N2(0) = 1 × 105,
I1(0) = 1× 105, I2(0) = 1× 104, R1(0) = R2(0) = 1, and b1, b2, d1, d2, α1, α2, γ1,
γ2 are given in Table 2.

3.2.1 Travel rates are independent of disease status and disease prevalence

We next present two examples with conditions satisfying Remark 3.7, i.e., θ S
i j = θ R

i j =
0, MS

i j = MR
i j = bi j (i, j = 1, 2, i �= j), to investigate the relationship between R0
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Table 3 Parameters of system
(1.1)

Case β1 β2 R01 R02

(1) 7 × 10−7 5 × 10−6 0.8739 0.996

(2) 9 × 10−7 5 × 10−6 1.1236 0.996

Fig. 3 a Contour plot of R0 versus b12 and b21 when R01 < R02 < 1. bDisease prevalence: I1
N1

(blue), I2
N2

(red). (b12, b21) = (0.2, 0.2) (solid curves); (b12, b21) = (0.2, 0.9) (dashed curves). The other parameters
are given in Table 2 and Table 3(1) (color figure online)

and R0i and how R0 changes with the travel rates b12 and b21. Choosing β1 and β2
as listed in Table 3. In all two scenarios, patch 2 has higher transmission rates, i.e.,
β2 > β1 (Figs. 3 and 4).

Example 1 Case (1) in Table 3: R01 < R02 < 1. In this case, the disease dies out in
each isolated patch. The contour plot of R0 versus b12 and b21 is given in Fig. 3a, which
shows that an increase in b21 will decrease R0. Conversely, for fixed b21, an increase
in b12 will increase R0. Consequently, although the disease dies out in each isolated
patch, increasing travel rates from patch 1 (low-risk) to patch 2 (high-risk) may cause
the disease to become endemic in both patches, i.e., the inappropriate population travel
may intensify the disease spread.

For example, fix b12 = b21 = 0.2, then R0 ≈ 3.0321, i.e., the disease spreads
in both patches (solid curves in Fig. 3b), thus travel intensifies the spread of disease,
turning originally low-risk patchs into high-risk patchs. For b12 = 0.2, b21 = 0.9,
R0 ≈ 0.9685, i.e., the disease disappears in both patches (dashed curves in Fig. 3b),
thus travel reduces the spread of disease, turning originally high-risk patches into
low-risk patches. The disease prevalence is higher in patch 2 (high-risk and higher
infection rate) when b12 = b21.

Example 2 Case (2) in Table 3: R01 > 1, R02 < 1. The disease will persist in isolated
patch 1 and disappear in isolated patch 2. The contour plot of R0 versus b12 and b21
is shown in Fig. 4a, which shows the similar results as Example 1 when population
dispersal occurs. For example, for fixed b21 = 0.1, we have R0 ≈ 3.3764 if b12 =
0.1 (solid curves in Fig. 4b); R0 ≈ 4.4706 if b12 = 0.3 (dashed curves in Fig. 4b);
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Fig. 4 a Contour plot of R0 versus b12 and b21 when R01 > 1 and R02 < 1. b Disease prevalence: I1
N1

(blue), I2
N2

(red), I1+I2
N1+N2

(green). (b12, b21) = (0.1, 0.1) (solid curves); (b12, b21) = (0.3, 0.1) (dashed
curves) (color figure online)

thus travel intensifies the spread of disease, turning originally low-risk patches into
high-risk patches. Moreover, increasing the travel from patch 1 (high-risk) to patch 2
(low-risk) will increase R0 and the overall disease prevalence. For fixed b21 = 0.1 and
bigger b12, the disease prevalence of patch 1 and both patches become higher, while
higher first and then lower for patch 2, moreover, the disease outbreaks earlier. The
disease prevalence is higher in patch 2 (low-risk) when b12 = b21 since β2 > β1.

Remark 3.8 When β2 is much larger than β1 and R01 is little difference from R02,
Figs. 3a and 4a imply that R0 is monotonic, i.e., R0 decreases as b21 increases for
fixed b12; R0 increases as b12 increases for fixed b21. While R0 may be nonmonotonic
when R01 is much larger than R02 and β1 is a bit smaller than β2, for example, when
b12 is fixed, Fig. 5 shows that R0 may decrease first and then increase as b21 increases,
which indicates that, although patch 1 has a lower infection rate (β1 < β2), increasing
travel from patch 2 to patch 1may cause disease more serious when R01 is much larger
than R02. Therefore, so as to control a disease, it is necessary to control reasonably
the travel rates by considering the joint effect of the infection rate (βi ) and the risk of
disease outbreak (R0i ) of each patch.

Remark 3.9 The above analyses indicate that the reproduction number R0 of system
(1.1) can be greater than the reproduction number R0i of each isolated patch, i.e.,
R0 ≤ max

1≤i≤n
{R0i } does not hold, which violates the known results when the disease is

standard incidence (Wang and Mulone 2003; Salmani and van den Driessche 2006).

3.2.2 Infectives do not travel

If the parameters do not satisfy the conditions in Remark 3.7, then R0 may not be a
threshold between disease extinction and persistence.We next present some numerical
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Fig. 5 Contour plots of R0 versus b12 and b21 with different β1, β2. a R01 ≈ 0.8739, R02 ≈ 0.1992 with
β1 = 7 × 10−7, β2 = 1 × 10−6; b R01 ≈ 1.1236, R02 ≈ 0.1992 with β1 = 9 × 10−7, β2 = 1 × 10−6;
c R01 ≈ 9.9875, R02 ≈ 1.992 with β1 = 8 × 10−6, β2 = 1 × 10−5

simulations to investigate the dependence of disease spread on the dispersal rates of
susceptible and recovered individuals when infective individuals of both patches do
not travel. Some parameters in system (1.1) are taken from Table 2.

Unidirectional and constant dispersal firstly, when the travel of infective and recov-
ered individuals is prohibited and the travel rates of susceptible individuals do not
depend on the relative severity of the disease in two patches, we explore the impact of
the travel of susceptible individuals on disease spread (Fig. 6).

Let β1 and β2 take the values in Case (2) of Table 3 (R01 > 1, R02 < 1), then the
disease persists in isolated patch 1 and disappears in isolated patch 2. Figure6a shows
that the travel of susceptible individuals from patch 2 to patch 1 increases the disease
prevalence of patch 1 (the blue dashed curve) and the overall disease prevalence (the
green dashed curve in Fig. 6d), and the disease in patch 2 still disappears (the red
dashed curve). However, Fig. 6b shows that the travel of susceptible individuals from
patch 1 to patch 2 makes the disease in patch 2 become endemic (the red dashed
curve), the disease in patch 1 disappears (the blue dashed curve), and the overall
disease prevalence increases (Fig. 6e). As the travel rate of susceptible individuals
from patch 1 to patch 2 increases, Fig. 6c shows that the disease prevalence of patch
2 increases (the red dashed curve) and the disease outbreaks earlier in patch 2, the
disease in patch 1 disappears (blue dashed curves), and the overall disease prevalence
increases (Fig. 6f).

Hence, the results here indicate that the unidirectional and constant dispersal of
susceptible individuals will make the disease more serious. Moreover, the travel of
susceptible individuals from patch 1 to patch 2 will markedly aggravate the overall
disease prevalence.

Relative prevalence-based dispersal secondly, we explore the effect of relative
prevalence-based dispersal for susceptible and recovered individuals on disease trans-
mission. Let b12 = b21 = 0 (i.e., the travel of infective individuals is prohibited),
(β1, β2) takes the values in Case (1) of Table 3 (R01 < R02 < 1), and the solid
(resp. dashed) curves represent θ S

12 = θ S
21 = θ R

12 = θ R
21 = 0 (resp. θ S

12 = θ S
21 = 1,
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Fig. 6 Disease prevalence when θ Si j = bi j = MR
i j = 0 (i, j = 1, 2, i �= j): I1

N1
(blue), I2

N2
(red), I1+I2

N1+N2

(green). βi takes Case (2) in Table 3. a, d (MS
12, M

S
21) = (0, 0) (solid curves), (MS

12, M
S
21) = (0, 0.01)

(dashed curves). b, e (MS
12, M

S
21) = (0, 0) (solid curves), (MS

12, M
S
21) = (0.01, 0) (dashed curves). c, f

(MS
12, M

S
21) = (0.01, 0) (solid curves), (MS

12, M
S
21) = (0.1, 0) (dashed curves) (color figure online)

Table 4 Parameter values of
system (1.1) with θ Si j = θ Ri j =
0, MS

i j = MR
i j = 0.3

Case (1) (2) (3) (4) (5) (6)

b12 0 0 0.01 0.1 0 0.1

b21 0 0.01 0 0.1 0.1 0

θ R
12 = θ R

21 = 0.1). Figure7 implies that the disease persists in patch 2 and disappears in
patch 1 (solid curves) if the travel rates of susceptible and recovered individuals do not
depend on the relative severity of the disease in two patches. If the travel rates depend
on the relative severity of the disease in two patches, then the disease prevalence of
patch 2 decreases (red dashed curves compared with red solid curves in Fig. 7), the
disease still disappears in patch 1, the overall disease prevalence will decrease (green
curves in Fig. 7).

Therefore, the relative prevalence-based dispersal for susceptible and recovered
individuals may reduce the overall prevalence of the disease.

3.2.3 Infective individuals travel

We next explore the impact of the travel of infective individuals on the disease spread
when the travel rates of susceptible and recovered individuals are fixed constants.

Let (β1, β2) takes the values in Case (1) in Table 3 (R01 < R02 < 1), θ S
i j = θ R

i j =
0, MS

i j = MR
i j = 0.3. Then the disease persists in patch 2 (the red solid curve in

Fig. 8a) and disappears in patch 1 (the blue solid curve in Fig. 8a) if b12 = b21 = 0.
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Fig. 7 Disease prevalence when bi j = 0 (i, j = 1, 2, i �= j): I1
N1

(blue), I2
N2

(red), I1+I2
N1+N2

(green).

θ S12 = θ S21 = θ R12 = θ R21 = 0 (solid curves), θ S12 = θ S21 = 1, θ R12 = θ R21 = 0.1 (dashed curves).

a (MS
12, M

S
21, M

R
12, M

R
21) = (0.3, 0.2, 0.3, 0.2); b (MS

12, M
S
21, M

R
12, M

R
21) = (0.2, 0.3, 0.2, 0.3) (color

figure online)

Fig. 8 Disease prevalencewhen infective individuals travel: I1
N1

(blue), I2
N2

(red), I1+I2
N1+N2

(green). (b12, b21)
in Table 4 takes: a case (1) (solid curves), case (4) (dashed curves). b case (2) (solid curves), case (5) (dashed
curves). c case (3) (solid curves), case (6) (dashed curves) (color figure online)

Figure8a shows that the disease become endemic in both patches (dashed curves) if
b12 = b21 = 0.1, where the disease prevalence of patch 2 decreases (the red dashed
curve), the disease prevalence of patch 1 increases (the blue dashed curve), and the
overall disease prevalence decreases (the green dashed curve). Figure8b shows that
the overall disease prevalence decreases as the travel rate of infective individuals from
patch 2 to patch 1 increases.However, Fig. 8c shows that the diseasewill not be affected
as the travel rate of infective individuals from patch 1 to patch 2 increases.

Hence, the results here indicate that the reasonable travel of infective individuals
may reduce the overall disease prevalence because medical resources can be fully uti-
lized. In order to make full use of medical resources, transferring infective individuals
to places with more affluent medical care under the condition of ensuring full isolation
of infective individuals can reduce the total prevalence of diseases.
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Fig. 9 Disease prevalence in model (1.1) with no travel and ν1ν2 �= 0: I1
N1

(blue), I2
N2

(red). Where
b1 = b2 = 10680, d1 = d2 = 0.001, α1 = α2 = 0.01479, γ1 = γ2 = 0.0003441, ν1 = ν2 = 0.00001,
β1 = 1.68 × 10−9 and β2 = 1.72 × 10−9 (color figure online)

3.3 Numerical simulations when �1�2 �= 0

When ν1ν2 �= 0, the incidence rate in model (1.1) is nonlinear: λi (Ii )Ii Si = βi (1 +
νi Ii )Ii Si . In the following numerical simulations, we choose the travel rates as Type
I in (1.4) if they depend on the disease prevalence.

In Sect. 2, we have shown complex dynamics and bifurcations in model (2.2) [i.e.,
single patch model (1.5)], such as the existence of a stable limit cycle encircling
a unique positive equilibrium E+ in Fig. 2a, where (R0i , p, A, q) ∈ �11 × 	 and
R0i = 133

117 > 1, i.e., the disease persists in the form of a stable periodic outbreak in
each isolated patch for almost all positive initial values. We next explore the effect of
population dispersal on the disease spread in patch model (1.1).

we always assume initial values: N1(0) = N2(0) = 3.5 × 106, I1(0) = I2(0) =
1 × 105, R1(0) = R2(0) = 1, and fix the parameters in each isolated patch as those
in Fig. 2a except for a slight larger β2 in patch 2. When no travel occurs in model
(1.1), disease prevalence of patch 1 and patch 2 are shown in Fig. 9, where disease
prevalence of each isolated patch exhibits regular periodic oscillations.

Unidirectional and constant dispersal firstly, we explore the impact of the unidi-
rectional and constant travel of susceptible or infective individuals on disease spread
(Figs. 10 and 11).

Figure10 shows the effect of the travel of susceptible individuals from patch 2
to patch 1. In Fig. 10a, the periodic outbreak of the disease in patch 2 is delayed
and the oscillation amplitude becomes larger; the disease in patch 1 first tends to a
positive steady state, and then complex periodic patterns like mixed-mode oscillations
(MMOs). As the travel from patch 2 to patch 1 increases, in Fig. 10b, the disease dies
out in patch 2 while tends to a positive steady state in patch 1.

Figure11 shows the effect of infective individuals travel between two patches.
Figure11a shows that I1

N1
first tends a small-amplitude periodic oscillation and then

complex MMOs, while I2
N2

first tends to zero and then a large-amplitude relaxation

oscillation (or 1-1 mode MMOs). When b21 increases, Fig. 11b shows that
I1
N1

tends a
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Fig. 10 Infection proportions when susceptible individuals travel and θ Si j = MR
i j = bi j = 0 (i, j =

1, 2, i �= j): I1
N1

(blue), I2
N2

(red). a MS
12 = 0, MS

21 = 0.0001. b MS
12 = 0, MS

21 = 0.0002 (color figure
online)

regular periodic oscillation and I2
N2

tends to zero. Figure11c and d show similar results
as Fig. 11a and b, respectively.

The results here indicate that small unidirectional and constant dispersal rates
can lead to complex periodic patterns like large-amplitude relaxation oscillations or
small-amplitude Mixed-mode oscillations (MMOs), whereas large unidirectional and
constant dispersal rates can make the disease go extinct in one patch and persist in the
form of a positive steady state or a periodic solution in the other patch.

Unidirectional and relative prevalence-based dispersal secondly, we explore the
effect of relative prevalence-based dispersal for susceptible and recovered individuals
on disease transmission.

Figure12 shows unidirectionalmovement frompatch 2 to patch 1. Figure12a shows

that I1
N1

first tends to a positive steady state and then a regular periodic oscillation with

smaller amplitude, I2
N2

first tends to zero and then a regular periodic oscillation with

larger amplitude, I1
N1

and I2
N2

tend to periodic patterns much later (compared with

Fig. 9). Figure12a–b shows that I1
N1

and I2
N2

tend to regular periodic patterns earlier if
susceptible and recovered individuals depend on the relative severity of the disease.

The results here indicate that unidirectional and relative prevalence-based dispersal
rates for susceptible and recovered individuals can make periodic outbreak earlier.

4 Discussion

In this paper, we proposed an SIRS patch model with a nonlinear incidence rate and
relative prevalence-based dispersal rates, where the dispersal rates of susceptible and
recovered individuals depend on the relative severity of the disease in two patches.

In an isolated environment, model (1.1) becomes as model (1.5) with a nonlinear
incidence rate (1.2), which has been studied by van den Driessche and Watmough
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Fig. 11 Disease prevalence when infective individuals travel and θ Si j = θ Ri j = 0, MS
i j = 0.0001, MR

i j =
0.001 (i, j = 1, 2, i �= j): I1

N1
(blue), I2

N2
(red). a b12 = 0, b21 = 0.002. b b12 = 0, b21 = 0.003. c

b12 = 0.0015, b21 = 0. d b12 = 0.002, b21 = 0 (color figure online)

Fig. 12 Infection proportions when MS
12 = MR

12 = 0, bi j = 0 (i, j = 1, 2, i �= j): I1
N1

(blue), I2
N2

(red).

a MS
21 = MR

21 = 0.00015, θ S21 = θ R21 = 0; b MS
21 = MR

21 = 0.00015, θ S21 = 1, θ R21 = 0.1 (color figure
online)
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(2003) and Jin et al. (2007). While the complete bifurcation phenomena still remain
unclear, especially for the degenerate Bogdanov–Takens and Hopf bifurcations. In
this paper, we have shown the existence of a nilpotent cusp of codimension up to 3,
around which model (1.5) can undergo degenerate Bogdanov–Takens bifurcation of
codimension 3 and no bifurcations with higher codimension. Moreover, when model
(1.5) admits a center-type equilibrium,we have shown that it is aweak focuswith order
up to 2, around which model (1.5) can exhibit Hopf bifurcation with codimension up
to 2. Our results indicate the nonlinear incidence rate can determine the transmission
dynamics of epidemics. More precisely, there exists two critical values β∗, β∗ (β∗ <

β∗) for infection rate βi (due to single contact) and two critical values
di
bi

, ν∗
( di
bi

< ν∗
)

for infection rate νi (due to double exposures), such that: (i)when βi < β∗, the disease
will die out for all positive initial densities; (ii) when β∗ < βi < β∗, the disease will
die out for all positive initial densities if νi < ν∗; the disease may die out for some
positive initial densities, and persist in the form of coexistent periodic oscillations
or coexistent steady states for other positive initial densities if νi > ν∗; (iii) when
βi > β∗, the disease will persist in the form of a unique coexistent steady state
for all positive initial densities if νi ≤ di

bi
; the disease may persist in the form of a

unique coexistent steady state or periodic coexistent oscillations for all positive initial
densities if νi >

di
bi
. Moreover, our results indicate the importance of the rate νi of

new infective individuals arising from double exposures: (i) when νi < ν∗, whether
the disease persists or dies out will depend on the relative size of βi and β∗. If we can
control the infection rate βi such that βi < β∗, then the disease will disappear; (ii)
when νi > ν∗, system (1.5) may exhibit backward bifurcation with rich dynamics. To
make the disease disappear, we need to further control the infection rate βi such that
βi < β∗.

In a connected environment, we first calculated the basic reproduction number
R0 for model (1.1), and then showed that the global attractivity of the disease-free
equilibrium can be preserved if R0 < 1, νi = 0 (i = 1, 2) and the dispersal rates of
all individuals are identical constants. When R0 > 1 and bi j > 0 (i, j = 1, 2, i �= j)
(dispersal rates of infective individuals), system (1.1) admits at least one endemic
equilibrium and the disease is uniformly persistent. Therefore, we establish a threshold
between the extinction and the uniformpersistence of the disease under some restricted
conditions.

Secondly, by numerical simulations, we explored the effect of populations dispersal
on disease transmission under the assumptions: νi = 0 (bilinear incidence), patch 1
has a lower infection rate than patch 2. We have the following results:

(1) Travel rates are independent of disease status and disease prevalence:

(i) R0 may be nonmonotonic w.r.t. dispersal rates when R01 is much larger than
R02 and β1 is a bit smaller than β2;

(ii) R0 ≤ max{R01, R02} does not hold for some cases.

(2) Infective individuals of both patches do not travel:

(i) The unidirectional and constant dispersal of susceptible individuals will make
the disease more serious. Moreover, the travel of susceptible individuals from
patch 1 to patch 2 will markedly aggravate the overall disease prevalence;
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(ii) The relative prevalence-based dispersal for susceptible and recovered individ-
uals may reduce the overall prevalence of the disease.

(3) Travel of infective individuals from patch 2 to patch 1 can reduce the overall
disease prevalence because medical resources can be fully utilized.

Thirdly, when the disease persists in the form of a stable periodic outbreak in each
isolated patch, we explored the effect of populations dispersal under the assumptions:
νi �= 0 (nonlinear incidence), two patches have identical demography and a slight
lower infection rate for patch 1. We have the following results:

(1) Small unidirectional and constant dispersal rates can lead to complex periodic
patterns like large-amplitude relaxation oscillations or small-amplitude Mixed-
mode oscillations (MMOs);

(2) large unidirectional and constant dispersal rates can make the disease go extinct
in one patch and persist in the form of a positive steady state or a periodic solution
in the other patch;

(3) Unidirectional and relative prevalence-based dispersal rates for susceptible and
recovered individuals can make periodic outbreak earlier.

Therefore, in order to control the spread of diseases, we need to control reasonably
not only the travel of infective individuals, but also the travel of susceptible and recov-
ered individuals, by considering the joint effect of the population structure, infection
rate and disease outbreak risk of each patch. And, in order to make full use of medi-
cal resources, transferring infective individuals to places with more affluent medical
care under the condition of ensuring full isolation of infective individuals can reduce
the total prevalence of diseases to a certain extent. Moreover, small, unidirectional
and constant dispersal rates can induce large-amplitude relaxation oscillations, which
imply a larger periodic outbreak of the disease, or induce Mixed-mode oscillations
where small- and large-amplitude oscillations alternate (Fig. 11).

There are some unanswered questions. For system (2.1): In region �11 × 	, is the
unique positive equilibrium E+ global asymptotic stabilitywhen it is locally asymptot-
ically stable?Does there exist a unique limit cyclewhen the unique positive equilibrium
E+ is unstable? Whether the maximum number of limit cycles is 2 in system (2.1)?
For system (1.1): If R0 < 1, νi = 0 and dispersal rates of all populations are different,
whether the disease free equilibrium E0 is still globally attractive. If R0 > 1 and
νi = 0, whether the endemic equilibrium is unique and globally attractive? What if
νi > 0?
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