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Abstract

In this paper, we study a diffusion-advection Lotka-Volterra competition model with stage structure 
in a spatially heterogeneous environment. The existence and local asymptotic stability of spatially non-
homogeneous semi-trivial steady-state solutions and spatially non-homogeneous positive steady-state so-
lutions are obtained by the implicit function theorem and spectral analysis. We show that three scenarios 
can occur: if random diffusion rates of two species are sufficiently large, both species go extinct; if random 
diffusion rates of two species are relatively small, two competing species coexist; if one species has a large 
random diffusion rate and the other has a small random diffusion rate, the species with a large random diffu-
sion rate are driven to extinction. An interesting finding is that a large delay does not lead to Hopf bifurcation 
at the spatially non-homogeneous steady-state solution, but makes this steady-state solution approach zero. 
We numerically demonstrate the effects of spatial heterogeneity on spatiotemporal dynamics.
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1. Introduction

Spatial heterogeneity of the environment has attracted extensive attention from researchers 
recently [1–8]. Since the distribution of resources is non-uniform, the diffusion of the species will 
also have moved along a certain direction in addition to random diffusion. Based on the species 
will move along the gradient of resources, Belgacem and Cosner [1] proposed the following 
mathematical model:⎧⎨⎩

∂u

∂t
= ∇ · [d∇u − au∇m] + u [m(x) − u] , x ∈ �, t > 0,

u(x, t) = 0, x ∈ ∂�, t > 0,
(1.1)

where u(x, t) represents the population density at location x and time t , and � is a bounded 
domain in Rn with a smooth boundary, m(x) denotes the intrinsic growth rate of species at 
location x, a measures the tendency of population to move up or down along the gradient of 
m(x). The Dirichlet boundary condition represents the environment surrounding the habitat � is 
lethal.

Chen et al. [9] considered the effect of the time delay on model (1.1),⎧⎨⎩
∂u

∂t
= ∇ · [d∇u − αu∇m] + u(x, t) [m(x) − u(x, t − τ)] , x ∈ �, t > 0,

u(x, t) = 0, x ∈ ∂�, t > 0,
(1.2)

where τ > 0 represents the maturation time. They found that the time delay will lead to the 
Hopf bifurcation of the system in the positive steady-state solution, resulting in a spatially 
non-homogeneous periodic solution. The classical Lotka-Volterra competition model is widely 
studied when considering the dynamics of two competing species. See [3,6,10–23] and the ref-
erences therein. On the basis of (1.1), Chen et al. [10,12] introduced two competing species. 
They investigated the following two-species competition-diffusion-advection model in spatially 
heterogeneous environments:{

ut = d1�u − α1∇ · [u∇m1(x)] + u[m1(x) − a11u − a12v] x ∈ �, t > 0,

vt = d2�v − α2∇ · [v∇m2(x)] + v[m2(x) − a21u − a22v] x ∈ �, t > 0,
(1.3)

with no-flux boundary conditions

d1∂nu − α1u∂nm1 = d2∂nv − α2v∂nm2 = 0, (1.4)

where d1, d2 > 0 represent diffusion coefficients of species u and v; a11, a22 represent 
intra-specific competition coefficients, and a12, a21 are inter-specific competition coefficients; 
m1(x), m2(x) and α1, α2 have the same meaning as m and a in model (1.1) above. They assumed 
d1 = d2, a11 = a12 = a21 = a22 = 1, m1(x) = m2(x), and indicated that very strong advection 
along resource gradients can be disadvantageous and can cause the extinction of the species under 
some conditions. In the special case α1 = α2 = 0, m1(x) = m2(x), if a11 = a12 = a21 = a22 = 1, 
Dockery [3] et al. proved that species with slow diffusion always win, if 0 < a12a21 ≤ 1, He and 
Ni [16] showed a complete classification of global dynamics, they establish the results that deter-
mine the global asymptotic stability of semi-trivial as well as coexistence steady-state solutions. 
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For the case of d1 �= d2, α1 �= α2, m1(x) �= m2(x), Ma and Guo [24] investigated the existence 
and local stability of steady-state solutions by the Lyapunov-Schmidt reduction method.

The discrete time delay can be used to represent species growth models with stage structure 
consisting of immature and mature stages. Single-species models and two-species competitive 
models with stage structure have been studied extensively. See [5,8,25–30] and the references 
given there.

Motivated by [5,12], we investigate a diffusion-advection-competition Lotka-Volterra model 
with stage structure in a spatially heterogeneous environment under homogeneous Dirichlet 
boundary condition, given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
=∇ · [d1∇u(x, t) − α1u(x, t)∇m1] + m1(x)e−γ τ u(x, t − τ)

− u2(x, t) − bu(x, t)v(x, t), x ∈ �, t > 0,

∂v

∂t
=∇ · [d2∇v(x, t) − α2v(x, t)∇m2] + m2(x)e−γ τ v(x, t − τ)

− cu(x, t)v(x, t) − v2(x, t), x ∈ �, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂�, t > 0,

u(x, t) = ψ1(x, t), v(x, t) = ψ2(x, t), x ∈ �, t ∈ [−τ,0],

(1.5)

where ψi ∈ C := C([−τ, 0], Y), and Y = L2(�); u(x, t) and v(x, t) denote the concentration of 
mature species; γ > 0 denotes the death rate of immature stage of the species u and v; τ > 0 is 
the length of time from immature’s birth to maturity of the species u and v; b, c > 0 are inter-
specific competition coefficients; d1, d2, α1, α2, m1(x), m2(x) have the same meanings as those 
in (1.3). We assume species are growing in a poorly bounded and heterogeneous environment.

Here we consider the species that do not perform random or directional movements in the 
immature stage. For example, the chicks of some birds, they are not yet developed when they 
emerge from the shell, they cannot walk, and they need to be fed by the parent birds and continue 
to complete the development process in the nest. As they mature, they can make random or 
directional movements.

From now on we make the assumption:

(H1) mi(x) ∈ C2(�), mi(x) > 0 on �, i = 1, 2.

As the variable transformation in [1], letting ũ = e−(α1/d1)m1u, ṽ = e−(α2/d2)m2v, t̃ = d1t , 
denoting α̃1 = α1/d1, α̃2 = α2/d2, λ1 = 1/d1, τ̃ = dτ , and dropping the tilde sign, system (1.5)
can be transformed to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
=e−α1m1∇ · [eα1m1∇u(x, t)

] + λ1m1(x)e−γ τ u(x, t − τ)

− λ1u(x, t)(eα1m1u(x, t) + beα2m2v(x, t)), x ∈ �, t > 0,

∂v

∂t
=d2

d1
e−α2m2∇ · [eα2m2∇v(x, t)

] + λ1m2(x)e−γ τ v(x, t − τ)

− λ1v(x, t)(ceα1m1u(x, t) + eα2m2v(x, t)), x ∈ �, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂�, t > 0,

u(x, t) = e−α1m1ψ (x, t), v(x, t) = e−α2m2ψ (x, t), x ∈ �, t ∈ [−τ,0].

(1.6)
1 2
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For two competing species, permanence and extinction of the species is an important issue. 
Two competing species coexist, or one species survives while the other species go extinct, or 
both species go extinct, which are expressed as positive solutions, semi-trivial solutions and 
trivial solutions respectively in the mathematical model.

Different from the results of three scenarios in [12], we show that there are two critical random 
diffusion rates 1/λ1∗ and 1/λ2∗. If the random diffusion rates of both species are greater than 
these two critical random diffusion rates, the extinction of both species will be driven; If the 
random diffusion rates of both species are lower than these two critical random diffusion rates, 
the two species coexist; If one species has a random dispersal rate greater than its critical dispersal 
rate and another species has a random dispersal rate less than its critical dispersal rate, the species 
with a large random dispersal rate are driven to extinction.

In this paper, due to the Dirichlet boundary condition, and the spatially heterogeneous re-
source functions of the two species are neither equal nor proportional, both the semi-trivial 
solutions and positive solutions of (1.5) are spatially non-homogeneous. For the semi-trivial so-
lution, we use the single eigenvalue bifurcation theorem to obtain the existence theorem (see 
Theorem 3.3). However, for the positive solution, single eigenvalue bifurcation theorem cannot 
be applied because the multiplicity of the 0 eigenvalue is double, we use the most primitive 
implicit function theorem to overcome the difficulties (see Theorem 3.6).

Moreover, we further analyze the local stability of trivial solutions (Theorem 4.1), semi-trivial 
solutions (Theorem 4.2, 4.3) and positive solutions (Theorem 4.5) by analyzing the distribution 
of the eigenvalues of the infinitesimal generator of the solution semigroup corresponding to the 
linearization operator. In particular, we take advantage of the power series expansion of the ex-
ponential function of e to deal with the difficulties posed by the stage structure. Under certain 
assumptions, the positive solution is locally asymptotically stable, which is different from the re-
sult in [9,17,31], where the positive solution becomes unstable and a Hopf bifurcation occurs as 
the delay increases. The time delay in this paper does not make the steady-state solution unstable 
through Hopf bifurcation and generate periodic oscillation.

In addition, we analyze the effects of the stage structure and spatial heterogeneity on the 
steady-state solution of (1.5). From Lemma 3.4, we find that the upper bound of the steady-
state solution is related to the stage structure. The stage structure can affect the persistence and 
extinction of species. With the increase of τ , the upper bound of the steady-state solution tends 
to 0, which implies that the two competing species will go from coexistence to extinction. This 
is also a natural consequence in biology. Moreover, we numerically demonstrate the influence of 
spatial heterogeneity on the steady-state solution.

The rest of the paper is organized as follows. In Section 2, we give preliminaries and the 
steady-state system. The existence of semi-trivial solutions and non-trivial solutions are obtained 
in Section 3. Section 4 is devoted to the local stability of the steady-state solutions. Numerical 
simulations are shown in Section 5, and we analyzed the effect of stage structure and spatial 
heterogeneity on steady-state solution.

Throughout this paper, we denote spaces X = H 2(�, R) ∩H 1
0 (�, R), Y = L2(�, R). We also 

define the complexiflication of a linear space Z to be ZC := Z ⊕ iZ = {x1 + ix2|x1, x2 ∈ Z}, 
the domain of a linear operator L by D(L), the kernel of L by N (L), and the range of L by 
R(L). For the complex-valued Hilbert space Y 2

C , we use the standard inner product 〈u, v〉 =∫
u(x)T v(x)dx.
�
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2. Preliminaries and steady-state equation

We first recall the elliptic eigenvalue problem. Denote by λ∗(α, q, m) and μ∗(α, q, m) the 
principal eigenvalue of the eigenvalue problem{

∇ · [eαq(x)∇ϕ
] + λeαq(x)m(x)ϕ = 0, x ∈ �,

ϕ(x) = 0, x ∈ ∂�,
(2.1)

and {
e−αq(x)∇ · [eαq(x)∇ϕ

] + m(x)ϕ = μϕ, x ∈ �,

ϕ(x) = 0, x ∈ ∂�.
(2.2)

The principal eigenvalue is the only positive eigenvalue admitting a positive eigenfunction, and 
it is a simple eigenvalue.

In view of [2,24,32], we have the following important properties of λ∗(α, q, m) and 
μ∗(α, q, m).

Lemma 2.1. Suppose that α > 0, q ∈ C1(�), m ∈ L∞(�).

(i) The principal eigenvalue of (2.1) and (2.2)are given by

(a)

λ∗(α, q,m) = inf
ϕ∈W

1,2
0 (�),ϕ �=0,∫

� eαq(x)m(x)ϕ2dx>0

[ ∫
�

eαq(x)|∇ϕ|2dx∫
�

eαq(x)m(x)ϕ2dx

]
, (2.3)

(b)

μ∗(α, q,m) = sup
ϕ∈W

1,2
0 (�),ϕ �=0

[∫
�

eαq(x)m(x)ϕ2dx − ∫
�

eαq(x)|∇ϕ|2dx∫
�

eαq(x)ϕ2dx

]
. (2.4)

(ii) μ∗(α, q, m) > 0 for all λ∗(α, q, m) < 1, μ∗(α, q, m) = 0 for all λ∗(α, q, m) = 1, μ∗(α,

q, m) < 0 for all λ∗(α, q, m) > 1.
(iii) μ∗(α, q, m1) < μ∗(α, q, m2) if m1(x) ≤�≡ m2(x) in �.

Let λ2 = 1/d2, we obtain the steady-state system as follows,⎧⎪⎨⎪⎩
e−α1m1∇ · [eα1m1∇u

] + λ1m1(x)e−γ τ u − λ1u(eα1m1u + beα2m2v) = 0, x ∈ �,

e−α2m2∇ · [eα2m2∇v
] + λ2m2(x)e−γ τ v − λ2v(ceα1m1u + eα2m2v) = 0, x ∈ �,

u(x) = v(x) = 0, x ∈ ∂�.

(2.5)

Therefore, the corresponding eigenvalue problem of (2.5) is{
∇ · [eαimi ∇φi

] + λimi(x)eαimi e−γ τ φi = 0, x ∈ �,

φi(x) = 0, x ∈ ∂�.
(2.6)
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For simplicity, we denote

λi∗
�= λ∗(αi,mi,mi(x)e−γ τ )

= inf
φi∈W

1,2
0 (�),φi �=0,∫

� eαimi (x)mi(x)e−γ τ φ2
i dx>0

[ ∫
�

eαimi(x)|∇φi |2dx∫
�

eαimi(x)mi(x)e−γ τ φ2
i dx

]
,

(2.7)

be the principal eigenvalue and φi∗ (i = 1, 2) be the corresponding principal eigenfunction.
Let λ = (λ1, λ2), λ∗ = (λ1∗, λ2∗). Denote �1∗ = (φ1∗, 0)T , �2∗ = (0, φ2∗)T , y = (y1, y2)

T , 
and define

L =
(

L1 0
0 L2

)
(2.8)

with its domain D(L) = X2, where

L1 = ∇ · [eα1m1∇] + λ1∗eα1m1m1(x)e−γ τ ,

L2 = ∇ · [eα2m2∇] + λ2∗eα2m2m2(x)e−γ τ ,
(2.9)

Actually, we have the following decompositions:

X2 = N (L) ⊕ X2
1, Y 2 = N (L) ⊕ Y 2

1 ,

where

N (L) = span{�1∗,�2∗},
X2

1 = {y ∈ X2 : 〈�1∗, y〉 = 〈�2∗, y〉 = 0},
Y 2

1 = R(L) = {y ∈ Y 2 : 〈�1∗, y〉 = 〈�2∗, y〉 = 0}.

Clearly, dim(N (L)) = codim(R(L)) = 2. This implies that 0 is the double eigenvalue of op-
erator L, so the well-known bifurcation theorem from single eigenvalue in [33] is no longer 
applicable.

In this paper, we take λ1 and λ2 as bifurcation parameters to discuss the existence and stability 
of steady-state solutions for system (2.5):

(i) Trivial solutions: (u, v) = (0, 0);
(ii) Semi-trivial solutions: u ≥, �≡ 0, v ≡ 0 or u ≡ 0, v ≥, �≡ 0;

(iii) Non-trivial solutions (Coexistence steady-state solutions): u ≥, �≡ 0, v ≥�≡ 0.

For the competitive system, semi-trivial solutions of the system naturally exist under spatial 
homogeneous environments and Neumann boundary conditions. However, for system (2.5) in 
spatially heterogeneous environments, the existence of semi-trivial and non-trivial solutions is 
proved by the bifurcation theorem and the implicit function theorem.
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3. Existence of solutions

3.1. The existence of semi-trivial solutions

In this section, we study the existence of semi-trivial steady-state solutions to system (1.6). 
Noting that semi-trivial steady-state solutions are of the form (u, 0) and (0, v), where u and 
v are the positive steady-state solutions of the following single species model (3.1) and (3.2), 
respectively.{

e−α1m1∇ · [eα1m1∇u
] + λ1m1(x)e−γ τ u − λ1e

α1m1u2 = 0, x ∈ �,

u(x) = 0, x ∈ ∂�.
(3.1){

e−α2m2∇ · [eα2m2∇v
] + λ2m2(x)e−γ τ v − λ2e

α2m2v2 = 0, x ∈ �,

v(x) = 0, x ∈ ∂�.
(3.2)

Due to the combined effect of the Dirichlet boundary condition and the spatially heterogeneous 
environment, model (3.1) and (3.2) do not have constant steady-state solutions. It is worth noting 
that the results in [1, Proposition 2.2] yielding the existence of solutions for model (3.1) and 
(3.2). The corresponding results are given in the following theorems, which can also be proved 
by using the bifurcation theorem [33].

Theorem 3.1. Assume that (H1) holds. Let λ1∗ and φ1∗ be defined in (2.7).

(i) If λ1 < λ1∗, 0 is the unique non-negative solution of (3.1);
(ii) If λ1 > λ1∗, (3.1) has a unique positive solution, denoted as uλ1 .

Theorem 3.2. Assume that (H1) holds. Let λ2∗ and φ2∗ be defined in (2.7).

(i) If λ2 < λ2∗, 0 is the unique non-negative solution of (3.2);
(ii) If λ2 > λ2∗, (3.2) has a unique positive solution, denoted as vλ2 .

From Theorems 3.1 and 3.2, we immediately have the following theorem for system (1.6).

Theorem 3.3. Assume that (H1) holds. There are semi-trivial steady-state solutions (uλ1, 0) for 
(λ1, λ2) ∈ (λ1∗, λ1∗ + δ) × (0, +∞) and (0, vλ2) for (λ1, λ2) ∈ (0, +∞) × (λ2∗, λ2∗ + δ) of 
system (1.6), where 0 < δ � 1 is a constant.

3.2. The existence of non-trivial solutions

In this section, we investigate the existence of non-trivial steady-state solutions to system 
(1.6). By using the maximum principle, we immediately have the lemma below.

Lemma 3.4. If the non-negative steady-state solution (u, v) of system (1.6) satisfies u �≡ 0 and 
v �≡ 0, then (u, v) is bounded. Moreover, 0 < u ≤ e−γ τ

α1e
and 0 < v ≤ e−γ τ

α2e
on �.

Proof. If u �≡ 0 and v �≡ 0, then u > 0 and v > 0 on � by the strong maximum principle. From 
(2.5), we have
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 =∇ · [eα1m1∇u
] + λ1m1(x)eα1m1e−γ τ u − λ1u(e2α1m1u + beα1m1+α2m2v)

≤∇ · [eα1m1∇u
] + λ1u(m1(x)eα1m1e−γ τ − e2α1m1u), x ∈ �,

0 =∇ · [eα2m2∇v
] + λ2m2(x)eα2m2e−γ τ v − λ2v(ceα1m1+α2m2u + e2α2m2v)

≤∇ · [eα2m2∇v
] + λ2v(m2(x)eα2m2e−γ τ − e2α2m2v), x ∈ �,

u(x) = v(x) = 0, x ∈ ∂�.

(3.3)

We consider the following elliptic problem{
∇ · [eα1m1∇u

] + λ1u(m1(x)eα1m1e−γ τ − e2α1m1u) ≥ 0, x ∈ �,

u(x) ≥ 0, x ∈ ∂�.

Let u(w0) = maxx∈� u(x), hence w0 ∈ � satisfies ∇u(w0) = 0 and �u(w0) ≤ 0. Moreover, at 
x = w0 we have

eα1m1(w0)�u(w0) + λ1u(w0)(m1(w0)e
α1m1(w0)e−γ τ − e2α1m1(w0)u(w0)) ≥ 0.

It follows [34, Proposition 2.2] that

λ1u(w0)(m1(w0)e
α1m1(w0)e−γ τ − e2α1m1(w0)u(w0)) ≥ 0,

which yields

u(w0) ≤ e−γ τm1(w0)

eα1m1(w0)
. (3.4)

It is evident that

e−γ τm1(w0)

eα1m1(w0)
≤ e−γ τ

α1e
, (3.5)

the equal sign holds if and only if m1(w0) = 1
α1

. Likewise, let v(z0) = maxx∈� v(x), we obtain

v(z0) ≤ e−γ τm2(z0)

eα2m2(z0)
≤ e−γ τ

α2e
. (3.6)

Combining comparison principle and (3.3), (3.4), (3.5), and (3.6), we can assert that

0 < u ≤ e−γ τ

α1e
, 0 < v ≤ e−γ τ

α2e
. (3.7)

Remark 1. Lemma 3.4 proves that the steady-state solution (u, v) of system (1.6) is bounded, 
and the upper bound is related to the time delay τ . With the increase of τ , the bound of the 
steady-state solution gradually decreases to 0.

Theorem 3.5. If system (1.6) has a positive steady-state solution (u, v) with u > 0 and v > 0, 
then λ1 > λ1∗ and λ2 > λ2∗.
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Proof. Suppose (u, v) is the positive solution of (2.5) with u > 0 and v > 0, multiplying both 
sides of the first equation of (2.5) by u and integrating on �, we get∫

�

eα1m1 |∇u|2dx = λ1

∫
�

eα1m1u2[m1(x)e−γ τ − (eα1m1u + beα2m2v)]dx

< λ1

∫
�

eα1m1u2m1(x)e−γ τ dx.

(3.8)

From the variational property of the principal eigenvalue, we have∫
�

eα1m1 |∇u|2dx ≥ λ1∗
∫
�

eα1m1u2m1(x)e−γ τ dx. (3.9)

Combining (3.8) and (3.9), which yields λ1 > λ1∗. Similarly, multiplying both sides of the second 
equation of (2.5) by v and integrating on �, and so λ2 > λ2∗.

Remark 2. Since λ1 = 1
d1

and λ2 = 1
d2

, Theorem 3.5 shows that positive steady-state solution 
(u, v) with u �≡ 0 and v �≡ 0 may exist when the diffusion coefficients d1 and d2 are sufficiently 
small.

For simplicity, we denote

k11
�=

∫
�

e2α1m1φ3
1∗dx, k12

�= b

∫
�

eα1m1+α2m2φ2
1∗φ2∗dx,

k21
�= c

∫
�

eα1m1+α2m2φ1∗φ2
2∗dx, k22

�=
∫
�

e2α2m2φ3
2∗dx,

k1
�=

∫
�

eα1m1m1(x)φ2
1∗dx, k2

�=
∫
�

eα2m2m2(x)φ2
2∗dx,

k3
�=

∫
�

eα1m1φ2
1∗dx, k4

�=
∫
�

eα2m2φ2
2∗dx.

(3.10)

In biological models, we care more about the positive solution, so we make further assumptions.

(H2) D
�= k11k22 − k12k21 �= 0.

(H3) sign(D) = sign((λ2 −λ2∗)λ1k11k2 −(λ1 −λ1∗)λ2k21k1) = sign((λ1 −λ1∗)λ2k22k1 −(λ2 −
λ2∗)λ1k12k2).

Theorem 3.6. Assume that (H1)-(H2) hold. Let λi∗ and φi∗ be defined in (2.7). Then, there 
exists a constant δ > 0 and a continuously differentiable mapping λ �→ (ξ1λ, ξ2λ, β1λ, β2λ) from 
B(λ∗, δ) to X2 ×R2, system (1.6) has a non-constant steady-state solution (uλ, vλ)

T given by
1
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{
uλ = β1λ[φ1∗ + ξ1λ],
vλ = β2λ[φ2∗ + ξ2λ], (3.11)

where

β1λ = e−γ τ [(λ2 − λ2∗)λ1k11k2 − (λ1 − λ1∗)λ2k21k1]
λ1λ2D

,

β2λ = e−γ τ [(λ1 − λ1∗)λ2k22k1 − (λ2 − λ2∗)λ1k12k2]
λ1λ2D

,

(3.12)

and (ξ1λ, ξ2λ) ∈ X2
1 be the unique solution of the following equation:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L1ξ1 + (λ1 − λ1∗)eα1m1m1(x)e−γ τ (φ1∗ + ξ1)

− λ1(φ1∗ + ξ1)[e2α1m1β1λ(φ1∗ + ξ1) + beα1m1+α2m2β2λ(φ2∗ + ξ2)] = 0,

L2ξ2 + (λ2 − λ2∗)eα2m2m2(x)e−γ τ (φ2∗ + ξ2)

− λ2(φ2∗ + ξ2)[ceα1m1+α2m2β1λ(φ1∗ + ξ1) + e2α2m2β2λ(φ2∗ + ξ2)] = 0.

(3.13)

In particular, β1λ∗ = β2λ∗ = ξ1λ∗ = ξ2λ∗ = 0. Furthermore, if the assumption (H3) holds, the 
positive steady-state solution exists in (λ1, λ2) ∈ (λ1∗, λ∗

1) × (λ2∗, λ∗
2), where λ∗

i < λi∗ + δ, i =
1, 2. As λ → λ∗, the positive steady-state solution tends to the trivial solution.

Proof. Suppose that system (2.5) has a solution of form

{
u = β1[φ1∗ + ξ1],
v = β2[φ2∗ + ξ2], (3.14)

where βi = O(‖λ − λ∗‖), ξi = O(‖λ − λ∗‖), i = 1, 2. Substituting (3.14) into (2.5), we define 
a continuous map T = (T1, T2) : X2

1 ×R2 × (R+)2 → Y 2 be

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1(ξ1, ξ2, β1, β2, λ)

=L1ξ1 + (λ1 − λ1∗)eα1m1m1(x)e−γ τ (φ1∗ + ξ1)

− λ1(φ1∗ + ξ1)[e2α1m1β1(φ1∗ + ξ1) + beα1m1+α2m2β2(φ2∗ + ξ2)],
T2(ξ1, ξ2, β1, β2, λ)

=L2ξ2 + (λ2 − λ2∗)eα2m2m2(x)e−γ τ (φ2∗ + ξ2)

− λ2(φ2∗ + ξ2)[ceα1m1+α2m2β1(φ1∗ + ξ1) + e2α2m2β2(φ2∗ + ξ2)].

It is easy to check that

Ti(0,0,0,0, λ∗) = 0, i = 1,2.

The Fréchet derivative of T respect to (ξλ , ξλ , βλ , βλ ) at (0, 0, 0, 0, λ∗) is
1 2 1 2
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D(ξ1,ξ2,β1,β2)T (0,0,0,0, λ∗)[ζ1, ζ2, ε1, ε2]

=
(

L1ζ1 − λ1(ε1e
2α1m1φ2

1∗ + bε2e
α1m1+α2m2φ1∗φ2∗)

L2ζ2 − λ2(cε1e
α1m1+α2m2φ1∗φ2∗ + ε2e

2α2m2φ2
2∗)

)
.

We claim that

D(ξ1,ξ2,β1,β2)T (0,0,0,0, λ∗)

is a bijection from X2
1 ×R2 to Y 2. In fact, if

D(ξ1,ξ2,β1,β2)T (0,0,0,0, λ∗)[ζ1, ζ2, ε1, ε2] = 0,

that is {
L1ζ1 − λ1(ε1e

2α1m1φ2
1∗ + bε2e

α1m1+α2m2φ1∗φ2∗) = 0,

L2ζ2 − λ2(cε1e
α1m1+α2m2φ1∗φ2∗ + ε2e

2α2m2φ2
2∗) = 0,

(3.15)

take the inner product of the first and the second equation of (3.15) with φ1∗ and φ2∗, respectively. 
It follows from assumption (H2) that ε1 = ε2 = 0, then Liζi = 0, i = 1, 2, since ζ = (ζ1, ζ2) ∈
X2

1, we have ζ1 = ζ2 = 0, which yields that D(ξ1,ξ2,β1,β2)T (0, 0, 0, 0, λ∗) is a injection.
On the other hand, let

D(ξ1,ξ2,β1,β2)T (0,0,0,0, λ∗)[ζ1, ζ2, ε1, ε2] = p, (3.16)

where p = (p1, p2) ∈ Y 2, we decompose pi = pi1 + pi2, where pi1 ∈ N (Li), pi2 ∈ R(Li). 
Taking the inner product of Eq. (3.16) with �1∗ and �2∗, respectively. We obtain{

λ1(k11ε1 + k12ε2) = −〈φ1∗,p11〉,
λ2(k21ε1 + k22ε2) = −〈φ2∗,p21〉.

(3.17)

By assumption (H2), there exists a unique solution⎧⎪⎪⎨⎪⎪⎩
ε1 = −〈φ1∗,p11〉λ2k22 − 〈φ2∗,p21〉λ2k12

λ1λ2D
,

ε2 = −〈φ2∗,p21〉λ1k11 − 〈φ1∗,p11〉λ2k21

λ1λ2D
.

Therefore, (
p1 + λ1(ε1e

2α1m1φ2
1∗ + bε2e

α1m1+α2m2φ1∗φ2∗)
p2 + λ2(cε1e

α1m1+α2m2φ1∗φ2∗ + ε2e
2α2m2φ2

2∗)

)
∈ R(L).

Since L : X2
1 → Y 2

1 is bijective, there exists

ζ = L−1
(

p1 + λ1(ε1e
2α1m1φ2

1∗ + bε2e
α1m1+α2m2φ1∗φ2∗)

p + λ (cε eα1m1+α2m2φ φ + ε e2α2m2φ2 )

)
,

2 2 1 1∗ 2∗ 2 2∗
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then D(ξ1,ξ2,β1,β2)T (ξ1λ∗ , ξ2λ∗ , β1λ∗ , β2λ∗ , λ∗) is a surjection.
Therefore, the implicit function theorem implies that there exists a constant δ > 0 and a con-

tinuously differentiable mapping λ �→ (ξ1λ, ξ2λ, β1λ, β2λ) from B(λ∗, δ) to X2
1 ×R2 such that

T (ξ1λ, ξ2λ,β1λ,β2λ, λ) = 0. (3.18)

(3.12) and (3.13) can be calculated from the inner product of Eq. (3.18) and �∗ and �2∗, respec-
tively. In Particular, β1λ∗ = β2λ∗ = ξ1λ∗ = ξ2λ∗ = 0 when λ = λ∗. Moreover, combining Theo-
rem 3.5 and assumption (H3), the positive steady-state exists in (λ1, λ2) ∈ (λ1∗, λ∗

1) × (λ2∗, λ∗
2). 

This theorem is completely proved.

4. Local stability of solutions

In this section, we consider the local stability of the trivial steady-state solution, semi-trivial 
steady-state solutions, and the positive steady-state solution. Since Theorem 3.6 proves the lo-
cal existence of positive steady-state solutions, in the rest of this paper, we always assume 
that positive steady-state solutions exist in the parameter region (λ1∗, λ∗

1) × (λ2∗, λ∗
2), where 

λ∗
i < λi∗ + δ, i = 1, 2.

In order to describe the local asymptotic stability of solutions, we give the linearized system 
of (1.6) at the solution (u∗, v∗) as follows,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ũt =e−α1m1∇ · [eα1m1∇ũ
] − 2λ1e

α1m1u∗ũ − bλ1e
α2m2(u∗ṽ + v∗ũ)

+ λ1m1(x)e−γ τ ũ(t − τ), x ∈ �, t > 0,

ṽt =d2λ1e
−α2m2∇ · [eα2m2∇ṽ

] − 2λ1e
α2m2v∗ṽ − cλ1e

α1m1(u∗ṽ + v∗ũ)

+ λ1m2(x)e−γ τ ṽ(t − τ), x ∈ �, t > 0,

ũ(x,t) = ṽ(x, t) = 0, x ∈ ∂�, t > 0.

(4.1)

Substituting ̃u = �eμt and ̃v = �eμt into (4.1) gives the eigenvalue problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μ� = e−α1m1∇ · [eα1m1∇�
] − 2λ1e

α1m1u∗� − bλ1e
α2m2(u∗� + v∗�)

+ λ1m1(x)e−γ τ e−μτ�, x ∈ �,

μ� = d2λ1e
−α2m2∇ · [eα2m2∇�

] − 2λ1e
α2m2v∗� − cλ1e

α1m1(u∗� + v∗�)

+ λ1m2(x)e−γ τ e−μτ�, x ∈ �,

�(x) = �(x) = 0, x ∈ ∂�.

(4.2)

Let μ∗ be the principal eigenvalue of (4.2) (the existence of the principal eigenvalues could 
be found in [5]). In what follows, as in [32], we call the steady-state solution

(i) (u∗, v∗) is linearly stable if μ∗ < 0,
(ii) (u∗, v∗) is neutrally stable if μ∗ = 0,

(iii) (u∗, v∗) is linearly unstable if μ∗ > 0.

Moreover, the steady-state solution is asymptotically stable (unstable) if it is linearly stable (lin-
early unstable) (see [35]).
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4.1. Local stability of the trivial solution

For (u∗, v∗) = (0, 0), the corresponding eigenvalue problem is⎧⎪⎨⎪⎩
μ� = e−α1m1∇ · [eα1m1∇�

] + λ1m1(x)e−γ τ e−μτ�, x ∈ �,

μ� = d2λ1e
−α2m2∇ · [eα2m2∇�

] + λ1m2(x)e−γ τ e−μτ�, x ∈ �,

�(x) = �(x) = 0, x ∈ ∂�.

(4.3)

Theorem 4.1. Assume that (H1) holds. Let λi∗ be defined in (2.7). Trivial steady-state solution 
(0, 0) of system (1.6) is locally asymptotically stable when (λ1, λ2) ∈ [0, λ1∗) × [0, λ2∗), and 
(0, 0) is unstable when λ1 > λ1∗ or λ2 > λ2∗.

Proof. Since (�, �) �= (0, 0), if � �= 0, then μ ≤ μ∗(α1, m1, λ1e
−γ τ e−μτm1(x)). If � �= 0, then 

d1λ2μ ≤ μ∗(α2, m2, λ2e
−γ τ e−μτm2(x)). Hence,

μ ≤ max{μ∗(α1,m1, λ1e
−γ τ e−μτm1(x)), (d1λ2)

−1μ∗(α2,m2, λ2e
−γ τ e−μτm2(x))}. (4.4)

By applying the results in [5,36],

sign(μ∗(αi,mi, λie
−γ τ e−μτmi(x))) = sign(μ∗(αi,mi, λie

−γ τmi(x))), i = 1,2. (4.5)

Now

μ∗(α1,m1, λ1e
−γ τm1(x)) = 0, if λ1 = λ1∗, (4.6)

which is due to the fact that{
e−α1m1∇ · [eα1m1∇]

φ1∗ + λ1∗e−γ τm1(x)φ1∗ = 0, x ∈ �,

φ1∗(x) = 0, x ∈ ∂�.

Further, by (iii) of Lemma 2.1, we have{
μ∗(α1,m1, λ1e

−γ τm1(x)) < 0, if λ1 < λ1∗,
μ∗(α1,m1, λ1e

−γ τm1(x)) > 0, if λ1 > λ1∗.

Similarly, ⎧⎪⎨⎪⎩
μ∗(α2,m2, λ2e

−γ τm2(x)) = 0, if λ2 = λ2∗,
μ∗(α2,m2, λ2e

−γ τm2(x)) < 0, if λ2 < λ2∗,
μ∗(α2,m2, λ2e

−γ τm2(x)) > 0, if λ2 > λ2∗.

Therefore, all eigenvalues of (4.3) have negative real parts when λ1 < λ1∗ and λ2 < λ2∗, then 
(0, 0) is linearly stable, and when λ1 > λ1∗ or λ2 > λ2∗, (0, 0) is linearly unstable.
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4.2. Local stability of semi-trivial solutions

For (u∗, v∗) = (uλ1 , 0), the corresponding eigenvalue problem is

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μ� = e−α1m1∇ · [eα1m1∇�
] − 2λ1e

α1m1uλ1� − bλ1e
α2m2uλ1�

+ λ1m1(x)e−γ τ e−μτ�, x ∈ �, t > 0,

μ� = d2λ1e
−α2m2∇ · [eα2m2∇�

] − cλ1e
α1m1uλ1�

+ λ1m2(x)e−γ τ e−μτ�, x ∈ �, t > 0,

�(x) = �(x) = 0, x ∈ ∂�.

(4.7)

Theorem 4.2. Assume that (H1) holds. Let λi∗ be defined in (2.7). Semi-trivial steady-state so-
lution (uλ1, 0) of system (1.6) is locally asymptotically stable if (λ1, λ2) ∈ (λ1∗, λ∗

1) × (0, λ2∗), 
and (uλ1, 0) is unstable if (λ1, λ2) ∈ (λ1∗, λ∗

1) × (λ2∗, +∞).

Proof. If � �= 0, according to the properties of the principal eigenvalue,

d1λ2μ ≤ μ∗(α2,m2, λ2e
−γ τ e−μτm2(x) − cλ2e

α1m1uλ1). (4.8)

If � ≡ 0, then � �= 0, from the first equation of (4.7) we obtain that

μ ≤ μ∗(α1,m1, λ1e
−γ τ e−μτm1(x) − 2λ1e

α1m1uλ1).

Then

μ ≤ max{(d1λ2)
−1μ∗(α2,m2, λ2e

−γ τ e−μτm2(x) − cλ2e
α1m1uλ1),

μ∗(α1,m1, λ1e
−γ τ e−μτm1(x) − 2λ1e

α1m1uλ1)}.

It follows from [5,36] that

sign(μ∗(α2,m2, λ2e
−γ τ e−μτm2(x) − cλ2e

α1m1uλ1))

=sign(μ∗(α2,m2, λ2e
−γ τm2(x) − cλ2e

α1m1uλ1)),

sign(μ∗(α1,m1, λ1e
−γ τ e−μτm1(x) − 2λ1e

α1m1uλ1))

=sign(μ∗(α1,m1, λ1e
−γ τm1(x) − 2λ1e

α1m1uλ1)).

(4.9)

Note that uλ1 is the steady-state solution of system (3.1), hence

μ∗(α1,m1, λ1e
−γ τm1(x) − λ1e

α1m1uλ1) = 0. (4.10)

By (iii) of Lemma 2.1,

μ∗(α1,m1, λ1e
−γ τm1(x) − 2λ1e

α1m1uλ1)

<μ (α ,m ,λ e−γ τm (x) − λ eα1m1u ) = 0.
∗ 1 1 1 1 1 λ1

549



D. Liu, H. Wang and W. Jiang Journal of Differential Equations 372 (2023) 536–563
Thus, the stability of (uλ1 , 0) is mainly determined by sign(μ∗(α2, m2, λ2e
−γ τm2(x) −

cλ2e
α1m1uλ1)). It is easily seen that lim

λ1→λ1∗
uλ1 = 0. Letting λ1 → λ1∗, we see that

μ∗(α2,m2, λ2e
−γ τm2(x) − cλ2e

α1m1uλ1) = 0, if λ2 = λ2∗,

Applying (iii) of Lemma 2.1 again,{
μ∗(α2,m2, λ2e

−γ τm2(x) − cλ2e
α1m1uλ1) < 0, if λ2 < λ2∗,

μ∗(α2,m2, λ2e
−γ τm2(x) − cλ2e

α1m1uλ1) > 0, if λ2 > λ2∗.

Consequently, when (λ1, λ2) ∈ (λ1∗, λ∗
1) × (0, λ2∗), all eigenvalues of (4.7) have negative real 

parts, (uλ1 , 0) is locally asymptotically stable. When (λ1, λ2) ∈ (λ1∗, λ∗
1) × (λ2∗, +∞), (uλ1 , 0)

is unstable.

For (u∗, v∗) = (0, vλ2), the corresponding eigenvalue problem is

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μ� = e−α1m1∇ · [eα1m1∇�
] − bλ1e

α2m2vλ2�

+ λ1m1(x)e−γ τ e−μτ�, x ∈ �,

μ� = d2λ1e
−α2m2∇ · [eα2m2∇�

] − 2λ1e
α2m2vλ2� − cλ1e

α1m1vλ2�

+ λ1m2(x)e−γ τ e−μτ�, x ∈ �,

�(x) = �(x) = 0, x ∈ ∂�.

(4.11)

Using a similar proof method to Theorem 4.2, we have

Theorem 4.3. Assume that (H1) holds. Let λi∗ be defined in (2.7). Semi-trivial steady-state so-
lution (0, vλ2) of system (1.6) is locally asymptotically stable if (λ1, λ2) ∈ (0, λ1∗) × (λ2∗, λ∗

2), 
and (0, vλ2) is unstable if (λ1, λ2) ∈ (λ1∗, +∞) × (λ2∗, λ∗

2).

4.3. Local stability of the non-trivial solution

We now consider the local stability of the positive steady-state solution (uλ, vλ).
The linearization of system (1.6) at positive steady-state solution (uλ, vλ) is given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ũt =e−α1m1∇ · [eα1m1∇ũ
] − 2λ1e

α1m1uλũ − bλ1e
α2m2(uλṽ + vλũ)

+ λ1m1(x)e−γ τ ũ(t − τ), x ∈ �, t > 0,

ṽt =d2λ1e
−α2m2∇ · [eα2m2∇ṽ

] − 2λ1e
α2m2vλṽ − cλ1e

α1m1(uλṽ + vλũ)

+ λ1m2(x)e−γ τ ṽ(t − τ), x ∈ �, t > 0,

ũ(x,t) = ṽ(x, t) = 0, x ∈ ∂�, t > 0.

(4.12)

Introduce linear operator A(λ) : X2
C → Y 2

C defined by

A(λ) =
(

a11 0
0 a

)
, (4.13)
22
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and

B(λ) =
( −λ1e

α1m1uλ −bλ1e
α2m2uλ

−cλ1e
α1m1vλ −λ1e

α2m2vλ

)
, (4.14)

C(λ) =
(

λ1m1(x)e−γ τ 0
0 λ1m2(x)e−γ τ

)
, (4.15)

where

a11
�= e−α1m1∇ · [eα1m1∇] − λ1e

α1m1uλ − bλ1e
α2m2vλ,

a22
�= d2λ1e

−α2m2∇ · [eα2m2∇] − λ1e
α2m2vλ − cλ1e

α1m1uλ.

(4.16)

From [9], the semigroup induced by solutions of Eq. (4.1) has the infinitesimal generator 
Aτ (λ) given by

Aτ (λ)ψ = ψ̇,

with domain

D(Aτ (λ)) =
{
ψ ∈ (CC ∩ C1

C)2 : ψ(0) ∈ X2
C, ψ̇(0) = (A(λ) + B(λ))ψ(0) + C(λ)ψ(−τ)

}
,

where C1
C = C1([−τ, 0], YC), ψ = (ψ1, ψ2)

T ∈ Y 2
C . Moreover, μ ∈C is an eigenvalue of Aτ (λ), 

if and only if there exists y = (y1, y2)
T (�= (0, 0)T ) ∈ X2

C such that

�(λ,μ, τ)y = 0, (4.17)

where

�(λ,μ, τ) := A(λ) + B(λ) + C(λ)e−μτ − μI,

I is identity matrix in R2×2. By [37], the eigenvalues of Aτ(λ) continuously depend on τ , thus 
Aτ (λ) has an eigenvalue μ for some τ ≥ 0, if and only if

[A(λ) + B(λ) + C(λ)e−μτ − μI ]y = 0, y(�= (0,0)T ) ∈ X2
C. (4.18)

Note that

[A(λ) + C(λ)][(uλ, vλ)
T ] = 0

and (3.11) satisfies (2.5), we obtain

[A(λ) + C(λ)][�i∗] = 0, i = 1,2. (4.19)

Moreover, for any �, � ∈ X2
C ,

〈�, [A(λ) + C(λ)]�〉 = 〈[A(λ) + C(λ)]�,�〉. (4.20)
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Eq. (4.17) is equivalent to (
eα1m1 0

0 eα2m2

)
�(λ,μ, τ)y = 0. (4.21)

Via ignoring a scalar factor, suppose that

y = p�1∗ + q�2∗ + ‖λ − λ∗‖η(x) (4.22)

where y(�= (0, 0)T ) ∈ X2
C , p, q ∈ C2, η = (η1, η2) ∈ X2

C satisfies 〈�1∗, η〉 = 〈�2∗, η〉 = 0. Let 
�1∗ and �2∗ be the inner product of (4.21), respectively, we get〈

�1∗,
(

eα1m1 0
0 eα2m2

)
μy

〉
=

〈
�1∗,

(
eα1m1 0

0 eα2m2

)
[A(λ)y + B(λ)y + C(λ)e−μτ y]

〉
=

〈
�1∗,

(
eα1m1 0

0 eα2m2

)
[A(λ)y + C(λ)y]

〉
+

〈
�1∗,

(
eα1m1 0

0 eα2m2

)
[B(λ)y + C(λ)(e−μτ − 1)y]

〉
=

〈(
eα1m1 0

0 eα2m2

)
[A(λ) + C(λ)]�1∗, y

〉
+

〈
�1∗,

(
eα1m1 0

0 eα2m2

)
[B(λ)y + C(λ)(e−μτ − 1)y]

〉
=

〈
�1∗,

(
eα1m1 0

0 eα2m2

)
[B(λ)y + C(λ)(e−μτ − 1)y]

〉
,

(4.23)

where the third and fourth equalities can be obtained from (4.19) and (4.20), respectively. Simi-
larly, 〈

�2∗,
(

eα1m1 0
0 eα2m2

)
μy

〉
=

〈
�2∗,

(
eα1m1 0

0 eα2m2

)
[B(λ)y + C(λ)(e−μτ − 1)y]

〉
.

(4.24)

Moreover,

e−μτ − 1 = −μτ + μ2τ 2

2! − μ3τ 3

3! + · · · . (4.25)

Let μ = j‖λ − λ∗‖, we can rewrite (3.11) as{
uλ = �1‖λ − λ∗‖[φ1∗ + O(‖λ − λ∗‖)],
vλ = �2‖λ − λ∗‖[φ2∗ + O(‖λ − λ∗‖)], (4.26)
552



D. Liu, H. Wang and W. Jiang Journal of Differential Equations 372 (2023) 536–563
where

�1 = e−γ τ [cosωλ1k11k2 − sinωλ2k21k1]
λ1λ2D

,

�2 = e−γ τ [sinωλ2k22k1 − cosωλ1k12k2]
λ1λ2D

,

ω ∈ (0, π2 ). Substituting Eq. (4.26), Eq. (4.22) and Eq. (4.25) into Eq. (4.23) and Eq. (4.24),

j

∫
�

eα1m1φ1∗(pφ1∗ + ‖λ − λ∗‖η1)dx

= − λ1

∫
�

e2α1m1φ1∗�1[φ1∗ + O(‖λ − λ∗‖)](pφ1∗ + ‖λ − λ∗‖η1)dx

− λ1b

∫
�

eα1m1+α2m2φ1∗�1[φ1∗ + O(‖λ − λ∗‖)](qφ2∗ + ‖λ − λ∗‖η2)dx

+ λ1

∫
�

eα1m1m1(x)e−γ τ (−jτ + O(‖λ − λ∗‖))φ1∗(pφ1∗ + ‖λ − λ∗‖η1)dx,

j

∫
�

eα2m2φ2∗(qφ2∗ + ‖λ − λ∗‖η2)dx

= − λ2

∫
�

e2α2m2φ2∗�2[φ2∗ + O(‖λ − λ∗‖)](qφ2∗ + ‖λ − λ∗‖η2)dx

− λ2c

∫
�

eα1m1+α2m2φ2∗�2[φ2∗ + O(‖λ − λ∗‖)](pφ1∗ + ‖λ − λ∗‖η1)dx

+ λ2

∫
�

eα2m2m2(x)e−γ τ (−jτ + O(‖λ − λ∗‖))φ2∗(qφ2∗ + ‖λ − λ∗‖η2)dx.

Comparing the coefficients of O(‖λ − λ∗‖)) gives

{
jpk3 = −λ1[(k11�1 + k1jτe−γ τ )p + k12�1q],
jqk4 = −λ2[k21�2p + (k22�2 + k2jτe−γ τ )q], (4.27)

where k11, k12, k21, k22, k1, k2, k3, k4 are defined in (3.10). In fact, (4.27) is equivalent to

Q

(
p

q

)
= 0

where
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Q =
( −λ1k11�1 − (k3 + λ1τe−γ τ k1)j −λ1k12�1

−λ2k21�2 −λ2k22�2 − (k4 + λ2τe−γ τ k2)j

)
.

Eq. (4.27) has a non-trivial solution (p, q) if and only if detQ = 0, we have the following 
quadratic equation

Aj2 + Bj + C = 0, (4.28)

where

A = (k3 + λ1τe−γ τ k1)(k4 + λ2τe−γ τ k2) > 0,

B = (k3 + λ1τe−γ τ k1)λ2k22�2 + (k4 + λ2τe−γ τ k2)λ1k11�1 > 0,

C = λ1λ2�1�2D.

Eq. (4.28) has two roots

j± = −B ± √
B2 − 4AC

2A
. (4.29)

Lemma 4.4. Assume that (H1)-(H3) hold. 0 is not an eigenvalue of Eq. (4.18).

Proof. Conversely, if 0 is an eigenvalue of the characteristic equation (4.18), bring j = 0 into 
the equation (4.28), then D = 0, which contradicts the assumption.

Theorem 4.5. Assume that (H1)-(H3) hold. The coexistence steady-state solution (uλ, vλ) that 
exists in (λ1, λ2) ∈ (λ1∗, λ∗

1) × (λ2∗, λ∗
2) is locally asymptotically stable if condition D > 0 is 

satisfied, and unstable if D < 0, where D is defined in (H2).

Proof. From Eq. (4.29), when D > 0, all eigenvalues have negative real parts, It’s easy to verify 
that when D ≤ 0, there are eigenvalues of non-negative real parts.

Remark 3. Combining Theorem 4.5 with Remark 1, we deduce that as the delay τ increases, 
Hopf bifurcation does not occur, which is different from the Hopf bifurcation caused by the delay 
τ in literature [9,17,31,38]. On the contrary, as τ increases, the bound of steady-state solution 
will gradually become smaller or even tend to zero.

Remark 4. Note that when m1(x) = m2(x) ≡ C, where C is a positive constant, the condition of 
D > 0 is equivalent to the weak competition condition bc < 1.

Based on the analysis in the previous sections, we briefly sketch the existence of steady-state 
solutions to system (1.6) in different parameter regions, see Fig. 1. We summarize the existence 
and stability of the solution of (2.5) as follows.

(i) (λ1, λ2) ∈ (0, λ1∗) ×(0, λ2∗): there is trivial solution (0, 0) of system (2.5). Moreover, trivial 
solution (0, 0) is asymptotically stable,
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Fig. 1. Local bifurcation graph with λ1 and λ2 as parameters.

(ii) (λ1, λ2) ∈ (λ1∗, λ∗
1) × (0, λ2∗): there are trivial solution (0, 0) and the semi-trivial solution 

(uλ1 , 0) of system (2.5). Moreover, trivial solution (0, 0) is unstable, the semi-trivial solution 
(uλ1 , 0) is asymptotically stable,

(iii) (λ1, λ2) ∈ (0, λ1∗) × (λ2∗, λ∗
2): there are trivial solutions (0, 0) and the semi-trivial solution 

(0, vλ2) of system (2.5). Moreover, trivial solution (0, 0) is unstable, the semi-trivial solution 
(0, vλ2) is asymptotically stable,

(iv) (λ1, λ2) ∈ (λ1∗, λ∗
1) × (λ2∗, λ∗

2): there are trivial solutions (0, 0), the semi-trivial solution 
(uλ1 , 0), the semi-trivial solution (0, vλ2), and the non-trivial solution (coexistence steady-
state solution) (uλ, vλ) system (2.5). Moreover, trivial solution (0, 0), the semi-trivial solu-
tion (uλ1, 0) and the semi-trivial solution (0, vλ2) are unstable, the coexistence steady-state 
solution (uλ, vλ) is asymptotically stable.

Remark 5. If m1(x) = m2(x) = m(x), α1 = α2 = α > 0, b = c = 1, we have λ1∗ = λ2∗. Note 
that λi = 1

di
, from Fig. 1, we show that there is an intermediate random dispersal rate and three 

scenarios may occur: (i) If the random dispersal rate of two competing species is both greater than 
this rate, then both species go to extinction; (ii) If the random diffusion rate of both competing 
species is smaller than this rate (near the intermediate diffusion rate), then two competing species 
coexist; (iii) If one diffusion rate is larger than the critical rate and the other is smaller than 
the critical rate, the species with the larger diffusion rate goes to extinction. These results are 
different from the results in [12]. However, if m1(x) = m2(x) = m(x), α1 = α2 = 0, b = c = 1, 
large random dispersal rates will drive species extinction, which is consistent with the results 
obtained in [3].

5. Numerical simulations

In this section, we support the results obtained by our theoretical analysis with numerical 
simulations. Furthermore, we show the effect of the stage structure and spatial heterogeneity on 
the steady-state solution.

Let b = 0.3, c = 0.1, γ = 1, α1 = 0.5, α2 = 0.4. Choose m1(x) = 3 − cosx, m2(x) = sinx +
2. Hence, λ1∗ = 0.5263, λ2∗ = 0.4167. We fix τ = 0.5 and simulate the steady-state solution of 
system (1.5) in the four regions of (λ1, λ2) in Fig. 2, Fig. 3, Fig. 4, Fig. 5, respectively, which are 
consistent with Fig. 1.
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Fig. 2. Here, λ1 = 0.5, λ2 = 0.4, (λ1, λ2) ∈ (0, λ1∗) × (0, λ2∗): The solution of (1.5) tends to (0,0).

In this paper, we obtain the local existence and local asymptotic stability of the positive steady-
state solution of system (1.5). In Fig. 6, we numerically provide the long-term behavior of the 
positive steady-state solution far away from the bifurcation point (λ1∗, λ2∗). Furthermore, from 
numerical simulations, we see that the positive steady-state solution is unique. We conjecture 
that the positive steady-state solution is unique, but it is a pity that we have not yet been able to 
prove it theoretically, and this will be a problem to be considered in the future.

5.1. Influence of stage structure on the steady-state solution

From Lemma 3.4, the upper bound of the steady-state solution is related to the stage structure. 
As the time delay τ increases, the upper bound of the steady-state solution gradually decreases 
and tends to 0. The resource function mi(x) is usually taken in the form of a sine or cosine 
function, see for example [9,31]. Here we let m1(x) = 3 − cos 2x, m2(x) = 3 + sin 5x. Figs. 7, 
8, 9 and 10 show the effect of the stage structure on the steady-state solution when the resource 
environment is spatially heterogeneous. In Fig. 7, Fig. 8, Fig. 9 and Fig. 10, parameters are 
the same except for the time delay τ . As the time delay τ increasing, the positive steady-state 
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Fig. 3. Here, λ1 = 0.6250, λ2 = 0.3846, (λ1, λ2) ∈ (λ1∗, λ∗
1) × (0, λ2∗): The solution of (1.5) tends to (uλ1 ,0).

solution gradually becomes smaller and then tends to 0, which means that the species u and v go 
from coexistence to extinction.

The increase of time delay τ implies a longer maturity period of the species. For insects and 
other invertebrates in temperate and subtropical regions, adverse environmental conditions can 
cause periods of developmental arrest. This a phenomenon known as diapause. See for example 
[39,40]. Newly mature species are rare if the maturation period is long. The species will be on 
the verge of extinction. This is also naturally in line with biological phenomena.

5.2. Influence of spatial heterogeneity on steady-state solution

Another interesting thing is to consider the effect of spatial heterogeneity on steady-state 
solution. The expression of the positive steady-state solution we obtained in Theorem 3.6 is 
related to the principal eigenfunction φi∗, which in turn is related to the resource function mi(x). 
Therefore we may conjecture that the positive steady-state solution and the resource function are 
positively correlated. Due to the complexity of spatial heterogeneity, we are unable to prove it at 
this time, but numerical simulations of our model lend credence to this conjecture.
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Fig. 4. Here, λ1 = 0.5, λ2 = 0.4762, (λ1, λ2) ∈ (0, λ1∗) × (λ2∗, λ∗
2): The solution of (1.5) tends to (0, vλ2 ).

Fig. 11 shows that the profile of the resource function and the principal eigenfunction are 
basically the same, and Fig. 7 shows that the profile of the resource function and the steady-state 
solution are basically the same. In Fig. 7, we find that the profiles of u and v are roughly the 
same as the distribution of resource functions m1(x) and m2(x). However, in Fig. 5, the shape 
of v matches the distribution of the resource function and the shape of u does not match, which 
is caused by the boundary condition of our model is the Dirichlet boundary condition. Although 
there are favorable living resources on the boundary, the species still die when they reach the 
boundary since the boundary is fatal. Therefore, the distribution of the solution is the joint effect 
of the combination of boundary conditions and resource distribution.

6. Discussion

In this paper, we consider a diffusion-advection-competition Lotka-Volterra model with stage 
structure under homogeneous Dirichlet boundary conditions. Moreover, the environments of 
the two species are spatially heterogeneous. Therefore, both semi-trivial steady-state solutions 
and the coexistence steady-state solution of the system are spatially non-homogeneous, and the 
diffusion-advection operator is not a self-adjoint, these all bring many difficulties to our analysis. 
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Fig. 5. Here, λ1 = 0.5882, λ2 = 0.4545, (λ1, λ2) ∈ (λ1∗, λ∗
1) × (λ2∗, λ∗

2): The solution of (1.5) tends to (uλ1 , vλ2 ).

However, the single eigenvalue bifurcation theorem does not apply to the existence of the coex-
istence steady-state solution, we explore the existence of the coexistence steady-state solution by 
using the implicit function theorem. Stability is analyzed by methods such as comparison prin-
ciple and eigenvalue analysis. We found that the increase of time delay will not destabilize the 
coexistence steady-state solution and generate periodic solutions through the Hopf bifurcation, 
the large time delay can lead to the extinction of species, which is different from the results in 
the existing work [9,31]. Using the reciprocal of diffusion coefficients of the two species as bi-
furcation parameters, we show the local existence and local asymptotic stability of steady-state 
solutions in different regions, see Fig. 1. If the random dispersal rates of both species are suffi-
ciently large, both species go extinct. There are two critical values for the random dispersal rate 
of two species. If random diffusion rates of both species are less than the critical value, the two 
species can coexist; if one is greater than the critical value and the other is less than the critical 
value, then the species less than the critical value survives.

In numerical simulations, we observed that the steady-state solution exists not only locally but 
also globally. Furthermore, we show the effects of the stage structure and spatial heterogeneity 
on the steady-state solution. However, the proof of the global existence and global stability of the 
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Fig. 6. This figure shows that the positive steady-state solution still exists when the parameters are far away from the 
bifurcation point (λ1∗, λ2∗). Here, λ1 = 2.5, λ2 = 2.

Fig. 7. b = 0.3, c = 0.1, γ = 1, α1 = 0.5, α2 = 0.4, λ1 = 0.5882, λ2 = 0.4545, m1(x) = 3 − cos 2x, m2(x) = 3 + sin 5x, 
τ = 0.05.

steady-state solution is a difficult problem, and how the resource function affects the permanence 
and extinction of species remains an open question, which needs a new method.
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Fig. 8. b = 0.3, c = 0.1, γ = 1, α1 = 0.5, α2 = 0.4, λ1 = 0.5882, λ2 = 0.4545, m1(x) = 3 − cos 2x, m2(x) = 3 + sin 5x, 
τ = 0.2.

Fig. 9. b = 0.3, c = 0.1, γ = 1, α1 = 0.5, α2 = 0.4, λ1 = 0.5882, λ2 = 0.4545, m1(x) = 3 − cos 2x, m2(x) = 3 + sin 5x, 
τ = 1.

Fig. 10. b = 0.3, c = 0.1, γ = 1, α1 = 0.5, α2 = 0.4, λ1 = 0.5882, λ2 = 0.4545, m1(x) = 3 −cos 2x, m2(x) = 3 +sin 5x, 
τ = 2.5.
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