
Available online at www.sciencedirect.com
ScienceDirect

Journal of Differential Equations 357 (2023) 32–63
www.elsevier.com/locate/jde

Bifurcation analysis in a diffusive predator-prey model 

with spatial memory of prey, Allee effect and 

maturation delay of predator

Shuai Li a, Sanling Yuan a,∗, Zhen Jin b, Hao Wang c

a College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
b Complex Systems Research Center, Shanxi University, Taiyuan, Shanxi 030006, China

c Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada

Received 17 September 2022; revised 19 January 2023; accepted 2 February 2023

Abstract

In this paper, we formulate a spatial model with memory delay of the prey, Allee effect and matura-
tion delay with delay-dependent coefficients of predators. We first explore the model without delays and 
diffusions, and find that it can undergo a saddle-node bifurcation when the intensity of Allee effect is at 
the tipping point. Then for the scenario of stability of the coexistence steady state without delays, we ob-
tain the crossing curves on the delays plane. The model can undergo Hopf bifurcation when delays pass 
through these crossing curves from a stable region to an unstable one. We further calculate the normal form 
of Hopf bifurcation and hence obtain the direction of Hopf bifurcation and the stability of the bifurcation 
periodic solutions. It is shown that the model can possess multiple stability switches and a stable spatially 
heterogeneous periodic solution with mode-4 as delays vary.
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1. Introduction

Modeling the interplay between the prey and predators has been an active topic in mathemat-
ical biology since the seminal work of Lotka-Volterra (LV) [1,2]. Recently, a lot of models have 
been developed from LV model to elucidate the intricate biological processes more realistically. 
One pivotal evolvement of LV model is the incorporation of Allee effect which describes the 
density-mediated decline in intrinsic growth rate at its low densities [3,4]. The Allee effect can 
take place owing to a great variety of mechanisms as diverse as reproductive facilitation, coop-
erative hunting and group defense enhancement [5,6]. There are two categories of Allee effect: 
strong Allee effect and weak Allee effect which can be respectively applied to scenarios where 
for low population density the growth rate of the population is negative and still positive. Most 
previous works paid attention to the Allee effect on the prey population and found that Allee 
effect can alter the dynamics of predator-prey model, especially can induce population collapses 
to extinction [7–10]. In fact, predators can also exhibit an Allee effect due to reproductive facil-
itation mechanisms such as sperm limitation, cooperative breeding, difficulty in finding mates, 
and so on. In this case, the efficiency of the prey conversion largely reduces at low density but in-
creases as the density of predators increases [11–13]. Obviously, these non-hunting mechanisms 
can be phenomenologically captured by altering the predators’ numerical response rather than 
functional response and are also worth studying.

Another momentous extension of LV model is the incorporation of maturation period of preda-
tors since predators require time to mature to multiply their descendants. This biological process 
can be captured by a model with delay-dependent parameters whose derivation is deduced by 
solving an age-structured model through the characteristic lines method [14–16]. Time delay 
can have either a stable or unstable effect on the stability of the developed model due to the oc-
currence of Hopf bifurcations, relying on the length of the maturation period. This is a striking 
difference from the classical LV model [17,18]. Taking spatial heterogeneity into account, Xu 
and Wei recently considered a diffusive budworm model with delay-dependent coefficients and 
obtained the criteria for the appearance of Hopf bifurcation [19]. The authors in [20] established 
the algorithm to calculate the normal form near a double Hopf bifurcation and then applied this 
algorithm to an epidemic model with maturation delay. It is acknowledged that the Hopf bifur-
cation induced by delay can lead to periodic oscillations and also be one of the precursors to 
irregular spatiotemporal patterns in spatial models [21,22]. However, the results of models with 
maturation delay and Allee effect in predators seem rare.

Notice that, the models discoursed thus far do not consider the effects of spatial memory 
and cognition of animals on their movements. Studying the mechanism of animal movement 
provides a sound foundation for the exploration of ecological processes [23–25]. Some animals 
can memorize the historic distribution of their predators. They can thus adopt memory-driven 
movement to keep away from areas where predators once resided to reduce the ability of preda-
tors’ acquisition [26–29]. For example, females of woodland caribou (prey) choose previously 
visited zones to calve since black bears (predator) hunt for ungulate juvenile prey inactively in 
these zones [30]. Another example is that elks tend to previously visited areas to avoid predation 
since the spatial distribution of wolves has been stored in their memory [31]. To describe the 
memory-driven movement, Shi et al. originally put forward a mathematical model by modifying 
Fick’s law by adding an extra directed movement toward the positive or negative gradient of the 
past fixed time density distribution [32]. Afterward, Song et al. generalized the above model to 
a class of predator-prey model with memory delay in the predator population [33]. They further 
overcame the difficulty induced by memory-dependent diffusion to establish an algorithm for 
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the calculation of Hopf bifurcation normal form [34] and thus found that memory delay can in-
duce a stable spatially heterogeneous periodic solution with mode-2 via destabilizing the steady 
state. However, the above memory-driven diffusion models do not consider the maturation delay 
and Allee effect in the predator population. In this paper, we fill up this gap. The highlights and 
contributions of this paper are as follows.

• A diffusive predator-prey model with memory-driven diffusion and delay-dependent pa-
rameters is proposed. The model incorporates many mechanisms as diverse as reproductive 
facilitation, maturation period, random and directed movement.

• The stability crossing curve method set forth in [35] is creatively applied to the model to 
study its possible Hopf bifurcations induced by delays.

• Explicit formulas for the coefficients of normal form for the Hopf bifurcation induced by 
memory delay are obtained by fixing the maturation delay in its stable interval. The question 
posited in [36] on how to calculate the normal form of the memory-based diffusion model 
with two different delays is properly solved.

• The model can exhibit stability switches and stable spatially heterogeneous periodic solu-
tions with mode-4, which seem new to previous investigations [32,34,37].

In a nutshell, the methods and results in this paper may provide a theoretical avenue to un-
derstand the spatial distribution of species. The remainder of this paper is organized as follows. 
In Sect. 2, we present our model. In Sect. 3, we derive the conditions on the linear stability and 
the occurrence of Hopf bifurcation of the model by analyzing its associated characteristic equa-
tions. In Sect. 4, we determine the properties of Hopf bifurcation by calculating its normal form. 
Finally, in Sect. 5, we conclude our paper with some discussions.

2. Model formulation

We formulate our model by incorporating Allee effect, maturation delay as well as spatial 
memory into the classic LV model. Inspired by the model proposed by Sen et al. in [11], we 
present the following predator-prey model to mimic the Allee effect in predators:

{
dN
dt

= rN
(
1 − N

K

)− bNP,
dP
dt

= βNP P
h+P

− μP,
(1)

where N and P represent respectively the densities of prey and predator populations; r is the 
maximum per capita growth rate; K is the carrying capacity; b is the attack rate of predators; β
is the total effect to predators by consuming prey; μ stands for the death rate of predators; P

h+P

describes the Allee effect in predators with the intensity of Allee effect h [12]. Model (1) can 
be applied to describe many scenarios, such as describing the mate-finding Allee effect of flour 
beetles, pelagic fish, whales, and so on; characterizing the low fertilization efficiency of flour 
beetles, snails and queen conchs at their low densities, and mimicking the cooperative breeding 
scenario of bird species [11].

Note the fact that predators require time to mature to multiply their descendants. We introduce 
maturation delay σ to model (1) by dint of the method set forth in [14,15,38] and obtain the 
following predator-prey model with delay-dependent parameters:
34
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{
dN
dt

= rN
(
1 − N

K

)− bNP,
dP
dt

= βNσ Pσ
Pσ

h+Pσ
e−dσ − μP.

Here P and d represent respectively the density of adult predators and the death rate of juvenile 
predators; Nσ and Pσ refer to N(t − σ) and P(t − σ), respectively.

As mentioned in the previous section, prey (such as woodland caribou and elk) can possess 
spatial memory for predators and thus move away from them according to the accumulation of 
information in space. We describe this memory-driven movement of prey by modifying Fick’s 
law as established in [32]. Also, we assume that the diffusive ability of immature predators is 
much smaller than that of mature predators, thus the movement of immature predators during the 
maturation period is ignorable [39]. The domain species inhabit is closed and one dimension with 
length ιπ . We then formulate the following spatial predator-prey model with Neumann boundary 
conditions:⎧⎪⎨⎪⎩

∂N
∂t

= δ11Nxx + δ12 (NPx(x, t − τ))x + rN
(
1 − N

K

)− bNP, 0 < x < ιπ, t > 0,

∂P
∂t

= δ22Pxx + βNσ P 2
σ

h+Pσ
e−dσ − μP, 0 < x < ιπ, t > 0,

Nx(x, t) = Px(x, t) = 0, x = 0, ιπ, t ≥ 0,

(2)

where N = N(x, t) and P = P(x, t) represent respectively the densities of prey and adult 
predators at location x and time t ; δ11 and δ12 refer respectively to the random diffusion and 
memory-dependent diffusion coefficients of the prey; δ22 describes random diffusion of preda-
tors; τ is the averaged memory period of the prey.

In this paper, we will devote ourselves to the investigation of the impacts of Allee effect, 
mature delay and memory delay on the spatiotemporal distributions of model (2).

3. Stability and Hopf bifurcation of model (2)

We will study the linear stability and the occurrence of Hopf bifurcation for model (2) with or 
without diffusions and delays in this section. Biologically, we are interested in the coexistence of 
the two populations. We first consider the existence of the coexisting constant steady states and 
then, at which, obtain the corresponding characteristic equations of the associated linear system 
of model (2).

Notice that if Ē = (N̄, P̄ ) is a positive constant steady state of model (2), it must satisfy 

N̄ = μ(h + P̄ )edσ

βP̄
and P̄ is a positive root of the following equation:

βbKP 2 + (rμedσ − rKβ)P + rμhedσ = 0. (3)

Obviously, Eq. (3) admits two different positive roots if and only if

μ < βKe−dσ , h < hSN(σ ) := 1

4

r(Kβ − μedσ )2e−dσ

bKβμ
. (4)

In this case, model (2) has two positive constant steady states, denoted respectively by E1(σ ) =
(N1(σ ), P1(σ )) and E2(σ ) = (N2(σ ), P2(σ )) with P1(σ ) < P2(σ ). Linearizing model (2) at 
Ei(σ ) yields
35
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂N(x,t)
∂t

= δ11Nxx(x, t) + δ12Ni(σ )Pxx(x, t − τ) + α11(σ )N(x, t) + α12(σ )P (x, t),

x ∈ (0, ιπ), t > 0,

∂P (x,t)
∂t

= δ22Pxx(x, t) + α22P(x, t) + β21(σ )N(x, t − σ) + β22(σ )P (x, t − σ),

x ∈ (0, ιπ), t > 0,

Nx(x, t) = Px(x, t) = 0, x = 0, ιπ, t ≥ 0,

(5)

where

α11(σ ) = − rNi(σ )

K
, α12(σ ) = −bNi(σ ), α22 = −μ,

β21(σ ) = βP 2
i (σ )

h + Pi(σ )
e−dσ , β22(σ ) = βNi(σ )P 2

i (σ ) + 2βhNi(σ )Pi(σ )

(h + Pi(σ ))2 e−dσ .

Suppose the eigenfunction of system (5) associated with eigenvalue λ is

(N(t),P (t)) = (c1, c2)e
λt cos

((n

ι

)
x
)

, (6)

where n ∈ N0 is the wave number. By substituting (6) into system (5), we get

⎧⎪⎪⎨⎪⎪⎩
(

λc1 + δ11

(n

ι

)2
c1

)
eλt = (α11(σ )c1 + α12(σ )c2) eλt − δ12Ni(σ )

(n

ι

)2
c2eλ(t−τ),(

λc2 + δ22

(n

ι

)2
c2

)
eλt = α22c2eλt + (β21(σ )c1 + β22(σ )c2)e

λ(t−σ),

which has a nontrivial solution (c1, c2) if and only if det(λE2 − J (n; σ, τ)) = 0, where

J (n;σ, τ) =
⎛⎝ α11(σ ) − δ11

(
n
ι

)2
α12(σ ) − δ12Ni(σ )

(
n
ι

)2
e−λτ

β21(σ )e−λσ α22 + β22(σ )e−λσ − δ22
(

n
ι

)2

⎞⎠ . (7)

Then we obtain the following characteristic equation:

gn
0(λ,σ ) + gn

1(λ,σ )e−λσ + gn
2(σ )e−λ(τ+σ) = 0, (8)

where ⎧⎪⎪⎨⎪⎪⎩
gn

0(λ,σ ) = λ2 + gn
01(σ )λ + gn

00(σ ),

gn
1(λ,σ ) = gn

11(σ )λ + gn
10(σ ),

gn
2(σ ) = gn

20(σ )

with
36
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

gn
01(σ ) = δ11

(
n
ι

)2 + δ22
(

n
ι

)2 − α11(σ ) − α22,

gn
00(σ ) = δ11δ22

(
n
ι

)4 − δ11α22
(

n
ι

)2 − δ22α11(σ )
(

n
ι

)2 + α11(σ )α22,

gn
11(σ ) = −β22(σ ),

gn
10(σ ) = −δ11β22(σ )

(
n
ι

)2 + α11(σ )β22(σ ) − α12(σ )β21(σ ),

gn
20(σ ) = δ12Ni(σ )

(
n
ι

)2
β21(σ ).

3.1. Stability analysis of model (2) without delays

We first study the long-time behavior of model (2) with no delays and diffusions, i.e., n = 0
and σ = τ = 0. In this case, (7) becomes

J (0;0,0) =
(

α11(0) α12(0)

β21(0) α22 + β22(0)

)
=
( −rNi(0)

K
−bNi(0)

μPi(0)
Ni(0)

βhNi(0)Pi (0)

(h+Pi(0))2

)
.

Direct calculations yield

det(J (0;0,0)) = Ni(0)

h + Pi(0)

(−rβNi(0)Pi(0)h

(h + Pi(0))K
+ bβP 2

i (0)

)
= Ni(0)

h + Pi(0)

(−rμh

K
+ bβP 2

i (0)

)

= rβNi(0)P 2
i (0)

K(h + Pi(0))

(
− μh

βP 2
i (0)

−
(

−bK

r

))

= rβNi(0)P 2
i (0)

K(h + Pi(0))
(k2(Ei(0)) − k1(Ei(0))) ,

where k1(Ei(0)) and k2(Ei(0)) are respectively the derivatives of N -nullcline and P -nullcline 
at Ei(0). Clearly, at E1(0), det(J (0; 0, 0)) < 0 and at E2(0), det(J (0; 0, 0)) > 0. Hence E1(0)

is a saddle, and E2(0) is locally asymptotically stable provided that at E2(0), tr(J (0; 0, 0)) =
N2(0)

K(h+P2(0))2

(− rP 2
2 (0) + h(βK − 2r)P2(0) − rh2

)
< 0. We thus have the following results.

Theorem 1. Model (1) has two positive equilibria E1(0) and E2(0) provided that μ < βK

and h < hSN(0). Moreover, E1(0) is a saddle and E2(0) is locally asymptotically stable if 
tr(J (0; 0, 0)) < 0.

It is easy to see that when r >
βK

2 , tr(J (0; 0, 0)) < 0 at E2(0). We make the following hy-
pothesis:

(H1) h < hSN(0), μ < βK and r >
βK

2 .

Remark 1. Model (1) undergoes a saddle-node bifurcation at h = hSN(0). In fact, denote by 

U = (
1,− r

bK

)T and W =
(

μKP

rN2 ,1
)T

respectively the eigenvectors associated with λ = 0 of 

J (0; 0, 0) and λ = 0 of J (0; 0, 0)T, and denote by F(N, P ; h) the vector field of model (1). 
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We can check that W · Fh(N, P ; h) = −βNP 2

(h+P)2

∣∣
h=hSN (0)

�= 0 and W · [D2F(N, P ; h)(U, U)] =
−r4(Kβ+μ)(Kβ−μ)3

8μK4β2b4P(h+P)2

∣∣
h=hSN (0)

< 0. The assertion follows from the Sotomayor’s Theorem [40]. This 
indicates that once the intensity of the Allee effect exceeds the tipping point hSN(0), predators 
will go to extinction.

We now deduce the stability conditions of E2(0) for spatial model (2) in the absence of delays, 
i.e., σ = τ = 0. In this case, at E2(0), Eq. (8) becomes

λ2 − tr(J (n;0,0))λ + det(J (n;0,0)) = 0,

where

tr(J (n;0,0)) = − (δ11 + δ22)
(n

ι

)2 + tr(J (0;0,0)),

det(J (n;0,0)) =
(

δ11δ22

(n

ι

)2 − δ11(α22 + β22(0)) − δ22α11(0) + δ12N2(0)β21(0)

)(n

ι

)2

+ det(J (0;0,0)).

It is easy to check that tr(J (n; 0, 0)) < 0 provided (H1) holds. Now we view det(J (n; 0, 0)) as a 
quadratic function with respect to 

(
n
ι

)2. Denote

� = δ11(α22 + β22(0)) + δ22α11(0) − δ12N2(0)β21(0). (9)

Clearly, if � < 0, then det(J (n; 0, 0)) > 0, and if � > 0, then det(J (n; 0, 0)) > 0 provided that 
� < 0, where

� = (δ11(α22 + β22(0)) + δ22α11(0) − δ12N2(0)β21(0))2 − 4δ11δ22 det(J (0;0,0)). (10)

Besides (H1), we also make the following hypothesis:

(H2) � < 0 or � > 0 and � < 0.

Under assumptions (H1)-(H2), E2(0) is always stable for model (2) without delays. In the 
sequel of this paper, we always assume that (H1) and (H2) both hold and are mainly concerned 
with the conditions for the occurrence of Hopf bifurcations around E2(σ ) induced by delays.

3.2. Hopf bifurcations induced by maturation delay when n = 0

When n = 0, the characteristic equation (8) becomes

g0
0(λ,σ ) + g0

1(λ,σ )e−λσ = 0, (11)

which meets the requirements in [17]. By plugging λ = iχ0(χ0 > 0) into Eq. (11), we obtain{� (
g0

1(iχ
0, σ )

)
cos(χ0σ) + � (

g0
1(iχ

0, σ )
)

sin(χ0σ) = −� (
g0

0(iχ
0, σ )

)
,

� (
g0(iχ0, σ )

)
cos(χ0σ) − � (

g0(iχ0, σ )
)

sin(χ0σ) = −� (
g0(iχ0, σ )

)
.

(12)

1 1 0

38
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From Eq. (12) we can solve that⎧⎪⎪⎨⎪⎪⎩
cosχ0σ = −�(g0

0(iχ
0,σ )

)�(g0
1(iχ

0,σ )
)+�(g0

0(iχ
0,σ )

)�(g0
1(iχ

0,σ )
)(�(g0

1(iχ
0,σ )

))2+(�(g0
1(iχ

0,σ )
))2 ,

sinχ0σ = −�(g0
0(iχ

0,σ )
)�(g0

1(iχ
0,σ )

)−�(g0
1(iχ

0,σ )
)�(g0

0(iχ
0,σ )

)(�(g0
1(iχ

0,σ )
))2+(�(g0

1(iχ
0,σ )

))2 .

(13)

It is direct from (13) that

G(χ0, σ ) = (χ0)4 + q0
1 (σ )(χ0)2 + q0

2 (σ ) = 0, (14)

where {
q0

1 (σ ) = (
g0

01(σ )
)2 − (

g0
11(σ )

)2 − 2g0
00(σ ),

q0
2 (σ ) = (g0

10(σ ) + g0
00(σ ))(g0

00(σ ) − g0
10(σ )).

Obviously, when (q0
1 (σ ))2 − 4q0

2 (σ ) > 0, Eq. (14) may admit two real roots χ0±(σ ) satisfying

(χ0±(σ ))2 =
−q0

1 (σ ) ±
√

(q0
1 (σ ))2 − 4q0

2 (σ )

2
.

Assume that Ad ⊆ R+ is the set of σ such that χ(σ) is a positive real root of Eq. (14). We 
can then find a θ(σ ) ∈ [0, π) satisfying the following equations:⎧⎪⎪⎨⎪⎪⎩

cos θ(σ ) = −�(g0
0(iχ(σ ),σ )

)�(g0
1(iχ(σ ),σ )

)+�(g0
0(iχ(σ ),σ )

)�(g0
1(iχ(σ ),σ )

)(�(g0
1(iχ(σ ),σ )

))2+(�(g0
1(iχ(σ ),σ )

))2 ,

sin θ(σ ) = −�(g0
0(iχ(σ ),σ )

)�(g0
1(iχ(σ ),σ )

)−�(g0
1(iχ(σ ),σ )

)�(g0
0(iχ(σ ),σ )

)(�(g0
1(iχ(σ ),σ )

))2+(�(g0
1(iχ(σ ),σ )

))2 .

Now denote σk(σ ) by

σk(σ ) = θ(σ ) + 2kπ

χ(σ)
, k ∈ N0.

Then we can define the smooth functions Sk(σ ) by

Sk(σ ) = σ − σk(σ ), k ∈ N0.

According to Theorem 4.1 in [17], we can directly obtain the following theorem on the occur-
rence of Hopf bifurcations induced by maturation delay σ .

Theorem 2. Eq. (11) has a pair of simply imaginary roots λ = ±iχ(σ ) for σ ∈ Ad provided 
that Sk(σ ) = 0 holds for some k ∈ N0. Besides, if χ(σ) = χ0+(σ ), then the corresponding pair 
eigenvalues cross the imaginary axis from left (right) to right (left) if D+(σ ) > 0(< 0); while 
if χ(σ) = χ0−(σ ), then the corresponding pair eigenvalues cross the imaginary axis from left 
(right) to right (left) if D−(σ ) > 0(< 0). Here,
39
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Fig. 1. Triangle constituted by 1, �n
1 (�n,σ )e−i�nσ ,�n

2 (�n,σ )e−i�n(τ+σ) .

D±(σ ) := Sign

{
d�λ

dσ

∣∣∣∣
λ=iχ0±(σ )

}
= ±Sign

{
dSk(σ )

dσ

}
.

3.3. Crossing curve method to detect Hopf bifurcations when n �= 0

In this subsection, we generalize the methods used in [29,35,41,42] to obtain the stability 
crossing curves for spatial model (2) with delay-dependent parameters. Suppose λ = i�n(�n >

0) is a root of Eq. (8) and notice that gn
0(i�

n, σ) �= 0. Eq. (8) can be rewritten as

1 + �n
1(�n,σ )e−i�nσ + �n

2(�n,σ )e−i�n(τ+σ) = 0, (15)

where ⎧⎪⎪⎨⎪⎪⎩
�n

1(�n,σ ) = gn
1(i�n,σ )

gn
0(i�n,σ )

,

�n
2(�n,σ ) = gn

2(σ )

gn
0(i�n,σ )

.

Notice that in the complex plane, the three items on the left of Eq. (15) constitute a triangle (see 
Fig. 1). Define ⎧⎪⎨⎪⎩

ϒn
1 = |gn

0(�n,σ )| + |gn
1(�n,σ )| − |gn

2(σ )|,
ϒn

2 = |gn
0(�n,σ )| + |gn

2(σ )| − |gn
1(�n,σ )|,

ϒn
3 = |gn

1(�n,σ )| + |gn
2(σ )| − |gn

0(�n,σ )|,
(16)

and

�n = {(�n,σ ) : ϒn
i ≥ 0, i = 1,2,3}.

Then �n is the feasible region of (�n, σ).
Obviously, we require that �n is nonempty. Denote by ϕn

1 (�n, σ) and ϕn
2 (�n, σ) respectively 

as the angles constituted by 1 and �n
1(�n, σ)e−i�nσ , and �n

2(�n, σ)e−i�n(τ+σ) (see Fig. 1). It 
then follows from the law of cosine that
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⎧⎪⎨⎪⎩
ϕn

1 (�n,σ ) = arccos
[

1+|�n
1 (�n,σ )|2−|�n

2 (�n,σ )|2
2|�n

1 (�n,σ )|
]
,

ϕn
2 (�n,σ ) = arccos

[
1+|�n

2 (�n,σ )|2−|�n
1 (�n,σ )|2

2|�n
2 (�n,σ )|

]
.

Notice that the sign of � (�n
1(�n, σ)e−i�nσ ) does not alter for (�n, σ) ∈ Int �k

n, where 
�k

n, k = 1, 2, · · · , K refer to connected region of �n. Denote by Ik,n = [�l
k,n, �

r
k,n] and 

I�
k,n = [σ�,l

k,n , σ�,r
k,n ] respectively the feasible set of �n and the feasible interval of σ for every 

�n ∈ Ik,n. Thereupon, we discuss the two possible scenarios as follows.
(i) � (�n

1(�n, σ)e−i�nσ ) > 0. In this scenario, we have{
arg(�n

1(�n,σ )e−i�nσ ) = π − ϕn
1 (�n,σ ),

arg(�n
2(�n,σ )e−i�n(τ+σ)) = ϕn

2 (�n,σ ) − π.

We then obtain

arg(�n
1(�n,σ )) − �nσ + 2iπ = π − ϕn

1 (�n,σ ), for some i ∈ Z,

and

arg(�n
2(�n,σ )) − �n(τ + σ) + 2jπ = ϕn

2 (�n,σ ) − π, for some j ∈Z. (17)

From (17) we obtain that

τ = 1

�n

[
arg(�n

2(�n,σ )) − �nσ + (2j + 1)π − ϕn
2 (�n,σ )

]
.

(ii) � (�n
1(�n, σ)e−i�nσ ) < 0. In this scenario, the triangle formed by 1, �n

1(�n, σ)e−i�nσ

and �n
2(�n, σ)e−i�n(τ+σ) is the mirror image of the one in Fig. 1 about the real axis. Arguing 

similarly to above, we obtain

arg(�n
1(�n,σ )) − �nσ + 2iπ = −π + ϕn

1 (�n,σ ), for some i ∈ Z,

and

τ = 1

�n

[
arg(�n

2(�n,σ )) − �nσ + (2j − 1)π + ϕn
2 (�n,σ )

]
, for some j ∈Z.

Now define the functions S±
ι , ι ∈Z as

S±
ι (�n,σ ) = σ − 1

�n

[
arg(�n

1(�n,σ )) + (2ι − 1)π ± ϕn
1 (�n,σ )

]
,

and for fixed �n ∈ Ik,n, denote by σ̃ m±(�n) the positive roots of S±
ι = 0. Thereupon, we can 

define the admissible values of τ as

τ̃ κ±
m (�n) = 1 [

arg
(
�n

2(�n, σ̃m±(�n))
)− �nσ̃m±(�n) + (2κ± − 1)π ∓ ϕn

2 (�n, σ̃m±)
]
,

�n
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for κ = κ±
0 , κ±

0 +1, · · · , where κ±
0 refer to the smallest possible integers satisfying τ̃ κ±

m (�n) ≥ 0. 
Let In =⋃

k Ik,n. By taking all �n ∈ In, we can then define the following curves:

Cn = {
(�n, σ̃m±(�n)) : �n ∈ In,S±

ι (�n, σ̃m±(�n)) = 0
}
.

Thus we obtain the stability crossing curves:

T n = {
(σ̃m±(�n), τ̃ κ±

m (�n)) : �n ∈ In,S±
ι (�n, σ̃m±(�n)) = 0

}
.

We further make the following hypothesis to ensure the crossing curves can be extended.

(H3)
∂S±

ι (�n,σ )

∂σ
�= 0 for (�n, σ) ∈ Cn.

Hence, the categories of crossing curves are similar as given by [35].
Moreover, to assure the occurrence of Hopf bifurcations, we need further determine the direc-

tion in which the root of Eq. (8) crosses the imaginary axis as (σ, τ) passes through a crossing 
curve T n. By applying the results in [35], we have the following result.

Theorem 3. Assume that Eq. (8) has a pair of purely imaginary roots ±i�n
0 for (σ, τ) = (σ n

0 , τn
0 )

∈ T n. Then Eq. (8) has a pair of conjugate complex roots λn±(σ, τ) = αn(σ, τ) ± i�n(σ, τ)

around (σ n
0 , τn

0 ) with αn(σn
0 , τn

0 ) = 0 and �n(σn
0 , τn

0 ) = �n
0 . Additionally, λn±(σ, τ) passes 

through the imaginary axis from left to right as (σ, τ) passes through the crossing curve to the 
region on the right (left) whenever D(λ, τ, σ)

∣∣
(λ,τ,σ )=(i�n

0 ,τn
0 ,σ n

0 )
> 0 (< 0), where

D(λ, τ, σ ) = −�
{[

∂gn
0

∂σ
eλ(τ+σ) +

(
∂gn

1

∂σ
− λgn

1

)
eλτ +

(
∂gn

2

∂σ
− λgn

2

)]
gn

2

}
.

Here the left (right) region of a crossing curve refers to the region on the left-hand (right-hand) 
side when one moves along the positive direction (in which �n increases) of the curve.

Remark 2. In fact, the crossing curves T n exist only for finite n. This can be easily seen by 
noting that in (16), ϒn

3 < 0 when n is large enough.

4. Direction and stability of Hopf bifurcation

From the above discussions, we have known that for fixed maturation delay σ in its stable 
intervals, there exist nH and τn

H such that (i) Eq. (8) admits a pair of conjugate complex roots 
i�n

H and all other eigenvalues have negative real parts, and moreover (ii) the transversality con-
dition is satisfied. That is model (2) undergoes a Hopf bifurcation at τ = τn

H . In this section, by 
generalizing the method set forth in [34,36] to model (2) with delay-dependent parameters, we 
will calculate the normal form of Hopf bifurcation at E2(σ ) to further determine the properties 
of bifurcating periodic solutions.
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4.1. Notations and equation transformation

We first present some convention notations used in [34,36]. For the simplify of notation, we 
denote E2(σ ) = (N2(σ ), P2(σ )) by E2(N2, P2), and denote for fixed n, the Hopf bifurcation 
point τn

H and frequency �n
H respectively by τH and �H . We further define the following real-

valued Hilbert space:

ℵ =
{
V = (V1,V2) ∈ H 2(0, ιπ) ⊕ H 2(0, ιπ) : ∂V1

∂x

∣∣∣
x=0,ιπ

= ∂V2

∂x

∣∣∣
x=0,ιπ

= 0

}
,

endowed with the following inner product:

[U ,V] =
ιπ∫

0

UTVdx, for U ,V ∈ ℵ.

Denote C = C([− max{1, σ
τ
}, 0]; ℵ) as functional space consisted of continuous mappings from 

[− max{1, σ
τ
}, 0] to ℵ with the usual supremum norm. Denote

bn(x) = cos n
ι
x

|| cos n
ι
x||L2

=
⎧⎨⎩
√

1
ιπ

, n = 0,√
2
ιπ

cos
(

nx
ι

)
, n ≥ 1.

Let β(1)
n = (bn, 0)T, β(2)

n = (0, bn)
T. Denote τ = τH + ζ, |ζ | � 1 as the small perturbation of 

τH such that ζ = 0 is the Hopf bifurcation point for model (2) with fixed maturation delay σ . 
Moreover, ζ is regarded as a state variable in the following computation. Also, let

B(αω
ϑ1
1 ω

ϑ2
2 ζ ) =

(
αω

ϑ1
1 ω

ϑ2
2 ζ

αω
ϑ2
1 ω

ϑ1
2 ζ

)
, α ∈ C.

We then make the following transformation to shift E2 to the origin and normalize the memory 
delay τ :

v1(t, x) = N(τ t, x) − N2,

v2(t, x) = P(τ t, x) − P2.

Let V = (v1, v2)
T. We write V(x, t) and Vt (ρ) = V(x, t + ρ), − max{1, σ

τ
} ≤ ρ ≤ 0 as V(t) and 

Vt ∈ ℵ respectively. Then model (2) can be rewritten as the following form:

dV(t)

dt
= δ(ζ )(Vt )xx +L(ζ )Vt + F(Vt , ζ ), (18)

where for ψ = (ψ(1), ψ(2))T ∈ C, δ(ζ )(·)xx is described by

δ(ζ )(ψ)xx = δ0(ψ)xx + Fd(ψ, ζ ),

with
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δ0(ψ)xx = τH

(
δ11 0
0 δ22

)(
ψ

(1)
xx (0)

ψ
(2)
xx (0)

)
+ τH

(
0 δ12N2
0 0

)(
ψ

(1)
xx (−1)

ψ
(2)
xx (−1)

)
:= τH D1ψxx(0) + τH D2ψxx(−1),

Fd(ψ, ζ ) = δ12(τH + ζ )

(
ψ

(1)
x (0)ψ

(2)
x (−1) + ψ(1)(0)ψ

(2)
xx (−1)

0

)

+ ζ

(
δ11ψ

(1)
xx (0) + δ12N2ψ

(2)
xx (−1)

δ22ψ
(2)
xx (0)

)
,

(19)

and L(ζ ) is defined by

L(ζ )(ψ)

= (τH + ζ )

((
α11(σ ) α12(σ )

0 α22

)(
ψ(1)(0)

ψ(2)(0)

)
+
(

0 0
β21(σ ) β22(σ )

)(
ψ(1)(− σ

τH +ζ
)

ψ(2)(− σ
τH +ζ

)

))
:= (τH + ζ ) (A1ψ(0) + A2ψ(−σ̃ )) .

Furthermore, F(ψ, ζ ) is given by

F(ψ, ζ ) = (τH + ζ )

(
f
(
ψ(1)(0) + N2,ψ

(2)(0) + P2
)

g
(
ψ(2)(0) + P2,ψ

(1)(−σ̃ ) + N2,ψ
(2)(−σ̃ ) + P2

) )−L(ζ )(ψ). (20)

By extracting the linear parts from the nonlinear parts, we can rewrite (18) as

dV(t)

dt
= δ0(Vt )xx +L0(Vt ) + F̃(Vt , ζ ), (21)

where L0(ψ) = τH

(
A1ψ(0) + A2ψ(−σ̂ )

)
, σ̂ = σ

τH
and

F̃(ψ, ζ ) = L(ζ )(ψ) −L0(ψ) + F(ψ, ζ ) + Fd(ψ, ζ ). (22)

Then we can obtain the linear system of Eq. (21) as

dVt

dt
= δ0(Vt )xx +L0(Vt ). (23)

We further choose the following enlarged space to rewrite (21) as an abstract ordinary differential 
equation in a Banach space [43,44]:

BC :=
{
�

∣∣∣� ∈ C([−max{1,
σ

τ
},0),ℵ),∃ lim

ρ→0− �(ρ) ∈ ℵ
}

.

Then Eq. (21) is equivalent to

dVt = J̃Vt + Y0F̃(ψ, ζ ). (24)

dt
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Here, J̃ is a linear operator from C1
0 = {ψ ∈ C

∣∣∣ ψ̇ ∈ C, ψ(0) ∈ dom((·)xx)} to BC, which is 
formulated by

J̃ψ = ψ̇ + Y0

(
τH D1ψxx(0) + τH D2ψxx(−1) +L0(ψ) − ψ̇(0)

)
,

and Y0 = Y0(ρ) is formulated by

Y0(ρ) =
{

0, ρ ∈ [−max{1, σ
τ
},0),

1, ρ = 0.

Thereupon, we employ the method set forth in [43] to decompose BC. Let C2 :=
C([− max{1, σ

τ
}, 0]; R2), C∗

2 := C([0, max{1, σ
τ
}]; R2∗), and adopt the following adjoint bilinear 

form on C∗
2 × C2:

〈Q(s),P(ρ)〉 = Q(0)P(0) −
0∫

−max{1, σ
τ
}

ρ∫
ξ=0

Q(ξ − ρ)d�n(ρ)P(ξ)dξ, for Q ∈ C∗,P ∈ C,

where �n(ρ) ∈ BV ([− max{1, σ
τ
}, 0]; R2×2), such that for P(ρ) ∈ C2, we have

−τH (
nH

ι
)2D1Pxx(0) − τH (

nH

ι
)2D2Pxx(−1) +L0(P(ρ)) =

0∫
−max{1, σ

τ
}

d�n(ρ)P(ρ).

Let P(ρ) = (p(ρ), p(ρ)), Q(s) = (qT(s), qT(s))T, where p(ρ) = (p1(ρ), p2(ρ))T = pei�H τH ρ

with p = (p1, p2)
T represents the corresponding eigenvector to i�HτH of (23), and q(s) =

(q1(s), q2(s))
T = qe−i�H τH s with q = (q1, q2)

T is the corresponding adjoint eigenvector of (23)
meeting

〈Q(s),P(ρ)〉 = E2.

Doing some algebra yields

p =
⎛⎝ 1

−β21(σ )e−i�H σ

−δ22

(
nH
ι

)2+α22(σ )+β22(σ )e−i�H σ −i�H

⎞⎠
and

q = η

⎛⎝ 1

δ11

(
nH
ι

)2−α11(σ )+i�H

β21(σ )e−i�H σ

⎞⎠ ,

where
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η = k2

k2 − k1 + τH δ12N2
(

nH

ι

)2
β21(σ )e−i�H (σ+τH ) + k1k2σ − k1σβ22(σ )e−i�H σ

,

with k1 = δ11
(

nH

ι

)2 − α11(σ ) + i�H and k2 = −δ22
(

nH

ι

)2 + α22 + β22(σ )e−i�H σ − i�H .
Furthermore we see from [34,43,44] that BC can be decomposed as

BC = Imπ ⊕ Kerπ,

where for ψ̃ ∈ C, we define the projection π : C → Imπ as

π(ψ̃) =
⎛⎝P(ρ)

〈
Q(0),

⎛⎝ [ψ̃(·), β(1)
nH

]
[ψ̃(·), β(2)

nH
]

⎞⎠〉⎞⎠T

bnH
(x). (25)

Hence, we can decompose Vt (ρ) as

Vt (ρ) =
(
P(ρ)

(
ω1
ω2

))T
(

β
(1)
nH

β
(2)
nH

)
+ z

=
(
ω1pei�H τH ρ + ω2p̄e−i�H τH ρ

)
bnH

(x) +
(

z(1)

z(2)

)
:= P(ρ)ωx + z,

where z ∈Q1 := C1
0 ∩Kerπ . Thereupon, we can decompose system (24) as the following abstract 

ordinary differential equations on R2 × Kerπ :⎧⎪⎪⎨⎪⎪⎩
ω̇ = Dω +Q(0)

⎛⎝ [F̃(P(ρ)ωx + z, ζ ), β
(1)
nH

]
[F̃(P(ρ)ωx + z, ζ ), β

(2)
nH

]

⎞⎠ ,

ż = AQ1z + (I − π)Y0(ρ)F̃(P(ρ)ωx + z, ζ ),

(26)

where ω = (ω1, ω2)
T, D = diag{i�H τH , −i�H τH }, and AQ1 : Q1 → Kerπ is given by

AQ1z = ż + Y0(ρ) (τH D1zxx(0) + τH D2zxx(−1) +L0(z) − ż(0)) .

Now, we study the following Taylor expansions:

L(ζ )(ψ) =
∑
κ≥1

1

κ!Lκ(ζ )(ψ), F̃(ψ, ζ ) =
∑
κ≥2

1

κ! F̃κ (ψ, ζ ),

F(ψ, ζ ) =
∑
κ≥2

1

κ!Fκ (ψ, ζ ), Fd(ψ, ζ ) =
∑
κ≥2

1

κ!F
d
κ (ψ, ζ ).

We recall from (22) that

F̃2(ψ, ζ ) = 2ζ

(
A1ψ(0) + A2ψ

(
− σ

H

)
+ σ

A2ψ
′
(

− σ
))

+ F2(ψ, ζ ) + Fd
2(ψ, ζ ), (27)
τ τH τH
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and

F̃κ(ψ, ζ ) = Lκ(ζ )(ψ) + Fκ(ψ, ζ ) + Fd
κ (ψ, ζ ), κ = 3,4, · · · . (28)

We then rewrite system (26) as{
ω̇ = Dω +∑

κ≥2
1
κ!f

1
κ (ω, z, ζ ),

ż = AQ1z +∑
κ≥2

1
κ!f

2
κ (ω, z, ζ ),

(29)

where ⎧⎪⎪⎨⎪⎪⎩
f 1

κ (ω, z, ζ ) = Q(0)

⎛⎝ [F̃κ (P(ρ)ωx + z, ζ ), β
(1)
nH

]
[F̃κ (P(ρ)ωx + z, ζ ), β

(2)
nH

]

⎞⎠ ,

f 2
κ (ω, z, ζ ) = (I − π)Y0(ρ)F̃κ (P(ρ)ωx + z, ζ ).

(30)

By appealing to the following the change of variables [34,43]:

(ω, z) = (ω̃, z̃) + 1

κ!
(
V1

κ (ω̃, ζ ),V2
κ (ω̃, ζ )

)
, κ ≥ 2, (31)

we then obtain the normal form of system (29) as below:

ω̇ = Dω +
∑
κ≥2

g1
κ(ω,0, ζ ).

Define (M1
j p)(ω, ζ ) = Dωp(ω, ζ )Dω − Dp(ω, ζ ) and (M2

j h)(ω, ζ ) = Dωh(ω, ζ )Dω −
AQ1h(ω, ζ ). We then utilize method in [34,36] to find

g1
2(ω,0, ζ ) = Projker(M1

2 )f
1
2 (ω,0, ζ ),

and

g1
3(ω,0, ζ ) = Projker(M1

3 )f̃
1
3 (ω,0, ζ ) = ProjSf̃ 1

3 (ω,0,0) + O(ζ 2|ω|), (32)

where f̃ 1
3 (ω, 0, ζ ) refers to the cubic polynomial of (ω, ζ ) under the transformation of (31). 

Moreover, f̃ 1
3 (ω, 0, ζ ) can be determined by (32),

ker(M1
2 ) = Span

{(
ζω1

0

)
,

(
0

ζω2

)}
,

ker(M1
3 ) = Span

{(
ω2

1ω2
0

)
,

(
ζ 2ω1

0

)
,

(
0

ω1ω
2
2

)
,

(
0

ζ 2ω2

)}
,

and

S = Span

{(
ω2

1ω2
0

)
,

(
0

ω ω2

)}
. (33)
1 2
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4.2. Calculation of g1
j (ω, 0, ζ )

Calculation of g1
2(ω, 0, ζ ). We recall from (19) that

Fd
2(ψ, ζ ) = Fd

20(ψ) + ζ Fd
21(ψ), (34)

and

Fd
3(ψ, ζ ) = ζFd

31(ψ), Fd
κ (ψ, ζ ) = (0,0)T, κ = 4,5, · · · , (35)

where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Fd

20(ψ) = 2δ12τH

(
ψ

(1)
x (0)ψ

(2)
x (−1) + ψ(1)(0)ψ

(2)
xx (−1)

0

)
,

Fd
21(ψ) = 2D1ψxx(0) + 2D2ψxx(−1),

Fd
31(ψ) = 6δ12

(
ψ

(1)
x (0)ψ

(2)
x (−1) + ψ(1)(0)ψ

(2)
xx (−1)

0

)
.

(36)

Furthermore, it is fairly easy to obtain

⎛⎝ [2ζ
(
A1(P(0)ωx) + A2(P(−σ̂ )ωx) + σ

τH
A2(P ′(−σ̂ )ωx)

)
, β

(1)
nH

]
[2ζ

(
A1(P(0)ωx) + A2(P(−σ̂ )ωx) + σ

τH
A2(P ′(−σ̂ )ωx)

)
, β

(2)
nH

]

⎞⎠
= 2ζ

(
A1P(0) + (1 + i�H σ)A2P(−σ̂ )

)( ω1
ω2

)
,

(37)

⎛⎝ [ζFd
21(P(ρ)ωx),β

(1)
nH

]
[ζFd

21(P(ρ)ωx),β
(2)
nH

]

⎞⎠= −2
(

nH

ι

)2
ζ

(
D1

(
P(0)

(
ω1
ω2

))
+ D2

(
P(−1)

(
ω1
ω2

)))
,

(38)
and for all ζ ∈R, F2(P(ρ)ωx, ζ ) = F2(P(ρ)ωx, 0). Then (30) implies that

f 1
2 (ω,0, ζ ) = Q(0)

( [F̃2(P(ρ)ωx, ζ ),β
(1)
nH

]
[F̃2(P(ρ)ωx, ζ ),β

(2)
nH

]

)
. (39)

This, together with (34), (35) and (37)-(39), leads to

g1
2(ω,0, ζ ) = Projker(M1

2 )f
1
2 (ω,0, ζ ) = B(B1ζω1), (40)

where

B1 = 2qT
(

A1p(0) + A2p(−σ̂ )(1 + i�H σ) −
(nH

)2
(D1p(0) + D2p(−1))

)
.

ι
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Calculation of g1
3(z, 0, ζ ). Denote

f
(1,1)
2 (ω, z,0) = Q(0)

⎛⎝ [F2(P(ρ)ωx + z,0), β
(1)
nH

]
[F2(P(ρ)ωx + z,0), β

(2)
nH

]

⎞⎠ , (41)

and

f
(1,2)
2 (ω, z,0) = Q(0)

⎛⎝ [Fd
2(P(ρ)ωx + z,0), β

(1)
nH

]
[Fd

2(P(ρ)ωx + z,0), β
(2)
nH

]

⎞⎠ . (42)

(40) implies that g1
2(ω, 0, 0) = (0, 0)T. Then f̃ 1

3 (ω, 0, 0) is formulated by

f̃ 1
3 (ω,0,0) = f 1

3 (ω,0,0) + 3
2

[
(Dωf 1

2 (ω,0,0))U1
2 (ω,0) +

(
Dzf

(1,1)
2 (ω,0,0)

)
U2

2 (ω,0)(ρ)

+
(
Dz,zx,zxx f

(1,2)
2 (ω,0,0)

)
U (2,d)

2 (ω,0)(ρ)
]
,

where f 1
2 (ω, 0, 0) = f

(1,1)
2 (ω, 0, 0) + f

(1,2)
2 (ω, 0, 0),

Dz,zx,zxx f
(1,2)
2 (ω,0,0) =

(
Dzf

(1,2)
2 (ω,0,0),Dzx f

(1,2)
2 (ω,0,0),Dzxx f

(1,2)
2 (ω,0,0)

)
,

U1
2 (ω,0) =(M1

2 )−1ProjIm(M1
2 )f

1
2 (ω,0,0), (43)

U2
2 (ω,0) =(M2

2 )−1f 2
2 (ω,0,0),

and

U (2,d)
2 (ω,0)(ρ) =

(
U2

2 (ω,0)(ρ),U2
2x(ω,0)(ρ),U2

2xx(ω,0)(ρ)
)T

. (44)

We next finish the calculation of ProjSf̃ 1
3 (ω, 0, 0) in four steps.

Step 1. The calculation of ProjSf 1
3 (ω, 0, 0)

Define

F3(P(ρ)ωx,0) =
∑

ϑ1+ϑ2=3

�ϑ1ϑ2ω
ϑ1
1 ω

ϑ2
2 b3

nH
(x), ϑ1, ϑ2 ∈ N0. (45)

It follows from (28) and (35) that F̃3(P(ρ)ωx, 0) = F3(P(ρ)ωx, 0). We then deduce from (30)
and (45) that

f 1
3 (ω,0,0) = Q(0)

⎛⎝ ∑
ϑ1+ϑ2=3

�ϑ1ϑ2ω
ϑ1
1 ω

ϑ2
2

ιπ∫
0

b4
nH

(x)dx

⎞⎠ ,

which, together with 
∫ ιπ

b4 (x)dx = 3 , yields
0 nH 2ιπ
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ProjSf 1
3 (ω,0,0) = B(B21ω

2
1ω2),

where

B21 = 3

2ιπ
qT�21.

Step 2. The calculation of ProjS((Dωf 1
2 (ω, 0, 0))U1

2 (ω, 0))

From (27) and (34) we have that

F̃2(P(ρ)ωx,0) = F2(P(ρ)ωx,0) + Fd
20(P(ρ)ωx). (46)

(20) implies

F2(P(ρ)ωx + z, ζ ) = F2(P(ρ)ωx + z,0)

= b2
nH

(x)

⎛⎝ ∑
ϑ1+ϑ2=2

�ϑ1ϑ2ω
ϑ1
1 ω

ϑ2
2

⎞⎠+ S2(P(ρ)ωx, z) + O(|z|2), (47)

where S2(�(ρ)ωx, z) refers to the product of P(ρ)ωx and z. In conjunction with (34) and (36), 
we have

Fd
2(P(ρ)ωx,0) = Fd

20(P(ρ)ωx) = (
nH

ι

)2 (
η2

nH
(x) − b2

nH
(x)

)(∑
ϑ1+ϑ2=2 �d

ϑ1ϑ2
ω

ϑ1
1 ω

ϑ2
2

)
,

(48)
where

ηnH
(x) =

√
2√
ιπ

sin
(nH x

ι

)
and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�d
20 = 2δ12τ0

(
p1(0)p2(−1)

0

)
= �d

02,

�d
11 = 2δ12τ0

(
2�{p1(0)p2(−1)}

0

)
.

(49)

It then follows from 
∫ ιπ

0 η2
nH

(x)bnH
(x)dx = ∫ ιπ

0 b3
nH

(x)dx = 0 that

f 1
2 (ω,0,0) = Q(0)

⎛⎝ [F̃2(P(ρ)ωx,0), β
(1)
nH

]
[F̃2(P(ρ)ωx,0), β

(2)
nH

]

⎞⎠= (0,0)T. (50)

Hence, in conjunction with (33) and (50), we obtain

ProjS
(
(Dωf 1

2 (ω,0,0))U1
2 (ω,0)

)
= B(B22ω

2
1ω2),
50
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where

B22 = (0,0)T.

Step 3. The calculation of ProjS((Dzf
(1,1)
2 (ω, 0, 0))U2

2 (ω, 0)(ρ))

Denote

U2
2 (ω,0)(ρ) = h(ρ,ω) =

∑
n∈N0

hn(ρ,ω)bn(x),

where hn(ρ, ω) =∑
ϑ1+ϑ2=2 h̄n,ϑ1ϑ2(ρ)ω

ϑ1
1 ω

ϑ2
2 . We can derive from [34] that

⎛⎝ [S2(P(ρ)ωx,
∑

n∈N0
hn(ρ,ω)bn(x)),β

(1)
nH

]
[S2(P(ρ)ωx,

∑
n∈N0

hn(ρ,ω)bn(x)),β
(2)
nH

]

⎞⎠
= ∑

n∈N0
Hn (S2(p(ρ)ω1, hn(ρ,ω)) + S2(p̄(ρ)ω2, hn(ρ,ω))) ,

where

Hn = ∫ ιπ

0 b2
nH

(x)bn(x)dx =

⎧⎪⎨⎪⎩
1√
ιπ

, n = 0,

1√
2ιπ

, n = 2nH ,

0, otherwise.

Hence, we have

(Dzf2(1,1)(ω,0,0))U2
2 (ω,0)(ρ)

=Q(0)

⎛⎝ ∑
n=0,n=2nH

Hn

(
S2(p(ρ)ω1, hn(ρ,ω)) + S2(p̄(ρ)ω2, hn(ρ,ω))

)⎞⎠ ,

and

ProjS((Dzf
(1,1)
2 (ω,0,0))U2

2 (ω,0)(ρ)) = B(B23ω
2
1ω2),

where

B23 = 1√
ιπ

qT (S2(p(ρ), h̄0,11(ρ)) + S2(p̄(ρ), h̄0,20(ρ))
)

+ 1√
2ιπ

qT (S2(p(ρ), h̄2nH ,11(ρ)) + S2(p̄(ρ), h̄2nH ,20(ρ))
)
.

Step 4. The calculation of ProjS
(
(Dz,zx ,zxx f

(1,2)
(ω,0,0))U (2,d)

(ω,0)(ρ)
)

2 2
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Let V(ρ) = (V(1), V(2)) = P(ρ)ωx and

Fd
2(V(ρ), z, zx, zxx) = Fd

2(V(ρ) + z,0) = Fd
20(V(ρ) + z)

= 2δ12τH

(
(V(1)(0) + z(1)(0))(V(2)

xx (−1) + z
(2)
xx (−1))

0

)

+ 2δ12τH

(
(V(1)

x (0) + w
(1)
x (0))(V(2)

x (−1) + z
(2)
x (−1))

0

)
,

as well as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S̃(d,1)
2 (p(ρ), x(ρ)) = 2δ12τH

(
x1(0)p2(−1)

0

)
,

S̃(d,2)
2 (p(ρ), x(ρ)) = 2δ12τH

(
x1(0)p2(−1) + x2(−1)p1(0)

0

)
,

S̃(d,3)
2 (p(ρ), x(ρ)) = 2δ12τ0

(
x2(−1)p1(0)

0

)
.

From (41)−(44), we have

(Dz,zx ,zxx f
(1,2)
2 (ω,0,0))U (2,d)

2 (ω,0)(ρ) =
( [(Dz,zx ,zxxF

d
2(ω,0,0))U (2,d)

2 (ω,0)(ρ),β
(1)
nH

]
[(Dz,zx ,zxxF

d
2(ω,0,0))U (2,d)

2 (ω,0)(ρ),β
(2)
nH

]

)
,

and thus we obtain

ProjS
(
(Dz,zx ,zxx f

(1,2)
2 (ω,0,0))U (2,d)

2 (ω,0)(ρ)
)

= B(B24ω
2
1ω2),

where

B24 = − 1√
ιπ

( nH

ι
)2qT

(
S̃(d,1)

2 (p(ρ), h̄0,11(ρ)) + S̃(d,1)
2 (p̄(ρ), h̄0,20(ρ))

)
+ 1√

2ιπ
qT ∑

j=1,2,3 h̄
(j)
2nH

(
S̃(d,j)

2 (p(ρ), h̄2nH ,11(ρ)) + S̃(d,j)
2 (p̄(ρ), h̄2nH ,20(ρ))

)
with

h̄
(1)
2n = −n2

H , h̄
(2)
2n = 2

n2
H , h̄

(3)
2n = −4n2

H .

H ι2 H ι2 H ι2
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4.3. Normal form of Hopf bifurcation

Taking into account the above computations, we can obtain the normal form of Hopf bifurca-
tion as follows:

ω̇ = Dω + 1
2

(
B1ω1ζ

B̄1ω2ζ

)
+ 1

3!
(

B2ω
2
1ω2

B̄2ω1ω
2
2

)
+ O(|ω|ζ 2 + |ω|4), (51)

where

B1 = 2qT(0)
(
A1p(0) + (1 + i�H σ)A2p(−σ̂ ) − ( nH

ι
)2 (D1p(0) + D2p(−1))

)
,

B2 = B21 + 3
2 (B22 + B23 + B24).

We then utilize method [34] to rewrite normal form (51) as

�̇ = K1�ζ + K2�
3 + O(ζ 2� + |(�, ζ )|4),

where

K1 = 1

2
�(B1),K2 = 1

3!�(B2).

We further detect the following lemma from [45]:

Theorem 4. The Hopf bifurcation is supercritical (subcritical) provided that K1K2 < 0(> 0), 
and the bifurcating periodic solutions are stable (unstable) if K2 < 0(> 0).

4.4. Calculations of �ij , S2(P(ρ)zx, w) and h̄n,ϑ1ϑ2(ρ)

In order to obtain B2, we will calculate �ij , S2(�(ρ)ωx, z), h̄0,20(ρ), h̄0,11(ρ), h̄2nH ,20(ρ)

and h̄2nH ,11(ρ) in this subsection. We can deduce from (20) that

F2(ψ, ζ ) = F2(ψ,0)

= f20000ψ
2
1 (0) + 2f11000ψ1(0)ψ2(0) + 2f00110ψ1(−σ̂ )ψ2(−σ̂ ) + f00020ψ

2
2 (−σ̂ )

(52)
and

F3(ψ,0) = 3f00120ψ1(−σ̂ )ψ2
2 (−σ̂ ) + f00030ψ

3
2 (−σ̂ ), (53)

where

f20000 =
⎛⎝−2rτH

K
0

⎞⎠ , f11000 =
(−bτH

0

)
, f00110 =

⎛⎜⎝ 0

τH βP2e−dσ (P2 + 2h)

2

⎞⎟⎠ ,
(P2 + h)
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f00020 =
⎛⎜⎝ 0

2τH N2βe−dσ h2

(P2 + h)3

⎞⎟⎠ , f00120 =
⎛⎜⎝ 0

2τH βe−dσ h2

(P2 + h)3

⎞⎟⎠ ,

f00030 =
⎛⎜⎝ 0

−6τH βe−dσ N2h
2

(P2 + h)4

⎞⎟⎠ .

Letting

ψ(ρ) = P(ρ)ωx = p(ρ)ω1(t)bnH
(x) + p(ρ)ω2(t)bnH

(x)

=
(

p1(ρ)ω1(t)bnH
(x) + p1(ρ)ω2(t)bnH

(x)

p2(ρ)ω1(t)bnH
(x) + p2(ρ)ω2(t)bnH

(x)

)

=
(

ψ1(ρ)

ψ2(ρ)

)
,

(54)

we have

F2(P(ρ)ωx,0) =∑
ϑ1+ϑ2=2 b

ϑ1+ϑ2=2
n (x)�ϑ1ϑ2ω

ϑ1
1 ω

ϑ2
2 , (55)

then in conjunction with (52), (54) and (55), we obtain

�20 =f20000p
2
1(0) + 2f11000p1(0)p2(0) + 2f00110p1(−σ̂ )p2(−σ̂ ) + f00020p

2
2(−σ̂ ),

�11 =2
(
f00020p2(−σ̂ )p2(−σ̂ ) + f00110p1(−σ̂ )p2(−σ̂ ) + f00110p1(−σ̂ )p2(−σ̂ )

+ f11000p1(0)p2(0) + f11000p1(0)p2(0) + f20000p1(0)p1(0)
)
,

�02 =f00020p
2
2(−σ̂ ) + 2f00110p1(−σ̂ )p2(−σ̂ ) + 2f11000p1(0)p2(0) + f20000p

2
1(0).

Furthermore, it follows from (45), (53) and (54) that

�30 = p2
2(−σ̂ )

(
f00030p2(−σ̂ ) + 3f00120p1(−σ̂ )

)
,

�21 = 3p2(−σ̂ )
(
f00030p2(−σ̂ )p2(−σ̂ ) + f00120p2(−σ̂ )p1(−σ̂ ) + 2f00120p1(−σ̂ )p2(−σ̂ )

)
,

�12 = 3p2(−σ̂ )
(
f00030p2(−σ̂ )p2(−σ̂ ) + 2f00120p2(−σ̂ )p1(−σ̂ ) + 2f00120p1(−σ̂ )p2(−σ̂ )

)
,

�03 = p2
2(−σ̂ )

(
f00030p2(−σ̂ ) + 3f00120p1(−σ̂ )

)
.

Similarly, we have

F2(P(ρ)ωx + z, ζ ) =F2(P(ρ)ωx + z,0)

=
∑

ϑ1+ϑ2=2

bϑ1+ϑ2=2
n (x)�ϑ1ϑ2ω

ϑ1
1 ω

ϑ2
2 + S2(P(ρ)ωx, z) + O(|z|2),
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where

S2(P(ρ)ωx, z) =2
(
f00110p2(−σ̂ )z1(−σ̂ ) + (

f00020p2(−σ̂ ) + f00110p1(−σ̂ )
)
z2(−σ̂ )

+ (
f11000p2(0) + f20000p1(0)

)
z1(0) + f11000p1(0)z2(0)

)
bn(x)ω1

+ 2
(
f00110p2(−σ̂ )z1(−σ̂ ) + (

f00020p2(−σ̂ ) + f00110p1(−σ̂ )
)
z2(−σ̂ )

+ (
f11000p2(0) + f20000p1(0)

)
z1(0) + f11000p1(0)z2(0)

)
bn(x)ω2.

Next, we will calculate h̄0,20(ρ), h̄0,11(ρ), h̄2nH ,20(ρ) and h̄2nH ,11(ρ). It follows from [43,
46] that

M2
2 (h̄n(ρ,ω)bn(x)) = Dω(h̄n(ρ,ω)bn(x))Dω −AQ1(h̄n(ρ,ω)bn(x)),

which results in⎛⎝ [M2
2 (h̄n(ρ,ω)bn(x)),β

(1)
n ]

[M2
2 (h̄n(ρ,ω)bn(x)),β

(2)
n ]

⎞⎠= 2i�H τH (h̄n,20(ρ)ω2
1 − h̄n,02(ρ)ω2

2)

−
( ˙̄hn(ρ,ω) + Y0(ρ)(L0(h̄n(ρ,ω)) − ˙̄hn(0,ω))

)
,

where

L0(h̄n(ρ,ω)) = τH

(
A1h̄n(0,ω) + A2h̄n(−σ̂ ,ω) − (

n

ι
)2
(
D1h̄n(0,ω) + D2h̄n(−1,ω)

))
.

By combining with (25) and (26), we obtain

f 2
2 (ω,0,0) = Y0(ρ)F̃2(P(ρ)ωx,0) − π(Y0(ρ)F̃2(P(ρ)ωx,0))

= Y0(ρ)F̃2(P(ρ)ωx,0) −P(ρ)Q(0)

⎛⎝ [F̃2(P(ρ)ωx,0), β
(1)
nH

]
[F̃2(P(ρ)ωx,0), β

(2)
nH

]

⎞⎠bn(x).

It then follows from (46), (47) and (48) that

⎛⎝ [f 2
2 (ω,0,0), β

(1)
n ]

[f 2
2 (ω,0,0), β

(2)
n ]

⎞⎠ =

⎧⎪⎨⎪⎩
1√
ιπ

Y0(ρ)
(
�20ω

2
1 + �02ω

2
2 + �11ω1ω2

)
, n = 0,

1√
2ιπ

Y0(ρ)
(
�̃20ω

2
1 + �̃02ω

2
2 + �̃11ω1ω2

)
, n = 2nH ,

where �̃i1i2 is given by ⎧⎨⎩ �̃i1i2 = �i1i2 − 2( nH

ι
)2�d

i1i2
,

i1, i2 = 0,1,2, i1 + i2 = 2,
(56)
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where �d
i1i2

is given by (49). Thereupon, we match the coefficients of ω2
1 and ω1ω2 to get

n = 0,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ω2

1 :
⎧⎨⎩

˙̄h0,20(ρ) − 2i�H τH h̄0,20(ρ) = (0,0)T,

˙̄h0,20(0) −L0(h̄0,20(ρ)) = 1√
ιπ

�20,

ω1ω2 :
⎧⎨⎩

˙̄h0,11(ρ) = (0,0)T,

˙̄h0,11(0) −L0(h̄0,11(ρ)) = 1√
ιπ

�11,

(57)

and

n = 2nH ,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ω2

1 :
⎧⎨⎩

˙̄h2nH ,20(ρ) − 2i�H τH h̄2nH ,20(ρ) = (0,0)T,

˙̄h2nH ,20(0) −L0(h̄2nH ,20(ρ)) = 1√
2ιπ

�̃20,

ω1ω2 :
⎧⎨⎩

˙̄h2nH ,20(ρ) = (0,0)T,

˙̄h2nH ,11(0) −L0(h̄2nH ,11(ρ)) = 1√
2ιπ

�̃11.

(58)

We solve from (57) that h̄0,20(ρ) = e2i�H τH ρh̄0,20(0) and hence h̄0,20(−σ̂ ) =
e−2i�H σ h̄0,20(0). We then have

(2i�H τH E2 − τH A1 − τH A2e−2i�H σ )h̄0,20(0) = 1√
ιπ

�20,

and hence

h̄0,20(ρ) = e2i�H τH ρ
(

2i�H τH E2 − τH A1 − τH A2e−2i�H σ
)−1 1√

ιπ
�20.

Similarly, we can obtain

h̄0,11(ρ) = (−τH A1 − τH A2)
−1 1√

ιπ
�11.

Also, we can solve from (58) that h̄2nH ,20(ρ) = e2i�H τH ρh̄2nH ,20(0) and hence h̄2nH ,20(−1) =
e−2i�H τH h̄2nH ,20(0) and h̄2nH ,20(−σ̂ ) = e−2i�H σ h̄2nH ,20(0). Noticing that

L0(h̄2nH ,20(ρ)) = −τH

4n2
H

ι2
(D1h̄2nH ,20(0) + D2h̄2nH ,20(−1))

+ τH A1h̄2nH ,20(0) + τH A2h̄2nH ,20(−σ̂ ),

we obtain

(
2i�H τH E2 + τH

4n2
H

ι2
D1 + τH

4n2
H

ι2
D2e−2i�H τH − τH A1 − τH A2e−2i�0σ

)
h̄2nH ,20(0)

= 1√ �̃20,

2ιπ
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and hence

h̄2nH ,20(ρ)

= e2i�H τH ρ
(

2i�H E2 + 4n2
H

ι2
D1 + 4n2

H

ι2
D2e−2i�H τH − A1 − A2e−2i�H σ

)−1 �̃20√
2ιπτH

,

where �̃20 is given by (56). Similarly, we have

h̄2nH ,11(ρ) =
(
τH

4n4
H

ι2
D1 + τH

4n4
H

ι2
D2 − τH A1 − τH A2

)−1 1√
2ιπ

�̃11.

5. Discussion

Understanding the distribution of species in space according to biotic processes and envi-
ronmental elements has been rated among the five top ecological research fronts [47]. However 
the effects of memory-dependent movement along with other biological processes on the spatial 
patterns of species have not been studied in depth. In this regard, we propose a class of spatial 
predator-prey model with Allee effect, memory delay and (maturation) delay-dependent coef-
ficients. We first study the model without delay and found that the biomass of predators tends 
to extinction as the intensity of Allee effect is large enough, see Remark 1. Under the prereq-
uisite that Allee effect is not too strong so that hypothesis (H1) is satisfied, we further explore 
the joint effects of memory delay and maturation delay on the coexisting constant steady state 
E2(σ ). By appealing to the method set forth in [35], we obtain the stability crossing curves on 
the (σ, τ) plane such that the characteristic equation (8) has at least one pair of purely imaginary 
roots when (σ, τ) is on the crossing curves, and based on which we discern the stable regions. To 
further determine the direction of Hopf bifurcation and the stability of the bifurcating periodic 
solutions, we calculate the coefficients for normal form of Hopf bifurcation induced by memory 
delay. Our algorithm presents a refinement of that given in [34].

To confirm the theoretical results obtained, we present a numerical illustration here. We fix 
the parameters r = 2, K = 4, b = 1.2, β = 0.96, d = 0.2, h = 0.4, μ = 0.5, δ11 = 0.1, δ12 =
0.4, δ22 = 0.1, ι = 2π . According to Theorem 2, we can first determine that the stable inter-
vals of E2(σ ) for maturation delay σ is [0, 0.5566) ∪ (2.2348, 5.4715). We then display the 
joint effects of maturation delay and memory delay on the dynamics of model (2). Accord-
ing to the method developed in Sect. 3, we can obtain the crossing curves T n for n ≤ 7 as 
displayed in Fig. 2. The linear stable region in Fig. 2 includes two parts: the bottom left one 
and right one. The right boundary of the bottom left region is consisted of the lower left sec-
tions of all crossing curves T n, and the left boundary of the bottom right one is consisted 
of the lower right sections of all crossing curves T n. The stability of E2(σ ) changes when 
(σ, τ) passes through these boundaries. In this case, stable spatially inhomogeneous periodic 
solutions with mode-n spatial pattern are prone to occur which is strikingly different from pre-
vious models without memory delay [22]. For example, for fixed σ = 3.1, we can calculate 
nH = 4, � 4

H ≈ 0.4051, τ 4
H ≈ 2.3929, K1 ≈ 0.0138 > 0, K2 ≈ −0.0503 < 0 according to the 

formulae given in Sect. 4. This indicates that a mode-4 spatially inhomogeneous Hopf bifurca-
tion occurs at τ = τ 4

H . By Theorem 4 we know that it is supercritical and the bifurcating spatially 
inhomogeneous periodic solutions with mode-4 spatial pattern are stable. We finally pick points 
P1 − P6 in Fig. 2 as the values of (σ, τ) for simulations which are displayed in Fig. 3. These 
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Fig. 2. Crossing curves in the (σ, τ) plane with n ≤ 7. The points P1(0.1, 1), P2(0.1, 2), P3(0.1, 5), P4(1.5, 1), P5(3.1, 1)

and P6(3.1, 2.6) are chosen for further simulations.

Fig. 3. The spatial-temporal diagrams of P(x, t) for model (2) with N(x, t) = N2(σ ) + 0.01 cos(2x) and P(x, t) =
P2(σ ) + 0.01 cos(2x), t ∈ [− max{τ, σ }, 0]. The values of (σ, τ) for Figs. (a)-(f) are respectively the values of the point 
P1 to P6.
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simulations illustrate that stability switches occur as (σ, τ) moves from P1 to P4 to P5 (see the 
three subgraphs on the left panel from above down), and a stable spatially inhomogeneous peri-
odic solution with mode-4 spatial pattern appears as memory delay τ passes through the Hopf 
bifurcation point τ 4

H for fixed σ = 3.1 (see subgraphs (e) and (f)).
Our method developed in this paper can be applied to the following model with spatial mem-

ory in predators:

⎧⎪⎪⎨⎪⎪⎩
∂N
∂t

= δ11Nxx + rN
(

1 − N

K

)
− bNP, 0 < x < ιπ, t > 0,

∂P
∂t

= δ22Pxx − δ21
(
PNx(x, t − τ)

)
x

+ βNσ P 2
σ

h+Pσ
e−dσ − μP, 0 < x < ιπ, t > 0,

Nx(0, t) = Nx(ιπ, t) = Px(0, t) = Px(ιπ, t) = 0, t ≥ 0,

(59)

where τ is the average memory period of predators, and δ21 is the memory-dependent diffusion 
coefficient with the sign “−” describing predators having the tendency to move to high-density 
positions of the prey. Model (59) can characterize some highly developed animals with prior 
knowledge of the prey distribution [48]. For example, whales move according to the accumu-
lation of information in space since they possess a memory of over 10 years [49]. Analyzing 
similarly as in Sect. 3 for model (2), we can easily obtain the associated characteristic equation 
of model (59) as follows:

gn
0(λ,σ ) + gn

1(λ,σ )e−λσ − δ21Pi(σ )α12(σ )
(n

ι

)2
e−λτ = 0.

We can also obtain the functions Sκ(σ ), stability crossing curves T n as well as normal form of 
Hopf bifurcation with some small modifications.

We compare the dynamics between models (59) and (2) via another numerical example. We 
choose δ21 = 0.4 and other parameters take the same values as in the previous numerical ex-
ample. Similarly, we can calculate that the stable intervals of E2(σ ) for maturation delay σ is 
[0, 0.5566) ∪ (2.2348, 5.4715). We can further plot crossing curves T n, n = 1, 2, · · ·7 in the 
region of (σ, τ), [0, 5.3] × [0, 7], as shown in Fig. 4. Compared with Fig. 2, we can observe 
that there exist spiral-like curves along σ axis. We also observe that all stability crossing curves 
do not intersect with the σ -axis. This indicates that the bifurcation periodic solutions of model 
(59) without memory delay are spatially homogeneous. Similarly, for σ = 2.5, we can calculate 
nH = 7, � 7

H ≈ 2.4976, τ 7
H ≈ 0.4489, K1 ≈ 0.4285 > 0 and K2 ≈ −0.0079 < 0 which indicates 

that a stable spatially inhomogeneous periodic solution with mode-7 spatial pattern appears as τ
passes τ 7

H in the increasing direction with spatially inhomogeneous initial functions as shown in 
Fig. 5. We also observe that the solution of model (59) with spatially homogeneous initial func-
tions tends to the constant steady state E2(2.5) as τ passes through τ 7

H in the increasing direction 
as shown in Fig. 6. These reflect that the initial values can significantly affect the long-time be-
havior of memory-based diffusion models.

To summarize, the model and methodology developed in this paper provide a new avenue to 
study spatiotemporal models with spatial memory and to understand the distribution of species 
in space and time. There are many interesting problems deserving further investigation. For ex-
ample, spatial memory may exist in both predators and the prey, how to deal with this kind of 
models and obtain their associated stability crossing curves is a challenging problem. In addition, 
we observe from Figs. 2 and 4 that the crossing curves can intersect at some points. These points 
59



S. Li, S. Yuan, Z. Jin et al. Journal of Differential Equations 357 (2023) 32–63
Fig. 4. Crossing curves in the (σ, τ ) plane with n ≤ 7 for model (59).

Fig. 5. The spatial-temporal diagrams and time series at location x = π of P for model (59) with N(x, t) = N2(2.5) +
0.01 cos( 7x

2 ) and P(x, t) = P2(2.5) + 0.01 cos( 7x
2 ), t ∈ [− max{τ, σ }, 0].

are dubbed double Hopf bifurcation points. Generally, the model can exhibit complicated dy-
namics such as quasi-periodic solutions and even chaos when the parameters of model are taken 
around such points [50]. Therefore, how to obtain the normal form of double Hopf bifurcation 
induced by memory and maturation delays deserves further consideration. Finally, the distribu-
tions of resources are usually not homogeneous in space, how will the distribution of the species 
change when parameters of model are dependent on location x? We leave all these for our future 
consideration.
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Fig. 6. The spatial-temporal diagrams and time series at location x = π of P for model (59) with N(x, t) = N2(2.5) +
0.01 and P(x, t) = P2(2.5) + 0.01, t ∈ [− max{τ, σ }, 0].
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