
MATH 371

Lab 1: Introduction to MatLab

Mar. 6 & Mar. 8, 2018
TA: Alain Gervais

1. Variables
You can name a variable (constant, vector, matrix, string, . . .) by giving it a name, such as a. Try
typing the following commands in the “Command Window” (each input line has a >> symbol on
its left):

a = 1
b = 2
c = 3
my vect = [a,b,c]
my vect = my vect'

What do the square brackets [] allow you to input? What is the action of the ' on my vect? Clear
the contents of the Command Window by typing clc. Clear the contents of the “Workspace” (which
stores the values of each variable during the current MatLab session) by typing clear all, or clear
any single variable (for example, a) by typing clear a. Now try typing the following commands
in the Command Window (note the semicolons):

a = 1;
b = 2;
c = 3;
my vect = [a,b,c];
my vect = my vect';

What is the action of the ; at the end of each command? Try the following commands related to
matrices:

A1 = [1,2,3;4,5,6;7,8,9]
A2 = ones(3,3)
A3 = zeros(2,4)
A1(2,3)
A1(1,:)
A1(:,1)

What does the : allow you to access/display on the screen in the two commands above? Observe
that list/matrix indexing in MatLab begins at 1, unlike in many other languages, which begin
indexing at 0. So a command like A1(0,0) will produce an error. Important fact: as a default
setting, MatLab uses double-precision arithmetic. However, for ease of reading, MatLab displays
numerical output with 4 decimal places. Clear the contents of the Command Window, then try
typing the following commands:

pi
format long
pi
format short
pi

1

2. Operations: +, −, ∗, /, ˆ
These are the four basic arithmetic operations and exponentiation. Try the following commands in
the Command Window:

a = 2
b = 3
a + b
b - a
a*b
aˆb
a/b
A2*b
A1*A1
A1.*A1
A1ˆ2

What is the difference between the operations * and .* (compare the outputs of A1*A1 and
A1.*A1)?

3. Control flow: if/elseif/else, for, while
All of these control flow statements work in generally the same way as any language you may
already be familiar with. MatLab knows how to block these statements thanks to the end command
terminating each block.

if %conditional statement(s), e.g. if a < b
%statement(s)

elseif %some other conditional statements(s), e.g. elseif a == b
%statement(s)

else % handles all other cases, in our example this means the case a > b
%statement(s)

end
for %statement, e.g. for i = 1:n

%statement(s)
end
while %some conditional statement(s) is/are is true, e.g. while (a < b) && (x =/= 0)

%statement(s)
%make sure you don't have an infinite loop!

end
%Note: if multiple conditions must be tested, use && for "AND", and | | for "OR"

4: Scripts, functions, .m files
You can write a “script” containing a MatLab program, or any sequence of input commands you
want to save, by holding ctrl+n to open a blank script. Save your script with a name of your choice,
such as script1.m.

1. Write a script that computes
∑n

k=1 k, where n ∈ N, using:

(a) a for loop

(b) a while loop.

2. Your script should:

(a) include a short comment describing what your script does (use % to comment out each
comment line. This is a good practice for all your submissions in this course)

2

(b) clear the Workspace and the Command Window

(c) ask the user for input (try using n = input('Enter a natural number: ');)

(d) display the result as a complete sentence. For example if n = 5 your output should read
something like “The sum of the first 5 natural numbers is 15.”. Use num2str(n)
to convert numbers to strings suitable for output. Note: the disp() command is used
to display output. Enclose your desired output in square brackets [], separating tex-
t/number segments of your sentence with commas (MatLab will interpret your command
as outputting the string elements of a vector).

Functions can be built-in (for example, sin(), exp(), norm(), abs(), plot(), length()). In
many cases, functions can take individual number, vector, or matrix arguments. If in doubt, Google
is a good way to check what type of argument a function can take. Or, consider typing a function
in the Command Window to see if some particular argument will cause an error. You can also type
“help name of command” in the Command Window for information on any command/function.
Try the following commands:

sin(pi)
cos([pi,pi/2,0])
norm(3,4,2)
norm([3,4],2)
norm([3,4],inf)

(Where norm() is the `p norm, and the second argument specifies p. If only the first argument is
given, MatLab uses p = 2. Note that the inf norm is equivalent to max{·}). Often, you will find
it useful to define your own functions! These must be defined in their own MatLab script, which
must be saved as the name of the function. It is easiest to save these functions in the same folder
as the script calling the function (it is possible to direct MatLab to a different directory if needed).
User-defined functions always take the form

function output arguments = name of function(input arguments)
%statement(s): all the stuff you want your function to do
%use a local variable(s) inside name of function, then the last statement in
%name of function should pass your temporary variable(s) to output arguments
end

Let’s add onto script1.m (or whatever name you chose for your script earlier):

1. open a new script and define a new function called fact, which will take one input argument
and return one output argument.

2. The input will be some m1 ∈ N, and the output will be some m2 ∈ N. Your function will
return m2 = m1!.

3. Note: MatLab provides a function called factorial(N), where N ∈ N, accurate for N ≤ 21.
However, one of the aims of the Math 381 labs is to give you practice at implementing methods
yourself, without relying on pre-defined functions. So, for this exercise, do not use the built-
in factorial function. With that in mind, be sure to only use 0 ≤ m1 ≤ 21 in your factorial
function. You are encouraged to keep a saved copy of all functions you define, so that you
may call them in any future scripts you write for this course.

3

4. Ensure you include a short comment describing how your function works/what it does.

5. Lab 1 Exercise
Create and save a new script with a name of your choice, perhaps script2.m. This script will ask
a user to input some number, and you will pass this input to a function described below:

1. open a new script and define a new function called sine, which will take two input arguments,
and return one output argument.

2. The input will be some x ∈ R, and some m ∈ N. Your function will return the value of the
first m terms of the Taylor series for sin(x). Recall that

sin(x) =
∞∑
k=0

(−1)k

(2k + 1)!
x2k+1.

3. Hint: use your function fact.m. What is the largest m you can safely pass from your sine.m
to your fact.m? If you wish, consider adding error detection, which will check that your
input to fact.m is acceptable.

4. Ensure you include a short comment describing how your function works/what it does.

5. What choice of x should you use to test your code? Once you know your code is working,
modify your script2.m code so that it will call sine.m iteratively for a fixed x, incrementing
m by 1 for each iteration, up to max{m}. Store the results in a vector of appropriate length.

6. Plot the absolute value of the difference between your sine.m and the built-in sin(), us-
ing fixed x. You should see the difference getting smaller as the number of terms in-
cluded gets bigger. Use plot(my list), where my list is a vector containing the differ-
ences you calculated. You can add a title and axis labels using title('Relevant title'),
xlabel('x axis label'), and ylabel('y axis label'), respectively.

Looking for more of a challenge? Create another function with a name such as sine2, which will
take two input arguments and return two output arguments:

1. The input will be some x, T ∈ R, where sine2 will approximate sin(x) as before, and T is
the “tolerance”: your sine2 function will compare two successive approximations of sin(x)
(i.e. the results from using k terms versus k + 1 terms of the Taylor series expansion),
and continue approximating sin(x) with enough terms such that the difference between two
successive iterates is less than T (use abs()). The outputs will consist of the result of the
approximation, and the number of terms required to achieve the specified accuracy.

2. Make sure your function has some stopping criteria in case it ends up reaching max{m} terms
of the Taylor series (you don’t want fact.m to get inaccurately large).

3. Ensure you include a short comment describing how your function works/what it does.

4. How many terms are required to approximate sin(π/2) with a tolerance of:

(a) 10−2?

(b) 10−4?

(c) 10−6?

(d) 10−8?

4

