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A B S T R A C T

The successive emergence of SARS-CoV-2 mutations has led to an unprecedented increase in COVID-19
incidence worldwide. Currently, vaccination is considered to be the best available solution to control the
ongoing COVID-19 pandemic. However, public opposition to vaccination persists in many countries, which can
lead to increased COVID-19 caseloads and hence greater opportunities for vaccine-evasive mutant strains to
arise. To determine the extent that public opinion regarding vaccination can induce or hamper the emergence
of new variants, we develop a model that couples a compartmental disease transmission framework featuring
two strains of SARS-CoV-2 with game theoretical dynamics on whether or not to vaccinate. We combine
semi-stochastic and deterministic simulations to explore the effect of mutation probability, perceived cost of
receiving vaccines, and perceived risks of infection on the emergence and spread of mutant SARS-CoV-2 strains.
We find that decreasing the perceived costs of being vaccinated and increasing the perceived risks of infection
(that is, decreasing vaccine hesitation) will decrease the possibility of vaccine-resistant mutant strains becoming
established by about fourfold for intermediate mutation rates. Conversely, we find increasing vaccine hesitation
to cause both higher probability of mutant strains emerging and more wild-type cases after the mutant strain
has appeared. We also find that once a new variant has emerged, perceived risk of being infected by the
original variant plays a much larger role than perceptions of the new variant in determining future outbreak
characteristics. Furthermore, we find that rapid vaccination under non-pharmaceutical interventions is a highly
effective strategy for preventing new variant emergence, due to interaction effects between non-pharmaceutical
interventions and public support for vaccination. Our findings indicate that policies that combine combating
vaccine-related misinformation with non-pharmaceutical interventions (such as reducing social contact) will
be the most effective for avoiding the establishment of harmful new variants.
1. Introduction

The ongoing COVID-19 pandemic presents great threats to public
health and significant challenges to global economic development.
Since the identification of the first case of SARS-CoV-2 in December
2019, the COVID-19 pandemic has caused more than 649 million
confirmed cases worldwide and a number of confirmed deaths above
6.6 million as of December 19, 2022 (World Health Organization,
2022). The rapid mutation rate of the COVID-19 virus is one of the
main driving factors for its huge and long-lasting impact, as it has
led to the development of many different SARS-CoV-2 variants, which
have caused multiple COVID-19 outbreak waves worldwide (Xue et al.,
2022). These include the Delta variant (B.1.617.2), which was discov-
ered in Maharashtra, India in October 2020 and subsequently caused
a major outbreak both in that country and globally (Del Rio et al.,
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2021), and the Omicron variant (B.1.1.529), which was first discovered
in Gauteng, South Africa in November 2021 and went on to produce
even greater global case numbers than Delta (Maslo et al., 2022; Planas
et al., 2022). Since its initial emergence, the Omicron variant has
continued mutating, giving rise to multiple sublineages (e.g., BA.1.1,
BA.2, BA.2.12.1, BA.5, BQ.1, and BQ.1.1) (Elliott et al., 2022; Centers
for Disease Control and Prevention, 2022; Tegally et al., 2022) that
have caused prolonged periods of high COVID-19 transmission rates
in many countries. The CDC expects that new variants of SARS-CoV-2
will continue to emerge (Centers for Disease Control and Prevention,
2022), in part because of the virus’s high mutation ability.

The SARS-CoV-2 variants that have emerged recently have higher
transmission rates than both the 2009 H1N1 strain of influenza and
its seasonal varieties (Xue et al., 2022; Faust and Del Rio, 2020). This
increase in transmissibility has led to the need for a stronger response
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by governments and individuals to reduce SARS-CoV-2 infection. As the
global outbreak of COVID-19 has progressed, it has become clear that
many non-pharmaceutical interventions (such as lockdowns) are not
economically and socially sustainable in the long run (Lobinska et al.,
2022). Therefore, vaccination is considered to be the best available
solution to control the ongoing COVID-19 pandemic (Rella et al., 2021),
as it facilitates mortality reduction by way of providing large portions
of the population with immunity. Hence, vaccinated populations can
avoid large-scale infections and potentially achieve herd immunity,
meaning that vaccination can at least theoretically eradicate COVID-
19 (Lobinska et al., 2022; Rella et al., 2021). However, this possibility
of eradication has faced challenges from the successive emergence
of SARS-CoV-2 variants (Tegally et al., 2021). Many studies have
shown that in addition to their higher infectivity, the new SARS-CoV-
2 variants have stronger immune evasion (Thompson et al., 2021),
making them resistant to the original vaccines developed for wild-
type SARS-CoV-2 (McCallum et al., 2021; Cai et al., 2021; Cao et al.,
2022). Additionally, as vaccination rates increase, those who have
not been vaccinated become steadily less likely to be infected due
to herd immunity (Brisson and Edmunds, 2003). This makes more
and more individuals refuse to be vaccinated, since non-vaccinators
can be protected through herd immunity without the risk of vaccine
complications (Bauch, 2005).

Mathematical models can be used to understand the successive
emergence of SARS-CoV-2 variants and help inform effective vaccina-
tion strategies. Many modelling studies have hence been performed
to make projections about the emergence and spread of these vari-
ants (Lobinska et al., 2022; Rella et al., 2021; Bordon, 2022; Gandon
and Lion, 2022; McLeod and Gandon, 2022). For instance, Rella et al.
used a stochastic SIR-derived model of SARS-CoV-2 transmission to
investigate the impact of vaccination rates and the intensity of non-
pharmaceutical interventions on the probability of a vaccine-resistant
strain emerging, and hence to simulate the different outbreak waves
inherent in the pandemic (Rella et al., 2021). Lobinska et al. used a
transmission model to analyze the evolutionary dynamics of SARS-CoV-
2 mutations, in the context of both changes in contact patterns over
the course of the pandemic and the speed of vaccine rollout (Lobinska
et al., 2022). Their results show that if vaccination happens slowly,
vaccine-resistant mutant strains of SARS-CoV-2 are likely to emerge
even if social distancing is adhered to. Conversely, when vaccines are
delivered to a population quickly, the emergence of vaccine-resistant
strains can be prevented if the public continues to adhere to social
distancing practices during the vaccination campaign (Lobinska et al.,
2022).

However, as the SARS-CoV-2 pandemic wears on, persistent vac-
cine hesitancy may emerge in populations in the same way it has
with other diseases (e.g. measles Lo and Hotez, 2017). This would
render it much more challenging to prevent the emergence of harmful
new mutant strains that could repeat the serious damage seen ear-
lier in the pandemic. Over the course of a disease’s time infecting
human populations, the perceived risks of vaccines and infection by
the disease change due to the interplay between vaccine coverage,
disease prevalence, and opinions on vaccines among the population
at large (Bauch, 2005). Concerns on vaccine safety, underestimation
of infection risk, and anticipation of herd immunity can all lead to
a dramatic drop in vaccination rates (Poland and Jacobson, 2001).
These critical factors governing long-term vaccination dynamics (and
hence variant emergence) have rarely been considered in the previous
literature on SARS-CoV-2 mutations. Nevertheless, doing so is crucial
now that the development and rollout of COVID-19 vaccines is done
on a more regular schedule and countries make longer-term COVID-19
management plans. Because of this, we developed a model of disease
transmission featuring two strains (a wild-type and a vaccine-resistant
mutant) that joins compartmental transmission dynamics with game
theory. Within this model, individuals make decisions on vaccination
2

according to disease prevalence (i.e. the number of new cases) and the
perceived risks of vaccines and disease, allowing us to address questions
of how these decisions can affect the shape of a COVID-19 outbreak.

In our simulations, we use both semi-stochastic and deterministic
simulations to uncover how social behaviour related to vaccination
affects the dynamics of our model. We simulate the effects of mutation
probability and the perceived risks from being infected or receiving vac-
cine doses on the probability of producing a vaccine-resistant mutant
strain of SARS-CoV-2. To assess the impact of these perceived costs on
the burden of COVID-19 (measured in terms of the daily number of
new cases), we run simulations for different values of the perceived
cost of vaccination, as well as the perceived risks of infection by a
contemporaneously dominant, or wild-type, strain of SARS-CoV-2 and
a vaccine-resistant mutant strain. This includes simulations in which
non-pharmaceutical interventions are applied, in order to determine the
strength of the interaction effect on pandemic mitigation between these
interventions and a population supportive of vaccination.

2. Materials and methods

In this section, we introduce an infectious disease model with two
mutant strains and vaccination, taking the form of a homogeneous
system of ordinary differential equations. For simplification, we assume
that there are no births, as well as no deaths unrelated to COVID-19.

2.1. Disease prevalence model

To mimic the spread of the COVID-19 epidemic, we incorporate
vaccination into a disease transmission model. We divide the whole
population into twelve classes: susceptible individuals 𝑆(𝑡); vaccinated
individuals 𝑉 (𝑡); individuals exposed to SARS-CoV-2, divided into those
xposed to wild-type SARS-CoV-2 (hereafter denoted ‘‘WT’’) 𝐸𝑊 𝑇 (𝑡)
nd those exposed to a vaccine-resistant mutant type of SARS-CoV-2
hereafter denoted ‘‘MT’’) 𝐸𝑀𝑇 (𝑡); pre-symptomatic infectious individ-
als, divided into those infected with WT 𝑃𝑊 𝑇 (𝑡) and those infected
ith MT 𝑃𝑀𝑇 (𝑡); asymptomatic infectious individuals, divided into

hose infected with WT 𝐴𝑊 𝑇 (𝑡) and those infected with MT 𝐴𝑀𝑇 (𝑡);
ymptomatic infectious individuals, divided into those infected with
T 𝐼𝑊 𝑇 (𝑡) and those infected with MT 𝐼𝑀𝑇 (𝑡); recovered individuals
(𝑡); and individuals who die of the infection 𝐷(𝑡). The total population

s denoted by 𝑁 , where 𝑁 = 𝑆+𝑉 +𝐸𝑊 𝑇 +𝐸𝑀𝑇 +𝑃𝑊 𝑇 +𝑃𝑀𝑇 +𝐴𝑊 𝑇 +
𝑀𝑇 + 𝐼𝑊 𝑇 + 𝐼𝑀𝑇 +𝑅. The forces of infection for WT and MT (among

usceptible and vaccinated individuals) are defined as

𝑖 = 𝛽𝑖(𝜃𝑖𝑃𝑖 + 𝛿𝑖𝐴𝑖 + 𝐼𝑖), 𝑖 =
{

𝑊 𝑇 ,𝑀𝑇
}

,

here 𝛿𝑖 and 𝜃𝑖, 𝑖 = {𝑊 𝑇 ,𝑀𝑇 } govern the probabilities of transmis-
ion in asymptomatic and pre-symptomatic individuals, respectively,
elative to symptomatic individuals. 𝛽𝑊 𝑇 and 𝛽𝑀𝑇 denote the transmis-
ion rate of WT and MT. Our disease transmission model is therefore
ormulated as follows:
d𝑆
d𝑡 = −

𝜆𝑊 𝑇𝑆
𝑁

−
𝜆𝑀𝑇𝑆
𝑁

− 𝑝𝑥𝑆 + 𝜏𝑉 ,

d𝑉
d𝑡 = 𝑝𝑥𝑆 −

𝜆𝑊 𝑇 𝜂𝑊 𝑇 𝑉
𝑁

−
𝜆𝑀𝑇 𝜂𝑀𝑇 𝑉

𝑁
− 𝜏𝑉 ,

d𝐸𝑊 𝑇
d𝑡 =

𝜆𝑊 𝑇
[

(1 − 𝑢𝑆 )𝑆 + (1 − 𝑢𝑉 )𝜂𝑊 𝑇 𝑉
]

𝑁
− 𝜎𝑊 𝑇𝐸𝑊 𝑇 ,

d𝐸𝑀𝑇
d𝑡 =

𝜆𝑊 𝑇 (𝑢𝑆𝑆 + 𝑢𝑉 𝜂𝑊 𝑇 𝑉 )
𝑁

+
𝜆𝑀𝑇 (𝑆 + 𝜂𝑀𝑇 𝑉 )

𝑁
− 𝜎𝑀𝑇𝐸𝑀𝑇 ,

d𝑃𝑊 𝑇
d𝑡 = 𝜎𝑊 𝑇𝐸𝑊 𝑇 − 𝛼𝑊 𝑇 𝑃𝑊 𝑇 ,

d𝑃𝑀𝑇
d𝑡 = 𝜎𝑀𝑇𝐸𝑀𝑇 − 𝛼𝑀𝑇 𝑃𝑀𝑇 , (1)

d𝐴𝑊 𝑇
d𝑡 = 𝜌𝑊 𝑇 𝛼𝑊 𝑇 𝑃𝑊 𝑇 − 𝛾𝐴𝑊 𝑇

𝐴𝑊 𝑇 ,

d𝐴𝑀𝑇 = 𝜌 𝛼 𝑃 − 𝛾 𝐴 ,
d𝑡 𝑀𝑇 𝑀𝑇 𝑀𝑇 𝐴𝑀𝑇 𝑀𝑇
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d𝐼𝑊 𝑇
d𝑡 = (1 − 𝜌𝑊 𝑇 )𝛼𝑊 𝑇 𝑃𝑊 𝑇 − 𝛾𝐼𝑊 𝑇

𝐼𝑊 𝑇 ,

d𝐼𝑀𝑇
d𝑡 = (1 − 𝜌𝑀𝑇 )𝛼𝑀𝑇 𝑃𝑀𝑇 − 𝛾𝐼𝑀𝑇

𝐼𝑀𝑇 ,

d𝑅
d𝑡 = 𝜇𝑊 𝑇 𝛾𝐼𝑊 𝑇

𝐼𝑊 𝑇 + 𝜇𝑀𝑇 𝛾𝐼𝑀𝑇
𝐼𝑀𝑇 + 𝛾𝐴𝑊 𝑇

𝐴𝑊 𝑇 + 𝛾𝐴𝑀𝑇
𝐴𝑀𝑇 ,

d𝐷
d𝑡 = (1 − 𝜇𝑊 𝑇 )𝛾𝐼𝑊 𝑇

𝐼𝑊 𝑇 + (1 − 𝜇𝑀𝑇 )𝛾𝐼𝑀𝑇
𝐼𝑀𝑇 .

In the above model, 𝑝 represents the vaccination rate, while 𝑥
epresents the proportion of the population willing to receive a vaccine.
Not all individuals in the population will be vaccinated after 1∕𝑝
ays, necessitating the inclusion of 𝑥). 1∕𝜏 represents the maximum
uration of vaccine protection. 𝑢𝑆 and 𝑢𝑉 are the probability that
T will undergo a mutation in unvaccinated and vaccinated indi-

iduals, respectively. Additionally, both WT and MT are associated
ith several quantities related to their infectivity and mortality. These
re probability of death among symptomatic individuals 1 − 𝜇𝑖, mean
ncubation period length 1∕𝜎𝑖, mean infectious period lengths 1∕𝛼𝑖 for
re-symptomatic individuals, mean infectious period lengths 1∕𝛾𝐴𝑖

for
symptomatic individuals and 1∕𝛾𝐼𝑖 for symptomatic individuals, and
roportion of infected individuals that are asymptomatic 𝜌𝑖, where the
alues for WT are denoted by 𝑖 = 𝑊 𝑇 and those for MT are denoted by
= 𝑀𝑇 . Similarly, 𝜂𝑀𝑇 and 𝜂𝑊 𝑇 denote the reduction in susceptibility
onferred by vaccination to WT and MT, respectively (i.e. how effective
vaccine series is against contracting COVID-19); these take values

etween 0 and 1. If 𝜂𝑀𝑇 = 1, then vaccination confers no immunity
o MT, meaning that MT escapes completely. For 0 < 𝜂𝑀𝑇 < 1, MT is a
artial escape mutant. For 𝜂𝑀𝑇 = 0, MT does not escape at all.

.2. Game theoretical vaccination model

During an epidemic, individuals are exposed to many often conflict-
ng pieces of information about how severe the circulating disease is,
ow likely they are to get it, and the efficacy of available vaccines.
ecause of this, the perceived risks of the disease in question and being
accinated for it vary over time. Hence, the proportion of individuals
illing to be vaccinated (we will call these ‘‘vaccinators’’), represented
bove as 𝑥, is dynamic. Therefore, we use imitation dynamics drawn
rom evolutionary game theory to simulate human decisions whether
r not to vaccinate, as well as the downstream impact of these decisions
n the emergence of mutant strains (Bauch and Earn, 2004; Bauch,
005; Pananos et al., 2017; Deka and Bhattacharyya, 2022). This is
ccomplished by defining functions for the perceived utility that an
ndividual receives when following a strategy of vaccination or non-
accination; here, these take the form of utility costs related to getting
accinated or being vulnerable to COVID-19. Let 𝐹𝑣 be the utility
unction for vaccinators. Since our model formulation focuses on utility
osts, this function is related to the risk of adverse effects from the
accine. Hence, we define 𝐹𝑣 as

𝑣 = −𝑟𝑣,

here 𝑟𝑣 is the perceived cost of being vaccinated or the perceived
robability of morbidity caused by the vaccine.

Likewise, in our model formulation, the utility function for non-
accinators 𝐹𝑛 contains the cost associated with not being vaccinated.
ntuitively, this represents the perceived cost associated with SARS-
oV-2 infection, meaning that it depends on the number of infected

ndividuals. Within our model, SARS-CoV-2 infections can be due to
ither WT or MT, and can further be either symptomatic or asymp-
omatic, meaning that 𝐹𝑛 will depend on 𝐼𝑊 𝑇 , 𝐼𝑀𝑇 , 𝐴𝑊 𝑇 and 𝐴𝑀𝑇 .
ssuming that the perceived cost of not being vaccinated scales lin-
arly with case numbers, we can describe the cost of (for instance)
ymptomatic infection by WT using the term 𝑟𝐼𝑊 𝑇

𝐼𝑊 𝑇 , where the
onstant 𝑟𝐼𝑊 𝑇

is the perceived personal danger from such an infection.
urthermore, since people decide to be vaccinators or non-vaccinators
epending on the relative magnitudes of 𝐹 and 𝐹 (in other words, the
3

𝑣 𝑛
isk due to getting the vaccine versus the risk due to being infected by
ARS-CoV-2), we introduce an additional constant 𝑚𝐼𝑊 𝑇

in this term to
escribe how sensitive individual behaviour regarding vaccination is to
luctuations in case count. This makes the term for the perceived cost of
ymptomatic infection by WT equal to 𝑟𝐼𝑊 𝑇

𝑚𝐼𝑊 𝑇
𝐼𝑊 𝑇 . Similar analysis

ives us terms of 𝑟𝐼𝑀𝑇
𝑚𝐼𝑀𝑇

𝐼𝑀𝑇 , 𝑟𝐴𝑊 𝑇
𝑚𝐴𝑊 𝑇

𝐴𝑊 𝑇 , and 𝑟𝐴𝑀𝑇
𝑚𝐴𝑀𝑇

𝐴𝑀𝑇
for symptomatic infection by MT and asymptomatic infection by WT
and MT, respectively. Hence, the perceived utility for a strategy of
non-vaccination can be expressed as

𝐹𝑛(𝐴𝑊 𝑇 , 𝐴𝑀𝑇 , 𝐼𝑊 𝑇 , 𝐼𝑀𝑇 ) =−
(

𝑟𝐴𝑊 𝑇
𝑚𝐴𝑊 𝑇

𝐴𝑊 𝑇 + 𝑟𝐴𝑀𝑇
𝑚𝐴𝑀𝑇

𝐴𝑀𝑇

+ 𝑟𝐼𝑊 𝑇
𝑚𝐼𝑊 𝑇

𝐼𝑊 𝑇 + 𝑟𝐼𝑀𝑇
𝑚𝐼𝑀𝑇

𝐼𝑀𝑇
)

.

Individuals decide whether to vaccinate through a social learning
or imitation process. Suppose individuals hear the opinions regarding
vaccination of other members of the population, randomly sampled, at
some constant rate. The more positive the payoff for some individual’s
strategy, the higher the probability that another member of the pop-
ulation that interacts with that individual will adopt their strategy. In
other words, individuals following a lower payoff strategy that hear
about a higher payoff strategy may shift to it (Bauch, 2005; Pharaon
and Bauch, 2018; Deka and Bhattacharyya, 2022). Thus, the payoff gain
for switching to a vaccination strategy is

𝛥𝐹 = 𝐹𝑣 − 𝐹𝑛(𝐴𝑊 𝑇 , 𝐴𝑀𝑇 , 𝐼𝑊 𝑇 , 𝐼𝑀𝑇 ).

Note that individuals tend to switch their strategy, provided other
embers of the population who have adopted a different strategy

eceive a higher payoff (Deka et al., 2020). If the payoff for vaccinators
s greater than that for non-vaccinators (𝛥𝐹 > 0), then non-vaccinators
ay become vaccinators. (Since 𝐹𝑣 and 𝐹𝑛 are both negative or zero,
𝐹 > 0 means that 𝐹𝑛 is more negative than 𝐹𝑣, indicating a higher
ost for the non-vaccination strategy.) Conversely, if 𝛥𝐹 < 0, people
ho had previously committed to being vaccinated would instead

hoose not to be, and thus frequency of vaccinators would decrease.
e let 𝑥 denote the proportion of vaccinators, meaning that (1 − 𝑥)

enotes the proportion of non-vaccinators, and that positive change in
indicates more people becoming vaccinators. If individuals sample

he population at a rate 𝜙, then any individual doing this would sample
accinators at rate 𝜙𝑥. If a non-vaccinator does so and is exposed to the
pinions of vaccinators, they will switch to the vaccinator strategy with
robability 𝜔𝛥𝐹 , where 𝜔 is a proportionality constant that includes
he chance of switching after hearing different opinions (Bauch, 2005).
he case describing vaccinators switching to being non-vaccinators is
ymmetrical, as the proportion of the total population consisting of
accinators is 𝑥 and they will sample non-vaccinators at a rate 𝜙 (1 − 𝑥).
ccordingly, the evolutionary equation describing the proportion of
accinators can be defined as follows:

d𝑥
d𝑡 = (1 − 𝑥)𝜙𝑥𝜔𝛥𝐹 , (2)

For simplicity, we let 𝑘 = 𝜙𝜔, where 𝑘 is the combined imitation
ate at which individuals sample others and switch strategies. Then,
q. (2) is simplified into
d𝑥
d𝑡 = 𝑘𝑥(1 − 𝑥)𝛥𝐹 . (3)

Hence, our model is rewritten as follows:
d𝑆
d𝑡 = −

𝜆𝑊 𝑇𝑆
𝑁

−
𝜆𝑀𝑇𝑆
𝑁

− 𝑝𝑥𝑆 + 𝜏𝑉 ,

d𝑉
d𝑡 = 𝑝𝑥𝑆 −

𝜆𝑊 𝑇 𝜂𝑊 𝑇 𝑉
𝑁

−
𝜆𝑀𝑇 𝜂𝑀𝑇 𝑉

𝑁
− 𝜏𝑉 ,

d𝐸𝑊 𝑇
d𝑡 =

𝜆𝑊 𝑇
[

(1 − 𝑢𝑆 )𝑆 + (1 − 𝑢𝑉 )𝜂𝑊 𝑇 𝑉
]

𝑁
− 𝜎𝑊 𝑇𝐸𝑊 𝑇 ,

d𝐸𝑀𝑇
d𝑡 =

𝜆𝑊 𝑇 (𝑢𝑆𝑆 + 𝑢𝑉 𝜂𝑊 𝑇 𝑉 )
𝑁

+
𝜆𝑀𝑇 (𝑆 + 𝜂𝑀𝑇 𝑉 )

𝑁
− 𝜎𝑀𝑇𝐸𝑀𝑇 ,

d𝑃𝑊 𝑇 = 𝜎 𝐸 − 𝛼 𝑃 ,
d𝑡 𝑊 𝑇 𝑊 𝑇 𝑊 𝑇 𝑊 𝑇
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d𝑃𝑀𝑇
d𝑡 = 𝜎𝑀𝑇𝐸𝑀𝑇 − 𝛼𝑀𝑇 𝑃𝑀𝑇 ,

d𝐴𝑊 𝑇
d𝑡 = 𝜌𝑊 𝑇 𝛼𝑊 𝑇 𝑃𝑊 𝑇 − 𝛾𝐴𝑊 𝑇

𝐴𝑊 𝑇 , (4)

d𝐴𝑀𝑇
d𝑡 = 𝜌𝑀𝑇 𝛼𝑀𝑇 𝑃𝑀𝑇 − 𝛾𝐴𝑀𝑇

𝐴𝑀𝑇 ,

d𝐼𝑊 𝑇
d𝑡 = (1 − 𝜌𝑊 𝑇 )𝛼𝑊 𝑇 𝑃𝑊 𝑇 − 𝛾𝐼𝑊 𝑇

𝐼𝑊 𝑇 ,

d𝐼𝑀𝑇
d𝑡 = (1 − 𝜌𝑀𝑇 )𝛼𝑀𝑇 𝑃𝑀𝑇 − 𝛾𝐼𝑀𝑇

𝐼𝑀𝑇 ,

d𝑅
d𝑡 = 𝜇𝑊 𝑇 𝛾𝐼𝑊 𝑇

𝐼𝑊 𝑇 + 𝜇𝑀𝑇 𝛾𝐼𝑀𝑇
𝐼𝑀𝑇 + 𝛾𝐴𝑊 𝑇

𝐴𝑊 𝑇 + 𝛾𝐴𝑀𝑇
𝐴𝑀𝑇 ,

d𝐷
d𝑡 = (1 − 𝜇𝑊 𝑇 )𝛾𝐼𝑊 𝑇

𝐼𝑊 𝑇 + (1 − 𝜇𝑀𝑇 )𝛾𝐼𝑀𝑇
𝐼𝑀𝑇 ,

d𝑥
d𝑡 = 𝑘𝑥(1 − 𝑥)𝛥𝐹 .

It should be noted that the vaccination dynamics in Model (4)
mply that the waiting time to vaccination is exponentially distributed.
his represents vaccines being readily available and hence most people
eing able to receive one quickly, as has been the case in the latter
tages of the COVID-19 pandemic. If vaccines instead became scarce
nd required rationing, alternative approaches that involve placing
aximum numerical values on the flow from 𝑆 to 𝑉 per unit time could

e used.
According to Model (4), the daily numbers of new cases for WT and

T are formulated as
𝑊 𝑇 (𝑖) = ∫day 𝑖

𝛼𝑊 𝑇 𝑃𝑊 𝑇 (𝑡)d𝑡

nd
𝑀𝑇 (𝑖) = ∫day 𝑖

𝛼𝑀𝑇 𝑃𝑀𝑇 (𝑡)d𝑡,

espectively. Thus, the overall daily number of new cases is 𝐶(𝑖) =
𝑊 𝑇 (𝑖) + 𝐶𝑀𝑇 (𝑖).

Cases in unvaccinated and vaccinated individuals can be estimated
s

𝑐 (𝑡) =
𝜆𝑊 𝑇 (𝑡)𝑆(𝑡)

𝑁(𝑡)
+

𝜆𝑀𝑇 (𝑡)𝑆(𝑡)
𝑁(𝑡)

nd

𝑐 (𝑡) =
𝜆𝑊 𝑇 (𝑡)𝜂𝑊 𝑇 𝑉 (𝑡)

𝑁(𝑡)
+

𝜆𝑀𝑇 (𝑡)𝜂𝑀𝑇 𝑉 (𝑡)
𝑁(𝑡)

,

respectively. Although this uses the number of people entering the ex-
posed states rather than the number of people entering the symptomatic
and asymptomatic infectious states, it produces the same proportions
of unvaccinated and vaccinated cases as if the latter number was used.
This is because exposed and pre-symptomatic individuals cannot die
of COVID-19 or receive vaccines in our model, so the proportions of
unvaccinated and vaccinated individuals in the early stages of SARS-
CoV-2 infection remain constant as said individuals advance through
these stages.

The effective reproduction number in this model is defined as the
maximum of that of WT and that of MT (see Appendix A), specifically
as

𝑅𝑒(𝑡) = max
{

𝑅𝑊 𝑇
𝑒 (𝑡), 𝑅𝑀𝑇

𝑒 (𝑡)
}

, (5)

where

𝑅𝑊 𝑇
𝑒 (𝑡) =

(1 − 𝑢𝑆 )𝑆(𝑡) + (1 − 𝑢𝑉 )𝜂𝑊 𝑇 𝑉 (𝑡)
𝑁(𝑡)

×
(

𝛽𝑊 𝑇 𝜃𝑊 𝑇
𝛼𝑊 𝑇

+
𝛽𝑊 𝑇 𝜌𝑊 𝑇 𝛿𝑊 𝑇

𝛾𝐴𝑊 𝑇

+
𝛽𝑊 𝑇 (1 − 𝜌𝑊 𝑇 )

𝛾𝐼𝑊 𝑇

)

,

𝑅𝑀𝑇
𝑒 (𝑡) =

𝑆(𝑡) + 𝜂𝑀𝑇 𝑉 (𝑡)
𝑁(𝑡)

×
(

𝛽𝑀𝑇 𝜃𝑀𝑇 +
𝛽𝑀𝑇 𝜌𝑀𝑇 𝛿𝑀𝑇 +

𝛽𝑀𝑇 (1 − 𝜌𝑀𝑇 )
)

.

4

𝛼𝑀𝑇 𝛾𝐴𝑀𝑇
𝛾𝐼𝑀𝑇
Above, 𝛽𝑊 𝑇 𝜃𝑊 𝑇 (𝛽𝑀𝑇 𝜃𝑀𝑇 ), 𝛽𝑊 𝑇 𝛿𝑊 𝑇 (𝛽𝑀𝑇 𝛿𝑀𝑇 ), and 𝛽𝑊 𝑇 (𝛽𝑀𝑇 ) rep-
esent the probabilities of contact transmission per unit time between
re-symptomatic, asymptomatic, and symptomatic individuals infected
y WT (MT) and susceptible individuals, respectively. 1∕𝛼𝑊 𝑇 (1∕𝛼𝑀𝑇 ),
∕𝛾𝐴𝑊 𝑇

(1∕𝛾𝐴𝑀𝑇
), and 1∕𝛾𝐼𝑊 𝑇

(1∕𝛾𝐼𝑀𝑇
) are the average times that pre-

ymptomatic, asymptomatic, and symptomatic individuals infected by
T (MT) remain infectious. The term 1 − 𝜌𝑊 𝑇 (1 − 𝜌𝑀𝑇 ) is equivalent

o 𝛼𝑊 𝑇 (1 − 𝜌𝑊 𝑇 )∕𝛼𝑊 𝑇 (𝛼𝑀𝑇 (1 − 𝜌𝑀𝑇 )∕𝛼𝑀𝑇 ), which is the proportion
f individuals that have been infected with WT (MT) and are in the
re-symptomatic stage that progress to the symptomatic stage. Simi-
arly, a proportion 𝛼𝑊 𝑇 𝜌𝑊 𝑇 ∕𝛼𝑊 𝑇 (𝛼𝑀𝑇 𝜌𝑀𝑇 ∕𝛼𝑀𝑇 ) of individuals in the
re-symptomatic stage of WT (MT) infection instead progress to the
symptomatic stage. Additionally, for each individual that can spread
he virus (pre-symptomatic, symptomatic and asymptomatic), 𝑆(𝑡)∕𝑁(𝑡)
epresents the probability of effective contact with susceptible individ-
als at time 𝑡. Similarly, 𝜂𝑊 𝑇 𝑉 (𝑡)∕𝑁(𝑡) and 𝜂𝑀𝑇 𝑉 (𝑡)∕𝑁(𝑡) represent the
robability of effective contact with vaccinated individuals at time 𝑡
or individuals infected by WT and MT, respectively, since the prob-
bility of transmission to vaccinated individuals is scaled down by
he constants 𝜂𝑊 𝑇 and 𝜂𝑀𝑇 . We also have, in effect, 𝑅𝑊 𝑇

𝑒 (𝑡) ≤ 𝑅𝑊 𝑇
0

nd 𝑅𝑀𝑇
𝑒 (𝑡) ≤ 𝑅𝑀𝑇

0 , since we took nearly the entire population to be
usceptible at the beginning of our simulations. Since 𝑆(𝑡), 𝑉 (𝑡), and
(𝑡) are time-varying during the course of an epidemic, 𝑅𝑊 𝑇

𝑒 (𝑡) and
𝑀𝑇
𝑒 (𝑡) are also considered to be time-varying metrics (Zhao et al.,
022).

.3. Semi-stochastic simulation

As the emergence of new variants of COVID-19 can be viewed
s a stochastic process, we developed a stochastic model (Gillespie,
977) to simulate this. To accomplish this, we took 𝑆, 𝑉 , 𝐸𝑊 𝑇 , 𝐸𝑀𝑇 ,
𝑊 𝑇 , 𝑃𝑀𝑇 , 𝐴𝑊 𝑇 , 𝐴𝑀𝑇 , 𝐼𝑊 𝑇 , 𝐼𝑀𝑇 , 𝑅, and 𝐷 to be discrete variables,

considered all of the rates in Model (4) that cause individuals in the
population to be transferred between the groups designated by these
variables, and converted these rates into 32 randomly occurring events.
These events hence represent state transitions in Model (4), and are
shown in Table 1. Since 𝑥 is on a different order of magnitude than
the other variables, which are expressed as population numbers, we
use semi-stochastic simulation for ease of computation. In other words,
within our semi-stochastic simulation, 𝑥 is deterministic and the other
variables are treated stochastically (Xiao et al., 2006; Wang et al.,
2012). Further detail on our semi-stochastic method, such as how we
used the probabilities in Table 1 to generate time series, may be found
in Appendix B.

When simulating the emergence of new variants, we performed
multiple stochastic simulations and averaged the time series thus gen-
erated, from which we obtained average numbers of new daily cases of
WT and MT (see Results section).

2.4. Parameter estimation

We fixed some of the parameters in Model (4) based on previous
studies (Li et al., 2020a; Qiu, 2020; Li et al., 2020b; Hao et al., 2020;
Kumar et al., 2021; Tang et al., 2022). Since the incubation period of
COVID-19 is around 5.2 days (Li et al., 2020a), we took the mean length
of incubation period of both WT and MT to be 5.2 days, meaning that
1∕𝜎𝑊 𝑇+1∕𝛼𝑊 𝑇 = 1∕𝜎𝑀𝑇+1∕𝛼𝑀𝑇 = 5.2. We assumed a pre-symptomatic
infectious period of 1∕𝛼𝑊 𝑇 = 1∕𝛼𝑀𝑇 = 2.3 days (Hao et al., 2020).
Thus the latent period was 1∕𝜎𝑊 𝑇 = 1∕𝜎𝑀𝑇 = 2.9 days. Moreover,
we assumed that the average recovery periods for symptomatic and
asymptomatic infected individuals for the two variants are 11 and 7
days (Kumar et al., 2021; Tang et al., 2022), respectively, leading to
𝛾𝐼𝑊 𝑇

= 𝛾𝐼𝑀𝑇
= 1∕11 and 𝛾𝐴𝑊 𝑇

= 𝛾𝐴𝑀𝑇
= 1∕7 per day. Around 30%−90%

f people infected with due to COVID-19 are asymptomatic or only have
ild symptoms; within this subpopulation, SARS-CoV-2 transmissibility

s lower, but still significant (Qiu, 2020; Dong et al., 2020; Mizumoto
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Table 1
Events and their rates of the stochastic model.

Event Change of transition Rate Probability in
state [𝑡, 𝑡 + d𝑡]

𝑆 is infected by 𝑃𝑊 𝑇 (𝑆,𝐸𝑊 𝑇 ) → 𝑇1 =
(1−𝑢𝑆 )𝛽𝑊 𝑇 𝜃𝑊 𝑇 𝑃𝑊 𝑇 𝑆

𝑁
(1−𝑢𝑆 )𝛽𝑊 𝑇 𝜃𝑊 𝑇 𝑃𝑊 𝑇 𝑆d𝑡

𝑁(no mutation) (𝑆 − 1, 𝐸𝑊 𝑇 + 1)

𝑆 is infected by 𝑃𝑊 𝑇 (𝑆,𝐸𝑀𝑇 ) → 𝑇2 =
𝑢𝑆 𝛽𝑊 𝑇 𝜃𝑊 𝑇 𝑃𝑊 𝑇 𝑆

𝑁
𝑢𝑆 𝛽𝑊 𝑇 𝜃𝑊 𝑇 𝑃𝑊 𝑇 𝑆d𝑡

𝑁(mutation) (𝑆 − 1, 𝐸𝑀𝑇 + 1)

𝑆 is infected by 𝐴𝑊 𝑇 (𝑆,𝐸𝑊 𝑇 ) → 𝑇3 =
(1−𝑢𝑆 )𝛽𝑊 𝑇 𝛿𝑊 𝑇 𝐴𝑊 𝑇 𝑆

𝑁
(1−𝑢𝑆 )𝛽𝑊 𝑇 𝛿𝑊 𝑇 𝐴𝑊 𝑇 𝑆d𝑡

𝑁(no mutation) (𝑆 − 1, 𝐸𝑊 𝑇 + 1)

𝑆 is infected by 𝐴𝑊 𝑇 (𝑆,𝐸𝑀𝑇 ) → 𝑇4 =
𝑢𝑆 𝛽𝑊 𝑇 𝛿𝑊 𝑇 𝐴𝑊 𝑇 𝑆

𝑁
𝑢𝑆 𝛽𝑊 𝑇 𝛿𝑊 𝑇 𝐴𝑊 𝑇 𝑆d𝑡

𝑁(mutation) (𝑆 − 1, 𝐸𝑀𝑇 + 1)

𝑆 is infected by 𝐼𝑊 𝑇 (𝑆,𝐸𝑊 𝑇 ) → 𝑇5 =
(1−𝑢𝑆 )𝛽𝑊 𝑇 𝐼𝑊 𝑇 𝑆

𝑁
(1−𝑢𝑆 )𝛽𝑊 𝑇 𝐼𝑊 𝑇 𝑆d𝑡

𝑁(no mutation) (𝑆 − 1, 𝐸𝑊 𝑇 + 1)

𝑆 is infected by 𝐼𝑊 𝑇 (𝑆,𝐸𝑀𝑇 ) → 𝑇6 =
𝑢𝑆 𝛽𝑊 𝑇 𝐼𝑊 𝑇 𝑆

𝑁
𝑢𝑆 𝛽𝑊 𝑇 𝐼𝑊 𝑇 𝑆d𝑡

𝑁(mutation) (𝑆 − 1, 𝐸𝑀𝑇 + 1)

𝑆 is infected by 𝑃𝑀𝑇
(𝑆,𝐸𝑀𝑇 ) → 𝑇7 =

𝛽𝑀𝑇 𝜃𝑀𝑇 𝑃𝑀𝑇 𝑆
𝑁

𝛽𝑀𝑇 𝜃𝑀𝑇 𝑃𝑀𝑇 𝑆d𝑡
𝑁(𝑆 − 1, 𝐸𝑀𝑇 + 1)

𝑆 is infected by 𝐴𝑀𝑇
(𝑆,𝐸𝑀𝑇 ) → 𝑇8 =

𝛽𝑀𝑇 𝛿𝑀𝑇 𝐴𝑀𝑇 𝑆
𝑁

𝛽𝑀𝑇 𝛿𝑀𝑇 𝐴𝑀𝑇 𝑆d𝑡
𝑁(𝑆 − 1, 𝐸𝑀𝑇 + 1)

𝑆 is infected by 𝐼𝑀𝑇
(𝑆,𝐸𝑀𝑇 ) → 𝑇9 =

𝛽𝑀𝑇 𝐼𝑀𝑇 𝑆
𝑁

𝛽𝑀𝑇 𝐼𝑀𝑇 𝑆d𝑡
𝑁(𝑆 − 1, 𝐸𝑀𝑇 + 1)

Movement from 𝑆 (𝑆, 𝑉 ) →
𝑇10 = 𝑝𝑥𝑆 𝑝𝑥𝑆d𝑡to 𝑉 (𝑆 − 1, 𝑉 + 1)

Movement from 𝑉 (𝑆, 𝑉 ) →
𝑇11 = 𝜏𝑉 𝜏𝑉 d𝑡to 𝑆 (𝑆 + 1, 𝑉 − 1)

𝑉 is infected by 𝑃𝑊 𝑇 (𝑉 ,𝐸𝑊 𝑇 ) → 𝑇12 =
(1−𝑢𝑉 )𝛽𝑊 𝑇 𝜃𝑊 𝑇 𝑃𝑊 𝑇 𝜂𝑊 𝑇 𝑉

𝑁
(1−𝑢𝑉 )𝛽𝑊 𝑇 𝜃𝑊 𝑇 𝑃𝑊 𝑇 𝜂𝑊 𝑇 𝑉d𝑡

𝑁(no mutation) (𝑉 − 1, 𝐸𝑊 𝑇 + 1)

𝑉 is infected by 𝑃𝑊 𝑇 (𝑆,𝐸𝑀𝑇 ) → 𝑇13 =
𝑢𝑉 𝛽𝑊 𝑇 𝜃𝑊 𝑇 𝑃𝑊 𝑇 𝜂𝑊 𝑇 𝑉

𝑁
𝑢𝑉 𝛽𝑊 𝑇 𝜃𝑊 𝑇 𝑃𝑊 𝑇 𝜂𝑊 𝑇 𝑉d𝑡

𝑁(mutation) (𝑉 − 1, 𝐸𝑀𝑇 + 1)

𝑉 is infected by 𝐴𝑊 𝑇 (𝑉 ,𝐸𝑊 𝑇 ) → 𝑇14 =
(1−𝑢𝑉 )𝛽𝑊 𝑇 𝛿𝑊 𝑇 𝐴𝑊 𝑇 𝜂𝑊 𝑇 𝑉

𝑁
(1−𝑢𝑉 )𝛽𝑊 𝑇 𝛿𝑊 𝑇 𝐴𝑊 𝑇 𝜂𝑊 𝑇 𝑉d𝑡

𝑁(no mutation) (𝑉 − 1, 𝐸𝑊 𝑇 + 1)

𝑉 is infected by 𝐴𝑊 𝑇 (𝑉 ,𝐸𝑀𝑇 ) → 𝑇15 =
𝑢𝑉 𝛽𝑊 𝑇 𝛿𝑊 𝑇 𝐴𝑊 𝑇 𝜂𝑊 𝑇 𝑉

𝑁
𝑢𝑉 𝛽𝑊 𝑇 𝛿𝑊 𝑇 𝐴𝑊 𝑇 𝜂𝑊 𝑇 𝑆d𝑡

𝑁(mutation) (𝑉 − 1, 𝐸𝑀𝑇 + 1)

𝑉 is infected by 𝐼𝑊 𝑇 (𝑉 ,𝐸𝑊 𝑇 ) → 𝑇16 =
(1−𝑢𝑉 )𝛽𝑊 𝑇 𝐼𝑊 𝑇 𝜂𝑊 𝑇 𝑉

𝑁
(1−𝑢𝑉 )𝛽𝑊 𝑇 𝐼𝑊 𝑇 𝜂𝑊 𝑇 𝑉d𝑡

𝑁(no mutation) (𝑉 − 1, 𝐸𝑊 𝑇 + 1)

𝑉 is infected by 𝐼𝑊 𝑇 (𝑉 ,𝐸𝑀𝑇 ) → 𝑇17 =
𝑢𝑉 𝛽𝑊 𝑇 𝐼𝑊 𝑇 𝜂𝑊 𝑇 𝑉

𝑁
𝑢𝑉 𝛽𝑊 𝑇 𝐼𝑊 𝑇 𝜂𝑊 𝑇 𝑉d𝑡

𝑁(mutation) (𝑉 − 1, 𝐸𝑀𝑇 + 1)

𝑉 is infected by 𝑃𝑀𝑇
(𝑉 ,𝐸𝑀𝑇 ) → 𝑇18 =

𝛽𝑀𝑇 𝜃𝑀𝑇 𝑃𝑀𝑇 𝜂𝑀𝑇 𝑉
𝑁

𝛽𝑀𝑇 𝜃𝑀𝑇 𝑃𝑀𝑇 𝜂𝑀𝑇 𝑉d𝑡
𝑁(𝑉 − 1, 𝐸𝑀𝑇 + 1)

𝑉 is infected by 𝐴𝑀𝑇
(𝑉 ,𝐸𝑀𝑇 ) → 𝑇19 =

𝛽𝑀𝑇 𝛿𝑀𝑇 𝐴𝑀𝑇 𝜂𝑀𝑇 𝑉
𝑁

𝛽𝑀𝑇 𝛿𝑀𝑇 𝐴𝑀𝑇 𝜂𝑀𝑇 𝑉d𝑡
𝑁(𝑉 − 1, 𝐸𝑀𝑇 + 1)

𝑉 is infected by 𝐼𝑀𝑇
(𝑉 ,𝐸𝑀𝑇 ) → 𝑇20 =

𝛽𝑀𝑇 𝐼𝑀𝑇 𝜂𝑀𝑇 𝑉
𝑁

𝛽𝑀𝑇 𝐼𝑀𝑇 𝜂𝑀𝑇 𝑉d𝑡
𝑁(𝑉 − 1, 𝐸𝑀𝑇 + 1)

Movement from 𝐸𝑊 𝑇 (𝐸𝑊 𝑇 , 𝑃𝑊 𝑇 ) → 𝑇21 = 𝜎𝑊 𝑇𝐸𝑊 𝑇 𝜎𝑊 𝑇𝐸𝑊 𝑇 d𝑡to 𝑃𝑊 𝑇 (𝐸𝑊 𝑇 − 1, 𝑃𝑊 𝑇 + 1)

Movement from 𝐸𝑀𝑇 (𝐸𝑀𝑇 , 𝑃𝑀𝑇 ) → 𝑇22 = 𝜎𝑀𝑇𝐸𝑀𝑇 𝜎𝑀𝑇𝐸𝑀𝑇 d𝑡to 𝑃𝑀𝑇 (𝐸𝑀𝑇 − 1, 𝑃𝑀𝑇 + 1)

Movement from 𝑃𝑊 𝑇 (𝑃𝑊 𝑇 , 𝐴𝑊 𝑇 ) → 𝑇23 = 𝜌𝑊 𝑇 𝛼𝑊 𝑇 𝑃𝑊 𝑇 𝜌𝑊 𝑇 𝛼𝑊 𝑇 𝑃𝑊 𝑇 d𝑡to 𝐴𝑊 𝑇 (𝑃𝑊 𝑇 − 1, 𝐴𝑊 𝑇 + 1)

Movement from 𝑃𝑊 𝑇 (𝑃𝑊 𝑇 , 𝐼𝑊 𝑇 ) → 𝑇24 = (1 − 𝜌𝑊 𝑇 )𝛼𝑊 𝑇 𝑃𝑊 𝑇 (1 − 𝜌𝑊 𝑇 )𝛼𝑊 𝑇 𝑃𝑊 𝑇 d𝑡to 𝐼𝑊 𝑇 (𝑃𝑊 𝑇 − 1, 𝐼𝑊 𝑇 + 1)

Movement from 𝑃𝑀𝑇 (𝑃𝑀𝑇 , 𝐴𝑀𝑇 ) → 𝑇25 = 𝜌𝑀𝑇 𝛼𝑀𝑇 𝑃𝑀𝑇 𝜌𝑀𝑇 𝛼𝑀𝑇 𝑃𝑀𝑇 d𝑡to 𝐴𝑀𝑇 (𝑃𝑀𝑇 − 1, 𝐴𝑀𝑇 + 1)

Movement from 𝑃𝑀𝑇 (𝑃𝑀𝑇 , 𝐼𝑀𝑇 ) → 𝑇26 = (1 − 𝜌𝑀𝑇 )𝛼𝑀𝑇 𝑃𝑀𝑇 (1 − 𝜌𝑀𝑇 )𝛼𝑀𝑇 𝑃𝑀𝑇 d𝑡to 𝐼𝑀𝑇 (𝑃𝑀𝑇 − 1, 𝐼𝑀𝑇 + 1)

Recovery from 𝐴𝑊 𝑇
(𝐴𝑊 𝑇 , 𝑅) → 𝑇27 = 𝛾𝐴𝑊 𝑇

𝐴𝑊 𝑇 𝛾𝐴𝑊 𝑇
𝐴𝑊 𝑇 d𝑡

(𝐴𝑊 𝑇 − 1, 𝑅 + 1)

Recovery from 𝐴𝑀𝑇
(𝐴𝑀𝑇 , 𝑅) → 𝑇28 = 𝛾𝐴𝑀𝑇

𝐴𝑀𝑇 𝛾𝐴𝑀𝑇
𝐴𝑀𝑇 d𝑡

(𝐴𝑀𝑇 − 1, 𝑅 + 1)

Recovery from 𝐼𝑊 𝑇
(𝐼𝑊 𝑇 , 𝑅) → 𝑇29 = 𝜇𝑊 𝑇 𝛾𝐼𝑊 𝑇

𝐼𝑊 𝑇 𝜇𝑊 𝑇 𝛾𝐼𝑊 𝑇
𝐼𝑊 𝑇 d𝑡

(𝐼𝑊 𝑇 − 1, 𝑅 + 1)

Death from 𝐼𝑊 𝑇
(𝐼𝑊 𝑇 , 𝐷) →

𝑇30 = (1 − 𝜇𝑊 𝑇 )𝛾𝐼𝑊 𝑇
𝐼𝑊 𝑇 (1 − 𝜇𝑊 𝑇 )𝛾𝐼𝑊 𝑇

𝐼𝑊 𝑇 d𝑡
(𝐼𝑊 𝑇 − 1, 𝐷 + 1)

(continued on next page)
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Table 1 (continued).
Event Change of transition Rate Probability in

state [𝑡, 𝑡 + d𝑡]

Recovery from 𝐼𝑀𝑇
(𝐼𝑀𝑇 , 𝑅) → 𝑇31 = 𝜇𝑀𝑇 𝛾𝐼𝑀𝑇

𝐼𝑀𝑇 𝜇𝑀𝑇 𝛾𝐼𝑀𝑇
𝐼𝑀𝑇 d𝑡

(𝐼𝑀𝑇 − 1, 𝑅 + 1)

Death from 𝐼𝑀𝑇
(𝐼𝑀𝑇 , 𝐷) →

𝑇32 = (1 − 𝜇𝑀𝑇 )𝛾𝐼𝑀𝑇
𝐼𝑀𝑇 (1 − 𝜇𝑀𝑇 )𝛾𝐼𝑀𝑇

𝐼𝑀𝑇 d𝑡
(𝐼𝑀𝑇 − 1, 𝐷 + 1)
Table 2
Definitions and values of parameters.

Parameters Description Value Source
1

𝜎𝑊 𝑇
and 1

𝜎𝑀𝑇
The mean length of latent period 2.9 Li et al. (2020a) and Hao et al. (2020)

1
𝛼𝑊 𝑇

and 1
𝛼𝑀𝑇

The pre-symptomatic infectious period 2.3 Li et al. (2020a) and Hao et al. (2020)
1

𝛾𝐼𝑊 𝑇
and 1

𝛾𝐼𝑀𝑇
The symptomatic infectious period 11 Kumar et al. (2021)

1
𝛾𝐴𝑊 𝑇

and 1
𝛾𝐴𝑀𝑇

The asymptomatic infectious period 7 Tang et al. (2022)

𝜌𝑊 𝑇 and 𝜌𝑀𝑇
The proportion of asymptomatic infected 60% Qiu (2020), Dong et al. (2020), Mizumoto et al. (2020), Akinbami

et al. (2022) and Murray (2022)individuals

𝜃𝑊 𝑇 and 𝜃𝑀𝑇
The factor for reduced transmission probability 0.55 Li et al. (2020b) and Hao et al. (2020)of asymptomatic infected individuals

𝛿𝑊 𝑇 and 𝛿𝑀𝑇
The factor for reduced transmission probability 0.55 Li et al. (2020b) and Hao et al. (2020)of pre-symptomatic individuals

1∕𝜏 The maximum duration of vaccine protection 240 Yang et al. (2021), Al Kaabi et al. (2021), Thomas et al. (2021), Barouch
et al. (2021) and Pegu et al. (2021)

𝛽𝑊 𝑇 The transmission rate of WT 0.2 Assumed
𝛽𝑀𝑇 The transmission rate of MT 0.4 Assumed
1 − 𝜇𝑊 𝑇 Probability of death from infection with WT 0.01 Assumed
1 − 𝜇𝑀𝑇 Probability of death from infection with MT 0.005 Assumed
1 − 𝜂𝑊 𝑇 Protection level of vaccine against WT 0.8 Assumed
1 − 𝜂𝑀𝑇 Protection level of vaccine against MT 0.2 Assumed
𝑝 The vaccination rate 0.05 Assumed

𝑘
The combined imitation rate at which individuals 0.2 Assumedsample others and switch strategies

𝑚𝐴𝑊 𝑇

The sensitivity of vaccinating behaviour
0.04to changes in prevalence of asymptomatic Assumed

individuals infected with WT

𝑚𝐴𝑀𝑇

The sensitivity of vaccinating behaviour
0.04to changes in prevalence of asymptomatic Assumed

individuals infected with MT

𝑚𝐼𝑊 𝑇

The sensitivity of vaccinating behaviour
0.07to changes in prevalence of symptomatic Assumed

individuals infected with WT

𝑚𝐼𝑀𝑇

The sensitivity of vaccinating behaviour
0.07to changes in prevalence of symptomatic Assumed

individuals infected with MT
M
l
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et al., 2020; Akinbami et al., 2022; Murray, 2022). Thus, we assumed
that the probabilities of an infected individual being asymptomatic are
𝜌𝑊 𝑇 = 𝜌𝑀𝑇 = 60%, and we set 𝜃𝑊 𝑇 = 𝜃𝑀𝑇 = 𝛿𝑊 𝑇 = 𝛿𝑀𝑇 = 0.55 (Li
t al., 2020b; Hao et al., 2020) due to lower transmissibility among
oth exposed and asymptomatic infected individuals. Several studies
ave shown that the effectiveness of COVID-19 vaccine decreases sig-
ificantly after 6 to 8 months (Yang et al., 2021; Al Kaabi et al., 2021;
homas et al., 2021; Barouch et al., 2021; Pegu et al., 2021), therefore,
e assumed that the maximum duration of vaccine protection is 1∕𝜏 =

8 × 30 days. For the infectivity of the two variants, we assumed that
MT is more infective than WT (Xue et al., 2022; Cao et al., 2022; Cele
et al., 2022), leading to the assumption that 𝛽𝑀𝑇 > 𝛽𝑊 𝑇 . According to
esults on the fatality of SARS-CoV-2 mutations (Xue et al., 2022), we
ssumed that MT is less fatal than WT, so we took 1 − 𝜇𝑊 𝑇 > 1 − 𝜇𝑀𝑇 .
ower viral loads in the vaccinated individuals could lead to fewer
utations (Grenfell et al., 2004; Gutierrez and Gog, 2023), therefore,
e assumed that 𝑢𝑆 > 𝑢𝑉 . In addition, without loss of generality, we
lso assumed that MT has stronger immune evasion ability (Xue et al.,
022). This implies that the vaccine has a lower protection rate against
6

i

T compared with WT, in other words 𝜂𝑀𝑇 > 𝜂𝑊 𝑇 . All parameters are
isted in Table 2.

. Results

In this section, we perform semi-stochastic simulations of Model
4) to illustrate the impact of human decision on vaccination on the
mergence and spread of MT. These simulations are carried out using
arameter values that are drawn either from the literature, estimated
rom available information or through reasonable guesses. Unless other-
ise specified, the parameter values used for simulations are the ones

isted in Section 2.4, as well as 𝜂𝑊 𝑇 = 0.2, 𝜂𝑀𝑇 = 0.8, 𝛽𝑊 𝑇 = 0.2,
𝑀𝑇 = 0.4, 𝑝 = 0.05, 1 − 𝜇𝑊 𝑇 = 0.01, 1 − 𝜇𝑀𝑇 = 0.005, 𝑘 = 0.2,
𝐴𝑊 𝑇

= 𝑚𝐴𝑀𝑇
= 0.04, and 𝑚𝐼𝑊 𝑇

= 𝑚𝐼𝑀𝑇
= 0.07. The initial values used

or the simulations are 𝑆(0) = 9986, 𝑉 (0) = 0, 𝐸𝑊 𝑇 (0) = 5, 𝐸𝑀𝑇 (0) = 0,
𝑊 𝑇 (0) = 5, 𝑃𝑀𝑇 (0) = 0, 𝐴𝑊 𝑇 (0) = 2, 𝐴𝑀𝑇 (0) = 0, 𝐼𝑊 𝑇 (0) = 2,
𝑀𝑇 (0) = 0, 𝑅(0) = 0, 𝐷(0) = 0, and 𝑥(0) = 0.1. In particular, the
nitial values 𝐸𝑀𝑇 (0) = 0, 𝑃𝑀𝑇 (0) = 0, 𝐴𝑀𝑇 (0) = 0, and 𝐼𝑀𝑇 (0) = 0

ndicate that the MT has not been produced at the beginning of the
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Fig. 1. The effect of mutation probability (𝑢𝑆 and 𝑢𝑉 ) on the probability of emergence of MT. The results of deterministic and 100 stochastic simulations of time series of WT
(MT) when mutation probability is 𝑢𝑆 = 2 × 10−7 and 𝑢𝑉 = 1 × 10−7; 𝑢𝑆 = 2 × 10−5 and 𝑢𝑉 = 1 × 10−5; and 𝑢𝑆 = 2 × 10−3 and 𝑢𝑉 = 1 × 10−3 are shown in Subfigures A, B, and C (D, E,
and F), respectively. Subfigures G, H, and I show the probability of producing a mutant strain over time, for the same values of 𝑢𝑆 and 𝑢𝑉 in the order specified above. Values
of other parameters are 𝑟𝑣 = 0.6, 𝑟𝐴𝑊 𝑇

= 0.05, and 𝑟𝐼𝑊 𝑇
= 0.06.
simulation. Our initial conditions above imply a total population 𝑁(0)
equal to 10 000. Our goal is to study the two stages of propagation of
MT, including the emergence and spread of new variants. The effects of
seven parameters on the transmission of resistant strains are explored:
the mutation probability (𝑢𝑆 and 𝑢𝑉 ), perceived costs of vaccinators
(𝑟𝑣), and perceived risks of infection (𝑟𝐴𝑊 𝑇

, 𝑟𝐴𝑀𝑇
, 𝑟𝐼𝑊 𝑇

, and 𝑟𝐼𝑀𝑇
).

3.1. Emergence of mutant strains

To assess the emergence of mutant strains of SARS-CoV-2, we define
the probability of producing MT as the ratio of the number of stochastic
simulations with more than one new case of MT to the total number
of stochastic simulations that we performed. To do this, we defined
a matrix 𝐴 with dimensions 𝑀 × 𝑇 , where 𝑀 is the total number
of stochastic simulations and 𝑇 is the total number of days in each
simulation. If the number of new cases of MT produced by a given
stochastic simulation 𝑖 exceeds one for the first time on day 𝑗, we define
𝐴𝑖,ℎ = 1 for ℎ ≥ 𝑗 and 𝐴𝑖,ℎ = 0 for ℎ < 𝑗. Let 𝑃𝑗 denote the probability
that a mutant strain has been produced on or before day 𝑗. Obviously,
we have

𝑃𝑗 =
∑𝑀

𝑖=1 𝐴𝑖,𝑗

𝑀
.

Each run of the model was done for a total time of 300 days, with
vaccination starting on the first day. Since people have no perceived
7

risks to MT before it appears, we set 𝑟𝐴𝑀𝑇
= 𝑟𝐼𝑀𝑇

= 0. Then, we simu-
lated the effects of mutation probability (𝑢𝑆 and 𝑢𝑉 ), perceived costs of
vaccinators (𝑟𝑣), and perceived risks of WT infection (𝑟𝐴𝑊 𝑇

and 𝑟𝐼𝑀𝑇
)

on the probability of producing MT (see Figs. 1, 2, and 3). At the same
time, we also drew time series diagrams of proportion of vaccination,
vaccine uptake, vaccinated cases, unvaccinated cases, susceptibles, and
payoff function (see Figures C.1-C.6 of Appendix C). When the mutation
probability (𝑢𝑆 and 𝑢𝑉 ) is very small, the numbers of simulated new
cases in the stochastic version of the model are quite different compared
to those in the deterministic version. This was particularly evident for
MT; the differences between the time series of simulated new cases
infected with WT for the stochastic and deterministic models were
smaller (see Fig. 1). Our results show that stochastic simulation can
better characterize whether or not MT emerges, as a new variant arising
is guaranteed in the deterministic model.

Fig. 1 shows the results of deterministic and 100 stochastic simula-
tions of WT and MT when the mutation probabilities in unvaccinated
and vaccinated individuals are 𝑢𝑆 = 2 × 10−7 and 𝑢𝑉 = 1 × 10−7;
𝑢𝑆 = 2 × 10−5 and 𝑢𝑉 = 1 × 10−5; and 𝑢𝑆 = 2 × 10−3 and 𝑢𝑉 = 1 × 10−3,
respectively. We find that the probability of producing MT in 100
stochastic simulations is only 0 when 𝑢𝑆 = 2 × 10−7 and 𝑢𝑉 = 1 × 10−7.
In contrast, deterministic simulations with these values of 𝑢𝑆 and 𝑢𝑉
indicated that MT will emerge. The probability of producing MT in
100 stochastic simulations is instead 7% when 𝑢𝑆 = 2 × 10−5 and
𝑢 = 1×10−5; and 98% when 𝑢 = 2×10−3 and 𝑢 = 1×10−3. We also ran
𝑉 𝑆 𝑉
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Fig. 2. The effect of perceived costs of vaccinators (𝑟𝑣) on the probability of emergence of MT. The results of deterministic and 100 stochastic simulations of time series of WT
(MT) when perceived costs of vaccinators are 𝑟𝑣 = 0.01, 𝑟𝑣 = 0.1, and 𝑟𝑣 = 1 are shown in Subfigures A, B, and C (D, E, and F), respectively. Subfigures G, H, and I show the
probability of producing a mutant strain over time, for the same values of 𝑟𝑣 in the order specified above. Values of other parameters are 𝑢𝑆 = 2× 10−4, 𝑢𝑉 = 1× 10−4, 𝑟𝐴𝑊 𝑇

= 0.05,
and 𝑟𝐼𝑊 𝑇

= 0.06.
simulations where we set the mutation probability to 𝑢𝑆 = 2×10−4 and
𝑢𝑉 = 1×10−4 and varied the perceived cost for vaccinators 𝑟𝑣. If this cost
increases from 0.01 to 0.1, the probability of producing MT increases
from 8% to 12%. A further order of magnitude increase, i.e. an increase
from 0.01 to 1, will further increase the probability for MT to appear
by about two fifths, as shown in Fig. 2. Hence, when 𝑟𝑣 = 1, the
chance that MT emerges is five times higher than when 𝑟𝑣 = 0.01. This
transforms the emergence of MT from a fairly uncommon event to a
much more likely one. We also simulated cases in which we altered
the perceived risks that arise from being infected. Specifically, we ran
the deterministic and stochastic version of the model for 𝑟𝐴𝑊 𝑇

= 0.05
and 𝑟𝐼𝑊 𝑇

= 0.1; 𝑟𝐴𝑊 𝑇
= 0.1 and 𝑟𝐼𝑊 𝑇

= 0.2; and 𝑟𝐴𝑊 𝑇
= 0.4 and

𝑟𝐼𝑊 𝑇
= 0.8. In these three scenarios, the probabilities of producing MT

in 100 stochastic simulations were 41%, 25%, and 9%, respectively,
as shown in Fig. 3. Our analysis shows that mutation probability (𝑢𝑆
and 𝑢𝑉 ), perceived cost for vaccinators (𝑟𝑣), and perceived risks of WT
infection (𝑟𝐴𝑊 𝑇

and 𝑟𝐼𝑊 𝑇
) all have great impacts on the probability of

producing MT. Changes in social norms can realize these impacts: the
emergence of new variants can be effectively prevented by decreasing
the perceived cost associated with vaccination (𝑟𝑣) and increasing the
perceived risks of WT infection (𝑟𝐴𝑊 𝑇

and 𝑟𝐼𝑊 𝑇
).

Next, we simulated the effect of the perceived cost of being vacci-
nated (𝑟𝑣) and perceived risks of WT infection (𝑟𝐴𝑊 𝑇

and 𝑟𝐼𝑊 𝑇
) on the

probability of producing MT under non-pharmaceutical interventions
(i.e. by decreasing the transmission rate to decrease 𝑅0). We assumed
that these interventions were implemented in the first and second
8

months of the COVID-19 outbreak: we decreased the transmission rate
by 80% in the first month and 60% in the second. (We took 𝑢𝑆 = 2×10−4

and 𝑢𝑉 = 1 × 10−4, and all other parameters as above.) When non-
pharmaceutical interventions are implemented, if the perceived cost
for vaccinators increases from 0.01 to 0.1 to 1, the probability of
producing MT increases from 1% to 4% to 9%, as shown in Figure
C.7 of Appendix C. This represented decreases in the probability of
producing MT by 87.5%, 66.7%, and 78.6%, respectively, compared to
the scenario without non-pharmaceutical interventions. As previously,
we performed simulations when perceived risks of WT infection were
𝑟𝐴𝑊 𝑇

= 0.05 and 𝑟𝐼𝑊 𝑇
= 0.1; 𝑟𝐴𝑊 𝑇

= 0.1 and 𝑟𝐼𝑊 𝑇
= 0.2; and 𝑟𝐴𝑊 𝑇

=
0.4 and 𝑟𝐼𝑊 𝑇

= 0.8. There, the probability of producing MT (across
100 stochastic simulations) was 11%, 3%, and 2%, respectively, as
shown in Figure C.10 of Appendix C. Again, these represent consistent
improvements over the scenario without non-pharmaceutical interven-
tions, with the greatest decline in MT emergence probability coming at
intermediate perceived risk from WT.

We also evaluated the probability of MT emerging under various
social norms and perceptions when the mutation rate was lower and
non-pharmaceutical interventions were in place, which was accom-
plished by taking 𝑢𝑆 = 1×10−4, 𝑢𝑉 = 5×10−5 and all other parameters at
their baseline values described above. For instance, we varied 𝑟𝑣, the
perceived risk of being vaccinated. Under the reduced mutation rate,
when the perceived cost for vaccinators is 𝑟𝑣 = 0.1, MT did not appear in
100 stochastic simulations, as shown in Figure C.13 of Appendix C. This
is because the non-pharmaceutical interventions made WT’s effective
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Fig. 3. The effect of perceived risks of WT infection (𝑟𝐴𝑊 𝑇
and 𝑟𝐼𝑊 𝑇

) on the probability of emergence of MT. The results of deterministic and 100 stochastic simulations of time
series of WT (MT) when perceived risks of infection are 𝑟𝐴𝑊 𝑇

= 0.05 and 𝑟𝐼𝑊 𝑇
= 0.1; 𝑟𝐴𝑊 𝑇

= 0.1 and 𝑟𝐼𝑊 𝑇
= 0.2; and 𝑟𝐴𝑊 𝑇

= 0.4 and 𝑟𝐼𝑊 𝑇
= 0.8 are shown in Subfigures A, B, and C

(D, E, and F), respectively. Subfigures G, H, and I show the probability of producing a mutant strain over time, for the same sets of values of 𝑟𝐴𝑊 𝑇
and 𝑟𝐼𝑊 𝑇

, in the order specified
above. Values of other parameters are 𝑢𝑆 = 2 × 10−4, 𝑢𝑉 = 1 × 10−4, and 𝑟𝑣 = 0.6.
reproduction number 𝑅𝑊 𝑇
𝑒 (𝑡) < 1 within a relatively short timeframe,

which rapidly decreased the prevalence of WT and hence prevented
the emergence of MT. In this low-mutation scenario, we also varied
the perceived risks of WT infection. When 𝑟𝐴𝑊 𝑇

and 𝑟𝐼𝑊 𝑇
were 0.05

and 0.1; 0.1 and 0.2; and 0.4 and 0.8, the probability of producing
MT was 4%, 3%, and 0%, respectively, as shown in Figure C.16 of
Appendix C. MT therefore did not appear when perceived infection
risk was high and non-pharmaceutical interventions were in place, as
was the case when the perceived risk from being vaccinated was low.
This shows that non-pharmaceutical interventions, in conjunction with
vaccination, can be highly effective at preventing the emergence of
potentially dangerous new virus variants.

3.2. Impact of perceived cost for vaccinators

Once MT had established itself, we used deterministic simulations to
estimate disease prevalence trends after MT’s emergence. We assessed
the impact of the perceived cost of being vaccinated 𝑟𝑣 on the burden
of COVID-19 (measured in terms of the daily number of new cases,
i.e., the daily incidence) by simulating Model (4) for different values
of this cost. See Figure C.19 of Appendix C for the values which were
used. The simulation results show that changes in the perceived cost
for vaccinators have great impacts on COVID-19 incidence, as shown
in Figure C.19. In particular, when mutation probability (𝑢𝑆 and 𝑢𝑉 )
is small, increasing 𝑟𝑣 from 0 to 1 results in a drastic 95% decrease
in disease incidence at MT’s peak, a peak time of MT infection that
9

occurs more than 300 days later, and a very substantial decrease (close
to 95%) in the total number of MT infections during the simulation. The
peak size, peak time, and total number of cases of WT follow exactly
opposite trends as those of MT infection, which is due to the fact that
MT is more infective and rapidly replaces WT. In fact, Figs. 2, C.7,
and C.19 together indicate that the total effect of increasing 𝑟𝑣 (for
small to intermediate values of 𝑢𝑆 and 𝑢𝑉 ) is to make MT more likely
to emerge, but also increase the harmful effects of WT once MT has
already emerged. This effect corresponds to prolonging the WT wave
while creating the MT wave. On the other hand, when the mutation
probability (𝑢𝑆 and 𝑢𝑉 ) is large, the perceived cost for vaccinators
impacts the characteristics of the MT outbreak on a much lesser scale.
For example, when the mutation probability parameters (𝑢𝑆 and 𝑢𝑉 )
are taken to be 10−3 and 5 × 10−4, respectively, increasing 𝑟𝑣 from
0 to 1 will result in a 0.3% decrease in disease incidence when MT
transmission peaks, a eight day delay in the peak time of MT, and a 12%
decrease in the final size of MT. Our results show that the perceived risk
associated with vaccination can have a large impact on how the WT and
MT outbreaks unfold, albeit when the mutation probability (𝑢𝑆 and 𝑢𝑉 )
is sufficiently small.

3.3. Impact of perceived risks of WT infection

Near the beginning of an outbreak, the perceived risk associated
with being infected by WT always influences how the outbreak devel-
ops. To investigate this within the context of a pandemic with emergent
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Fig. 4. Impact of perceived risks of WT (MT) infection and mutation probability on peak size, peak time, and final outbreak size for 𝑟𝐴𝑀𝑇
= 0.05 (𝑟𝐴𝑊 𝑇

= 0.05), 𝑟𝐼𝑀𝑇
= 0.1 (𝑟𝐼𝑊 𝑇

= 0.1),
and 𝑟𝑣 = 0.6. Subfigures A, B, and C (D, E, and F) show the peak number of daily infections, day when peak occurs, and total number of infections for WT (MT) with fixed
parameters 𝑟𝐴𝑀𝑇

, 𝑟𝐼𝑀𝑇
, and 𝑟𝑣. Subfigures G, H, and I (J, K, and L) show the peak number of daily infections, day when peak occurs, and total number of infections for WT (MT)

with fixed parameters 𝑟𝐴𝑊 𝑇
, 𝑟𝐼𝑊 𝑇

, and 𝑟𝑣.
viral strains, we simulated the model (4) for different values of the
perceived risks of WT infection, i.e. 𝑟𝐴𝑊 𝑇

and 𝑟𝐼𝑊 𝑇
(see the top two

rows of Fig. 4 for the values used). As with 𝑟𝑣, changes in the perceived
risks of WT infection were found to have substantial impact on COVID-
19 incidence, especially if the mutation probability (𝑢𝑆 and 𝑢𝑉 ) is small,
as shown in the top two rows of Fig. 4. To illustrate this, when the two
mutation probability parameters (𝑢𝑆 and 𝑢𝑉 ) are taken to be 10−8 and
5 × 10−9, respectively, increasing the perceived risks of WT infection
from 0 to 1 brought about a 32-fold increase in peak size of MT, a 132-
day earlier peak time for MT, and a 6-fold increase in total number of
people infected by MT at the end of our simulation. At the same time,
this change in the perceived risks of WT infection also led to a 11-fold
decrease in peak size, a 87-day earlier peak time, and a 19-fold decrease
10
in the final outbreak size of WT. When the mutation probability (𝑢𝑆 and
𝑢𝑉 ) is large, the impact of variation in 𝑟𝐴𝑊 𝑇

and 𝑟𝐼𝑊 𝑇
on the outbreak

characteristics of WT is reduced but still substantial, and the impact on
characteristics of MT becomes minimal. In particular, if the perceived
risks of WT infection are increased from 0 to 1 and the mutation
probability constants (𝑢𝑆 and 𝑢𝑉 ) are maintained at 10−3 and 5 × 10−4,
respectively, WT has an 80% lower infectivity peak which occurs 48
days earlier, and the final number of people infected by WT is 80%
lower. For MT, this resulted in a 3% lower infectivity peak which occurs
12 days later, and 14% fewer total cases at the end of the simulation.
This shows that if the perceived risk of WT infection is high, COVID-19
transmission can be slowed down and outbreaks can be controlled more
effectively early on (while they are more manageable). Similarly, in this
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scenario, increases in infections by MT can be traded off for decreases in
infections by WT, in this way postponing the pandemic’s effects while
keeping total infections (WT plus MT) at a comparable level.

3.4. Impact of perceived risks of MT infection

Simulations of the model (4) were also carried out to investigate
the impact of the perceived risks of MT infection (𝑟𝐴𝑀𝑇

and 𝑟𝐼𝑀𝑇
)

on the peak size, peak time, and final number of infections with the
different SARS-CoV-2 strains in our model (see the bottom two rows
of Fig. 4). We found that regardless of the value chosen for mutation
probability (𝑢𝑆 and 𝑢𝑉 ), the impact of changes in the perceived risks
of MT infection on characteristics of the WT and MT outbreaks were
minor compared to the impact of varying 𝑟𝐴𝑊 𝑇

and 𝑟𝐼𝑊 𝑇
, as shown in

the bottom two rows of Fig. 4. This can be illustrated with the examples
of 𝑢𝑆 = 10−3 (𝑢𝑉 = 5 × 10−4) and 𝑢𝑆 = 10−8 (𝑢𝑉 = 5 × 10−9). In the
former case, increasing the perceived risks of MT infection from 0 to 1
caused a 15% decrease in peak height, no change in peak time, and a
8% decrease in final outbreak size for MT, and a 1.2 × 10−2% decrease
in peak height, no change in peak time, and a 9.2 × 10−2% decrease
in the final outbreak size for WT. In the latter case, the corresponding
numbers were a 14% decrease in peak size, a delay of two days for
peak time, and a 0.4% increase in total infections for MT, as well as a
17% decrease in peak size, a peak of infection 12 days earlier, and a
decrease in the final outbreak size by 28% for WT. This, in conjunction
with our previous analysis, shows that public perceptions of WT have
more impact than those of MT on shaping the courses of both the WT
and MT outbreaks.

4. Discussion

To understand the emergence and spread of SARS-CoV-2 variants,
we developed a dynamic game model featuring two such variants (WT
and MT), which assumes that vaccination decisions are made according
to disease prevalence (i.e. the number of new cases) and the perceived
risks of vaccines and disease. We applied semi-stochastic simulations to
estimate the probability of the emergence of MT, since such an event,
and in particular MT’s non-extinction due to random drift, is stochastic
by nature. We simulated the effect of mutation probability, perceived
costs of vaccinators, and perceived risks of infection on the probability
of producing MT. After this, to assess the impact of this perceived
costs on the burden of COVID-19 (measured in terms of the daily
number of new cases), we also ran the model for different values of the
perceived cost of being vaccinated (𝑟𝑣) and the perceived risks of WT
infection (𝑟𝐴𝑊 𝑇

and 𝑟𝐼𝑊 𝑇
). Using this method, we find that decreasing

he perceived risk from vaccination and increasing that from infection
ill prevent the emergence of new variants. Our results also show that

ower perceived vaccination risk can minimize the number of WT cases
hat occur after MT has appeared, highlighting how promoting vaccine
ptake can reduce pandemic-related harm in multiple orthogonal ways.

We found that after the emergence of MT, the perceived risks
ssociated with being infected by WT (i.e. 𝑟𝐴𝑊 𝑇

and 𝑟𝐼𝑊 𝑇
) played a

large role in determining the characteristics of both the WT and MT
outbreaks going forward. However, the corresponding risks associated
with MT (i.e. 𝑟𝐴𝑀𝑇

and 𝑟𝐼𝑀𝑇
) had much lesser, and in some cases

negligible, impact on the shape of the epidemic curves of WT and MT.
This indicates that when a new variant of SARS-CoV-2 begins to appear,
public perception of the variant that is dominant at the time is highly
important in shaping the epidemiological trajectory of the new one.
These results suggest that although public concern over Omicron surged
mere days after that variant was first observed (Su et al., 2022), this
upsurge in concern was likely less effective in preventing Omicron cases
than closer adherence to individual-level precautions against Delta
would have been.

One possible explanation for this is that the relatively greater num-
ber of WT cases during the emergence of MT is more responsible for
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driving the payoff function 𝛥𝐹 . This is evident because 𝛥𝐹 tends to
reach its maximum at the same time as the peak of the WT outbreak
wave, and can be seen in Figs. 1 and C.2, or 2 and C.4, or 3 and C.6. This
finding also may be because the same mutations that generate a new
variant can happen on multiple independent occasions in our model,
allowing more MT cases to be generated when MT transmission is high.
This phenomenon has been seen during the COVID-19 pandemic, where
a few notable mutations of interest (for example D614G) have been
shared among many different lineages (Fan et al., 2021), indicating that
the same mutation can arise many times under different contexts.

The notion that individual-level risk assessment can substantially
alter the course of a pandemic has previously been observed on mul-
tiple occasions. The term ‘‘pandemic fatigue’’ entered the lexicon in
2020 (Reicher and Drury, 2021), and studies from later in the pandemic
found that many people had reduced their behavioural precautions
against SARS-CoV-2 infection (Haktanir et al., 2021), particularly with
regards to physical distancing (Petherick et al., 2021). Similar reduc-
tions in social distancing behaviour over time were also observed in
Hong Kong during the 2009 H1N1 pandemic, which were directly
attributed to people becoming less concerned about a possible infec-
tion (Cowling et al., 2010). These were contemporary with a steady
increase (but perceived decrease) in case numbers there during the
summer of 2009. This highlights the possibility of being over-vigilant
at the beginning of an outbreak wave but experiencing burnout near
the end of one.

Our results show that higher perceived risk associated with receiv-
ing vaccines (i.e. higher values for 𝑟𝑣) is associated with a higher
probability of new variants emerging (Figs. 2 and C.7 of Appendix C).
High values of 𝑟𝑣 were also associated with the WT outbreak being more
severe in relation to the MT outbreak after MT has become established
(Figure C.19 of Appendix C). However, if 𝑟𝑣 is low, it becomes more
likely that the number of MT infections both at the peak of its outbreak
and overall is zero, as shown in our stochastic simulations. After
accounting for this, higher values of 𝑟𝑣 correspond to greater expected
caseloads both for WT and for MT. During the first half of 2021,
substantial populations in many countries expressed unwillingness to
receive a vaccine (Ritchie et al., 2020; Cooper et al., 2021; Köhler et al.,
2021). This was followed by a global increase in COVID-19 cases later
in 2021, caused by the Delta variant. As the vaccines in use at the time
offered at least moderate protection against Delta (Bian et al., 2021),
in countries such as the United States with high vaccine supply but
lower uptake, this elevated number of caseloads can be attributed at
least in part to prior vaccine hesitancy. This emphasizes the importance
of reducing misinformation that could lead to lower vaccine uptake, as
suggested by our model.

We also note that the changes in epidemiological characteristics
of MT and WT in our model brought about by variation in 𝑟𝐴𝑊 𝑇
and 𝑟𝐼𝑊 𝑇

plateaued at much smaller values compared to the changes
due to variation in 𝑟𝑣. Therefore, we believe that treating COVID-19
infection as a moderate risk is necessary, but efforts beyond that level
should mainly be devoted to encouraging vaccination. This is especially
pertinent in China, which recently transitioned away from a zero-
Covid strategy and subsequently experienced a large wave of infections.
Because booster dose administration in China is currently at much
lower levels than it was earlier in the pandemic (Ritchie et al., 2020),
we believe that encouraging vaccination in China would significantly
help prevent new variants from emerging in the future.

We also simulated the effect of the perceived cost borne by people
choosing to get vaccinated (𝑟𝑣) and the perceived risks associated
with infection by each variant (𝑟𝐴𝑊 𝑇

and 𝑟𝐼𝑊 𝑇
) on the probability

of producing MT under non-pharmaceutical interventions. It has pre-
viously been found that vaccination and non-pharmaceutical inter-
ventions have large interaction effects on lowering the infectivity of
different SARS-CoV-2 variants (Ge et al., 2022a,b; Layton and Sadria,
2022); we further extend this to show that the combination of vac-

cination and non-pharmaceutical interventions is more effective at
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decreasing the probability of producing new variants. Because of the
synergy that exists between these two strategies, governments can both
reduce infection by existing SARS-CoV-2 variants and delay or even
prevent the emergence of vaccine-resistant mutant variants by reducing
vaccine hesitancy and using targeted non-pharmaceutical measures.
Efficacy of vaccination can wax and wane depending on how similar
the variants that available vaccines were first developed for are to
the variants that are in circulation at a given time (see e.g. Zhang
et al., 2021), while non-pharmaceutical interventions provide a more
static form of controlling infectivity. These two control methods also
act over different timescales. Vaccine development and clinical trials
take a great deal of time, whereas non-pharmaceutical interventions
over comparatively shorter intervals can be effective (see Figures C.7
and C.10 of Appendix C). Thus, the two methods can complement each
other in a government’s toolbox when planning long-term COVID-19
responses.

Our study still has several limitations. First, we did not take into
account the seasonality of infection patterns, i.e. we only simulated
one large outbreak of COVID-19. Second, we assumed that the whole
population can be vaccinated, and vaccines can neither reduce the
transmissibility nor shorten the infection period. Third, we did not
consider age heterogeneity and the evolution of the virus within the
host. Fourth, we assumed that a single strain of SARS-CoV-2 would
be dominant at the time MT emerged, and that this dominant strain
would be less infective and more lethal than MT. Additionally, we did
not differentiate between multiple doses of vaccination. Also, we did
not parameterize our model with the actual number of cases in any
one particular country, instead opting to use parameter values broadly
characteristic of outbreaks seen around the world thus far. Future work
will address these issues by incorporating time-dependent trends such
as temporal fluctuation in patterns of contact, as well as simulating
conditions in specific jurisdictions.

In conclusion, we have developed a model that couples the frame-
work of compartmental disease transmission with game theoretical
dynamics on whether or not to vaccinate. Our dynamic game model
is used to describe the proportion of people willing to be vaccinated,
as it captures the risk evaluation inherent in this decision, while semi-
stochastic simulations are used to explore the emergence of new vari-
ants because of the inherent randomness of mutations. The probability
of emergence of a vaccine-resistant mutant strain of SARS-CoV-2 (MT)
mainly depends on the number of confirmed cases due to the wild-type
virus (WT), but this probability can be substantially altered by fac-
tors both upstream and downstream from WT caseloads. Chief among
these are the perceptions of risk due to WT infection and due to
vaccination. Because of interaction effects between non-pharmaceutical
interventions and public support for vaccination, rapid vaccination
under non-pharmaceutical interventions can delay or even prevent
the emergence of a new variant. Our results suggest that the correc-
tion of vaccine-related negative information and non-pharmaceutical
interventions (such as reducing social contact) will have orthogonal,
compounding effects on avoiding the establishment of new variants.
Hence, a successful strategy for variant prevention would combine both
of these.
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