On a Chemotactic Host-Pathogen Model: Boundedness, Aggregation, and Segregation

Guodong Liu ${ }^{1,2} \cdot$ Hao Wang ${ }^{2} \cdot$ Xiaoyan Zhang ${ }^{1}$

Received: 17 September 2023 / Accepted: 21 December 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

This study formulates a host-pathogen model driven by cross-diffusion to examine the effect of chemotaxis on solution dynamics and spatial structures. The negative binomial incidence mechanism is incorporated to illustrate the transmission process by pathogens. In terms of the magnitude of chemotaxis, the global solvability of the model is extensively studied by employing semigroup methods, loop arguments, and energy estimates. In a limiting case, the necessary conditions for chemotaxis-driven instability are established regarding the degree of chemotactic attraction. Spatial aggregation may occur along strong chemotaxis in a two-dimensional domain due to solution explosion. We further observe that spatial segregation appears for short-lived free pathogens in a one-dimensional domain, whereas strong chemotactic repulsion homogenizes the infected hosts and thus fails to segregate host groups effectively.

Keywords Host-pathogen model • Chemotaxis • Boundedness • Aggregation • Segregation

Mathematics Subject Classification 92D30 • 92D50 • 35B35 • 35K57

1 Introduction

Pathogenic organisms including viruses, bacteria, fungi, parasites, and helminths have significant effects on the dynamics of their host as demonstrated in a series of theoretical studies beginning with the work of Anderson and May (Anderson and May

Communicated by Kevin Painter.

Hao Wang
hao8@ualberta.ca
1 School of Mathematics, Shandong University, Jinan 250100, China
2 Interdisciplinary Lab for Mathematical Ecology and Epidemiology, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton T6G 2G1, Canada

1978; May and Anderson 1978; Anderson and May 1981). Microbial pathogens continue to be a prominent etiological factor underlying infectious diseases affecting both humans and animals, as well as plants. In recent years, mathematical and computational approaches have effectively been employed to investigate host-pathogen models from several perspectives (Begon et al. 1992; Dwyer 1994; Grenfell and Dobson 1995; Greenman and Hudson 1997; Wu and Zou 2018).

In Dwyer (1994), Dwyer proposed a host-pathogen model in a one-dimensional space to compare the spatial spread of the viruses Gilpinia hercyniae and Oryctes rhinoceros in the form of the following system of equations:

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} v_{1}}{\mathrm{~d} t}=r\left(1-\frac{v_{1}+v_{2}}{K}\right) v_{1}-\beta v_{1} v_{3}+D \frac{\partial^{2} v_{1}}{\partial x^{2}} \tag{1.1}\\
\frac{\mathrm{~d} v_{2}}{\mathrm{~d} t}=\beta v_{1} v_{3}-\left(\theta+r \frac{v_{1}+v_{2}}{K}\right) v_{2}+D \frac{\partial^{2} v_{2}}{\partial x^{2}} \\
\frac{\mathrm{~d} v_{3}}{\mathrm{~d} t}=\gamma v_{2}-\alpha v_{3}
\end{array}\right.
$$

Here, $v_{1}=v_{1}(x, t)$ and $v_{2}=v_{2}(x, t)$ are the density of susceptible and infected hosts at position x and time t, respectively. $v_{3}=v_{3}(x, t)$ is the concentration of the pathogen in an external environment at position x and time t. The underlying modeling assumptions are that (i) hosts move randomly with constant diffusion rate $D>0$, while pathogens exhibit no capability for movement; (ii) hosts adhere to the principle of logistic growth with the intrinsic growth rate $r>0$ and the carrying capacity $K>0$; (iii) susceptible hosts can only be infected by pathogens obeying the mass-action law $\beta v_{1} v_{3}$ with $\beta>0$, and infected hosts reduce at the rate $\theta>0$; (iv) pathogen particles are produced by v_{2} at the rate $\gamma>0$, and diminish at the rate $\alpha>0$. We mention that model (1.1) includes the density-dependent host population dynamics due to the terms $-r \frac{v_{1}+v_{2}}{K} v_{1}$ and $-r \frac{v_{1}+v_{2}}{K} v_{2}$, which is a modification of Aderson and May's model in Anderson and May (1981). It is found in Dwyer (1994) that the introduction of host movement behavior also gives rise to the possibility of cycles of outbreaks in space and time simultaneously, illustrating the profound effect of spatial and temporal heterogeneity on population dynamics.

However, it is acknowledged that the mass-action law may not always be appropriate for describing the transmission processes of diverse infectious diseases. For example, it fails to incorporate the saturated effect of the population in certain scenarios. Therefore, the saturated incidence emerges as a more applicable mechanism to illustrate the transmission of diseases among hosts, which takes the following form Capasso and Serio (1978); Diekmann and Heesterbeek (2000):

$$
f\left(v_{1}, v_{2}\right)=\frac{\beta v_{1} v_{2}}{1+\sigma v_{2}}
$$

where $\sigma>0$ is a positive constant used to measure the saturation degree, and $\delta>0$ is the infection rate by infected hosts. It is clear that $f\left(v_{1}, v_{2}\right) \rightarrow \beta v_{1} v_{2}$ as $\sigma \rightarrow 0$ and can be viewed as a generalized version of mass-action law. In McCallum et al.
(2001), McCallum et al. investigated how to model pathogen transmission and outlined a negative binomial transmission mechanism between susceptible hosts and pathogen particles:

$$
g\left(v_{1}, v_{3}\right)=k v_{1} \ln \left(1+\frac{\beta v_{3}}{k}\right) .
$$

Here $\beta>0$ is the infection rate by pathogens, and the parameter $k>0$ plays a critical role in this mechanism. The impact of this mechanism on disease transmission can vary depending on the values of k. As demonstrated in McCallum et al. (2001), small k corresponds to highly aggregated infection, while $g\left(v_{1}, v_{3}\right) \rightarrow \beta v_{1} v_{3}$ as $k \rightarrow \infty$. In Briggs and Godfray (1995), Knell et al. (1996), Barlow (2000), the authors also studied this mechanism through numerical simulation. To the best of our knowledge, there are no existing efforts providing a robust theoretical analysis on the negative binomial transmission mechanism in host-pathogen models.

The cross-diffusion term $\chi \nabla \cdot(u \nabla v)$ is commonly applied to depict the phenomenon of chemotaxis (Keller and Segel 1970; Tao and Wang 2013) between two different species or two biological groups u and v. It captures how the movement of one species is influenced by the concentration gradient of another species. Here, $\chi \in \mathbb{R}$ measures the magnitude of such effect. If $\chi<0$, then u will be chemotactically attracted to v, while u will be chemotactically repulsed by v if $\chi>0$.

The combination of chemotaxis and negative binomial transmission will pose a challenge to the problem. To simplify the analysis, we make a slight adjustment in the reaction term for susceptible hosts by replacing the logistic growth in system (1.1) with a simpler combination of recruitment and death rates. We now consider a reaction-chemotaxis-diffusion host-pathogen model in a bounded domain $\Omega \subset \mathbb{R}^{n}(n \geq 1)$ with smooth boundary $\partial \Omega$, taking the following form:

$$
\begin{cases}\partial_{t} v_{1}-d_{1} \Delta v_{1}=\chi \nabla \cdot\left(v_{1} \nabla v_{2}\right)+\Lambda(x)-\mu v_{1}-\frac{\delta(x) v_{1} v_{2}}{1+\sigma v_{2}} & \tag{1.2}\\ \quad-k v_{1} \ln \left(1+\frac{\beta(x) v_{3}}{k}\right), & x \in \Omega, t>0, \\ \partial_{t} v_{2}-d_{2} \Delta v_{2}=\frac{\delta(x) v_{1} v_{2}}{1+\sigma v_{2}}+k v_{1} \ln \left(1+\frac{\beta(x) v_{3}}{k}\right)-\theta v_{2}, & x \in \Omega, t>0,(1 \\ \partial_{t} v_{3}-d_{3} \Delta v_{3}=\gamma v_{2}-\alpha v_{3}, & x \in \Omega, t>0, \\ \nabla v_{1} \cdot \mathbf{n}=\nabla v_{2} \cdot \mathbf{n}=\nabla v_{3} \cdot \mathbf{n}=0, & x \in \partial \Omega, t>0, \\ v_{1}(x, 0)=v_{10}(x), v_{2}(x, 0)=v_{20}(x), v_{3}(x, 0)=v_{30}(x), & x \in \Omega\end{cases}
$$

Here, \mathbf{n} represents the unit outward normal vector at $x \in \partial \Omega$. The distinct positive constants d_{1}, d_{2}, and d_{3} are the respective diffusion rates of v_{1}, v_{2}, and v_{3}, where v_{1}, v_{2}, and v_{3} have the same meanings as those in model (1.1). We apply the saturated incidence rate between v_{1} and v_{2}, and the negative binomial transmission mechanism between v_{1} and v_{3}. Taking spatial heterogeneity into consideration, the parameters $\Lambda(x), \delta(x)$, and $\beta(x)$ exhibit spatial variation, where $\Lambda(x)$ is the recruitment rate of hosts, $\delta(x)$ is the infection rate by v_{2}, and $\beta(x)$ is the infection rate by $v_{3} . \mu$ and θ are
positive constants, where μ measures the natural death rate of susceptible hosts, and θ denotes the death rate of infected hosts. The positive constant α means the death rate of pathogens in an external environment. Infected hosts can produce pathogens with the rate $\gamma>0$. In model (1.2), we use the linear function $\Lambda(x)-\mu v_{1}$ to denote the external source (or supply) for susceptible hosts. One may refer to Li et al. (2017) and the reference therein. It is found in Li et al. (2017) that the external source can influence the dynamics of the population. We assume that susceptible hosts can only recognize the higher density of infected hosts by their symptoms of infection, while those are unable to perceive the higher concentration of pathogen particles because they are undetectable by ordinary observation. Homogeneous Neumann boundary conditions are applied to the system to represent the zero-flux across the boundary. In this paper, when χ is positive, the chemotaxis term indicates that susceptible hosts exhibit a behavioral tendency that they tend to move away from regions with a higher density of infected hosts. When χ is negative, the chemotaxis term may represent a case that in some special domains such as epidemic areas or hospitals, susceptible hosts shall move to regions with a higher density of infected hosts. The chemotaxis effect disappears as χ tends to zero. Throughout the whole paper, we make the following assumption:
(H1) Parameters $\Lambda(x), \delta(x)$, and $\beta(x)$ are positive Hölder continuous functions on $\bar{\Omega}$.
(H2) The initial data $v_{10}(x), v_{20}(x)$, and $v_{30}(x)$ are nonnegative. In addition, $\int_{\Omega}\left[v_{20}(x)+v_{30}(x)\right] \mathrm{d} x>0$.

The cross-diffusion $\chi \nabla \cdot\left(v_{1} \nabla v_{2}\right)$ serves as a mechanism employed by susceptible hosts either to avoid infection by staying away from infected hosts (known as the repulsive chemotaxis phenomenon), or to approach infected hosts for providing treatment (known as the attractive chemotaxis phenomenon). The chemotaxis term has been widely shown to exert a strong effect in driving solutions of the underlying models to blow up in finite or infinite time, as can be seen in the extensively studied KellerSegel chemotaxis systems (Bellomo et al. 2015; Tao and Winkler 2012). Therefore, the global solvability of model (1.2) is an important consideration. Horstmann and Winkler investigated the boundedness and blow-up of the solution in a chemotaxis system, and they determined the critical blow-up exponent for a Keller-Segel-type model in Horstmann and Winkler (2005). In Li et al. (2020), Li et al. applied the chemotaxis term to a reaction-diffusion susceptible-infected-susceptible model with a frequency-dependent incidence mechanism. With the key observation that the solution of the infected component is always bounded, they established the global existence and boundedness of the classical solution. In Bellomo et al. (2019), Bellomo et al. applied the chemotaxis term to a May-Nowak model, where they used loop arguments to get the global boundedness of the solution for the weak chemotaxis effect. Most recently, Li and Xiang made use of a series of energy estimates to obtain the boundedness of an epidemic model with the chemotaxis term and power-like incidence mechanism by imposing restrictions on the magnitude of the chemotaxis and the power of the incidence in Li and Xiang (2022).

The spatial heterogeneity of environments and mutual interactions of individuals may result in different spatial structures (Shigesada et al. 1979), including aggregation and segregation. Spatial aggregation is a pattern where the species exhibit significant
concentration at specific positions. Spatial segregation is a phenomenon where two similar species segregate each other in their habitat (Schelling 1969). We are interested in whether the chemotactic host-pathogen model allows for the formation of spatial structures.

The rest of the work is organized as follows: In Sect. 2, we investigate the global existence and boundedness of the solution to model (1.2) in three cases: zero χ, small χ, and arbitrary χ (including large χ). In Sect. 3, threshold dynamics are established in terms of the basic reproduction number. Additionally, under the chemotactic attraction, the chemotaxis-driven instability of a limiting case as $\sigma \rightarrow 0$ and $k \rightarrow \infty$ is explored. In Sect. 4, we present a series of numerical simulations to verify the global existence and boundedness of the solution in one- and two-dimensional domains. Spatial aggregation and segregation phenomena are illustrated with respect to varying values of χ. The analytical and numerical results are summarized in the final section.

2 Boundedness of the Global Solution

We consider the global solvability and boundedness of the solution to (1.2) regarding the magnitude of the chemotaxis effect. It includes three cases in this section: zero χ, small χ, and arbitrary χ. For notational convenience, we use $\|\cdot\|_{q}$ to represent the norm $\|\cdot\|_{L^{q}(\Omega)}$ of $L^{q}(\Omega)$ for $q>0$. Denote $u^{*}:=\max _{x \in \bar{\Omega}} u(x)$, where $u(x)$ can be taken as $\Lambda(x), \delta(x)$, and $\beta(x)$. Let $|\Omega|$ denote the volume of Ω.

For any χ, it is not difficult to obtain L^{1}-estimates for the solution.
Lemma 2.1 Assume $\left(v_{10}, v_{20}, v_{30}\right) \in C\left(\bar{\Omega}, \mathbb{R}_{+}^{3}\right)$. The following L^{1}-estimates hold.

$$
\begin{align*}
& \int_{\Omega} v_{1} \mathrm{~d} x, \int_{\Omega} v_{2} \mathrm{~d} x, \int_{\Omega} v_{3} \mathrm{~d} x \leq \max \left\{1, \frac{\gamma}{\alpha}\right\}\left(\int_{\Omega}\left(v_{10}+v_{20}\right) \mathrm{d} x+\frac{\Lambda^{*}|\Omega|}{\min \{\mu, \theta\}}\right)+\int_{\Omega} v_{30} \mathrm{~d} x \\
& =: M_{1}, \forall t \geq 0 . \tag{2.1}\\
& \limsup _{t \rightarrow \infty} \int_{\Omega} v_{1} \mathrm{~d} x, \limsup _{t \rightarrow \infty} \int_{\Omega} v_{2} \mathrm{~d} x, \limsup _{t \rightarrow \infty} \int_{\Omega} v_{3} \mathrm{~d} x \leq \max \left\{1, \frac{\gamma}{\alpha}\right\} \frac{\Lambda^{*}|\Omega|}{\min \{\mu, \theta\}}=: N_{1} . \tag{2.2}
\end{align*}
$$

Proof It follows from the maximum principle that the solution $\left(v_{1}, v_{2}, v_{3}\right)$ of model (1.2) is nonnegative. Adding the first two equations of (1.2) and integrating the result over Ω by parts lead to
$\frac{\mathrm{d}}{\mathrm{d} t} \int_{\Omega}\left(v_{1}+v_{2}\right) \mathrm{d} x=\int_{\Omega} \Lambda(x) \mathrm{d} x-\int_{\Omega}\left(\mu v_{1}+\theta v_{2}\right) \mathrm{d} x \leq \Lambda^{*}|\Omega|-a \int_{\Omega}\left(v_{1}+v_{2}\right) \mathrm{d} x, \forall t>0$.
where $a=\min \{\mu, \theta\}$. Then Gronwall's inequality says that

$$
\begin{equation*}
\int_{\Omega}\left(v_{1}+v_{2}\right) \mathrm{d} x \leq e^{-a t} \int_{\Omega}\left(v_{10}+v_{20}\right) \mathrm{d} x+\frac{\Lambda^{*}|\Omega|}{a}\left(1-e^{-a t}\right), \forall t>0 . \tag{2.3}
\end{equation*}
$$

Integrating the third equation of (1.2) over Ω by part gives

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} v_{3} \mathrm{~d} x \leq \gamma \int_{\Omega} v_{2} \mathrm{~d} x-\alpha \int_{\Omega} v_{3} \mathrm{~d} x, \forall t>0 .
$$

Applying Gronwall's inequality again, we have

$$
\begin{equation*}
\int_{\Omega} v_{3} \mathrm{~d} x \leq e^{-\alpha t} \int_{\Omega} v_{30} \mathrm{~d} x+\frac{\gamma \int_{\Omega} v_{2} \mathrm{~d} x}{\alpha}\left(1-e^{-\alpha t}\right), \forall t>0 . \tag{2.4}
\end{equation*}
$$

Combining (2.3) and (2.4), we readily obtain (2.1) and (2.2).

2.1 The Case of Zero $\boldsymbol{\chi}$

When $\chi=0$, model (1.2) decays to a standard reaction-diffusion system. With reference to the standard theory for parabolic equations in Martin and Smith (1990), we give the following lemma on the local existence and finite-time blow-up of the classical solution to (1.2).

Lemma 2.2 For any $\left(v_{10}, v_{20}, v_{30}\right) \in C\left(\bar{\Omega}, \mathbb{R}_{+}^{3}\right)$, model (1.2) admits a unique nonnegative classical solution $\left(v_{1}(\cdot, t), v_{2}(\cdot, t), v_{3}(\cdot, t)\right)$ defined on $\bar{\Omega} \times\left[0, T_{\max }\right)$ with $T_{\max } \leq \infty$. Moreover, if $T_{\max }<\infty$, then

$$
\lim _{t \rightarrow T_{\max }^{-}}\left(\left\|v_{1}(\cdot, t)\right\|_{\infty}+\left\|v_{2}(\cdot, t)\right\|_{\infty}+\left\|v_{3}(\cdot, t)\right\|_{\infty}\right)=\infty
$$

Theorem 2.1 For any $\left(v_{10}, v_{20}, v_{30}\right) \in C\left(\bar{\Omega}, \mathbb{R}_{+}^{3}\right)$, model (1.2) admits a unique nonnegative classical solution $\left(v_{1}(\cdot, t), v_{2}(\cdot, t), v_{3}(\cdot, t)\right)$ defined on $\bar{\Omega} \times[0, \infty)$.

Proof The uniqueness and nonnegativity of the local solution to (1.2) are demonstrated by Lemma 2.2. It suffices to verify the global existence of the solution. For $i=1,2,3$, let $T_{i}(t)$ be the semigroup generated by the operator \mathcal{A}_{i} in $C(\bar{\Omega})$ with Neumann boundary condition, where $\mathcal{A}_{1}=d_{1} \Delta-\mu, \mathcal{A}_{2}=d_{2} \Delta-\theta$, and $\mathcal{A}_{3}=d_{3} \Delta-\alpha$. It is well known that $\left\|T_{i}(t)\right\|_{\infty} \leq e^{-\lambda_{i} t}$, where $\lambda_{i}>0$ is the principal eigenvalue of $-\mathcal{A}_{i}$ with Neumann boundary condition for $i=1,2,3$. In view of the first equation of (1.2), we see that

$$
v_{1}(\cdot, t) \leq T_{1}(t) v_{10}+\int_{0}^{t} T_{1}(t-s) \Lambda(\cdot) \mathrm{d} s, \forall t \in\left[0, T_{\max }\right)
$$

This results in

$$
\begin{aligned}
\left\|v_{1}(\cdot, t)\right\|_{\infty} & \leq\left\|T_{1}(t)\right\|_{\infty}\left\|v_{10}\right\|_{\infty}+\Lambda^{*} \int_{0}^{t}\left\|T_{1}(t-s)\right\|_{\infty} \mathrm{d} s \\
& \leq e^{-\lambda_{1} t}\left\|v_{10}\right\|_{\infty}+\frac{\Lambda^{*}}{\lambda_{1}}\left(1-e^{-\lambda_{1} t}\right)
\end{aligned}
$$

$$
\begin{equation*}
\leq\left\|v_{10}\right\|_{\infty}+\frac{\Lambda^{*}}{\lambda_{1}}=: K_{1}, \forall t \in\left[0, T_{\max }\right) . \tag{2.5}
\end{equation*}
$$

It follows from the second equation of (1.2) that

$$
\begin{aligned}
v_{2}(\cdot, t)= & T_{2}(t) v_{20}+\int_{0}^{t} T_{2}(t-s)\left(\frac{\delta v_{1}(\cdot, t) v_{2}(\cdot, t)}{1+\sigma v_{2}(\cdot, t)}\right. \\
& \left.+k v_{1}(\cdot, t) \ln \left(1+\frac{\beta v_{3}(\cdot, t)}{k}\right)\right) \mathrm{d} s, \forall t \in\left[0, T_{\max }\right) .
\end{aligned}
$$

Consequently, by virtue of $\ln (1+u) \leq u$ for $u \geq 0$ and (2.5), we have for all $t \in\left[0, T_{\max }\right)$,

$$
\begin{align*}
\left\|v_{2}(\cdot, t)\right\|_{\infty} & \leq e^{-\lambda_{2} t}\left\|v_{20}\right\|_{\infty}+\int_{0}^{t} e^{-\lambda_{2}(t-s)}\left(\delta^{*} / \sigma\left\|v_{1}\right\|_{\infty}+\beta^{*}\left\|v_{1}(\cdot, s)\right\|_{\infty}\left\|v_{3}(\cdot, s)\right\|_{\infty}\right) \mathrm{d} s \\
& \leq e^{-\lambda_{2} t}\left\|v_{20}\right\|_{\infty}+\frac{\delta^{*} K_{1}}{\sigma \lambda_{2}}+\beta^{*} K_{1} \int_{0}^{t} e^{-\lambda_{2}(t-s)}\left\|v_{3}(\cdot, s)\right\|_{\infty} d s \tag{2.6}
\end{align*}
$$

In a similar manner, we obtain

$$
\begin{equation*}
\left\|v_{3}(\cdot, t)\right\|_{\infty} \leq e^{-\lambda_{3} t}\left\|v_{30}\right\|_{\infty}+\gamma \int_{0}^{t} e^{-\lambda_{3}(t-s)}\left\|v_{2}(\cdot, s)\right\|_{\infty} d s, \quad \forall t \in\left[0, T_{\max }\right) \tag{2.7}
\end{equation*}
$$

Taking $0<\lambda_{m}<\min \left\{\frac{\lambda_{2}}{2}, \lambda_{3}\right\}$ and substituting (2.7) into (2.6) produce

$$
\begin{align*}
\left\|v_{2}(\cdot, t)\right\|_{\infty} \leq & e^{-\lambda_{2} t}\left\|v_{20}\right\|_{\infty}+\frac{K_{1}\left(\delta^{*} / \sigma+\beta^{*}\left\|v_{30}\right\|_{\infty}\right)}{\lambda_{2}} \\
& +\beta^{*} \gamma K_{1} \int_{0}^{t} e^{-\lambda_{2}(t-s)} \int_{0}^{s} e^{-\lambda_{3}(s-\tau)}\left\|v_{2}(\cdot, \tau)\right\|_{\infty} d \tau d s \\
\leq & \left\|v_{20}\right\|_{\infty}+\frac{K_{1}\left(\delta^{*} / \sigma+\beta^{*}\left\|v_{30}\right\|_{\infty}\right)}{\lambda_{2}} \\
& +\beta^{*} \gamma K_{1} e^{-\lambda_{2} t} \int_{0}^{t} e^{\lambda_{m} \tau}\left\|v_{2}(\cdot, \tau)\right\|_{\infty} d \tau \int_{\tau}^{t} e^{\left(\lambda_{2}-\lambda_{m}\right) s} d s \\
\leq & \left\|v_{20}\right\|_{\infty}+\frac{K_{1}\left(\delta^{*} / \sigma+\beta^{*}\left\|v_{30}\right\|_{\infty}\right)}{\lambda_{2}} \\
& +\frac{\beta^{*} \gamma K_{1} e^{-\lambda_{m} t}}{\lambda_{2}-\lambda_{m}} \int_{0}^{t} e^{\lambda_{m} \tau}\left\|v_{2}(\cdot, \tau)\right\|_{\infty} d \tau, \forall t \in\left[0, T_{\max }\right) . \tag{2.8}
\end{align*}
$$

Then by Gronwall's inequality, if $T_{\max }<\infty$, we can calculate

$$
\begin{equation*}
\left\|v_{2}(\cdot, t)\right\|_{\infty} \leq a_{1} e^{a_{2} T_{\max }}=: K_{2}, \forall t \in\left[0, T_{\max }\right), \tag{2.9}
\end{equation*}
$$

with $a_{1}=\left\|v_{20}\right\|_{\infty}+\frac{K_{1}\left(\delta^{*} / \sigma+\beta^{*}\left\|v_{30}\right\|_{\infty}\right)}{\lambda_{2}}$ and $a_{2}=\frac{\beta^{*} \gamma K_{1}}{\lambda_{2}-\lambda_{m}}$. By (2.7) and (2.9), we get

$$
\begin{equation*}
\left\|v_{3}(\cdot, t)\right\|_{\infty} \leq\left\|v_{30}\right\|_{\infty}+\frac{\gamma K_{2}}{\lambda_{3}}, \forall t \in\left[0, T_{\max }\right) . \tag{2.10}
\end{equation*}
$$

According to (2.5), (2.9), (2.10), and Lemma 2.2, we know $T_{\max }=\infty$ as desired.
We now turn to derive the ultimate boundedness of the solution independent of the initial data. To this end, the following L^{p}-estimates independent of the initial data for the solution are necessary.

Lemma 2.3 For any $p \geq 1$, there exists a positive constant N_{p} independent of the initial data such that

$$
\limsup _{t \rightarrow \infty}\left(\left\|v_{2}(\cdot, t)\right\|_{p}^{p}+\left\|v_{3}(\cdot, t)\right\|_{p}^{p}\right) \leq N_{p}
$$

Proof We first give the ultimate boundedness of $v_{1}(x, t)$ for t large enough. It follows from the first equation of (1.2) that

$$
\partial_{t} v_{1} \leq d_{1} \Delta v_{1}+\Lambda^{*}-\mu v_{1}
$$

By the standard comparison principle and Lemma 1 in Lou and Zhao (2011), we infer that

$$
\limsup _{t \rightarrow \infty} v_{1}(x, t) \leq \lim _{t \rightarrow \infty} \bar{v}_{1}(x, t)=\frac{\Lambda^{*}}{\mu}=: \tilde{N}, \text { uniformly for } x \in \bar{\Omega}
$$

where \bar{v}_{1} is the solution of

$$
\begin{cases}\partial_{t} \bar{v}_{1}-d_{1} \Delta \bar{v}_{1}=\Lambda^{*}-\mu_{*} \bar{v}_{1}, & x \in \Omega, t>0, \\ \nabla \bar{v}_{1} \cdot \mathbf{n}=0, & x \in \partial \Omega, t>0, \\ \bar{v}_{1}(x, 0)=\bar{v}_{10}(x), & x \in \Omega .\end{cases}
$$

This implies

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left\|v_{1}(\cdot, t)\right\|_{\infty} \leq \tilde{N} \tag{2.11}
\end{equation*}
$$

We then prove the following claim.
Claim. For any $m \geq 0$, there exists a positive constant $N_{2^{m}}$ independent of the initial data such that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left(\left\|v_{2}(\cdot, t)\right\|_{2^{m}}^{2^{m}}+\left\|v_{3}(\cdot, t)\right\|_{2^{m}}^{2^{m}}\right) \leq N_{2^{m}} \tag{2.12}
\end{equation*}
$$

We employ the induction method to prove this claim. It follows from (2.2) in Lemma 2.1 that (2.12) holds in the case of $m=0$. Suppose that (2.12) holds for $m-1(m>1)$,
i.e., there exists a positive constant $N_{2^{m-1}}$ independent of the initial data such that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left(\left\|v_{2}(\cdot, t)\right\|_{2^{m-1}}^{2^{m-1}}+\left\|v_{3}(\cdot, t)\right\|_{2^{m-1}}^{2^{m-1}}\right) \leq N_{2^{m-1}} \tag{2.13}
\end{equation*}
$$

Multiplying both sides of the second equation of (1.2) by $v_{2}^{2^{m-1}}$, and integrating over Ω by parts, then according to (2.11), we obtain that there exists $T_{0}>0$ such that

$$
\begin{align*}
\frac{1}{2^{m}} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega} v_{2}^{2^{m}} \mathrm{~d} x \leq & -\frac{d_{2}\left(2^{m}-1\right)}{2^{2 m-2}} \int_{\Omega}\left|\nabla v_{2}^{2^{m-1}}\right|^{2} \mathrm{~d} x+\delta^{*} \tilde{N} \int_{\Omega} v_{2}^{2^{m}} \mathrm{~d} x+\delta^{*} \tilde{N} \\
& +\beta^{*} \tilde{N} \int_{\Omega} v_{2}^{2^{m}-1} v_{3} \mathrm{~d} x-\theta \int_{\Omega} v_{2}^{2^{m}} \mathrm{~d} x, \forall t \geq T_{0} \tag{2.14}
\end{align*}
$$

It follows from Young's inequality with epsilon that

$$
\begin{equation*}
\int_{\Omega} v_{2}^{2^{m}-1} v_{3} \mathrm{~d} x \leq \epsilon_{1} \int_{\Omega} v_{3}^{2^{m}} \mathrm{~d} x+A_{\epsilon_{1}} \int_{\Omega} v_{2}^{2^{m}} \mathrm{~d} x \tag{2.15}
\end{equation*}
$$

where $\epsilon_{1}=\frac{\alpha}{\beta^{*} \tilde{N}+\gamma}$ and $A_{\epsilon_{1}}$ is a positive constant depending on ϵ_{1}.
We multiply both sides of the third equation of (1.2) by $v_{3}^{2^{m-1}}$ and integrate over Ω by parts to find

$$
\begin{align*}
\frac{1}{2^{m}} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega} v_{3}^{2^{m}} \mathrm{~d} x \leq & -\frac{d_{3}\left(2^{m}-1\right)}{2^{2 m-2}} \int_{\Omega}\left|\nabla v_{3}^{2^{m-1}}\right|^{2} \mathrm{~d} x+\gamma \int_{\Omega} v_{2} v_{3}^{2^{m}-1} \mathrm{~d} x \\
& -\alpha \int_{\Omega} v_{3}^{2^{m}} \mathrm{~d} x, \forall t \geq T_{0} \tag{2.16}
\end{align*}
$$

It follows from Young's inequality with epsilon again that

$$
\begin{equation*}
\int_{\Omega} v_{2} v_{3}^{2^{m}-1} \mathrm{~d} x \leq \epsilon_{2} \int_{\Omega} v_{3}^{2^{m}} \mathrm{~d} x+A_{\epsilon_{2}} \int_{\Omega} v_{2}^{2^{m}} \mathrm{~d} x \tag{2.17}
\end{equation*}
$$

where $\epsilon_{2}=\epsilon_{1}$ and $A_{\epsilon_{2}}$ is a positive constant depending on ϵ_{2}.
Recall the following interpolation inequality: for any $\epsilon>0$, there exists $C_{\epsilon}>0$ depending on ϵ such that

$$
\begin{equation*}
\|u\|_{2}^{2} \leq \epsilon\|\nabla u\|_{2}^{2}+C_{\epsilon}\|u\|_{1}^{2} \text { for any } u \in H^{1}(\Omega) . \tag{2.18}
\end{equation*}
$$

Applying (2.18) with $\epsilon_{3}=\frac{d_{3}\left(2^{m}-1\right)}{2^{2 m-2}}$ to the first term of the right-hand side of (2.16), we get

$$
\begin{equation*}
-\epsilon_{3} \int_{\Omega}\left|\nabla v_{3}^{2^{m-1}}\right|^{2} \mathrm{~d} x \leq-\int_{\Omega} v_{3}^{2^{m}} \mathrm{~d} x+A_{\epsilon_{3}}\left(\int_{\Omega} v_{3}^{2^{m-1}} \mathrm{~d} x\right)^{2} \tag{2.19}
\end{equation*}
$$

We apply (2.18) again with $\epsilon_{4}=\frac{d_{2}\left(2^{m}-1\right)}{2^{2 m-2}\left(\delta^{*} \tilde{N}+\beta^{*} \tilde{N} A_{\epsilon_{1}}+\gamma A_{\epsilon_{2}}+1\right)}$ to the first term of the right-hand side of (2.14) to estimate

$$
\begin{equation*}
-\epsilon_{4} \int_{\Omega}\left|\nabla v_{2}^{2^{m-1}}\right|^{2} \mathrm{~d} x \leq-\int_{\Omega} v_{2}^{2^{m}} \mathrm{~d} x+A_{\epsilon_{4}}\left(\int_{\Omega} v_{2}^{2^{m-1}} \mathrm{~d} x\right)^{2} \tag{2.20}
\end{equation*}
$$

Therefore, according to (2.14)-(2.17), (2.19), and (2.20), one has

$$
\begin{aligned}
\frac{1}{2^{m}} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}\left(v_{2}^{2^{m}}+v_{3}^{2^{m}}\right) \mathrm{d} x \leq & -\int_{\Omega}\left(v_{2}^{2^{m}}+v_{3}^{2^{m}}\right) \mathrm{d} x+A_{\epsilon_{3}}\left(\int_{\Omega} v_{3}^{2^{m-1}} \mathrm{~d} x\right)^{2}+\delta^{*} \tilde{N} \\
& +\left(\delta^{*} \tilde{N}+\beta^{*} \tilde{N} A_{\epsilon_{1}}+\gamma A_{\epsilon_{2}}+1\right) A_{\epsilon_{4}}\left(\int_{\Omega} v_{2}^{2^{m-1}} \mathrm{~d} x\right)^{2}, \forall t \geq T_{0}
\end{aligned}
$$

Then by (2.13), Gronwall's inequality entails

$$
\begin{aligned}
& \limsup _{t \rightarrow \infty}\left(\left\|v_{2}(\cdot, t)\right\|_{2^{m}}^{2^{m}}+\left\|v_{3}(\cdot, t)\right\|_{2^{m}}^{2^{m}}\right) \\
& \quad \leq \sqrt[2^{m}]{\delta^{*} \tilde{N}+\left(A_{\epsilon_{3}}+\left(\delta^{*} \tilde{N}+A_{\epsilon_{1}}+A_{\epsilon_{2}}+1\right) A_{\epsilon_{4}}\right) N_{2^{m-1}}}=: N_{2^{m}},
\end{aligned}
$$

and thereby completes the proof of the claim. With the aid of the continuous embedding $L^{q}(\Omega) \subset L^{p}(\Omega)$ for $q \geq p \geq 1$, the assertion of Lemma 2.3 holds.

By a standard analytical semigroup method, we can obtain the ultimate boundedness of the solution, which implies the existence of a global attractor for (1.2).
Theorem 2.2 There exists a positive constant N_{∞} independent of the initial data such that the solution of (1.2) satisfies

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left(\left\|v_{1}(\cdot, t)\right\|_{\infty}+\left\|v_{2}(\cdot, t)\right\|_{\infty}+\left\|v_{3}(\cdot, t)\right\|_{\infty}\right) \leq N_{\infty} \tag{2.21}
\end{equation*}
$$

Moreover, there exists a connected global attractor in $C\left(\bar{\Omega}, \mathbb{R}_{+}^{3}\right)$.
Proof The ultimate boundedness of $v_{1}(x, t)$ is given in (2.11). To derive the ultimate boundedness of $v_{2}(x, t)$ and $v_{3}(x, t)$ for $x \in \Omega$ and t large enough, we employ the results of fractional power space. Let $J_{2}(t)$ be the analytic semigroup generated by \mathcal{A}_{2} in $L^{p}(\Omega)$ with $D\left(\mathcal{A}_{2}\right)=\left\{u \in W^{2, p}(\Omega): \nabla u \cdot \mathbf{n}=0\right.$ on $\left.\partial \Omega\right\}$, and $\mathbb{X}_{\alpha^{\prime}}, 0 \leq \alpha^{\prime} \leq 1$ denote the fractional power space with graph norm. Pick $p>\frac{n}{2}$ and $\alpha^{\prime} \geq \frac{n}{2 p}$ such that $\mathbb{X}_{\alpha^{\prime}} \subset L^{\infty}(\Omega)$. It follows from Pazy (1983) that there exists $N_{\alpha^{\prime}}>0$ such that $\left\|A_{2}^{\alpha^{\prime}} J_{2}(t)\right\| \leq \frac{N_{\alpha^{\prime}}}{t^{\alpha^{\prime}}}$ for all $t>0$. Using (2.11) and Lemma 2.3, there exists $T_{\infty}>1$ such that

$$
\begin{equation*}
\left\|v_{1}(\cdot, t)\right\|_{\infty} \leq \tilde{N} \text { and }\left\|v_{2}(\cdot, t)\right\|_{p},\left\|v_{3}(\cdot, t)\right\|_{p} \leq N_{p}^{\frac{1}{p}}, \forall t \geq T_{\infty} \tag{2.22}
\end{equation*}
$$

In view of the second equation of (1.2), we know

$$
v_{2}(t) \leq J_{2}(t) v_{2}(\cdot, t-1)+\int_{t-1}^{t} J_{2}(t-s)\left(\delta v_{1}(\cdot, s) v_{2}(\cdot, s)+\beta v_{1}(\cdot, s) v_{3}(\cdot, s)\right) \mathrm{d} s
$$

$$
\forall t \geq T_{\infty}+1
$$

By virtue of (2.22), we then calculate

$$
\begin{align*}
\left\|\mathcal{A}_{2}^{\alpha^{\prime}} v_{2}(\cdot, t)\right\|_{p} \leq & \left\|\mathcal{A}_{2}^{\alpha^{\prime}} J_{2}(t) v_{2}(\cdot, t-1)\right\|_{p} \\
& +\max \left\{\delta^{*}, \beta^{*}\right\} \tilde{N} \int_{t-1}^{t}\left\|\mathcal{A}_{2}^{\alpha^{\prime}} J_{2}(t-s)\left(v_{2}(\cdot, s)+v_{3}(\cdot, s)\right)\right\|_{p} d s \\
\leq & N_{\alpha^{\prime}} N_{p}^{\frac{1}{p}}+2 \max \left\{\delta^{*}, \beta^{*}\right\} \tilde{N} N_{p}^{\frac{1}{p}} \int_{t}^{t-1} \frac{N_{\alpha^{\prime}}}{(t-s)^{\alpha^{\prime}}} d s \\
\leq & N_{\alpha^{\prime}} N_{p}^{\frac{1}{p}}\left(1+2 \max \left\{\delta^{*}, \beta^{*}\right\} \tilde{N}\left(1-\alpha^{\prime}\right)^{-1}\right), \forall t \geq T_{\infty}+1 \tag{2.23}
\end{align*}
$$

In a same manner, let $J_{3}(t)$ be the analytic semigroup generated by \mathcal{A}_{3} in $L^{p}(\Omega)$ with $D\left(\mathcal{A}_{3}\right)=D\left(\mathcal{A}_{2}\right)$. We also have

$$
\begin{align*}
\left\|\mathcal{A}_{3}^{\alpha^{\prime}} v_{3}(\cdot, t)\right\|_{p} & \leq\left\|A_{3}^{\alpha^{\prime}} J_{3}(t) v_{3}(\cdot, t-1)\right\|_{p}+\gamma \int_{t-1}^{t}\left\|\mathcal{A}_{3}^{\alpha^{\prime}} J_{3}(t-s) v_{2}(\cdot, s)\right\|_{p} d s \\
& \leq N_{\alpha^{\prime}} N_{p}^{\frac{1}{p}}\left(1+\gamma\left(1-\alpha^{\prime}\right)^{-1}\right), \text { for } t \geq T_{\infty}+1 \tag{2.24}
\end{align*}
$$

Then by (2.23), (2.24), and the continuous embedding $\mathbb{X}_{\alpha^{\prime}} \subset L^{\infty}(\Omega)$, we get the ultimate boundedness of v_{2} and v_{3}. This shows that (2.21) is valid.

Let $\Phi(t): C\left(\bar{\Omega}, \mathbb{R}_{+}^{3}\right) \rightarrow C\left(\bar{\Omega}, \mathbb{R}_{+}^{3}\right), t \geq 0$ be the semigroup generated by the solution of (1.2). Then (2.21) implies that $\Phi(t)$ is point dissipative. Furthermore, $\Phi(t)$ is asymptotically smooth. Then, by Theorem 3.4.8 in Hale (1988), we obtain the existence of a connected global attractor.

2.2 The Case of Small χ

In this subsection, we study the boundedness of the solution when the chemotaxis is relatively mild. We use the Neumann heat semigroup method to state some estimates. The following lemma on the Neumann heat semigroup can be found from Lemma 1.3 in Winkler (2010).

Lemma 2.4 For $d>0$, let $\left(e^{t d \Delta}\right)_{t \geq 0}$ be the Neumann heat semigroup and $\lambda_{0}>0$ be the principal eigenvalue of $-d \Delta$ on Ω. Then, there exist some positive constants $k_{i}(i=1,2,3,4)$ depending on d and Ω such that the following smoothing $L^{p}-L^{q}$ type estimates hold:
(i) If $1 \leq q \leq p \leq \infty$, then for any $u \in L^{q}(\Omega)$,

$$
\left\|e^{t d \Delta} u\right\|_{p} \leq k_{1}\left(1+t^{-\frac{n}{2}\left(\frac{1}{q}-\frac{1}{p}\right)}\right)\|u\|_{q}, \forall t>0
$$

(ii) If $1 \leq q \leq p \leq \infty$, then for any $u \in L^{q}(\Omega)$,

$$
\left\|\nabla e^{t d \Delta} u\right\|_{p} \leq k_{2}\left(1+t^{-\frac{1}{2}-\frac{n}{2}\left(\frac{1}{q}-\frac{1}{p}\right)}\right) e^{-\lambda_{0} t}\|u\|_{q}, \forall t>0
$$

(iii) If $2 \leq q \leq p<\infty$, then for any $u \in W^{1, q}(\Omega)$,

$$
\left\|\nabla e^{t d \Delta} u\right\|_{p} \leq k_{3}\left(1+t^{-\frac{n}{2}\left(\frac{1}{q}-\frac{1}{p}\right)}\right) e^{-\lambda_{0} t}\|\nabla u\|_{q}, \forall t>0 .
$$

(iv) If $1<q \leq p \leq \infty$, then for any $u \in\left(L^{q}(\Omega)\right)^{n}$ and $u \cdot \mathbf{n}=0$ on $\partial \Omega$,

$$
\left\|e^{t d \Delta} \nabla \cdot u\right\|_{p} \leq k_{4}\left(1+t^{-\frac{1}{2}-\frac{n}{2}\left(\frac{1}{q}-\frac{1}{p}\right)}\right) e^{-\lambda_{0} t}\|u\|_{q}, \forall t>0 .
$$

Similar to the proof of Theorem 3.1 in Horstmann and Winkler (2005), we can obtain the following lemma on the local existence and finite-time blow-up of the solution to the reaction-chemotaxis-diffusion system.

Lemma 2.5 Assume $v_{10}, v_{30} \in C(\bar{\Omega})$ and $v_{20} \in W^{1, q}(\Omega)$ for $q>n$. There exists a unique nonnegative solution $\left(v_{1}(\cdot, t), v_{2}(\cdot, t), v_{3}(\cdot, t)\right)$ of (1.2) defined on $\left[0, T_{\max }\right)$ with $T_{\max } \leq \infty$ such that

$$
\begin{aligned}
& v_{1}, v_{3} \in C\left(\bar{\Omega} \times\left[0, T_{\max }\right)\right) \cap C^{2,1}\left(\bar{\Omega} \times\left(0, T_{\max }\right)\right) \text { and } v_{2} \in C\left(\left[0, T_{\max }\right) ;\right. \\
& \left.\quad W^{1, q}(\Omega)\right) \cap C^{2,1}\left(\bar{\Omega} \times\left(0, T_{\max }\right)\right)
\end{aligned}
$$

Moreover, if $T_{\max }<\infty$, then

$$
\lim _{t \rightarrow T_{\max }^{-}}\left(\left\|v_{1}(\cdot, t)\right\|_{\infty}+\left\|v_{2}(\cdot, t)\right\|_{W^{1, q}(\Omega)}+\left\|v_{3}(\cdot, t)\right\|_{\infty}\right)=\infty .
$$

Now, we use the loop arguments in Bellomo et al. (2019) to bootstrap the boundedness of the solution. The following auxiliary lemmas assert that we can achieve some estimates for $v_{1}, \nabla v_{2}$, and v_{3} depending on the bounds for v_{1} and v_{3} as assumed for a local time interval.

Lemma 2.6 Assume $v_{10}, v_{30} \in C(\bar{\Omega})$ and $v_{20} \in W^{1, q}(\Omega)$ for $q>n$. Given $T^{*} \in$ $\left(0, T_{\max }\right)$, assume there exist positive constants L_{1} and L_{3} depending on T such that

$$
\begin{equation*}
\left\|v_{1}(\cdot, t)\right\|_{\infty} \leq L_{1},\left\|v_{3}(\cdot, t)\right\|_{\infty} \leq L_{3}, \forall t \in\left(0, T^{*}\right) . \tag{2.25}
\end{equation*}
$$

Then, there exist positive constants B_{1}, B_{2} and B_{3} independent of L_{1} and L_{3} such that

$$
\left\|\nabla v_{2}(\cdot, t)\right\|_{q} \leq B_{1}+B_{2} L_{1}+B_{3} L_{1} L_{3}^{\rho}
$$

for $\rho:=\frac{q-1}{q} \in(0,1)$.

Proof According to the second equation of (1.2), we derive

$$
\begin{aligned}
v_{2}(\cdot, t)= & e^{t\left(d_{2} \Delta-\theta\right)} v_{20} \\
& +\int_{0}^{t} e^{(t-s)\left(d_{2} \Delta-\theta\right)}\left(\frac{\delta^{*}}{\sigma} v_{1}(\cdot, s)+\beta^{*} v_{1}(\cdot, s) v_{3}(\cdot, s)\right) \mathrm{d} s, \forall t \in\left(0, T^{*}\right)
\end{aligned}
$$

Further, by (ii) and (iii) in Lemma 2.4, one has

$$
\begin{align*}
\left\|\nabla v_{2}(\cdot, t)\right\|_{q} \leq & \left\|\nabla e^{t\left(d_{2} \Delta-\theta\right)} v_{20}\right\|_{q} \\
& +\int_{0}^{t}\left\|\nabla e^{(t-s)\left(d_{2} \Delta-\theta\right)}\left(\frac{\delta^{*}}{\sigma} v_{1}(\cdot, s)+\beta^{*} v_{1}(\cdot, s) v_{3}(\cdot, s)\right)\right\|_{q} d s \\
\leq & k_{3}\left\|v_{20}\right\|_{W^{1}, q}+\frac{\delta^{*} k_{2}}{\sigma} \int_{0}^{t} e^{-(t-s) \theta}\left(1+(t-s)^{-\frac{1}{2}}\right)\left\|v_{1}(\cdot, s)\right\|_{q} d s \\
& +\beta^{*} k_{2} \int_{0}^{t} e^{-(t-s) \theta}\left(1+(t-s)^{-\frac{1}{2}}\right)\left\|v_{1}(\cdot, s) v_{3}(\cdot, s)\right\|_{q} d s, \forall t \in\left(0, T^{*}\right) . \tag{2.26}
\end{align*}
$$

An application of Hölder's inequality gives

$$
\begin{align*}
\left\|v_{1}(\cdot, s) v_{3}(\cdot, s)\right\|_{q} & \leq\left\|v_{1}(\cdot, s)\right\|_{\infty}\left\|v_{3}(\cdot, s)\right\|_{q} \\
& \leq\left\|v_{1}(\cdot, s)\right\|_{\infty}\left\|v_{3}(\cdot, s)\right\|_{\infty}^{\rho}\left\|v_{3}(\cdot, s)\right\|_{1}^{1-\rho}, \forall s \in\left(0, T^{*}\right) \tag{2.27}
\end{align*}
$$

Note that (2.1) is also valid for $v_{20} \in W^{1, q}(\Omega)$. Then by means of (2.1) and (2.25), inserting (2.27) to (2.26) produces

$$
\left\|\nabla v_{2}(\cdot, t)\right\|_{q} \leq k_{3}\left\|v_{20}\right\|_{W^{1, q}}+\frac{\delta^{*} k_{2} b_{1}}{\sigma} L_{1}+\beta^{*} k_{2} b_{1} M_{1}^{1-\rho} L_{1} L_{3}^{\rho}, \forall t \in\left(0, T^{*}\right)
$$

where $b_{1}:=\int_{0}^{\infty}\left(1+s^{-\frac{1}{2}}\right) e^{-d_{2} s} d s$. This completes the proof with

$$
B_{1}:=k_{3}\left\|v_{20}\right\|_{W^{1, q}}, \quad B_{2}:=\frac{\delta^{*} k_{2} b_{1}}{\sigma} \text { and } B_{3}:=\beta^{*} k_{2} b_{1} M_{1}^{1-\rho} .
$$

Lemma 2.7 Assume $v_{10}, v_{30} \in C(\bar{\Omega})$ and $v_{20} \in W^{1, q}(\Omega)$ for $q>n$. Given $T^{*} \in$ ($0, T_{\max }$), assume (2.25) still holds. Then there exists B_{4} independent of L_{1} and L_{3} such that

$$
\begin{equation*}
\left\|v_{3}(\cdot, t)\right\|_{\infty} \leq B_{4}\left(1+L_{1}+L_{1} L_{3}^{\rho}\right), \forall t \in\left(0, T^{*}\right) \tag{2.28}
\end{equation*}
$$

where $\rho \in(0,1)$ is as in Lemma 2.6.

Proof As $q>n$, we have $W^{1, q}(\Omega) \subset L^{\infty}(\Omega)$. Then by Poincaré's inequality, we know that there exists some positive constant C such that

$$
\begin{equation*}
\|u\|_{\infty} \leq C\|u\|_{W^{1, q}(\Omega)} \leq C\left(\|\nabla u\|_{q}+\|u\|_{p^{\prime}}\right), \tag{2.29}
\end{equation*}
$$

for any $p^{\prime} \geq 1$. Note that (2.1) is still valid for $v_{20} \in W^{1, q}(\Omega), q>n$. By Lemma 2.6 and (2.1), we now choose $p^{\prime}=1$ in (2.29), and hence,

$$
\begin{equation*}
\left\|v_{2}(\cdot, t)\right\|_{\infty} \leq C\left(B_{1}+B_{2} L_{1}+B_{3} L_{1} L_{3}^{\rho}\right)+C M_{1}, \forall t \in\left(0, T^{*}\right) . \tag{2.30}
\end{equation*}
$$

Set $\bar{v}_{3}(x, t):=\max \left\{\left\|v_{30}\right\|_{\infty}, \max \left\{1, \frac{\gamma}{\alpha}\right\}\left[C\left(B_{1}+B_{2} L_{1}+B_{3} L_{1} L_{3}^{\rho}\right)+C M_{1}\right]\right\}$ for $(x, t) \in \bar{\Omega} \times\left[0, T^{*}\right)$. In view of (2.30), we then have

$$
\begin{cases}\partial_{t} \bar{v}_{3}-d_{3} \Delta \bar{v}_{3}+\alpha \bar{v}_{3}-\gamma v_{2}=\alpha \bar{v}_{3}-\gamma v_{2} & \\ \geq 0=\partial_{t} v_{3}-d_{3} \Delta v_{3}+\alpha v_{3}-\gamma v_{2}, & (x, t) \in \Omega \times\left(0, T^{*}\right), \\ \nabla \bar{v}_{3} \cdot \mathbf{n}=\nabla v_{3} \cdot \mathbf{n}=0, & (x, t) \in \partial \Omega \times\left(0, T^{*}\right), \\ \bar{v}_{3}(x, 0) \geq\left\|v_{30}\right\|_{\infty} \geq v_{30}, & x \in \Omega .\end{cases}
$$

The standard comparison principle enables us to derive $v_{3} \leq \bar{v}_{3}$ in $\Omega \times\left(0, T^{*}\right)$. Thus, (2.28) holds with
$B_{4}:=\max \left\{\left\|v_{30}\right\|_{\infty}, C\left(B_{1}+M_{1}\right) \max \left\{1, \frac{\gamma}{\alpha}\right\}, B_{2} \max \left\{1, \frac{\gamma}{\alpha}\right\}, B_{3} \max \left\{1, \frac{\gamma}{\alpha}\right\}\right\}$.

Lemma 2.8 Assume $v_{10}, v_{30} \in C(\bar{\Omega})$ and $v_{20} \in W^{1, q}(\Omega)$ for $q>n$. Given $T^{*} \in$ ($0, T_{\mathrm{max}}$), assume (2.25) holds with $L_{3} \geq 1$. Then there exists B_{5} independent of L_{1} and L_{3} such that

$$
\begin{equation*}
\left\|v_{1}(\cdot, t)\right\|_{\infty} \leq B_{5}\left[\left(L_{1}^{2} L_{3}^{\rho}+1\right)|\chi|+1\right], \forall t \in\left(0, T^{*}\right), \tag{2.31}
\end{equation*}
$$

where $\rho \in(0,1)$ is as in Lemma 2.6.
Proof We apply variation-of-constants formula to the first equation in (1.2) to calculate for all $t \in\left(0, T^{*}\right)$,

$$
\begin{aligned}
v_{1}(\cdot, t) \leq & e^{t\left(d_{1} \Delta-\mu\right)} v_{10}+|\chi| \int_{0}^{t} e^{(t-s)\left(d_{1} \Delta-\mu\right)} \nabla \cdot\left(v_{1}(\cdot, s) \nabla v_{2}(\cdot, s)\right) \mathrm{d} s \\
& +\Lambda^{*} \int_{0}^{t} e^{(t-s)\left(d_{1} \Delta-\mu\right)} d s
\end{aligned}
$$

Hence, by (iv) in Lemma 2.4 and the maximum principle,

$$
\left\|v_{1}(\cdot, t)\right\|_{\infty} \leq\left\|v_{10}\right\|_{\infty}+|\chi| \int_{0}^{t} e^{-\mu(t-s)}\left\|e^{(t-s) d_{1} \Delta} \nabla \cdot\left(v_{1}(\cdot, s) \nabla v_{2}(\cdot, s)\right)\right\|_{\infty} d s
$$

$$
\begin{align*}
& +\Lambda^{*} \int_{0}^{t} e^{-\mu(t-s)} d s \\
\leq & \left\|v_{10}\right\|_{\infty}+k_{4}|\chi| \int_{0}^{t} e^{-\mu(t-s)}\left(1+(t-s)^{-\frac{1}{2}-\frac{n}{2 q}}\right)\left\|\nabla \cdot\left(v_{1}(\cdot, s) \nabla v_{2}(\cdot, s)\right)\right\|_{q} d s \\
& +\Lambda^{*} \int_{0}^{t} e^{-\mu(t-s)} d s \\
\leq & \left\|v_{10}\right\|_{\infty}+k_{4} b_{2}|\chi| L_{1}\left(B_{1}+B_{2} L_{1}+B_{3} L_{1} L_{3}^{\rho}\right)+\tilde{N}, \forall t \in\left(0, T^{*}\right) . \tag{2.32}
\end{align*}
$$

where $b_{2}:=\int_{0}^{t} e^{-d_{1} \mu(t-s)}\left(1+(t-s)^{-\frac{1}{2}-\frac{n}{2 q}}\right) \mathrm{d} s$ due to $q>n$. As $L_{3} \geq 1$, by Cauchy's inequality, one gets

$$
L_{1} \leq L_{1}^{2}+\frac{1}{4} \leq L_{1}^{2} L_{3}^{\rho}+\frac{1}{4}
$$

As a consequence, (2.32) becomes

$$
\left\|v_{1}(\cdot, t)\right\|_{\infty} \leq\left\|v_{10}\right\|_{\infty}+\tilde{N}+k_{4} b_{2}\left[\left(B_{1}+B_{2}+B_{3}\right) L_{1}^{2} L_{3}^{\rho}+\frac{B_{1}}{4}\right] \chi
$$

Taking $B_{5}:=\max \left\{\left\|v_{10}\right\|_{\infty}+\tilde{N}, k_{4} b_{2}\left(B_{1}+B_{2}+B_{3}\right), \frac{k_{4} b_{2} B_{1}}{4}\right\},(2.31)$ follows.
On the basis of the above conduction, we can get the global existence and boundedness of the solution by giving a constraint on the magnitude of χ.
Theorem 2.3 Assume $v_{10}, v_{30} \in C(\bar{\Omega})$ and $v_{20} \in W^{1, q}(\Omega)$ for $q>n$. There exists a positive constant χ_{0} such that whenever $|\chi| \leq \chi_{0}$, model (1.2) admits a global classical nonnegative solution in the following sense:

$$
\begin{aligned}
& v_{1}, v_{3} \in C(\bar{\Omega} \times[0, \infty)) \cap C^{2,1}(\bar{\Omega} \times(0, \infty)) \text { and } v_{2} \in C([0, \infty) ; \\
& \left.\quad W^{1, q}(\Omega)\right) \cap C^{2,1}(\bar{\Omega} \times(0, \infty))
\end{aligned}
$$

Moreover, there exists a positive constant L_{0} depending on the initial data such that

$$
\left\|v_{1}(\cdot, t)\right\|_{\infty}+\left\|v_{2}(\cdot, t)\right\|_{W^{1, q}(\Omega)}+\left\|v_{3}(\cdot, t)\right\|_{\infty} \leq L_{0}, \forall t>0 .
$$

Proof We choose $B_{1}>0$ large enough such that

$$
\begin{equation*}
L_{1}>\left\|v_{10}\right\|_{\infty}, L_{1} \geq 4 B_{5} \tag{2.33}
\end{equation*}
$$

On the other hand, we choose L_{3} large enough such that

$$
\begin{equation*}
L_{3}>\left\|v_{30}\right\|_{\infty}, L_{3} \geq\left(8 B_{4} L_{1}\right)^{\frac{1}{1-\rho}}, L_{3} \geq 4 B_{4} \tag{2.34}
\end{equation*}
$$

Let

$$
\begin{equation*}
\chi_{0}:=\frac{L_{1}}{4 B_{5}\left(L_{1}^{2} L_{3}^{\rho}+1\right)} \tag{2.35}
\end{equation*}
$$

Given $|\chi| \leq \chi_{0}$, let $\left(v_{1}, v_{2}, v_{3}\right)$ be the corresponding maximally extended solution of (1.2) in $\Omega \times\left(0, T_{\max }\right)$ with $T_{\max } \leq \infty$. We then define

$$
\Gamma:=\left\{T \in\left(0, T_{\max }\right):\left\|v_{1}(\cdot, t)\right\|_{\infty} \leq L_{1},\left\|v_{3}(\cdot, t)\right\|_{\infty} \leq L_{3}, \forall t \in(0, T)\right\}
$$

The continuity of v_{1} and v_{3} guarantees that Γ is nonempty and $T^{*}=\sup \Gamma$ is a well-defined element of $(0, \infty]$. According to (2.33), (2.35), and Lemma 2.8, we can obtain

$$
\left\|v_{1}(\cdot, t)\right\|_{\infty} \leq B_{5}\left(L_{1}^{2} L_{3}^{\rho}+1\right)|\chi|+B_{5} \leq \frac{L_{1}}{2}, \forall t \in\left(0, T^{*}\right)
$$

In view of (2.34) and Lemma 2.7, one has

$$
\left\|v_{3}(\cdot, t)\right\|_{\infty} \leq B_{4}+2 B_{4} L_{1} L_{3}^{\rho} \leq \frac{L_{3}}{2}, \forall t \in\left(0, T^{*}\right)
$$

It follows from the continuity of v_{1} and v_{3} again that $T=T_{\max }$ and

$$
\left\|v_{1}(\cdot, t)\right\|_{\infty} \leq L_{1},\left\|v_{3}(\cdot, t)\right\|_{\infty} \leq L_{3}, \forall t \in\left(0, T_{\max }\right)
$$

Moreover,

$$
\left\|\nabla v_{2}(\cdot, t)\right\|_{q} \leq B_{1}+B_{2} L_{1}+B_{3} L_{1} L_{3}^{\rho}, \forall t \in\left(0, T_{\max }\right) .
$$

An application of the Poincarés inequality gives that

$$
\left\|v_{2}\right\|_{W^{1, q}(\Omega)} \leq C\left(B_{1}+B_{2} L_{1}+B_{3} L_{1} L_{3}^{\rho}\right)=: L_{2} .
$$

By Lemma 2.5, we infer that $T_{\max }=\infty$. We complete the proof by taking

$$
L_{0}:=\max \left\{L_{1}, L_{2}, L_{3}\right\} .
$$

2.3 The Case of Arbitrary χ

In this subsection, we consider the boundedness of the solution for arbitrary χ for $\Omega \subset \mathbb{R}^{1}$. In this case, $|\chi|$ can be large. First, we introduce the Gagliardo-Nirenberg interpolation inequality (Nirenberg 1996; Friedman 1969).

Lemma 2.9 (Gagliardo-Nirenberg interpolation inequality). Let r and s be integers fulfilling $0 \leq r<s$, and let $1 \leq p, q \leq \infty, 0<m \leq \infty$ and $\frac{r}{s} \leq c \leq 1$ such that

$$
\frac{1}{m}-\frac{r}{n}=c\left(\frac{1}{p}-\frac{s}{n}\right)+(1-c) \frac{1}{q}
$$

Then for any $u \in W^{s, p}(\Omega) \cap L^{q}(\Omega)$, there exists a positive constant C depending only on Ω, s, p, q, n satisfying the inequality

$$
\left\|D^{r} u\right\|_{m} \leq C\left(\left\|D^{s} u\right\|_{p}^{c}\|u\|_{q}^{1-c}+\|u\|_{q}\right)
$$

with the following exception: if $1<p<\infty$ and $s-r-\frac{n}{p}$ is a nonnegative integer, then the above inequality holds only for c fulfilling $\frac{r}{s} \leq c<1$.

By Lemma 2.9, similar to the proof of Lemma 3.6 (i) in Li and Xiang (2022), we immediately obtain the following estimates.

Lemma 2.10 Let $\Omega \subset \mathbb{R}^{1}$ be a finite interval. For $q>1, \epsilon>0$, there holds

$$
\left\{\begin{array}{l}
\left\|v_{1}+1\right\|_{q}^{\frac{2 q}{q-1}} \leq C\left\|\nabla\left(v_{1}+1\right)^{\frac{1}{2}}\right\|_{2}^{2}+C \tag{2.36}\\
\left\|\left(v_{1}+1\right) \ln \left(v_{1}+1\right)\right\|_{1} \leq \epsilon\left\|\nabla\left(v_{1}+1\right)^{\frac{1}{2}}\right\|_{2}^{2}+C_{\epsilon} \\
\left\|v_{1}+1\right\|_{q}^{p} \leq \epsilon\left\|\nabla\left(v_{1}+1\right)^{\frac{1}{2}}\right\|_{2}^{2}+C_{\epsilon}, \quad \forall p<\frac{2 q}{q-1}
\end{array}\right.
$$

Moreover, for all $q>1$, there holds

$$
\begin{align*}
\left\|v_{2}\right\|_{q}^{\frac{5 q}{q-1}} \leq C\left(\left\|\Delta v_{2}\right\|_{2}^{2}+\left\|\nabla v_{2}\right\|_{2}^{2}+1\right) \tag{2.37}\\
\left\|v_{3}\right\|_{q}^{\frac{5 q}{q-1}} \leq C\left(\left\|\Delta v_{3}\right\|_{2}^{2}+\left\|\nabla v_{3}\right\|_{2}^{2}+1\right) \tag{2.38}
\end{align*}
$$

Note that Lemma 2.5 is valid for all $\chi \neq 0$ guaranteeing the existence of the local solution for model (1.2). Based on Lemma 2.10, we explore the higher-order regularity of the solution.

Lemma 2.11 Let $\Omega \subset \mathbb{R}^{1}$ be a finite interval. The local-in-time solution of (1.2) satisfies

$$
\begin{align*}
& \left\|\left(v_{1}(\cdot, t)+1\right) \ln \left(v_{1}(\cdot, t)+1\right)\right\|_{1}+\left\|\nabla v_{2}(\cdot, t)\right\|_{2}+\left\|\nabla v_{3}(\cdot, t)\right\|_{2} \\
& \quad \leq C, \forall t \in\left(0, T_{\max }\right) . \tag{2.39}
\end{align*}
$$

Moreover, there exists a positive constant C such that

$$
\begin{equation*}
\left\|v_{3}(\cdot, t)\right\|_{\infty} \leq C, \forall t \in\left(0, T_{\max }\right) \tag{2.40}
\end{equation*}
$$

Proof We test the first equation of (1.2) by $\ln \left(v_{1}+1\right)+1$ and then integrate by parts to derive that

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega}\left(v_{1}+1\right) \ln \left(v_{1}+1\right) \mathrm{d} x+4 d_{1} \int_{\Omega}\left|\nabla\left(v_{1}+1\right)^{\frac{1}{2}}\right|^{2} \mathrm{~d} x \\
& \quad+\int_{\Omega}\left[\frac{\delta v_{1} v_{2}}{1+\sigma v_{2}}+k v_{1} \ln \left(1+\frac{\beta v_{3}}{k}\right)\right]\left[\ln \left(v_{1}+1\right)+1\right] \mathrm{d} x
\end{aligned}
$$

$$
\begin{equation*}
=\chi \int_{\Omega}\left[v_{1}-\ln \left(v_{1}+1\right)\right] \Delta v_{2} \mathrm{~d} x+\int_{\Omega} \Lambda\left[\ln \left(v_{1}+1\right)+1\right] \mathrm{d} x, \forall t \in\left(0, T_{\max }\right) . \tag{2.41}
\end{equation*}
$$

We test the second equation of (1.2) by Δv_{2} and then integrate by parts to obtain

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x+\theta \int_{\Omega}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x+d_{2} \int_{\Omega}\left|\Delta v_{2}\right|^{2} \mathrm{~d} x \\
& \quad=-\int_{\Omega}\left[\frac{\delta v_{1} v_{2}}{1+\sigma v_{2}}+k v_{1} \ln \left(1+\frac{\beta v_{3}}{k}\right)\right] \Delta v_{2} \mathrm{~d} x, \forall t \in\left(0, T_{\max }\right) . \tag{2.42}
\end{align*}
$$

Similarly, testing the third equation of (1.2) by Δv_{3} and then integrating by parts produce

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}\left|\nabla v_{3}\right|^{2} \mathrm{~d} x+\alpha \int_{\Omega}\left|\nabla v_{3}\right|^{2} \mathrm{~d} x+d_{3} \int_{\Omega}\left|\Delta v_{3}\right|^{2} \mathrm{~d} x \\
& \quad=-\gamma \int_{\Omega} v_{2} \Delta v_{3} \mathrm{~d} x, \forall t \in\left(0, T_{\max }\right) . \tag{2.43}
\end{align*}
$$

We now try to bound the terms on the right-hand sides of the equalities (2.41)-(2.43) in terms of the dissipation terms on their left-hand sides.

According to Cauchy's inequality and (2.36), one has

$$
\begin{align*}
\chi & \int_{\Omega}\left[v_{1}-\ln \left(v_{1}+1\right)\right] \Delta v_{2} \mathrm{~d} x+\int_{\Omega} \Lambda\left[\ln \left(v_{1}+1\right)+1\right] \mathrm{d} x \\
\leq & \epsilon_{1} \int_{\Omega}\left[v_{1}-\ln \left(v_{1}+1\right)\right]^{2} \mathrm{~d} x+\frac{\chi^{2}}{4 \epsilon_{1}} \int_{\Omega}\left|\Delta v_{2}\right|^{2} \mathrm{~d} x \\
& +\Lambda^{*} \epsilon_{2} \int_{\Omega}\left|\nabla\left(v_{1}+1\right)^{\frac{1}{2}}\right|^{2} \mathrm{~d} x+\Lambda^{*} C_{\epsilon_{2}} \\
\leq & \epsilon_{1} \int_{\Omega}\left(v_{1}+1\right)^{2} \mathrm{~d} x+\frac{\chi^{2}}{4 \epsilon_{1}} \int_{\Omega}\left|\Delta v_{2}\right|^{2} \mathrm{~d} x+\Lambda^{*} \epsilon_{2} \int_{\Omega}\left|\nabla\left(v_{1}+1\right)^{\frac{1}{2}}\right|^{2} \mathrm{~d} x+\Lambda^{*} C_{\epsilon_{2}} \\
& \leq\left(C \epsilon_{1}+\Lambda^{*} \epsilon_{2}\right) \int_{\Omega}\left|\nabla\left(v_{1}+1\right)^{\frac{1}{2}}\right|^{2} \mathrm{~d} x+\frac{\chi^{2}}{4 \epsilon_{1}} \int_{\Omega}\left|\Delta v_{2}\right|^{2} \mathrm{~d} x+C \epsilon_{1}+\Lambda^{*} C_{\epsilon_{2}} . \tag{2.44}
\end{align*}
$$

Again applying Cauchy's inequality to the right-hand side terms in (2.42) leads to

$$
\begin{align*}
& -\int_{\Omega}\left[\frac{\delta v_{1} v_{2}}{1+\sigma v_{2}}+k v_{1} \ln \left(1+\frac{\beta v_{3}}{k}\right)\right] \Delta v_{2} \mathrm{~d} x \\
& \quad \leq \frac{d_{2}}{2} \int_{\Omega}\left|\Delta v_{2}\right|^{2} \mathrm{~d} x+\frac{\left(\delta^{*}\right)^{2}}{d_{2}} \int_{\Omega} v_{1}^{2} v_{2}^{2} \mathrm{~d} x+\frac{\left(\beta^{*}\right)^{2}}{d_{2}} \int_{\Omega} v_{1}^{2} v_{3}^{2} \mathrm{~d} x \tag{2.45}
\end{align*}
$$

For $q>6$, by Hölder's inequality and Young's inequality, one has

$$
\begin{align*}
\int_{\Omega} v_{1}^{2} v_{2}^{2} \mathrm{~d} x & \leq\left\|v_{1}+1\right\|_{\frac{2 q}{q-2}}^{2}\left\|v_{2}\right\|_{q}^{2} \\
& \leq \epsilon_{3}\left\|v_{2}\right\|_{q}^{\frac{5 q}{q-1}}+C_{\epsilon_{3}}\left\|v_{1}+1\right\|_{\frac{2 q}{q-2}}^{\frac{10 q}{5 q-2(q-1)}} \\
& \leq C \epsilon_{3}\left\|\Delta v_{2}\right\|_{2}^{2}+C \epsilon_{3}\left\|\nabla v_{2}\right\|_{2}^{2}+C \epsilon_{3}+\epsilon_{4} C_{\epsilon_{3}}\left\|\nabla\left(v_{1}+1\right)^{\frac{1}{2}}\right\|_{2}^{2}+C_{\epsilon_{3}, \epsilon_{4}} \tag{2.46}
\end{align*}
$$

where we use (2.36) and (2.37). Analogously, one has

$$
\begin{equation*}
\int_{\Omega} v_{1}^{2} v_{3}^{2} \mathrm{~d} x \leq C \epsilon_{5}\left\|\Delta v_{3}\right\|_{2}^{2}+C \epsilon_{5}\left\|\nabla v_{3}\right\|_{2}^{2}+C \epsilon_{5}+\epsilon_{6} C_{\epsilon_{5}}\left\|\nabla\left(v_{1}+1\right)^{\frac{1}{2}}\right\|_{2}^{2}+C_{\epsilon_{5}, \epsilon_{6}} \tag{2.47}
\end{equation*}
$$

where (2.36) and (2.38) are used.
By Hölder's inequality and Young's inequality again, and according to (2.37), we have

$$
\begin{align*}
-\gamma \int_{\Omega} v_{2} \Delta v_{3} \mathrm{~d} x & \leq \frac{d_{3}}{2} \int_{\Omega}\left|\Delta v_{3}\right|^{2} \mathrm{~d} x+\frac{\gamma^{2}}{2 d_{3}} \int_{\Omega} v_{2}^{2} \mathrm{~d} x \\
& \leq \frac{d_{3}}{2} \int_{\Omega}\left|\Delta v_{3}\right|^{2} \mathrm{~d} x+\frac{\gamma^{2}}{2 d_{3}}\left\|v_{2}\right\|_{q}^{2} \\
& \leq \frac{d_{3}}{2} \int_{\Omega}\left|\Delta v_{3}\right|^{2} \mathrm{~d} x+\frac{\gamma^{2}}{2 d_{3}} \epsilon_{7}\left\|v_{2}\right\|_{q}^{\frac{5 q}{q-1}}+C_{\epsilon_{7}} \frac{\gamma^{2}}{2 d_{3}} \\
& \leq \frac{d_{3}}{2} \int_{\Omega}\left|\Delta v_{3}\right|^{2} \mathrm{~d} x+\frac{\gamma^{2}}{2 d_{3}} C \epsilon_{7}\left[\left\|\Delta v_{2}\right\|_{2}^{2}+\left\|\nabla v_{2}\right\|_{2}^{2}+1\right]+C_{\epsilon_{7}} \frac{\gamma^{2}}{2 d_{3}} \tag{2.48}
\end{align*}
$$

In summary, by (2.41), together with (2.44), one has for all $t \in\left(0, T_{\max }\right)$,

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega}\left(v_{1}+1\right) \ln \left(v_{1}+1\right) \mathrm{d} x+4 d_{1} \int_{\Omega}\left|\nabla\left(v_{1}+1\right)^{\frac{1}{2}}\right|^{2} \mathrm{~d} x \\
& \quad \leq\left(C \epsilon_{1}+\Lambda^{*} \epsilon_{2}\right) \int_{\Omega}\left|\nabla\left(v_{1}+1\right)^{\frac{1}{2}}\right|^{2} \mathrm{~d} x+\frac{\chi^{2}}{4 \epsilon_{1}} \int_{\Omega}\left|\Delta v_{2}\right|^{2} \mathrm{~d} x+C \epsilon_{1}+\Lambda^{*} C_{\epsilon_{2}} \\
& \quad \leq\left(C \epsilon_{1}+\Lambda^{*} \epsilon_{2}\right) \int_{\Omega}\left|\nabla\left(v_{1}+1\right)^{\frac{1}{2}}\right|^{2} \mathrm{~d} x+C_{1}\left(\epsilon_{1}\right) \chi^{2} \int_{\Omega}\left|\Delta v_{2}\right|^{2} \mathrm{~d} x+C_{2}\left(\epsilon_{1}, \epsilon_{2}\right) \tag{2.49}
\end{align*}
$$

It follows from (2.42) and (2.45)-(2.47) that for all $t \in\left(0, T_{\max }\right)$,

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x+\theta \int_{\Omega}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x+d_{2} \int_{\Omega}\left|\Delta v_{2}\right|^{2} \mathrm{~d} x
$$

$$
\begin{align*}
\leq & \frac{d_{2}}{2} \int_{\Omega}\left|\Delta v_{2}\right|^{2} \mathrm{~d} x+\frac{\left(\delta^{*}\right)^{2}}{d_{2}}\left[C \epsilon_{3}\left\|\Delta v_{2}\right\|_{2}^{2}+C \epsilon_{3}\left\|\nabla v_{2}\right\|_{2}^{2}+C \epsilon_{3}\right. \\
& \left.+\epsilon_{4} C_{\epsilon_{3}}\left\|\nabla\left(v_{1}+1\right)^{\frac{1}{2}}\right\|_{2}^{2}+C_{\epsilon_{3}, \epsilon_{4}}\right] v_{3} \|_{2}^{2} \\
& \left.+C \epsilon_{5}\left\|\nabla v_{3}\right\|_{2}^{2}+C \epsilon_{5}+\epsilon_{6} C_{\epsilon_{5}}\left\|\nabla\left(v_{1}+1\right)^{\frac{1}{2}}\right\|_{2}^{2}+C_{\epsilon_{5}, \epsilon_{6}}\right] . \tag{2.50}
\end{align*}
$$

According to (2.43) and (2.48), clearly, we have

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}\left|\nabla v_{3}\right|^{2} \mathrm{~d} x+\alpha \int_{\Omega}\left|\nabla v_{3}\right|^{2} \mathrm{~d} x+d_{3} \int_{\Omega}\left|\Delta v_{3}\right|^{2} \mathrm{~d} x \\
& \leq \\
& \frac{d_{3}}{2} \int_{\Omega}\left|\Delta v_{3}\right|^{2} \mathrm{~d} x+\frac{\gamma^{2}}{2 d_{3}} C \epsilon_{7}\left[\left\|\Delta v_{2}\right\|_{2}^{2}+\left\|\nabla v_{2}\right\|_{2}^{2}+1\right] \tag{2.51}\\
& \quad+C_{\epsilon_{7}} \frac{\gamma^{2}}{2 d_{3}}, \quad \forall t \in\left(0, T_{\max }\right) .
\end{align*}
$$

Taking $\epsilon_{3}=\frac{d_{2} \min \left\{2 \theta, d_{2}\right\}}{8\left(\delta^{*}\right)^{2} C}, \epsilon_{7}=\frac{d_{3} \min \left\{2 \theta, d_{2}\right\}}{4 \gamma^{2} C}$, and $\epsilon_{5}=\frac{d_{2} \min \left\{2 \alpha, d_{3}\right\}}{4\left(\beta^{*}\right)^{2} C}$, adding (2.50) and (2.51), we have

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega}\left(\left|\nabla v_{2}\right|^{2}+\left.v_{3}\right|^{2}\right) \mathrm{d} x \\
& \quad+\frac{\min \left\{2 \theta, d_{2}\right\}}{2} \int_{\Omega}\left(\left|\nabla v_{2}\right|^{2}+\left|\Delta v_{2}\right|^{2}\right) \mathrm{d} x+\frac{\min \left\{2 \alpha, d_{3}\right\}}{2} \int_{\Omega}\left(\left|\nabla v_{3}\right|^{2}+\left|\Delta v_{3}\right|^{2}\right) \mathrm{d} x \\
& \quad \leq 2\left(\frac{\left(\delta^{*}\right)^{2} C_{\epsilon_{3}} \epsilon_{4}}{d_{2}}+\frac{\left(\beta^{*}\right)^{2} C_{\epsilon_{5}} \epsilon_{6}}{d_{2}}\right) \int_{\Omega}\left|\nabla\left(v_{1}+1\right)^{\frac{1}{2}}\right|^{2} \mathrm{~d} x+C_{3}, \forall t \in\left(0, T_{\max }\right), \tag{2.52}
\end{align*}
$$

where C_{3} is a positive constant depending on $\epsilon_{3}, \epsilon_{4}, \epsilon_{5}$, and ϵ_{6}. Selecting $\epsilon_{1}=\frac{d_{1}}{C}$, $\epsilon_{2}=\frac{d_{1}}{\Lambda^{*}}, \epsilon_{4}=\frac{d_{1} d_{2} \min \left\{2 \theta, d_{2}\right\}}{16\left(\delta^{*}\right)^{2} C_{\epsilon_{3}} C_{1} \chi^{2}}$ and $\epsilon_{6}=\frac{d_{1} d_{2} \min \left\{2 \theta, d_{2}\right\}}{16\left(\beta^{*}\right)^{2} C_{\epsilon_{5}} C_{1} \chi^{2}}$, then multiplying (2.49) by $\min \left\{2 \theta, d_{2}\right\}$ and (2.52) by $2 C_{1} \chi^{2}$, adding the results, we obtain for all $t \in\left(0, T_{\max }\right)$,

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega}\left[\min \left\{2 \theta, d_{2}\right\}\left(v_{1}+1\right) \ln \left(v_{1}+1\right)+4 C_{1} \chi^{2}\left(\left|\nabla v_{2}\right|^{2}+\left|\nabla v_{3}\right|^{2}\right)\right] \mathrm{d} x \\
& \quad+\int_{\Omega}\left\{\min \left\{2 \theta, d_{2}\right\}\left[d_{1}\left(v_{1}+1\right) \ln \left(v_{1}+1\right)+2 C_{1} \chi^{2}\left|\nabla v_{2}\right|^{2}\right]\right. \\
& \left.\quad+2 C_{1} \chi^{2} \min \left\{2 \alpha, d_{3}\right\}\left|\nabla v_{3}\right|^{2}\right\} \mathrm{d} x \\
& \quad+\int_{\Omega} C_{1} \chi^{2}\left[\left\{\min \left\{2 \theta, d_{2}\right\}\left|\Delta v_{2}\right|^{2}+2 \min \left\{2 \alpha, d_{3}\right\}\left|\Delta v_{3}\right|^{2}\right] \mathrm{d} x\right. \\
& \quad \leq \min \left\{2 \theta, d_{2}\right\} C_{2}+4 C_{1} C_{3} \chi^{2} .
\end{aligned}
$$

Solving this standard Gronwall's inequality, we directly obtain the uniform estimate (2.39). By Poincaré's inequality, we have

$$
\left\|v_{3}(\cdot, t)\right\|_{2} \leq C\left\|\nabla v_{3}(\cdot, t)\right\|_{2}, \forall t \in\left(0, T_{\max }\right) .
$$

Hence, v_{3} is bounded in $W^{1,2}(\Omega)$. Then the continuous embedding $W^{1,2}(\Omega) \subset$ $L^{\infty}(\Omega)$ for $n=1$ says that

$$
\left\|v_{3}(\cdot, t)\right\|_{\infty} \leq\left\|v_{3}(\cdot, t)\right\|_{W^{1,2}(\Omega)} \leq C, \forall t \in\left(0, T_{\max }\right)
$$

Lemma 2.11 plays a crucial role in establishing the boundedness of the solution for $n=1$ and arbitrary χ. It should be noted that the subtle inequalities (2.46) and (2.47) only hold for $n=1$. If $n \neq 1$, we cannot get the estimates as (2.46) and (2.47). Now, we dedicate to obtaining the boundedness of v_{1} in $L^{2}(\Omega)$. The boundedness of ∇v_{2} in $L^{4}(\Omega)$ is also derived.

Lemma 2.12 For $\Omega \subset \mathbb{R}^{1}$, the local-in-time solution of (1.2) satisfies

$$
\begin{equation*}
\left\|v_{1}(\cdot, t)\right\|_{2}+\left\|\nabla v_{2}(\cdot, t)\right\|_{4} \leq C, \forall t \in\left(0, T_{\max }\right) \tag{2.53}
\end{equation*}
$$

Proof Multiplying the first equation of (1.2) by v_{1} and integrating by parts lead to

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega} v_{1}^{2} \mathrm{~d} x+d_{1} \int_{\Omega}\left|\nabla v_{1}\right|^{2} \mathrm{~d} x+\int_{\Omega} \frac{\delta v_{1}^{2} v_{2}}{1+\sigma v_{2}} d x \mathrm{~d}+\int_{\Omega} k v_{1}^{2} \ln \left(1+\frac{\beta v_{3}}{k}\right) \mathrm{d} x \\
& \quad=-\chi \int_{\Omega} v_{1} \nabla v_{1} \cdot \nabla v_{2} \mathrm{~d} x+\int_{\Omega} \Lambda v_{1} \mathrm{~d} x \\
& \quad \leq \frac{d_{1}}{4} \int_{\Omega} v_{1}^{2} \mathrm{~d} x+\frac{\chi^{2}}{d_{1}} \int_{\Omega} v_{1}^{2}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x+\Lambda^{*} \int_{\Omega} v_{1} \mathrm{~d} x, \forall t \in\left(0, T_{\max }\right)
\end{aligned}
$$

We may invoke Lemma 2.1 to see that

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega} v_{1}^{2} \mathrm{~d} x+\frac{3 d_{1}}{4} \int_{\Omega}\left|\nabla v_{1}\right|^{2} \mathrm{~d} x+\int_{\Omega} \frac{\delta v_{1}^{2} v_{2}}{1+\sigma v_{2}} \mathrm{~d} x+\int_{\Omega} k v_{1}^{2} \ln \left(1+\frac{\beta v_{3}}{k}\right) \mathrm{d} x \\
& \quad \leq \frac{\chi^{2}}{d_{1}} \int_{\Omega} v_{1}^{2}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x+\Lambda^{*} M_{1}, \forall t \in\left(0, T_{\max }\right) \tag{2.54}
\end{align*}
$$

Taking gradient of the second equation of (1.2) and multiplying it by $\nabla v_{1}\left|\nabla v_{2}\right|^{2}$ and then integrating by parts, we obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}\left|\nabla v_{2}\right|^{4} \mathrm{~d} x+\left.\left.d_{2} \int_{\Omega}|\nabla| \nabla v_{2}\right|^{2}\right|^{2} \mathrm{~d} x+2 d_{2} \int_{\Omega}\left|\nabla v_{2}\right|^{2}\left|D^{2} v_{2}\right|^{2} \mathrm{~d} x+2 \theta \int_{\Omega}\left|\nabla v_{2}\right|^{4} \mathrm{~d} x \\
& \quad=d_{2} \int_{\partial \Omega}\left|\nabla v_{2}\right|^{2}\left|\nabla v_{2}\right|^{2} \cdot \mathbf{n} d S-2 \int_{\Omega} \frac{\delta v_{1} v_{2}}{1+\sigma v_{2}} \Delta v_{2}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x
\end{aligned}
$$

$$
\begin{aligned}
& -2 \int_{\Omega} \frac{\delta v_{1} v_{2}}{1+\sigma v_{2}} \nabla v_{2} \cdot \nabla\left|\nabla v_{2}\right|^{2} \mathrm{~d} x-2 \int_{\Omega} k v_{1} \ln \left(1+\frac{\beta v_{3}}{k}\right) \Delta v_{2}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x \\
& -2 \int_{\Omega} k v_{1} \ln \left(1+\frac{\beta v_{3}}{k}\right) \nabla v_{2} \cdot \nabla\left|\nabla v_{2}\right|^{2} \mathrm{~d} x \\
& =: \mathcal{I}_{0}+\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}+\mathcal{I}_{4}, \forall t \in\left(0, T_{\max }\right),
\end{aligned}
$$

where we utilize the identity

$$
2 \nabla u \cdot \nabla \Delta u=\Delta|\nabla u|^{2}-2\left|D^{2} u\right|^{2} .
$$

Here, $\left|D^{2} u\right|^{2}=\sum_{i, j=1}^{n}\left|\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right|^{2}$. With reference to Ishida et al. (2014), we can deal with the boundary term as follows

$$
\begin{aligned}
\mathcal{I}_{0} & \leq\left.\left.\epsilon \int_{\Omega}|\nabla| \nabla v_{2}\right|^{2}\right|^{2} \mathrm{~d} x+C_{\epsilon}\left(\int_{\Omega}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x\right)^{2} \\
& \leq\left.\left.\epsilon_{8} \int_{\Omega}|\nabla| \nabla v_{2}\right|^{2}\right|^{2} \mathrm{~d} x+C_{\epsilon_{8}} .
\end{aligned}
$$

Note that

$$
\begin{aligned}
\mathcal{I}_{1}+\mathcal{I}_{2} \leq 2 & \left.\int_{\Omega} \frac{\delta^{*}}{\sigma}\left|v_{1} \Delta v_{2}\right|\left|\nabla v_{2}\right|^{2} \mathrm{~d} x+\left.2 \int_{\Omega} \frac{\delta^{*}}{\sigma}\left|v_{1} \nabla v_{2} \cdot \nabla\right| \nabla v_{2}\right|^{2} \right\rvert\, \mathrm{d} x \\
\leq & \frac{d_{2}}{n} \int_{\Omega}\left|\Delta v_{2}\right|^{2}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x+\frac{n\left(\frac{\delta^{*}}{\sigma}\right)^{2}}{d_{2}} \int_{\Omega} v_{1}^{2}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x \\
& +\left.\left.\frac{d_{2}}{4} \int_{\Omega}|\nabla| \nabla v_{2}\right|^{2}\right|^{2} \mathrm{~d} x+\frac{4\left(\frac{\delta^{*}}{\sigma}\right)^{2}}{d_{2}} \int_{\Omega} v_{1}^{2}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x .
\end{aligned}
$$

Similarly, one has

$$
\begin{aligned}
\mathcal{I}_{3}+\mathcal{I}_{4} \leq & 2 \int_{\Omega}\left|\beta^{*} v_{1} v_{3} \Delta v_{2}\right|\left|\nabla v_{2}\right|^{2} \mathrm{~d} x+\left.2 \int_{\Omega}\left|\beta^{*} v_{1} v_{3} \nabla v_{2} \cdot \nabla\right| \nabla v_{2}\right|^{2} \mid \mathrm{d} x \\
\leq & \frac{d_{2}}{n} \int_{\Omega}\left|\Delta v_{2}\right|^{2}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x+\frac{n\left(\beta^{*}\right)^{2}\left\|v_{3}\right\|_{\infty}^{2}}{d_{2}} \int_{\Omega} v_{1}^{2}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x \\
& +\left.\left.\frac{d_{2}}{4} \int_{\Omega}|\nabla| \nabla v_{2}\right|^{2}\right|^{2} \mathrm{~d} x+\frac{4\left(\beta^{*}\right)^{2}\left\|v_{3}\right\|_{\infty}^{2}}{d_{2}} \int_{\Omega} v_{1}^{2}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x .
\end{aligned}
$$

As a result, we conclude that

$$
\begin{align*}
\sum_{i=0}^{4} \mathcal{I}_{i} \leq & 2 d_{2} \int_{\Omega}\left|D^{2} v_{2}\right|^{2}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x+\left.\left.\left(\frac{d_{2}}{2}+\epsilon_{8}\right) \int_{\Omega}|\nabla| \nabla v_{2}\right|^{2}\right|^{2} \mathrm{~d} x \\
& +\frac{n+4}{d_{2}}\left(\left(\frac{\delta^{*}}{\sigma}\right)^{2}+\left(\beta^{*}\right)^{2}\left\|v_{3}\right\|_{\infty}^{2}\right) \int_{\Omega} v_{1}^{2}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x+C_{\epsilon_{8}} \tag{2.55}
\end{align*}
$$

Now, by one-dimensional Gagliardo-Nirenberg interpolation inequality, for $q>1$, $p<\frac{3 q}{q-1}$, we know

$$
\left\|v_{1}\right\|_{q}^{p} \leq \epsilon\left\|\nabla v_{1}\right\|_{2}^{2}+C_{\epsilon}
$$

and

$$
\left\|\left|\nabla v_{2}\right|^{2}\right\|_{q}^{\frac{3 q}{q-1}} \leq C\left\|\nabla\left|\nabla v_{2}\right|^{2}\right\|_{2}^{2}+C
$$

Thus, combining with the above inequalities, we get

$$
\begin{align*}
\int_{\Omega} v_{1}^{2}\left|\nabla v_{2}\right|^{2} \mathrm{~d} x & \leq\left\|v_{1}\right\|_{\frac{2 q}{q-1}}^{2}\left\|\left|\nabla v_{2}\right|^{2}\right\|_{q} \\
& \leq \epsilon_{9}\left\|\left|\nabla v_{2}\right|^{2}\right\|_{q}^{\frac{3 q}{q-1}}+C_{\epsilon 9}\left\|v_{1}\right\|_{\frac{2 q}{q-1}}^{\frac{6 q}{2 q+1}} \\
& \leq C_{4} \epsilon_{9}\left\|\left|\nabla v_{2}\right|^{2}\right\|_{2}^{2}+C_{4} \epsilon_{9}+\epsilon_{10} C_{\epsilon 9}\left\|\nabla v_{1}\right\|_{2}^{2}+C_{\epsilon 9, \epsilon_{10}} \tag{2.56}
\end{align*}
$$

Therefore, in view of (2.55), it is clear for all $t \in\left(0, T_{\max }\right)$ that

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}\left|\nabla v_{2}\right|^{4} \mathrm{~d} x+\left.\left.\frac{d_{2}}{4} \int_{\Omega}|\nabla| \nabla v_{2}\right|^{2}\right|^{2} \mathrm{~d} x+2 \theta \int_{\Omega}\left|\nabla v_{2}\right|^{4} \mathrm{~d} x \\
& \quad \leq \epsilon_{11} \int_{\Omega}\left|\nabla v_{1}\right|^{2} \mathrm{~d} x+C_{\epsilon_{11}} \tag{2.57}
\end{align*}
$$

Moreover, taking $\epsilon_{10}=\frac{d_{1}^{2}}{4 C_{\epsilon_{9}} \chi^{2}}$ and substituting (2.56) to (2.54) yield

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega} v_{1}^{2} \mathrm{~d} x+\frac{d_{1}}{2} \int_{\Omega}\left|\nabla v_{1}\right|^{2} \mathrm{~d} x+\int_{\Omega} \frac{\delta v_{1}^{2} v_{2}}{1+\sigma v_{2}} \mathrm{~d} x+\int_{\Omega} k v_{1}^{2} \ln \left(1+\frac{\beta v_{3}}{k}\right) \mathrm{d} x \\
& \quad \leq\left.\left. C_{5} \int_{\Omega}|\nabla| \nabla v_{2}\right|^{2}\right|^{2} \mathrm{~d} x+C_{6}, \forall t \in\left(0, T_{\max }\right) \tag{2.58}
\end{align*}
$$

where C_{5} depending on ϵ_{9} and C_{6} depending on ϵ_{9} and ϵ_{10} are positive constants.
We multiply (2.57) by $\frac{8 C_{5}}{d_{2}}$ to annihilate the first term on the right-hand side of (2.58). The choice of ϵ_{11} is done in such a way that $\frac{d_{1}}{2}-\frac{8 C_{5} \epsilon_{11}}{d_{2}}=\frac{d_{1}}{4}$. We then observe that

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega}\left(v_{1}^{2}+\left|\nabla v_{2}\right|^{4}\right) \mathrm{d} x \\
& \quad+C \int_{\Omega}\left(\left|\nabla v_{1}\right|^{2}+\left|\nabla v_{2}\right|^{2}+\left.|\nabla| \nabla v_{2}\right|^{2} \left\lvert\,+\frac{\delta v_{1}^{2} v_{2}}{1+\sigma v_{2}}+k v_{1}^{2} \ln \left(1+\frac{\beta v_{3}}{k}\right)\right.\right) \mathrm{d} x \\
& \quad \leq C, \forall t \in\left(0, T_{\max }\right)
\end{aligned}
$$

We employ Poincaré inequality in estimating

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega}\left(v_{1}^{2}+\left|\nabla v_{2}\right|^{4}\right) \mathrm{d} x+C \int_{\Omega}\left(\frac{\delta v_{1}^{2} v_{2}}{1+\sigma v_{2}}+k v_{1}^{2} \ln \left(1+\frac{\beta v_{3}}{k}\right)\right) \mathrm{d} x \\
\leq & -C \int_{\Omega}\left(v_{1}^{2}+\left|\nabla v_{2}\right|^{4}\right) \mathrm{d} x+C, \forall t \in\left(0, T_{\max }\right) .
\end{aligned}
$$

Then by Gronwall's inequality, (2.53) is readily derived.
Since the spatial dimension is one, we can get the boundedness of the solution without any restriction on χ.

Theorem 2.4 For $\Omega \subset \mathbb{R}^{1}$, assume $v_{10}, v_{30} \in C(\bar{\Omega})$ and $v_{20} \in W^{1, q}(\Omega)$ for $q>1$. Then, there exists a unique global classical solution of(1.2) in the sense of Theorem 2.3.

Proof We employ the boundedness of v_{1} in $L^{2}(\Omega)$ and v_{3} in $L^{\infty}(\Omega)$ to derive the boundedness of ∇v_{2} and v_{1} in $L^{\infty}(\Omega)$. Applying the variation-of-constants formula and then taking the gradient for the second equation, one has

$$
\begin{align*}
\left\|\nabla v_{2}(\cdot, t)\right\|_{\infty} & \leq\left\|\nabla e^{t\left(d_{2} \Delta-\theta\right)} v_{20}\right\|_{\infty}+\int_{0}^{t}\left\|\nabla e^{(t-s)\left(d_{2} \Delta-\theta\right)}\left[\frac{\delta v_{1} v_{2}}{1+\sigma v_{2}}+k v_{1} \ln \left(1+\frac{\beta v_{3}}{k}\right)\right]\right\|_{\infty} \mathrm{d} s \\
& \leq C\left\|\nabla v_{20}\right\|_{\infty}+\int_{0}^{t}\left\|\nabla e^{(t-s)\left(d_{2} \Delta-\theta\right)}\left(\frac{\delta^{*}}{\sigma}+\beta^{*} v_{3}\right) v_{1}\right\|_{\infty} \mathrm{d} s \\
& \leq C\left\|\nabla v_{20}\right\|_{\infty}+\int_{0}^{t} k_{2}\left[1+(t-s)^{-\frac{1}{2}-\frac{1}{4}}\right] e^{-\theta(t-s)}\left(\frac{\delta^{*}}{\sigma}+\beta^{*}\left\|v_{3}\right\|_{\infty}\right)\left\|v_{1}\right\|_{2} \mathrm{~d} s \\
& \leq C+C \int_{0}^{\infty}\left(1+\tau^{-\frac{3}{4}}\right) e^{-\theta \tau} \mathrm{d} \tau \\
& \leq C, \forall t \in\left(0, T_{\max }\right), \tag{2.59}
\end{align*}
$$

where we have used Lemma 2.4 (ii) and the estimate (2.40). Applying the variation-of-constants formula to the first equation of (1.2), we have

$$
\begin{aligned}
v_{1}(\cdot, t)= & e^{t\left(d_{1} \Delta-\mu\right)} v_{10}+\chi \int_{0}^{t} e^{(t-s)\left(d_{1} \Delta-\mu\right)} \nabla \cdot\left(v_{1} \nabla v_{2}\right) \mathrm{d} s \\
& +\int_{0}^{t} e^{(t-s)\left(d_{1} \Delta-\mu\right)}\left[\Lambda-\frac{\delta v_{1} v_{2}}{1+\sigma v_{2}}-k v_{1} \ln \left(1+\frac{\beta v_{3}}{k}\right)\right] \mathrm{d} s, \forall t \in\left(0, T_{\max }\right) .
\end{aligned}
$$

By use of Lemmas 2.4, 2.11, and 2.12, we proceed to check that

$$
\begin{aligned}
\left\|v_{1}(\cdot, t)\right\|_{\infty} \leq & \left\|e^{t\left(d_{1} \Delta-\mu\right)} v_{10}\right\|_{\infty}+|\chi| \int_{0}^{t}\left\|e^{(t-s)\left(d_{1} \Delta-\mu\right)} \nabla \cdot\left(v_{1} \nabla v_{2}\right)\right\|_{\infty} \mathrm{d} s \\
& +\int_{0}^{t}\left\|e^{(t-s)\left(d_{1} \Delta-\mu\right)}\left[\Lambda+\frac{\delta v_{1} v_{2}}{1+\sigma v_{2}}+k v_{1} \ln \left(1+\frac{\beta v_{3}}{k}\right)\right]\right\|_{\infty} \mathrm{d} s \\
\leq & C+k_{4}|\chi| \int_{0}^{t}\left(1+(t-s)^{-\frac{1}{2}-\frac{1}{4}}\right) e^{-\mu(t-s)}\left\|v_{1} \nabla v_{2}\right\|_{2} \mathrm{~d} s
\end{aligned}
$$

$$
\begin{align*}
& +k_{1} \int_{0}^{t}\left(1+(t-s)^{-\frac{1}{4}}\right) e^{-\mu(t-s)}\left[\Lambda^{*}+\left(\frac{\delta^{*}}{\sigma}+\beta^{*}\left\|v_{3}\right\|_{\infty}\right)\left\|v_{1}\right\|_{2}\right] \mathrm{d} s \\
\leq & C, \forall t \in\left(0, T_{\max }\right) . \tag{2.60}
\end{align*}
$$

By (2.40) and (2.60), we know that v_{1} and v_{3} are bounded in $L^{\infty}(\Omega)$. By (2.59), v_{2} is bounded in $W^{1, q}(\Omega)$ for $t \in\left[0, T_{\max }\right)$ and $q>1$. Then by Lemma 2.5 , we conclude $T_{\max }=\infty$, implying the global existence and boundedness of the solution.

We make a brief summary of the existence and boundedness of the solution to model (1.2). When there is no chemotaxis, we establish the global existence of the solution. Furthermore, the ultimate boundedness and the existence of a global attractor are also derived. When $|\chi|$ is sufficiently small, the global existence of the solution is obtained for all n. As a compromise, when there is no restriction on χ, we can only acquire the global existence of the solution for $n=1$.

3 Threshold Dynamics

We now demonstrate the threshold dynamics of model (1.2) in terms of the basic reproduction number.

3.1 Basic Reproduction Number

It follows from Lemma 1 in Lou and Zhao (2011) that (1.2) admits a pathogen-free equilibrium $E_{0}=(V, 0,0)$, where V is the unique positive solution of

$$
\begin{cases}d_{1} \Delta v_{1}+\Lambda(x)-\mu v_{1}=0, & x \in \Omega \\ \nabla v_{1} \cdot \mathbf{n}=0, & x \in \partial \Omega\end{cases}
$$

We linearize (1.2) at E_{0} to get

$$
\begin{cases}\partial_{t} v_{1}-d_{1} \Delta v_{1}=-\mu v_{1}-\delta(x) V v_{2}-\beta(x) V v_{3}, & x \in \Omega, t>0, \tag{3.1}\\ \partial_{t} v_{2}-d_{2} \Delta v_{2}=\delta(x) V v_{2}+\beta(x) V v_{3}-\theta v_{2}, & x \in \Omega, t>0, \\ \partial_{t} v_{3}-d_{3} \Delta v_{3}=\gamma v_{2}-\alpha v_{3}, & x \in \Omega, t>0, \\ \nabla v_{1} \cdot \mathbf{n}=\nabla v_{2} \cdot \mathbf{n}=\nabla v_{3} \cdot \mathbf{n}=0, & x \in \partial \Omega, t>0, \\ v_{1}(x, 0)=v_{10}(x), v_{2}(x, 0)=v_{20}(x), v_{3}(x, 0)=v_{30}(x), & x \in \Omega .\end{cases}
$$

Following the next-generation-operator approach (Wang and Zhao 2012), by virtue of (3.1), we define $L=\operatorname{diag}\left(-d_{2} \Delta,-d_{3} \Delta\right)$,

$$
F(x)=\left(\begin{array}{cc}
\delta V & \beta V \\
0 & 0
\end{array}\right), \quad V(x)=\left(\begin{array}{cc}
\theta & 0 \\
-\gamma & \alpha
\end{array}\right) .
$$

Let $\Psi(t): C\left(\bar{\Omega}, \mathbb{R}^{2}\right) \rightarrow C\left(\bar{\Omega}, \mathbb{R}^{2}\right)$ be the solution semigroup generated by $L-V$. Suppose that the distribution of initial infection is $\psi(x)=\left(\psi_{2}(x), \psi_{3}(x)\right)$. Then, the distribution of new infectives is

$$
\mathcal{L}(\psi)(x):=\int_{0}^{\infty} F(x) \Psi(t) \psi d t
$$

Hence, the basic reproduction number of (1.2) is defined by

$$
\mathcal{R}_{0}:=r(\mathcal{L})
$$

where $r(\mathcal{L})$ is the spectral radius of \mathcal{L}. It then follows from standard arguments in the theory of dynamical system (Wu and Zou 2018; Zhao 2017) that we have the following threshold dynamics in terms of \mathcal{R}_{0}.

Proposition 3.1 The following assertions hold.
(i) For arbitrary χ, if $\mathcal{R}_{0}<1$, then E_{0} is globally asymptotically stable.
(ii) For zero χ, if $\mathcal{R}_{0}>1$, then system (1.2) is uniformly persistent. Moreover, (1.2) admits at least one positive steady state.

With reference to Theorem 3.4 in Wang and Zhao (2012), we can define the basic reproduction number for model (1.2) in a spatially homogeneous environment.

Proposition 3.2 If $\Lambda(x), \delta(x)$, and $\beta(x)$ are independent of the position x, then

$$
\begin{equation*}
\mathcal{R}_{0}=\frac{\delta \Lambda}{\mu \theta}+\frac{\beta \Lambda \gamma}{\mu \alpha \theta} \tag{3.2}
\end{equation*}
$$

The first part of \mathcal{R}_{0} denotes the infection spread by infected hosts, as \mathcal{R}_{0} gets larger with δ increasing. The second part of \mathcal{R}_{0} represents the disease transmission from pathogens. \mathcal{R}_{0} fluctuates in response to the changes of β.

3.2 A Limiting Case

In this subsection, we explore the limiting case when $\sigma \rightarrow 0$ and $k \rightarrow \infty$ in (1.2) with Λ, δ, and β independent of x. Model (1.2) is then written as:

$$
\begin{cases}\partial_{t} v_{1}-d_{1} \Delta v_{1}=\chi \nabla \cdot\left(v_{1} \nabla v_{2}\right)+\Lambda-\mu v_{1}-\delta v_{1} v_{2}-\beta v_{1} v_{3}, & x \in \Omega, t>0, \tag{3.3}\\ \partial_{t} v_{2}-d_{2} \Delta v_{2}=\delta v_{1} v_{2}+\beta v_{1} v_{3}-\theta v_{2}, & x \in \Omega, t>0, \\ \partial_{t} v_{3}-d_{3} \Delta v_{3}=\gamma v_{2}-\alpha v_{3}, & x \in \Omega, t>0, \\ \nabla v_{1} \cdot \mathbf{n}=\nabla v_{2} \cdot \mathbf{n}=\nabla v_{3} \cdot \mathbf{n}=0, & x \in \partial \Omega, t>0, \\ v_{1}(x, 0)=v_{10}(x), v_{2}(x, 0)=v_{20}(x), v_{3}(x, 0)=v_{30}(x), & x \in \Omega .\end{cases}
$$

The basic reproduction number for (3.3) can be defined as identical to (3.2). The pathogen-free equilibrium of (3.3) is $E_{1}=\left(\frac{\Lambda}{\mu}, 0,0\right)$. If $\mathcal{R}_{0}>1$, the endemic equi-
librium of (3.3) is $E^{*}=\left(v_{1}^{*}, v_{2}^{*}, v_{3}^{*}\right)$, where

$$
v_{1}^{*}=\frac{\alpha \theta}{\delta \alpha+\beta \gamma}, v_{2}^{*}=\frac{\Lambda-\mu v_{1}^{*}}{\theta}, v_{3}^{*}=\frac{\gamma v_{2}^{*}}{\alpha} .
$$

We now consider the case $\chi<0$, which represents the chemotactic attraction between the hosts. In order to analyze the Turing pattern formation of (3.3), we then work with a non-dimensional version of (3.3) to reduce the number of parameters and simplify some of the analysis. The non-dimensional-dependent species variables are given by:

$$
V_{1}=\frac{v_{1}}{v_{1}^{*}}, \quad V_{2}=\frac{v_{2}}{v_{2}^{*}}, \quad V_{3}=\frac{v_{3}}{v_{3}^{*}},
$$

and the non-dimensional space variable $X=\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{R}^{n}$ and time variable $\tau \in \mathbb{R}$ are set as

$$
\tau=\frac{t}{H_{t}}, X_{i}=\frac{x_{i}}{H}, i=1, \ldots, n,
$$

where H and H_{t} are positive constants, which will be chosen later. Substitute the non-dimensional variables into (3.3) to get

$$
\begin{cases}\partial_{\tau} V_{1}-\frac{d_{1} H_{t}}{H^{2}} \Delta V_{1}=\frac{\chi H_{t} v_{2}^{*}}{H^{2}} \nabla \cdot\left(V_{1} \nabla V_{2}\right)+\frac{H_{t} \Lambda}{v_{1}^{*}}-\mu H_{t} V_{1} & \tag{3.4}\\ \quad-\delta H_{t} v_{2}^{*} V_{1} V_{2}-\beta H_{t} v_{3}^{*} V_{1} V_{3}, & X \in \tilde{\Omega}, \tau>0, \\ \partial_{\tau} V_{2}-\frac{d_{2} H_{t}}{H^{2}} \Delta V_{2}=\delta H_{t} v_{1}^{*} V_{1} V_{2}+\frac{\beta H_{t} v_{1}^{*} v_{3}^{*}}{v_{2}^{*}} V_{1} V_{3}-\theta H_{t} V_{2}, & X \in \tilde{\Omega}, \tau>0, \\ \partial_{\tau} V_{3}-\frac{d_{3} H_{t}}{H^{2}} \Delta V_{3}=\frac{\gamma H_{t} v_{2}^{*}}{v_{3}^{*}} V_{2}-\alpha H_{t} V_{3}, & X \in \tilde{\Omega}, \tau>0, \\ \nabla V_{1} \cdot \mathbf{n}=\nabla V_{2} \cdot \mathbf{n}=\nabla V_{3} \cdot \mathbf{n}=0, & X \in \partial \tilde{\Omega}, t>0, \\ V_{1}(X, 0)=V_{10}(X), V_{2}(X, 0)=V_{20}(X), V_{3}(X, 0)=V_{30}(X), & X \in \tilde{\Omega},\end{cases}
$$

where $\tilde{\Omega}=\left\{\frac{x}{H}: x \in \Omega\right\}$. Let

$$
\begin{gathered}
H_{t}:=\frac{1}{\mu}, H^{2}:=\frac{d_{1}}{\mu}, \tilde{\Lambda}=\frac{\Lambda}{\mu v_{1}^{*}}, \tilde{\chi}:=\frac{\chi H_{t} v_{2}^{*}}{H^{2}}, \tilde{\theta}:=\frac{\theta}{\mu}, \\
D_{2}:=\frac{d_{2} H_{t}}{H^{2}}, D_{3}:=\frac{d_{3} H_{t}}{H^{2}}, \tilde{\delta}:=\frac{\delta v_{2}^{*}}{\mu}, \tilde{\beta}:=\frac{\beta v_{1}^{*} v_{3}^{*}}{\mu v_{2}^{*}}, \tilde{\alpha}=\frac{\alpha}{\mu} .
\end{gathered}
$$

Then, (3.4) becomes

$$
\begin{cases}\partial_{\tau} V_{1}-\Delta V_{1}=\tilde{\chi} \nabla \cdot\left(V_{1} \nabla V_{2}\right)+\tilde{\Lambda} & \tag{3.5}\\ -V_{1}-\tilde{\delta} V_{1} V_{2}-(\tilde{\Lambda}-1-\tilde{\delta}) V_{1} V_{3}, & X \in \tilde{\Omega}, \tau>0 \\ \partial_{\tau} V_{2}-D_{2} \Delta V_{2}=(\tilde{\theta}-\tilde{\beta}) V_{1} V_{2}+\tilde{\beta} V_{1} V_{3}-\tilde{\theta} V_{2}, & X \in \tilde{\Omega}, \tau>0 \\ \partial_{\tau} V_{3}-D_{3} \Delta V_{3}=\tilde{\alpha}\left(V_{2}-V_{3}\right), & X \in \tilde{\Omega}, \tau>0 \\ \nabla V_{1} \cdot \mathbf{n}=\nabla V_{2} \cdot \mathbf{n}=\nabla V_{3} \cdot \mathbf{n}=0, & X \in \partial \tilde{\Omega}, t>0, \\ V_{1}(X, 0)=V_{10}(X), V_{2}(X, 0)=V_{20}(X), & X \in \tilde{\Omega} \\ V_{3}(X, 0)=V_{30}(X), & \end{cases}
$$

After simplifying (3.3), it is straightforward to check that in the absence of spatial variation (3.5) admits the following two equilibria: pathogen-free equilibrium $E_{1}=$ $(\tilde{\Lambda}, 0,0)$, and endemic equilibrium $E^{*}=(1,1,1)$ for $\tilde{\Lambda}>1$.

The Jacobian matrix of (3.5) at E^{*} is

$$
\mathcal{J}\left(E^{*}\right)=\left(\begin{array}{ccc}
-\tilde{\Lambda}-l^{2}-\tilde{\delta}+\tilde{\chi} l^{2} & -(\tilde{\Lambda}-1-\tilde{\delta}) \\
\tilde{\theta} & \tilde{\beta}-D_{2} l^{2} & \tilde{\beta} \\
0 & \tilde{\alpha} & -\tilde{\alpha}-D_{3} l^{2}
\end{array}\right)
$$

Here, $l^{2}:=\mathbf{I}^{\mathrm{T}} \mathbf{l}$, where $\mathbf{l} \in \mathbb{R}^{n}$ is the wave number. The corresponding characteristic polynomial of $\mathcal{J}\left(E^{*}\right)$ is

$$
\begin{aligned}
P(\lambda)= & \lambda^{3}+\lambda^{2}\left[\left(1+D_{2}+D_{3}\right) l^{2}+(\tilde{\alpha}+\tilde{\beta}+\tilde{\Lambda})\right] \\
& +\lambda\left[\left(D_{2}+D_{3}+D_{2} D_{3}\right) l^{4}+\left(D_{2} \tilde{\alpha}+D_{3} \tilde{\beta}+\left(D_{2}+D_{3}\right) \tilde{\Lambda}+\tilde{\alpha}+\tilde{\beta}+\tilde{\chi} \tilde{\theta}\right) l^{2}\right. \\
& +((\tilde{\alpha}+\tilde{\beta}) \tilde{\Lambda}+\tilde{\delta} \tilde{\theta})]+\left[D_{2} D_{3} l^{6}+\left(D_{2} \tilde{\alpha}+D_{3} \tilde{\beta}+D_{2} D_{3} \tilde{\Lambda}+\tilde{\chi} \tilde{\theta} D_{3}\right) l^{4}\right. \\
& \left.+\left(\left(D_{2} \tilde{\alpha}+D_{3} \tilde{\beta}\right) \tilde{\Lambda}+D_{2} \tilde{\delta}+\tilde{\chi} \tilde{\alpha}\right) l^{2}+\tilde{\alpha} \tilde{\theta}(\tilde{\Lambda}-1)\right] \\
= & \lambda^{3}+f \lambda^{2}+g \lambda+h,
\end{aligned}
$$

where

$$
\begin{aligned}
f= & \left(1+D_{2}+D_{3}\right) l^{2}+(\tilde{\alpha}+\tilde{\beta}+\tilde{\Lambda})=: f_{1} l^{2}+f_{2}, \\
g= & \left(D_{2}+D_{3}+D_{2} D_{3}\right) l^{4}+\left(D_{2} \tilde{\alpha}+D_{3} \tilde{\beta}+\left(D_{2}+D_{3}\right) \tilde{\Lambda}+\tilde{\alpha}+\tilde{\beta}+\tilde{\chi} \tilde{\theta}\right) l^{2} \\
& +((\tilde{\alpha}+\tilde{\beta}) \tilde{\Lambda}+\tilde{\delta} \tilde{\theta}) \\
= & g_{1} l^{4}+g_{2} l^{2}+g_{3}, \\
h= & D_{2} D_{3} l^{6}+\left(D_{2} \tilde{\alpha}+D_{3} \tilde{\beta}+D_{2} D_{3} \tilde{\Lambda}+\tilde{\chi} \tilde{\theta} D_{3}\right) l^{4} \\
& +\left(\left(D_{2} \tilde{\alpha}+D_{3} \tilde{\beta}\right) \tilde{\Lambda}+D_{2} \tilde{\delta}+\tilde{\chi} \tilde{\alpha}\right) l^{2}+\tilde{\alpha} \tilde{\theta}(\tilde{\Lambda}-1)
\end{aligned}
$$

$$
=: h_{1} l^{6}+h_{2} l^{4}+h_{3} l^{2}+h_{4} .
$$

It is obvious that $f_{1}, f_{2}, g_{1}, g_{3}, h_{1}$, and h_{4} are positive, while g_{2}, h_{2}, and h_{3} may be nonpositive. Note that patterns may occur in a reaction-chemotaxis-diffusion system in the neighborhood of a spatially homogeneous steady state, provided the conditions for the chemotaxis-driven instability are satisfied. The conditions are:
(A1) The steady state is linearly stable in the absence of diffusion and chemotaxis;
(A2) The steady state is linearly unstable in the presence of diffusion and chemotaxis.
It follows from Theorem 4 in Ren et al. (2018) that (A1) is satisfied for $l^{2}=0$. According to the Ruth-Hurwitz stability criterion for a cubic polynomial, we know E^{*} is stable if and only if $f, g, h>0$ and $f g>h$. Thus, we give the necessary conditions to guarantee (A2) holds for the steady state of (3.3) as follows.

Proposition 3.3 Given $\chi<0$, the chemotaxis-driven instability occurs for (3.3) if at least one of the following conditions holds:

$$
\begin{align*}
& \text { (i) } \chi \leq-\left(\frac{\left(d_{1}+d_{2}\right) \alpha}{\theta v_{2}^{*}}+\frac{\left(d_{1}+d_{3}\right) \beta \gamma v_{1}^{*}}{\alpha \theta v_{2}^{*}}+\frac{\left(d_{2}+d_{3}\right) \Lambda}{\theta v_{1}^{*} v_{2}^{*}}\right) ; \tag{i}\\
& \text { (ii) } \chi \leq-\left(\frac{d_{1} d_{2} \alpha}{d_{3} \theta v_{2}^{*}}+\frac{d_{1} \beta \gamma v_{1}^{*}}{\alpha \theta v_{2}^{*}}+\frac{d_{2} \Lambda}{\theta v_{1}^{*} v_{2}^{*}}\right) ; \\
& \text { (iii) } \chi \leq-\left(\frac{d_{2} \Lambda}{\mu v_{1}^{*} v_{2}^{*}}+\frac{d_{3} \beta \gamma \Lambda}{\mu \alpha^{2} v_{2}^{*}}+\frac{d_{3} \delta}{\alpha}\right) .
\end{align*}
$$

Proof Applying the Ruth-Hurwitz stability criterion for $P(\lambda)$, we can infer that one way that E^{*} of (3.5) may become unstable is at least one of g_{2}, h_{2}, and h_{3} is nonpositive. Thus, either
(P1) $g_{2} \leq 0$, i.e., $\tilde{\chi} \leq-\left(\frac{D_{2} \tilde{\alpha}}{\tilde{\theta}}+\frac{D_{3} \tilde{\beta}}{\tilde{\theta}}+\frac{\tilde{\alpha}+\tilde{\beta}}{\tilde{\theta}}\right)$; or
(P2) $h_{2} \leq 0$, i.e., $\tilde{\chi} \leq-\left(\frac{D_{2} \tilde{\alpha}}{D_{3} \tilde{\theta}}+\frac{\tilde{\beta}}{\tilde{\theta}}+\frac{D_{1} \tilde{\Lambda}}{\tilde{\theta}}\right)$;or
(P3) $h_{3} \leq 0$, i.e., $\tilde{\chi} \leq-\left(D_{2} \tilde{\Lambda}+\frac{D_{3} \tilde{\beta} \tilde{\Lambda}}{\tilde{\alpha}}+\frac{D_{3} \tilde{\delta}}{\tilde{\alpha}}\right)$.
As a consequence, conditions (i)-(iii) in Proposition 3.3 are equivalent to conditions (P1)-(P3).

4 Spatial Aggregation and Segregation

We now proceed to verify the results of boundedness for different χ numerically within one- and two-dimensional domains. Additionally, spatial aggregation and segregation phenomena will be illustrated.

4.1 Spatial Aggregation

In this subsection, the parameter values are taken as follows: $d_{1}=d_{2}=k=\sigma=$ $\alpha=1, d_{3}=\mu=0.1, \Lambda=10, \gamma=2$, and $\theta=0.5$. For the one-dimensional simulation, we take Ω as a finite open interval $\Omega_{1}:=\Omega=(-10,10)$. For the twodimensional simulation, model (1.2) will be numerically solved on a square domain $\Omega_{2}:=\Omega=(-10,10) \times(-10,10)$.

We first consider the case without chemotaxis in model (1.2). For the onedimensional simulation, the initial values are taken as: $\left(v_{10}, v_{20}, v_{30}\right)=\left(100 e^{-|x|^{2}}\right.$, $\left.10 e^{-|x|^{2}}, 50 e^{-|x|^{2}}\right), x \in \Omega_{1}$, and we assume

$$
\delta(x)=0.3 \cos x+0.32, \beta(x)=0.5 \sin x+0.53, x \in \Omega_{1} .
$$

For the two-dimensional simulation, the initial values are taken as $\left(v_{10}, v_{20}, v_{30}\right)=$ $(100,10,50),(x, y) \in \Omega_{2}$, and we assume

$$
\delta(x, y)=0.0003 \cos x \sin y+0.16, \beta(x, y)=0.0005 \sin x \cos y+0.1,(x, y) \in \Omega_{2} .
$$

Actually, the parameter values chosen in this way guarantee that $\mathcal{R}_{0}>1$ by Proposition 3.2.

When the chemotaxis is absent in model (1.2), that is, $\chi=0$, the numerical results are depicted in Fig. 1. By observing Fig. 1a-c, at the initial stage, both the hosts and pathogens are highly concentrated in the neighborhood of $x=0$. However, the solution tends to a steady state as time evolves. Figure 1d-f illustrates the spatial distribution of infected hosts in a square at different time moments. Since the infection rates are taken as periodic functions of spatial variables x and y, the solution also performs periodicity at the steady state, as displayed in Fig. 1g-i. The solution remains bounded regardless of the spatial dimension of the domain, and its ultimate bound is independent of the initial data, which are consistent with Theorems 2.1 and 2.2.

We then explore the case of weak chemotaxis by taking $\chi=0.1$. For the onedimensional simulation, the initial data are taken as $\left(v_{10}, v_{20}, v_{30}\right)=(100+x, 10+$ $0.5 x, 50+x), x \in \Omega_{1}$, and the infection rates are

$$
\delta(x)=0.3 \cos x+0.32, \beta(x)=0.5 \sin x+0.53, x \in \Omega_{1} .
$$

For the two-dimensional simulation, the initial data are the same as those in the case without chemotaxis, and the infection rates are taken in this way:

$$
\delta(x)=0.03 \sin x+0.05, \beta(y)=0.05 \sin y+0.07,(x, y) \in \Omega_{2},
$$

where the infection rate of infected hosts is periodic in x, whereas the infection rate of pathogens is periodic in y.

The numerical results are presented in Fig.2. From Fig. 2a-c, the hosts and pathogens highly concentrate at the position $x=10$, while the distribution of the steady state behaves periodically in x. Figure 2d-f shows the spatial distribution of the infected hosts at different time moments in the two-dimensional domain. It can be

Fig. $1 \chi=0$ in model (1.2). a-c The spatiotemporal evolution of the solution for the one-dimensional domain. d-f: The spatial distribution of v_{2} at $t=1,5,80$ for the two-dimensional domain, respectively. $\mathbf{g}-\mathbf{i}$: The phase portraits of the solution at the steady state
observed from Fig. 2g-i that the solution has more obvious periodicity in y. Irrespective of the spatial dimension of the domain, the solution is also bounded and tends to a steady state for the weak chemotaxis effect. This aligns with Theorem 2.3.

We now take $\chi=10$ to represent that the chemotaxis effect is strong. The initial data is chosen as $\left(v_{10}, v_{20}, v_{30}\right)=(100,10+\varrho(x), 50+\varrho(x))$, where $\varrho(x)$ is random noise uniformly distributed in $(-1,1)$. The infection rates are selected as constant in the whole domain, where $\delta=0.003$ and $\beta=0.005$. The numerical results are displayed in Fig. 3. We introduce perturbations to the initial data of infected hosts and pathogens, but the solution still converges to a steady state in the one-dimensional domain by Fig. 3a-c. Additionally, the solution is bounded, in accordance with Theorem 2.4. For the two-dimensional simulation, we find that infected hosts highly concentrate at certain positions when t is small and χ is large. When t exceeds 0.05 , the solution appears to experience a numerical blow-up (synonymously referred to as finite-time blow-up), rendering it noncomputable within the desired tolerance. Biologically, this highly concentrated phenomenon before the blow-up is explained as spatial aggregation (Bellomo et al. 2019). In fact, by virtue of Theorem 2.4 and Proposition 3.1(i), we understand that the blow-up of the solution may occur for $\mathcal{R}_{0}>1$ and large χ in a two-dimensional domain. Mathematically, a standard approach to deal with this phenomenon is to introduce a regularization term to (1.2). We shall use a densitydependent sensitivity regularization, studied in Velázquez (2004a, b); Stancevic et al.

Fig. $2 \chi=0.1$ in model (1.2). a-c The spatiotemporal evolution of the solution for the one-dimensional domain. d-f The spatial distribution of v_{2} at $t=1,5,80$ for the two-dimensional domain, respectively. $\mathbf{g}-\mathbf{i}$ The phase portraits of the solution at the steady state
(2013). Our new governing system becomes:

$$
\begin{cases}\partial_{t} v_{1}-d_{1} \Delta v_{1}=(1+\varepsilon) \chi \nabla \cdot\left(\frac{v_{1}}{1+\varepsilon v_{1}} \nabla v_{2}\right)+\Lambda(x) & \tag{4.1}\\ -\mu v_{1}-\frac{\delta(x) v_{1} v_{2}}{1+\sigma v_{2}}-k v_{1} \ln \left(1+\frac{\beta(x) v_{3}}{k}\right), & x \in \Omega, t>0 \\ \partial_{t} v_{2}-d_{2} \Delta v_{2}=\frac{\delta(x) v_{1} v_{2}}{1+\sigma v_{2}}+k v_{1} \ln \left(1+\frac{\beta(x) v_{3}}{k}\right)-\theta v_{2}, & x \in \Omega, t>0 \\ \partial_{t} v_{3}-d_{3} \Delta v_{3}=\gamma v_{2}-\alpha v_{3}, & x \in \Omega, t>0 \\ \nabla v_{1} \cdot \mathbf{n}=\nabla v_{2} \cdot \mathbf{n}=\nabla v_{3} \cdot \mathbf{n}=0, & x \in \partial \Omega, t>0 \\ v_{1}(x, 0)=v_{10}(x), v_{2}(x, 0)=v_{20}(x), v_{3}(x, 0)=v_{30}(x), & x \in \Omega\end{cases}
$$

According to Stancevic et al. (2013), the notation of effective chemotaxis of model (4.1) is:

$$
\bar{\chi}:=\frac{1+\varepsilon}{1+\varepsilon v_{1}} \chi .
$$

Fig. $3 \quad \chi=10$ in model (1.2). a-c The spatiotemporal evolution of the solution for the one-dimensional domain. d-f The spatial distribution of v_{2} at $t=0.03,0.04,0.05$ for the two-dimensional domain, respectively. $\mathbf{g - i}$ The spatial distribution of v_{2} at $t=0.1,1,100$ after the regularization of the chemotaxis

Note that $\bar{\chi} \rightarrow 0$ as $v_{1} \rightarrow \infty$. For large but bounded $v_{1}, \bar{\chi} \rightarrow \chi$ as $\varepsilon \rightarrow 0$. The effective chemotaxis in model (4.1) serves to maintain the boundedness of the solution. By the regularization of the chemotaxis as (4.1), the numerical results are illustrated in Fig. 3g-i, where ε is taken as 0.1. It is evident that the solution of the model remains bounded after the regularization of the chemotaxis.

Nevertheless, further explanation is required to establish a connection between the blow-up of solutions and real-world process behavior, as blow-up phenomena are not observed in reality (Bellomo et al. 2015).

4.2 Spatial Segregation

We apply the segregation indices introduced in Wang et al. (2022) to measure the degree of segregation:

$$
\eta(u, v)=\max _{x \in \bar{\Omega}}\{u-v\} \cdot \min _{x \in \bar{\Omega}}\{u-v\},
$$

and

Fig. 4 The distribution of the steady states for model (1.2) with varying values of α when $\chi=0.1$
Table 1 Segregation indices and infection fraction for different α

α	$\eta\left(v_{1}, v_{2}\right)$	$\kappa\left(v_{1}, v_{2}\right)$	$\frac{\int_{0}^{2 \pi} v_{2} \mathrm{~d} x}{\int_{0}^{2 \pi}\left(v_{1}+v_{2}\right) \mathrm{d} x}$						
0.8	277.0429	0.7650	0.8825						
10	131.3565	0.5077	0.7539						
1000	-51.3745	0.1409	0.4736						
$\kappa(u, v)=\frac{\\|u-v\\|_{1}}{\\|u\\|_{1}+\\|v\\|_{1}}$,									

for $u(x), v(x) \in C(\bar{\Omega})$. Here, $\eta \in \mathbb{R}$ and $0 \leq \kappa \leq 1$. There is no segregation if $\eta \geq 0$ or $\kappa=0$. If $\eta<0$ and $\kappa>0$, the segregation gets stronger as κ tends to one, while it gets worse as κ tends to zero. In this subsection, we always assume $\delta(x)=0.3 \cos x+0.5$ and $\beta(x)=0.5 \cos x+0.7$ in the one-dimensional domain $\Omega=(0,2 \pi)$. Clearly, the infection rate is the highest at positions $x=0$ and 2π and the lowest at position $x=\pi$.

As assumed in model (1.2), susceptible hosts can only recognize infected hosts by the symptoms of infection, while they cannot recognize the pathogens because they are too small to detect. We choose $\chi=0.1$ in Fig. 4 , and the other parameter values are the same as those in Sect. 4.1 except for the death rate of pathogens in an external environment α. To better understand the segregation between susceptible and infected hosts, we give the distribution of the species according to α, which is illustrated in Fig. 4. The elevated mortality rate of pathogens is attributed to their difficulty in surviving independently of a host organism. It is noticeable that susceptible hosts are the highest at position $x=\pi$, where the infection rates are the lowest. It can also be observed that the concentration of pathogens decreases significantly with the increase in the mortality rate of pathogens and eventually tends to zero as α approaches ∞. Correspondingly, the density of infected hosts decreases with the decrease of the concentration of pathogens.

It follows from Table 1 that there is no discernible segregation between susceptible and infected hosts due to the positive values of η when the death rate of pathogens is 0.8 and 10 , while the segregation phenomenon is observed when $\alpha=1000$. This suggests that when pathogens cannot survive in an external environment for a long time, spatial segregation between susceptible and infected hosts can appear because newly infected hosts are mainly produced by the transmission of infected hosts. We find from Fig. 4c that the fraction of pathogens is rather small when $\alpha=1000$, which

Fig. 5 The distribution of the steady states for model (1.2) with different values of χ when $\alpha=1000$

Table 2 Segregation indices and infection fraction for different χ

χ	$\eta\left(v_{1}, v_{2}\right)$	$\kappa\left(v_{1}, v_{2}\right)$	$\frac{\int_{0}^{2 \pi} v_{2} \mathrm{~d} x}{\int_{0}^{2 \pi}\left(v_{1}+v_{2}\right) \mathrm{d} x}$
0	-32.6879	0.1114	0.4837
1	-108.8713	0.2039	0.4512
10	-140.9571	0.2284	0.4421

is helpful to observe the segregation between susceptible and infected hosts. On the contrary, it is hard to segregate the hosts when the death rate of pathogens is small because the infection by pathogens can also increase the density of infected hosts to a large extent. Thus, there is much more significance by selecting a high death rate of pathogens to study the segregation phenomenon between susceptible and infected hosts.

We then turn to explore the effect of chemotaxis on the segregation between susceptible and infected hosts. In the following scenario, α is taken as 1000 . Therefore, the infection caused by pathogens can be ignored. When there is no chemotaxis, the numerical result is given in Fig. 5a. The parameter $\chi>0$ demonstrates that susceptible hosts will move away from regions with a higher density of infected hosts. From Figs. 4c and 5b, we can observe that the density of susceptible hosts decreases notably at positions $x=0$ and 2π, but increases abruptly at position $x=\pi$ with the increase of the values of χ. In addition, the strong chemotaxis significantly contributes to the homogenization of the distribution of infected hosts and the heterogenization or dehomogenization of the distribution of susceptible hosts, which can be seen from Fig. 5c.

Table 2 reveals that there is segregation between susceptible and infected hosts due to the negative values of η. However, the segregation is weak because the values of κ are small and close to zero. Although the segregation gets better as χ increases, it has a limited impact on reducing the total infection number by comparing the infection fraction.

5 Discussion

In this work, we explored a reaction-chemotaxis-diffusion host-pathogen model including two distinct transmission processes, where we applied the saturated inci-
dence to describe the disease transmission between hosts, and the negative binomial incidence to illustrate the infection by pathogens. The chemotactic response was employed to represent the directed movement of susceptible hosts either toward or away from already infected hosts. Nevertheless, susceptible hosts cannot move to or away from pathogens cognitively or directionally due to the undetectability of pathogen particles.

We have shown analytically the solvability of the model regarding the magnitude of χ. The model reduces to a reaction-diffusion model when χ is zero. Accordingly, the global existence of the solution and the existence of the global attractor in all dimensional domains were verified, contributing to the threshold dynamics in terms of the basic reproduction number. When χ is constrained within a narrow interval, we were also able to prove the global boundedness of the solution in any spatial dimension, while the bound of the solution depends on the initial data. When the constraint on χ is removed, we can only provide the boundedness of the solution in a one-dimensional domain. These theoretical findings enrich our comprehension of the dynamic properties of chemotactic host-pathogen models. We performed a series of numerical examples to explore the spatial aggregation and segregation caused by the chemotactic response. There is no spatial aggregation, and the solution is always bounded when χ is zero or small in one- or two-dimensional domains according to Figs. 1 and 2. Similarly, the solution is also bounded in the one-dimensional domain when χ is large from Fig. 3. The numerical results are consistent with our theoretical results in Theorems 2.1-2.4. Nevertheless, when χ is large, i is found that the hosts take on aggregation phenomenon in the two-dimensional domain, and the solution blows up at finite time in the two-dimensional domain by Fig. 3. However, after the regularization of the chemotaxis, the solution remains bounded. Whether the finite-time blow-up of solutions occurs for $n=2$ mathematically is still an open question. In addition, the boundedness of the solution for arbitrary χ still requires further exploration for spatial dimension $n \geq 3$. We refer interested readers to Horstmann and Winkler (2005), where some mathematical reasons for the occurrence of unbounded solutions for $n \geq 2$ were provided in a chemotaxis system. In the limiting scenario where σ approaches zero and k tends to infinity, we considered the chemotaxis-driven instability for the positive constant steady state when $\chi<0$. Proposition 3.3 introduces three necessary conditions regarding the degree of the chemotaxis attraction for this scenario. For a more detailed exploration of Turing patterns, we recommend referring to Pal et al. (2018) and the cited references therein.

We also studied whether the directed movement driven by the chemotaxis effect leads to spatial segregation. Our findings indicate that spatial segregation can appear if pathogens cannot survive in an external environment for a long time, while the strong repulsive chemotaxis among hosts alone does not effectively segregate susceptible and infected hosts, which is in obvious contrast to segregation observed in previous studies (Wang et al. 2022; Liu et al. 2023). This contrast can be attributed to two key factors. On the one hand, the chemotaxis effect is not sufficiently suitable for describing the diffusion with cognition because we find that strong chemotactic repulsion can homogenize the distribution of infected hosts. On the other hand, there is only directed movement of susceptible hosts caused by the chemotactic repulsion of infected hosts, yet there is no corresponding directed movement of infected hosts.

Consequently, it becomes challenging to spatially separate susceptible and infected hosts well. Therefore, the chemotaxis effect holds limited significance in reducing the total infection number. In future research, we will devote ourselves to developing host-pathogen models that incorporate enhanced cognitive diffusion mechanisms to explore the spatial structures driven by directed movement.

Acknowledgements We would like to thank Yurij Salmaniw for his discussion and assistance in support of this work. The research of the second author was partially supported by the Natural Sciences and Engineering Research Council of Canada (Individual Discovery Grant RGPIN-2020-03911 and Discovery Accelerator Supplement Award PGPAS-2020-00090) and the Canada Research Chairs program (Tier 1 Canada Research Chair Award). The research of the third author was partially supported by the National Natural Science Foundation of China (No. 11571200) and the Natural Science Foundation of Shandong Province (No. ZR2021MA062).

Author Contributions G.L. and H.W. proposed the idea and methodology. G.L. performed analysis and simulations. G.L. and H.W. wrote the main manuscript text. All authors reviewed and revised the manuscript.

Data Availability Data sharing was not applicable to this article as no datasets were generated or analyzed during the current study.

Declarations

Conflict of Interests The authors declare no competing interests

References

Anderson, R.M., May, R.M.: Regulation and stability of host-parasite population interactions: I. Regulatory processes. J. Anim. Ecol. 47(1), 219-247 (1978)
Anderson, R.M., May, R.M.: The population dynamics of microparasites and their invertebrate hosts. Philos. Trans. R. Soc. Lond. Ser. B 291(1054), 451-524 (1981)
Barlow, N.D.: Non-linear transmission and simple models for bovine tuberculosis. J. Anim. Ecol. 69(4), 703-713 (2000)
Begon, M., Bowers, R.G., Kadianakis, N., Hodgkinson, D.E.: Disease and community structure: the importance of host self-regulation in a host-host-pathogen model. Am. Nat. 139(6), 1131-1150 (1992)
Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25(09), 1663-1763 (2015)
Bellomo, N., Painter, K.J., Tao, Y., Winkler, M.: Occurence vs. absence of taxis-driven instabilities in a May-Nowak model for virus infection. SIAM J. Appl. Math. 79(5), 1990-2010 (2019)
Briggs, C.J., Godfray, H.C.J.: The dynamics of insect-pathogen interactions in stage-structured populations. Am. Nat. 145(6), 855-887 (1995)
Capasso, V., Serio, G.: A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42(1-2), 43-61 (1978)
Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building. Analysis and Interpretation. John Wiley and Sons, Chichester (2000)
Dwyer, G.: Density dependence and spatial structure in the dynamics of insect pathogens. Am. Nat. 143(4), 533-562 (1994)
Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston, New York (1969)
Greenman, J.V., Hudson, P.J.: Infected coexistence instability with and without density-dependent regulation. J. Theoret. Biol. 185(3), 345-356 (1997)
Grenfell, B.T., Dobson, A.P.: Ecology of Infectious Disease in Natural Populations. Cambridge University Press, Cambridge (1995)
Hale, J.K.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1988)

Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215(1), 52-107 (2005)
Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differ. Equ. 256(8), 2993-3010 (2014)
Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399-415 (1970)
Knell, R.J., Begon, M., Thompson, D.J.: Transmission dynamics of Bacillus thuringiensis infecting Plodia interpunctella: a test of the mass action assumption with an insect pathogen. Proc. R. Soc. Lond. Ser. B Bio.l Sci. 263(1366), 75-81 (1996)
Li, H., Xiang, T.: On a Cross-Diffusive SIS Epidemic Model with Power-Like Nonlinear Incidence. arXiv preprint arXiv: 2208.09571 (2022)
Li, H., Peng, R., Wang, F.B.: Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model. J. Differ. Equ. 262(2), 885-913 (2017)
Li, H., Peng, R., Xiang, T.: Dynamics and asymptotic profiles of endemic equilibrium for two frequencydependent SIS epidemic models with cross-diffusion. Eur. J. Appl. Math. 31(1), 26-56 (2020)
Liu, G., Wang, H., Zhang, X.: Epidemic dynamics and spatial segregation driven by cognitive diffusion and nonlinear incidence. Stud. Appl. Math. 151, 643-675 (2023)
Lou, Y., Zhao, X.-Q.: A reaction-diffusion malaria model with incubation period in the vector population. J. Math. Bio. 62(4), 543-568 (2011)

Martin, R.H., Smith, H.L.: Abstract functional-differential equations and reaction-diffusion systems. Trans. Am. Math. Soc. 321(1), 1-44 (1990)
May, R.M., Anderson, R.M.: Regulation and stability of host-parasite population interactions: II. Destabilizing processes. J. Anim. Ecol. 47(1), 249-267 (1978)
McCallum, H., Barlow, N., Hone, J.: How should pathogen transmission be modelled? Trends Ecol. Evol. 16(6), 295-300 (2001)
Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa 20(4), 733-737 (1996)
Pal, S., Ghorai, S., Banerjee, M.: Analysis of a prey-predator model with non-local interaction in the prey population. Bull. Math. Biol. 80, 906-925 (2018)
Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. SpringerVerlag, New York (1983)
Ren, X., Tian, Y., Liu, L., Liu, X.: A reaction-diffusion within-host HIV model with cell-to-cell transmission. J. Math. Biol. 76(7), 1831-1872 (2018)

Schelling, T.C.: Models of segregation. Am. Econ. Rev. 59(2), 488-493 (1969)
Shigesada, N., Kawasaki, K., Teramoto, E.: Spatial segregation of interacting species. J. Theor. Biol. 79(1), 83-99 (1979)
Stancevic, O., Angstmann, C.N., Murray, J.M., Henry, B.I.: Turing patterns from dynamics of early HIV infection. Bull. Math. Biol. 75, 774-795 (2013)
Tao, Y., Wang, Z.-A.: Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23(01), 1-36 (2013)
Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differ. Equ. 252(1), 692-715 (2012)
Velázquez, J.J.L.: Point dynamics in a singular limit of the Keller-Segel model 1: motion of the concentration regions. SIAM J. Appl. Math. 64(4), 1198-1223 (2004)
Velázquez, J.J.L.: Point dynamics in a singular limit of the Keller-Segel model 2: formation of the concentration regions. SIAM J. Appl. Math. 64(4), 1224-1248 (2004)
Wang, W., Zhao, X.-Q.: Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J. Appl. Dyn. Sys. 11(4), 699-717 (2012)
Wang, H., Wang, K., Kim, Y.-J.: Spatial segregation in reaction-diffusion epidemic models. SIAM J. Appl. Math. 82(5), 1680-1709 (2022)
Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 248(12), 2889-2905 (2010)
Wu, Y., Zou, X.: Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates. J. Differ. Equ. 264(8), 4989-5024 (2018)
Zhao, X.-Q.: Dynamical Systems in Population Biology, 2nd edn. Springer, New York (2017)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

