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Abstract
Communities are commonly not isolated but interact asymmetrically with each other,
allowing the propagation of infectious diseases within the same community and
between different communities. To reveal the impact of asymmetrical interactions and
contact heterogeneity on disease transmission, we formulate a two-community SIR
epidemicmodel, in which each community has its contact structure while communica-
tion between communities occurs through temporary commuters.We derive an explicit
formula for the basic reproduction numberR0, give an implicit equation for the final
epidemic size z, and analyze the relationship between them. Unlike the typical positive
correlation betweenR0 and z in the classic SIR model, we find a negatively correlated
relationship between counterparts of our model deviating from homogeneous popu-
lations. Moreover, we investigate the impact of asymmetric coupling mechanisms on
R0. The results suggest that, in scenarios with restrictedmovement of susceptible indi-
viduals within a community, R0 does not follow a simple monotonous relationship,
indicating that an unbending decrease in the movement of susceptible individuals may
increase R0. We further demonstrate that network contacts within communities have
a greater effect onR0 than casual contacts between communities. Finally, we develop
an epidemic model without restriction on the movement of susceptible individuals,
and the numerical simulations suggest that the increase in human flow between com-
munities leads to a larger R0.
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1 Introduction

The struggle between human beings and infectious diseases has never stopped. His-
torically, the plague pandemic in the middle ages was exceptionally severe, causing
an estimated 25 million deaths in Europe, accounting for a quarter of the population
of 100 million (Thieme 2003). Over the past two decades, people have experienced
global health threats posed by infectious diseases, such as the SARS epidemic between
2002 and 2003, the influenza H1N1 outbreak in 2009, and the Ebola epidemic in West
Africa between 2013 and 2016. For now, corona virus disease 2019 (COVID-19) is
still ongoing and even more uncontrolled due to more frequent population movement.
Infectious diseases have been an ever-present global concern in the public health field,
causing significant economic losses and affecting human health every year. In order
to prevent the occurrence of infectious diseases and mitigate their impact, it is par-
ticularly important to have a detailed understanding of the dynamics of the disease.
Thus, mathematical modelling for infectious diseases at the population or community
levels continues to receive much attention (Velazquez et al. 1990; Hales et al. 1999;
Wallis and Lee 1999; El Sayed et al. 2000).

Previous research on epidemiological models is commonly based on the particu-
lar assumption of homogeneous mixing (Anderson and May 1992; Hethcote 2000),
which means that each individual in the population has an equal contact probability,
and infected individuals will have the same probability of infecting the susceptible
population. The spread of an epidemic among a population depends on the propor-
tion of contacts between individuals. For instance, individuals from a relatively large
population can only contact with a limited part of the overall population, the standard
mean-field model is then no longer applicable in such case. Therefore, it is more prac-
tical to consider populations that are heterogeneously mixed. Heterogeneous mixing
of populations can be categorized in many ways, such as contact heterogeneity, spatial
heterogeneity (Lajmanovich and Yorke 1976; Thieme 1977; Diekmann 1978; Rass
and Radcliffe 2003; Muroya et al. 2013), etc. Thieme (1977) and Diekmann (1978)
derived the final size equations for the space-dependent model. Rass and Radcliffe
(2003) gave the final size equations for non-spatial and spatial multi-type models in
sections 2.5 and 3.4 of their book, respectively. Fitzgibbon et al. (2019) investigated
a time-dependent spatial vector-host epidemic model with non-coincident domains
for the vector and host populations and established global well-posedness and uni-
form prior bounds as well as the long-term behavior. Subsequently, Fitzgibbon et al.
(2020) developed a dynamic model of an evolving epidemic in a spatially inhomo-
geneous environment to predict disease outbreaks and spatio-temporal spread. They
demonstrated the existence and uniform boundedness of the solutions and studied
their long-term behavior. In addition, contact network models have appeared in the
public view as an attempt to shape contact heterogeneity in populations. Research on
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the dynamics of disease transmission on the network has been done in the past two
decades (Pastor-Satorras and Vespignani 2001; Wang and Dai 2008; Jin et al. 2014;
Wang et al. 2020).

On a connected network, each node and edge represent an individual and a possible
connection between individuals, respectively. Individuals connected by the edge are
named neighbours. Regular contact networks (each node in the network has exactly k
links) canmodel the dynamics for certain populations, such as those initially caused by
veterinary applications and spatially embedded ecology. However, regular contact net-
works may underperform for sexually transmitted diseases (Kamp 2010) and human
respiratory transmitted diseases (Mossong et al. 2008), since their contact networks
are highly heterogeneous. Therefore, it is more practical to consider heterogeneous
contacts among individuals in the modelling process. Heterogeneous contact network
models are employed extensively to study the dynamics of disease transmission. In
2002, Moreno et al. (2002) formulated a susceptible-infected-recovered (SIR) model
in heterogeneous networks, which is based on the states of nodes and their degrees,
and showed the effect of degree distribution on the epidemic threshold and the final
outbreak size. Various epidemic models based on the idea of heterogeneous networks
have been proposed and analyzed. Barthélemy et al. (2005) studied the prevalence
thresholds of diseases and the dynamics of disease outbreaks over time in a popula-
tion with complex and heterogeneous connection patterns. It was shown that in all
networks with fluctuating degrees of dispersion, the prevalence increases rapidly and
does not depend on the architecture of the connection correlation function describing
the population network. Zhu et al. (2012) investigated the transmission dynamics of
diseases in populationswith complex heterogeneous network structures, and the results
elucidated why heterogeneous connection structures affect disease prevalence thresh-
olds and concluded that network heterogeneity drives disease transmission. Großmann
et al. (2021) used a network of contacts to model the complex structure of interactions
between individuals and proposed a role for contact heterogeneity in the COVID-19
pandemic. Formore studies on the transmission of epidemics in heterogeneous contact
networks refer to Olinky and Stone (2004), Graham and House (2014), Meng et al.
(2021), Amini and Minca (2022).

The disease prevalence can only be reduced with human intervention but can hardly
be eradicated. People are interested in whether a disease can invade a population and
how the disease is affected by contact patterns, which motivates us to study the impact
of contact patterns on the threshold and final epidemic size of the disease. Pastor-
Satorras and Vespignani (2001) found that there is no epidemic threshold in scale-free
networks with the divergence of the second moment for the degree distribution, con-
trary to scalar deterministic models. Kiss et al. (2006) studied the dynamics of disease
transmission under multiple pathways of contact. They found that the final epidemic
size of the disease increases with the mean field-type transmission contribution and
decreases with the network transmission contribution. This indicates that the contact
pattern has a strong influence on disease prevalence. Wang et al. (2018) established an
edge-based SIRmodel of multi-path spread on a random network, calculated the basic
reproduction number and type reproduction numbers, and derived the final epidemic
size equations. In particular, the effect of degree distribution on the basic reproduction
number and final size was analyzed.
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Contact patterns in the population make a significant contribution to disease trans-
mission. In particular, larger populations exhibit more diverse patterns of contact,
owing to their inherently complex interaction both within and outside their respective
communities. Therefore, it is imperative to develop a comprehensive understanding
of the disease transmission dynamics within and between communities, to restore the
transmission dynamics in larger populations. Much work has been conducted on such
considerations. In 2000, Hethcote (2000) quantified the relationship between the basic
reproduction number and the final size of a single community using a mathematical
expression. Zhang and Jin (2012) investigated the network SEAIR model with com-
munity structure, and obtained the basic reproduction number and final size of the
model. Koch et al. (2013) studied the effect of randomly removing edges and reduc-
ing the proportion of external edges within and between communities on the basic
reproduction number and final size. Lieberthal et al. (2023) investigated the impact
of community structure on the transmission of epidemics in human metapopulation
networks and emphasized the significant influence of community structure on disease
reproduction rates. However, few works consider the solvability of implicit equations
for the final epidemic size and the relationship between the basic reproduction num-
ber and the final epidemic size. To our knowledge, Bidari et al. (2016) analyzed the
solvability of implicit final size equations for the SIR pairwise and heterogeneous
mean-field models. Magal et al. (2016) and (2018) studied the final size problem for
two- and multi-group SIR epidemic models, respectively. Additionally, Magal et al.
(2016) presented the result on the relationship between the basic reproduction number
and the final size.

Despite these previous efforts, our focus extends to dynamic scenarios involving
unequal interaction between different communities (asymmetric coupling) and indi-
viduals with varying number of contacts (contact heterogeneity), a topic that remains
unclear. To address this, we formulate a two-community SIR epidemic model with
asymmetric coupling. In addition to intra-community individual contacts, our model
also incorporates inter-community individual contacts through travel activities (e.g.,
purchase, recreation, commute, etc) due to the inconsistency of the public preven-
tative measures in each community, which leads to different probabilities of contact
between individuals within and between communities. Based on the proposed high-
dimensional two-community SIR model with asymmetric coupling, we derive the
explicit expression for the basic reproduction number and the implicit equations for
the final size, and prove the existence and uniqueness of the solution to the implicit
equations. Furthermore, we analyze the relationship between the basic reproduction
number and the final size.

This paper is organized into the following sections. In Sect. 2, we develop a
two-community SIR model with asymmetric coupling, in which each community
is described by a heterogeneous network. In Sect. 3, we derive the basic reproduction
number and final size of the model, and prove the existence and uniqueness of the
solution of implicit equations for the final size. Furthermore, to obtain the explicit
expression of the basic reproduction number, we reformulate the original model using
an edge-based compartmental modelling approach. In Sect. 4, sensitivity analysis and
numerical simulations are given to demonstrate the impact of the degree distribution
and asymmetric coupling mechanism on the basic reproduction number and final epi-
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demic size. We conclude the paper with the limitations of the current study and list
some future directions in Sect. 5.

2 Model description

In this paper, we consider the disease transmission between two communities without
birth and death.Here, we assume that an infected individual in one community can visit
another community by shopping, going to work, visiting, etc., resulting in the suscep-
tible population of visiting community being infected. When studying the epidemic
transmission on a network, individuals are considered as nodes, while contacts among
individuals are considered as edges. To solve the heterogeneity of contacts among
individuals, the population of community A is divided into nA different groups N A

k
(k = 1, 2, . . . , nA), and each individual in group k is in contactwith exactly k individu-
als; here, nA is themaximum degree of community A. The population of community B
is divided into nB different groups N B

l (l = 1, 2, . . . , nB), and each individual in group
l is in contactwith exactly l individuals; here, nB is themaximumdegree of community
B. Community A population size is N A = N A

1 +N A
2 +· · ·+N A

nA
, then the probability

of having the number of k contacts is pA(k) = N A
k /N A. Community B population size

is N B = N B
1 +N B

2 +· · ·+N B
nB , then the probability of having the number of l contacts

is pB(l) = N B
l /N B . Themodel expresses the dynamics of disease transmissionwithin

a community and between communities (See Fig. 1). Define SA
k (t), I Ak (t) and RA

k (t) as
the number of susceptible individuals, infected individuals and recovered individuals
with a degree k at time t in community A, respectively. SB

l (t), I Bl (t) and RB
l (t) are

counterparts but with degree l in community B. The total number of individuals in
community A with degree k is SA

k (t)+ I Ak (t)+ RA
k (t) = N A

k (t), and the total number
of individuals in community B with degree l is SB

l (t) + I Bl (t) + RB
l (t) = N B

l (t). For
a susceptible individual of degree k, it becomes infected in two ways, through network
contact with an infected individual in the same community or through casual contact
with an infected individual in another community. The model is expressed in the form
of the following system of ordinary differential equations with 3(nA + nB) variables

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ A
k (t) = −τAαkSA

k �A
i − (1 − α)σAS

A
k

I B

N B
,

˙I Ak (t) = τAαkSA
k �A

i + (1 − α)σAS
A
k

I B

N B
− γA I

A
k ,

Ṙ A
k (t) = γA I

A
k ,

ṠB
l (t) = −τBβl SB

l �B
i − (1 − β)σB S

B
l

I A

N A
,

˙I Bl (t) = τBβl SB
l �B

i + (1 − β)σB S
B
l

I A

N A
− γB I

B
l ,

ṘB
l (t) = γB I

B
l ,

(2.1)
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Fig. 1 Flow diagram of the two-community network SIR model with asymmetric coupling (Color figure
online)

Table 1 Description of the model (2.1) parameters

Parameters Description

τA > 0 Transmission probability from an infectious individual to a susceptible

individual in the community A through network contact

τB > 0 Transmission probability from an infectious individual to a susceptible

individual in the community B through network contact

σA > 0 Transmission probability from an infectious individual in the community B

to a susceptible individual in the community A through casual contact

σB > 0 Transmission probability from an infectious individual in the community A

to a susceptible individual in the community B through casual contact

0 ≤ α ≤ 1 The contribution of disease transmission through intra-community A

1 − α The contribution of disease transmission from community B to community A

0 ≤ β ≤ 1 The contribution of disease transmission through intra-community B

1 − β The contribution of disease transmission from community A to community B

γA > 0 The recovery rate of infected individuals in community A

γB > 0 The recovery rate of infected individuals in community B

where I A(t) = ∑nA
j=1 I

A
j (t), I B(t) = ∑nB

j=1 I
B
j (t). The term �A

i (t) =
∑nA

j=1 j I Aj (t)
∑nA

j=1 j N A
j (t)

is the expectation that any given edge on the connected network of community A

points to an infected node in the same community, and �B
i (t) =

∑nB
j=1 j I Bj (t)

∑nB
j=1 j N B

j (t)
is the

expectation that any given edge on the connected network of community B points to
an infected node in the same community. In real life, individuals who are infected with
an epidemic generally need to rest and do not engage in travel activities. To account for
this, we introduce the parameter α to represent the movement restriction of susceptible
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individuals in the community A. Specifically, when α = 1, it means that susceptible
individuals in community A are restricted from moving; when α = 0, susceptible
individuals have unrestricted movement. For 0 < α < 1, a fraction of susceptible
individuals are allowed to leave the community. In addition, we can explain it from
the perspective ofwhat leads to the spread of disease in a community.We categorize the
susceptible individuals in community A to contract the disease into two pathways:αSA

k
of the susceptible individuals are infected through contact with infected individuals
within community A, while (1 − α)SA

k of the susceptible individuals are infected
through contact with infected individuals in community B. A similar interpretation
applies to the parameter β regarding to community B. Additional parameters in this
model are described in Table 1.

Dividing the first 3nA equations of the model (2.1) by N A
k (t) and the last 3nB

equations by N B
l (t) gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙s Ak (t) = −τAαks Ak �A
i − (1 − α)σAs

A
k i

B,

˙i Ak (t) = τAαks Ak �A
i + (1 − α)σAs

A
k i

B − γAi
A
k ,

˙r Ak (t) = γAi
A
k ,

˙sBl (t) = −τBβlsBl �B
i − (1 − β)σBs

B
l i

A,

˙i Bl (t) = τBβlsBl �B
i + (1 − β)σBs

B
l i

A − γBi
B
l ,

˙r Bl (t) = γBi
B
l ,

(2.2)

where �A
i (t) = ∑nA

j=1
j pA( j)
〈k〉A i Aj (t), �B

i (t) = ∑nB
j=1

j pB ( j)
〈k〉B i Bj (t), i A(t) = ∑nA

j=1

pA( j)i Aj (t), and i B(t) = ∑nB
j=1 p

B( j)i Bj (t); pA( j) = N A
j

N A is the degree distribution

of the community A, pB( j) = N B
j

N B is the degree distribution of the community B,

〈k〉A = ∑nA
j=1 j pA( j) is the mean degree of community A, 〈k〉B = ∑nB

j=1 j pB( j) is

the mean degree of community B. Moreover, s Ak (t) = SA
k (t)

N A
k (t)

, i Ak (t) = I Ak (t)

N A
k (t)

, r Ak (t) =
RA
k (t)

N A
k (t)

denote the relative density of susceptible, infected and recovered individualswith

degree k at time t in community A, respectively, and sBl (t) = SBl (t)

N B
l (t)

, i Bl (t) = I Bl (t)

N B
l (t)

,

r Bl (t) = RB
l (t)

N B
l (t)

denote the relative density of susceptible, infected and recovered

individuals with degree l at time t in community B, respectively. The initial values
of model (2.2) are s Ak (0) = 1 − εAk , s

B
l (0) = 1 − εBl , i

A
k (0) = εAk , i

B
l (0) = εBl with

0 ≤ εAk , εBl � 1, r Ak (0) = 0, and r Bl (0) = 0.
For spatially discretely distributed multi-patch models, it is usually assumed that

individuals in each patch are homogeneously mxied. For epidemic dynamics in
annealed networks, individuals are classified also by their degrees k, that is, indi-
viduals with the same degree are considered statistically equivalent. Mathematically,
there may not be much difference from multi-patch or multi-group epidemic models,
but the results from theoretical analysis can vary. For example, the global problem of
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endemic equilibrium in the multi-group SIRS epidemic model remains incompletely
solved, while that of the network SIRS model has been completely solved. Muroya
et al. (2013) andMuroya and Kuniya (2014) found that the global stability of endemic
equilibrium in the multi-group SIRS epidemic model requires further conditions in
addition to the basic reproduction number R0 > 1. Li et al. (2014) proposed an SIRS
model on a complex network and derived that the endemic equilibrium is globally
asymptotically stable when R0 > 1. Motivated by these facts, the network epidemic
model may yield new results and provide new insights.

3 Main results

The goal of this section is to study the dynamics of the givenmodel.Wemathematically
investigate the positivity of solutions, the explicit expression of basic reproduction
number, as well as the implicit equations of final epidemic size.

3.1 Positivity of solutions

The positivity of the solution of model (2.2) is demonstrated by the following. In pre-
vious studies, the differential equation for the relative density of recovered individuals
is often ignored, but here we omit the differential equation for susceptible individu-
als from model (2.2). Let �Y (t) = (i A1 (t), i A2 (t), · · · , i AnA

(t), r A1 (t), r A2 (t), . . . , r AnA
(t),

i B1 (t), i B2 (t), . . . , i BnB (t), r B1 (t), r B2 (t), · · · , r BnB (t)
)
, Yi ∈ [0, 1], i = 1, . . . , 2(nA +

nB), Yk = i Ak (t), Yk+nA = r Ak (t), k = 1, . . . , nA, Yl+2nA = i Bl (t),Yl+2nA+nB =
r Bl (t), l = 1, . . . , nB .

Theorem 3.1 If �Y (0) ∈ 	2(nA+nB ) = 

2(nA+nB )
i=1 [0, 1], then �Y (t) ∈ 	2(nA+nB ) for

any t > 0.

Proof In fact, proving this is equivalent to proving that	2(nA+nB ) is a positive invariant
set of model (2.2). Define

∂	1
2(nA+nB ) = { �Y (t) ∈ 	2(nA+nB ) | Yi = 0 for some i},

∂	2
2(nA+nB ) = { �Y (t) ∈ 	2(nA+nB ) | Yi = 1 for some i},

where i = 1, . . . , 2(nA + nB) and ∂	 is the boundary of 	. Define the outer normal

as ξ1i = (

i
︷ ︸︸ ︷
0, . . . ,−1, . . . , 0) and ξ2i = −ξ1i . Yorke (1967) has proved that for any

compact set
which is invariant for ẋ = f (x), the vector f (x) is zero or points to the
set for any point x in ∂
. We use the method in Yorke (1967) to prove that 	2(nA+nB )
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is an invariant set of model (2.2). From Eq. (2.2), one has

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(d �Y
dt

∣
∣
Yi=0 · ξ1i

)
= −(1 − Yi+nA (t))

[τAαi

〈k〉A
nA∑

j �=i

j pA( j)Y j (t)

+ (1 − α)σA

nB∑

j �=i

pB( j)Y j+2nA(t)
]

≤ 0, for i = 1, . . . , nA,

(d �Y
dt

∣
∣
Yi=0 · ξ1i

)
= −γA · Yi−nA (t) ≤ 0, for i = nA + 1, . . . , 2nA,

(d �Y
dt

∣
∣
Yi=0 · ξ1i

)
= −(1 − Yi+nB (t))

[τBβi

〈k〉B
nB∑

j �=i

j pB( j)Y j+2nA(t)

+ (1 − β)σB

nA∑

j �=i

pA( j)Y j (t)
]

≤ 0, for i = 2nA + 1, . . . , 2nA + nB,

(d �Y
dt

∣
∣
Yi=0 · ξ1i

)
= −γB · Yi−nB (t) ≤ 0, for i = 2nA + nB + 1, . . . , 2nA + 2nB .

And it is easy to derive d �Y
dt

∣
∣
Yi=1 · ξ2i ≤ 0, i = 1, . . . , 2nA + 2nB . Hence, an arbi-

trary solution starting in ∂	1
2(nA+nB )

⋃
∂	2

2(nA+nB ) remains in 	2(nA+nB ), such that
	2(nA+nB ) is a positive invariant set of model (2.2). �

3.2 Basic reproduction number

We conclude that the disease-free equilibrium of system (2.2) is E0 = (1, 1, . . . , 1
︸ ︷︷ ︸

nA

,

0, 0, . . . , 0
︸ ︷︷ ︸

2nA

, 1, 1, . . . , 1
︸ ︷︷ ︸

nB

, 0, 0, . . . , 0
︸ ︷︷ ︸

2nB

). In epidemiology, the basic reproduction number

is defined as the expected number of secondary infections through a single infected
individual in a population of all susceptible individuals. In the following, we use the
next-generation matrix method from literature (Van den Driessche and Watmough
2002) to calculate the basic reproduction number of the model. In model (2.2), the
rate of appearance of new infections and the rate of transfer of individuals out of the
compartments satisfy (A1)-(A5) in Van den Driessche and Watmough (2002). When
the system is in a disease-free state, we obtain the new infection matrix and transition
matrix as follows:

F(nA+nB )×(nA+nB ) =
[
F11 F12
F21 F22

]

,V(nA+nB )×(nA+nB ) =
[
V1 0
0 V2

]

,
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where the block matrix F11 = τAα
〈k〉A

⎡

⎢
⎢
⎢
⎣

1
2
...

nA

⎤

⎥
⎥
⎥
⎦

[
1pA(1), 2pA(2), . . . , nA pA(nA)

]
, F12 =

(1−α)σA

⎡

⎢
⎢
⎢
⎣

1
1
...

1

⎤

⎥
⎥
⎥
⎦

[
pB(1), pB(2), . . . , pB(nB)

]
, F21 = (1−β)σB

⎡

⎢
⎢
⎢
⎣

1
1
...

1

⎤

⎥
⎥
⎥
⎦

[pA(1), pA(2),

. . . , pA(nA)], F22 = τBβ
〈k〉B

⎡

⎢
⎢
⎢
⎣

1
2
...

nB

⎤

⎥
⎥
⎥
⎦

[
1pB(1), 2pB(2), . . . , nB pB(nB)

]
,V1 = diag(γA, γA,

. . . , γA) and V2 = diag(γB, γB, . . . , γB).
By calculation, we get

V−1
(nA+nB )×(nA+nB ) =

[
V−1
1 0
0 V−1

2

]

,

where V−1
1 = diag( 1

γA
, 1

γA
, . . . , 1

γA
) and V−1

2 = diag( 1
γB

, 1
γB

, . . . , 1
γB

).
The basic reproduction number is the spectral radius of the next generation matrix

FV−1, that is,
R0 = ρ(FV−1).

From the above analysis we know that the dimensionality of matrixFV−1 is relatively
high,we give the explicit expression for the basic reproduction number later by the idea
of dimensionality reduction. Here, we first present the basic reproduction numbers for
some special cases.

1. α = 1, 0 < β ≤ 1. α = 1 means that susceptible individuals in community A are
restricted from moving. The new infection matrix and transition matrix become

F(nA+nB )×(nA+nB ) =
[
F11 0
F21 F22

]

,V(nA+nB )×(nA+nB ) =
[
V1 0
0 V2

]

,

where the block matrix F11 = τA〈k〉A

⎡

⎢
⎢
⎢
⎣

1
2
...

nA

⎤

⎥
⎥
⎥
⎦

[
1pA(1), 2pA(2), . . . , nA pA(nA)

]
.

The block matrices F21, F22, V1 and V2 have the same form above. Then the

next generation matrix isFV−1 =
[
F11V

−1
1 0

F21V
−1
1 F22V

−1
2

]

. Thus, we obtain the basic

reproduction number
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R0 = ρ
(FV−1) = 1

2

(
ρl A
∣
∣
α=1 + ρl B

)+ 1

2

[
(
ρl A
∣
∣
α=1 + ρl B

)2 − 4
(
ρl A
∣
∣
α=1

)
ρl B

] 1
2

= max
{
ρl A
∣
∣
α=1, ρl B

}
,

(3.1)

where ρl A = τAα〈k2〉A
γA〈k〉A and ρl B = τBβ〈k2〉B

γB 〈k〉B are the basic reproduction numbers of
diseases within communities A and B after the decoupling of the two-community
disease transmission model, respectively. Specifically, when the two-community
disease transmission model is decoupled, we obtain the spectral radius of matrix
FV−1 is only related to block matrices F11V

−1
1 and F22V

−1
2 . This suggests that

in the absence of disease transmission from community B to community A, the
basic reproduction number R0 is determined by the greater one corresponding to
the diseases within communities A and B. When β = 1, 0 < α ≤ 1, similar to
the case of α = 1, 0 < β ≤ 1, it can be deduced that R0 = max{ρl A, ρl B

∣
∣
β=1}.

In particular, when α = 1, β = 1, the basic reproduction number is R0 =
max{ τA〈k2〉A

γA〈k〉A ,
τB 〈k2〉B
γB 〈k〉B }.

2. α = 0, β = 0. When α = 0, β = 0, the next generation matrix is FV−1 =
[

0 F12V
−1
2

F21V
−1
1 0

]

. A similar transformation of the next-generationmatrix shows

that FV−1 has the same eigenvalues as matrix D =
[

0 D12
D21 0

]

, where D12 =

σA
γB

⎡

⎢
⎢
⎢
⎣

1
0
...

0

⎤

⎥
⎥
⎥
⎦

[
1, pB(2), . . . , pB(nB)

]
, D21 = σB

γA

⎡

⎢
⎢
⎢
⎣

1
0
...

0

⎤

⎥
⎥
⎥
⎦

[
1, pA(2), . . . , pA(nA)

]
, so

R0 =
√

σAσB
γBγA

. This is the basic reproduction number when the disease does not

spread within the same community, but only between two communities.

From Case 1, we learn that when the dynamics of disease development in one com-
munity are not influenced by the other, the basic reproduction number of the disease is
determined by the greater one corresponding to the diseaseswithin communities A and
B. From Case 2, we know that when the disease spreads only between communities,

the basic reproduction number isR0 =
√

σAσB
γBγA

.

We now consider the explicit formula of the basic reproduction number for model
(2.2). To this end, we borrow the idea from an edge-based compartmental approach
(Miller et al. 2012). In the following, we give the exact derivation procedure by means
of a low-dimensional system. From the first and fourth equations of model (2.2), one
has
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ln
s Ak (t)

s Ak (0)
= −

nA∑

j=1

k jpA( j)

〈k〉A
∫ t

0
τAαi Aj (s)ds −

nB∑

j=1

pB( j)
∫ t

0
(1 − α)σAi

B
j (s)ds,

ln
sBl (t)

sBl (0)
= −

nB∑

j=1

l j pB( j)

〈k〉B
∫ t

0
τBβi Bj (s)ds −

nA∑

j=1

pA( j)
∫ t

0
(1 − β)σBi

A
j (s)ds.

The above equations are equivalent to

s Ak (t) = (1 − εAk )e
−∑nA

j=1
k jpA( j)

〈k〉A
∫ t
0 τAαi Aj (s)ds−∑nB

j=1 pB ( j)
∫ t
0 (1−α)σAi Bj (s)ds

= (1 − εAk )e
−∑nA

j=1
k jpA( j)

〈k〉A
∫ t
0 τAαi Aj (s)ds · e−∑nB

j=1 pB ( j)
∫ t
0 (1−α)σAi Bj (s)ds

= (1 − εAk )(θA)k�A,

sBl (t) = (1 − εBl )e
−∑nB

j=1
l j pB ( j)

〈k〉B
∫ t
0 τBβi Bj (s)ds−∑nA

j=1 pA( j)
∫ t
0 (1−β)σBi Aj (s)ds

= (1 − εBl )e
−∑nB

j=1
l j pB ( j)

〈k〉B
∫ t
0 τBβi Bj (s)ds · e−∑nA

j=1 pA( j)
∫ t
0 (1−β)σBi Aj (s)ds

= (1 − εBl )(θB)l�B,

(3.2)

where θA(t) = e
−∑nA

j=1
j pA( j)
〈k〉A

∫ t
0 τAαi Aj (s)ds

represents the probability that a ran-
domly selected stub has not spread the infection in community A, and �A(t) =
e−∑nB

j=1 pB ( j)
∫ t
0 (1−α)σAi Bj (s)ds = e−(1−α)σA

∫ t
0 i

B (s)ds can be expressed as the probabil-
ity of escaping the infection through casual contacts with community B. Themeanings

of θB(t) = e
−∑nB

j=1
j pB ( j)
〈k〉B

∫ t
0 τBβi Bj (s)ds

and �B(t) = e−∑nA
j=1 pA( j)

∫ t
0 (1−β)σBi Aj (s)ds =

e−(1−β)σB
∫ t
0 i

A(s)ds are similar to that of θA(t) and �A(t), respectively.
Thus, we obtain

s A(t) =
nA∑

k=1

pA(k)s Ak =
nA∑

k=1

(1 − εAk )pA(k)(θA)k�A,

sB(t) =
nB∑

l=1

pB(l)sBl =
nB∑

l=1

(1 − εBl )pB(l)(θB)l�B .

(3.3)

Neglecting the degree correlation, the probability of randomly selected stubs con-
necting to nodes with a given state is equal to the proportion of all stubs associatedwith
nodes with that state. Therefore, we need to consider below the proportions of stubs
associated with susceptible, infected, and recovered nodes, which denote as �A

s (t),
�A

i (t), and �A
r (t) in community A and �B

s (t), �B
i (t), and �B

r (t) in community B,
respectively.

By the definitions of θA(t), �A(t), θB(t), and �B(t), we have

θ ′
A(t) = −τAαθA�A

i , � ′
A(t) = −(1 − α)σA�Ai

B,

θ ′
B(t) = −τBβθB�B

i , � ′
B(t) = −(1 − β)σB�Bi

A.
(3.4)
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Since �A
i

′
(t) = −�A

s
′
(t) − γA�A

i (t) and �B
i

′
(t) = −�B

s
′
(t) − γB�B

i (t), we have
to calculate �A

s (t) and �B
s (t). According to the meanings of �A

s (t) and �B
s (t), we

write them as

�A
s (t) =

nA∑

k=1

kpA(k)

〈k〉A (1 − εAk )(θA)k�A, �B
s (t) =

nB∑

l=1

lpB(l)

〈k〉B (1 − εBl )(θB)l�B,

where kpA(k)
〈k〉A and lpB (l)

〈k〉B are the probabilities that a stub belongs to a node with degree
k in community A and a node with degree l in community B, respectively. In addition,
(1 − εAk )(θA(t))k�A(t) and (1 − εBl )(θB(t))l�B(t) denote the probabilities that a
node with degree k in community A and a node with degree l in community B are still
susceptible nodes at time t , respectively.

Therefore, we have

�A
s

′
(t) = −τAα�A

i

nA∑

k=1

k2 pA(k)

〈k〉A (1 − εAk )(θA)k�A

− (1 − α)σA

nA∑

k=1

kpA(k)

〈k〉A (1 − εAk )(θA)k�Ai
B,

�B
s

′
(t) = −τBβ�B

i

nB∑

l=1

l2 pB(l)

〈k〉B (1 − εBl )(θB)l�B

− (1 − β)σB

nB∑

l=1

lpB(l)

〈k〉B (1 − εBl )(θB)l�Bi
A.

(3.5)

It follows immediately that

�A
i

′
(t) = τAα�A

i

nA∑

k=1

k2 pA(k)

〈k〉A (1 − εAk )(θA)k�A

+ (1 − α)σA

nA∑

k=1

kpA(k)

〈k〉A (1 − εAk )(θA)k�Ai
B − γA�A

i ,

�B
i

′
(t) = τBβ�B

i

nB∑

l=1

l2 pB(l)

〈k〉B (1 − εBl )(θB)l�B

+ (1 − β)σB

nB∑

l=1

lpB(l)

〈k〉B (1 − εBl )(θB)l�Bi
A − γB�B

i .

(3.6)

From the above analysis, the rates of change of the fraction of infected individuals
over time are obtained as

i A
′
(t) = τAα�A

i

nA∑

k=1

kpA(k)(1 − εAk )(θA)k�A
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+ (1 − α)σA

nA∑

k=1

pA(k)(1 − εAk )(θA)k�Ai
B − γAi

A,

i B
′
(t) = τBβ�B

i

nB∑

l=1

lpB(l)(1 − εBl )(θB)l�B

+ (1 − β)σB

nB∑

l=1

pB(l)(1 − εBl )(θB)l�Bi
A − γBi

B . (3.7)

The above Eqs. (3.4), (3.6), and (3.7) constitute a low-dimensional model cor-
responding to model (2.2), and their initial values are θA(0) = 1, �A(0) = 1,

θB(0) = 1, �B(0) = 1, �A
i (0) = ∑nA

k=1
kpA(k)
〈k〉A εAk , �B

i (0) = ∑nB
l=1

lpB (l)
〈k〉B εBl ,

i A(0) =∑nA
k=1 p

A(k)εAk , i
B(0) =∑nB

l=1 p
B(l)εBl .

To calculate the basic reproduction number of the low-dimensional model, we use
the next generation matrix method (Van den Driessche and Watmough 2002). At the
disease-free equilibrium (θA = 1, �A = 1, θB = 1, �B = 1, �A

i = 0, �B
i = 0,

i A = 0, i B = 0), one has

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�A
i

′
(t) = τAα�A

i

nA∑

k=1

k2 pA(k)

〈k〉A (1 − εAk ) + (1 − α)σA

nA∑

k=1

kpA(k)

〈k〉A (1 − εAk )i B − γA�A
i ,

�B
i

′
(t) = τBβ�B

i

nB∑

l=1

l2 pB(l)

〈k〉B (1 − εBl ) + (1 − β)σB

nB∑

l=1

lpB(l)

〈k〉B (1 − εBl )i A − γB�B
i ,

i A
′
(t) = τAα�A

i

nA∑

k=1

kpA(k)(1 − εAk ) + (1 − α)σA

nA∑

k=1

pA(k)(1 − εAk )i B − γAi
A,

i B
′
(t) = τBβ�B

i

nB∑

l=1

lpB(l)(1 − εBl ) + (1 − β)σB

nB∑

l=1

pB(l)(1 − εBl )i A − γBi
B .

(3.8)
Let εAk → 0 (k = 1, . . . , nA), εBl → 0 (l = 1, . . . , nB), then we get the following
matrix form ⎡

⎢
⎢
⎢
⎣

�A
i

′
(t)

�B
i

′
(t)

i A
′
(t)

i B
′
(t)

⎤

⎥
⎥
⎥
⎦

= (F1 − V1)

⎡

⎢
⎢
⎣

�A
i (t)

�B
i (t)

i A(t)
i B(t)

⎤

⎥
⎥
⎦ , (3.9)

where

F1 =

⎡

⎢
⎢
⎢
⎣

τAα
〈k2〉A〈k〉A 0 0 (1 − α)σA

0 τBβ
〈k2〉B〈k〉B (1 − β)σB 0

τAα〈k〉A 0 0 (1 − α)σA

0 τBβ〈k〉B (1 − β)σB 0

⎤

⎥
⎥
⎥
⎦

, V1 =

⎡

⎢
⎢
⎣

γA 0 0 0
0 γB 0 0
0 0 γA 0
0 0 0 γB

⎤

⎥
⎥
⎦ .
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The basic reproduction numberR0 is the spectral radius of the matrix F1V−1
1 . There-

fore,R0 is the maximum modulus of the roots of the following quaternion equation

λ4 + a3λ
3 + a2λ

2 + a1λ + a0 = 0, (3.10)

where a3 = −ρl A − ρl B , a2 = ρl Aρl B − ρgAρgB , a1 = ρgAρgB

(
ρl A

〈k2〉A−〈k〉2A
〈k2〉A +

ρl B
〈k2〉B−〈k〉2B

〈k2〉B
)
, a0 = ρl Aρl BρgAρgB

(
(〈k〉2A−〈k2〉A)(〈k2〉B−〈k〉2B )

〈k2〉A〈k2〉B
)
. Here, ρgA = (1−β)σB

γA

andρgB = (1−α)σA
γB

represent the potential for transmission of disease fromcommunity
A to community B and from community B to community A through casual contact,
respectively. The definitions of ρl A, ρl B are the same as those in Eq. (3.1). In fact, we
can obtain the roots of the quaternion equation (3.10) using the Ferrari’s solution (see
Appendix).

We discuss the basic reproduction number for some specific cases below.

1. α = 0. In this case, the basic reproduction number R0 is the maximum modulus
of the roots of the following cubic equation

λ3 + b2λ
2 + b1λ + b0 = 0,

where b2 = −ρl B , b1 = −σA
γB

ρgA, b0 = ρgAρl B
σA(〈k2〉B−〈k〉2B )

γB 〈k2〉B . Here, ρl B and ρgA

are the same as those defined earlier. The solution of this cubic equation has been
discussed in the literature (Wang et al. 2012). When β = 0, from the literature

(Wang et al. 2012), we know that � > 0, which gives R0 =
√

σBσA
γAγB

. This is the

same result as that obtained from the original model (2.2). When β = 0, the basic
reproduction number with a similar approach to α = 0 can be derived.

2. α = 1, 0 < β ≤ 1. When α = 1, it means that susceptible individuals in com-
munity A are restricted from moving. The basic reproduction number is R0 =
max{ρl A

∣
∣
α=1, ρl B} by solving the quadratic equation λ2 − (ρl A

∣
∣
α=1 + ρl B)λ +

ρl A
∣
∣
α=1ρl B = 0, and this result is the same as the previous one. When β = 1,

0 < α ≤ 1, similarly to the case of α = 1, 0 < β ≤ 1, the value of the basic repro-
duction number appears again, that is, R0 = max{ρl A, ρl B

∣
∣
β=1}. In particular,

whenα = 1,β = 1, the basic reproductionnumber isR0 = max{ τA〈k2〉A
γA〈k〉A ,

τB 〈k2〉B
γB 〈k〉B }.

3.3 Final epidemic size

The final size represents the proportion of individuals who ultimately become infected
over the disease transmission process. The final size is an important indicator for
analyzing the long-term dynamic behaviour of the disease. Moreover, obtaining the
final size of the disease allows us to recognize the severity of the disease so that we can
take more effective control measures to minimize the impact of the disease on human
health and economic losses. Below, we calculate the final size equation of model (2.2).
Additionally, we establish the existence and uniqueness of the solution to the final size
equation, inspired by Magal et al. (2016) and Magal et al. (2018).
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In model (2.2), let

ηA
k (t) =

nA∑

j=1

τAαk
jpA( j)

〈k〉A i Aj +
nB∑

j=1

(1 − α)σA p
B( j)i Bj , (3.11)

and

ηB
l (t) =

nB∑

j=1

τBβl
j pB( j)

〈k〉B i Bj +
nA∑

j=1

(1 − β)σB p
A( j)i Aj . (3.12)

The first and fourth equations in model (2.2) are then transformed as

{ ˙s Ak (t) = −s Ak ηA
k ,

˙sBl (t) = −sBl ηB
l .

(3.13)

To facilitate the calculation of the final epidemic size, it is assumed that at the initial
time i Ak (0) � s Ak (0) and i Bl (0) � sBl (0). Integrating the above equation yields

{
s Ak (t) = s Ak (0)exp(−�A

k ),

sBl (t) = sBl (0)exp(−�B
l ),

(3.14)

where

�A
k (t) =

∫ t

0
ηA
k (s)ds, (3.15)

and

�B
l (t) =

∫ t

0
ηB
l (s)ds. (3.16)

Integrating the third and sixth equations in model (2.2) from 0 to ∞ gives

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r Ak (∞)

γA
=
∫ ∞

0
i Ak (s)ds,

r Bl (∞)

γB
=
∫ ∞

0
i Bl (s)ds.

(3.17)

Integrating (3.11), (3.12) from 0 to ∞ and let t → ∞ in (3.15) and (3.16) yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�A
k (∞) =

nA∑

j=1

τAαk
jpA( j)

〈k〉A
r Aj (∞)

γA
+

nB∑

j=1

(1 − α)σA p
B( j)

r Bj (∞)

γB
,

�B
l (∞) =

nB∑

j=1

τBβl
j pB( j)

〈k〉B
r Bj (∞)

γB
+

nA∑

j=1

(1 − β)σB p
A( j)

r Aj (∞)

γA
.

(3.18)
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Since s Ak (∞) = 1 − r Ak (∞) = s Ak (0)exp(−�A
k (∞)) and sBl (∞) = 1 − r Bl (∞) =

sBl (0)exp(−�B
l (∞)), one has

{
zAk = 1 − s Ak (0)exp(−�A

k (∞)),

zBl = 1 − sBl (0)exp(−�B
l (∞)).

(3.19)

Combining Eqs. (3.18) and (3.19), we have the following relations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�A
k (∞) =

nA∑

j=1

τAαk
jpA( j)

〈k〉AγA

(
1 − s Aj (0)exp(−�A

j (∞))
)

+
nB∑

j=1

(1 − α)σA pB( j)

γB

(
1 − sBj (0)exp(−�B

j (∞))
)
,

�B
l (∞) =

nB∑

j=1

τBβl
j pB( j)

〈k〉BγB

(
1 − sBj (0)exp(−�B

j (∞))
)

+
nA∑

j=1

(1 − β)σB pA( j)

γA

(
1 − s Aj (0)exp(−�A

j (∞))
)
.

(3.20)

In addition, rearranging the above equations gives

�A
k (∞) = kδA + ζB,�B

l (∞) = lδB + ζA,

where

δA =
nA∑

j=1

τAα
j pA( j)

〈k〉AγA

(
1 − s Aj (0)exp(− jδA − ζB)

)
,

ζB =
nB∑

j=1

(1 − α)σA pB( j)

γB

(
1 − sBj (0)exp(− jδB − ζA)

)
,

δB =
nB∑

j=1

τBβ
j pB( j)

〈k〉BγB

(
1 − sBj (0)exp(− jδB − ζA)

)
,

ζA =
nA∑

j=1

(1 − β)σB pA( j)

γA

(
1 − s Aj (0)exp(− jδA − ζB)

)
.

The final size of the whole population of both communities A and B is

z = ν

nA∑

k=1

pA(k)zAk + (1 − ν)

nB∑

l=1

pB(l)zBl
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= ν

nA∑

k=1

pA(k)
(
1 − s Ak (0)exp(−kδA − ζB)

)

+(1 − ν)

nB∑

l=1

pB(l)
(
1 − sBl (0)exp(−lδB − ζA)

)

= ν
〈
1 − s Ak (0)exp(−kδA − ζB)

〉

A + (1 − ν)
〈
1 − sBl (0)exp(−lδB − ζA)

〉

B,

(3.21)

where ν = N A

N A+N B , 1 − ν = N B

N A+N B , δA, ζB , δB and ζA can also be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρl A = δA〈k2〉A
〈
k
(
1 − s Ak (0)exp(−kδA − ζB)

)〉

A

,

ρgB = ζB
〈
1 − sBl (0)exp(−lδB − ζA)

〉

B

,

ρl B = δB〈k2〉B
〈
l
(
1 − sBl (0)exp(−lδB − ζA)

)〉

B

,

ρgA = ζA
〈
1 − s Ak (0)exp(−kδA − ζB)

〉

A

,

(3.22)

where 〈g(k)〉A =∑nA
k=1 g(k)p

A(k), 〈g(l)〉B =∑nB
l=1 g(l)p

B(l).
In the following, we prove that the solution of the final size equation (3.19) is

unique.
Since zAk = 1 − s Ak (∞), zBl = 1 − sBl (∞), Eq. (3.19) is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s Ak (∞) = s Ak (0)exp
[ nA∑

j=1

τAαk jpA( j)

〈k〉AγA

(
s Aj (∞) − i Aj (0) − s Aj (0)

)

+
nB∑

j=1

(1 − α)σA pB( j)

γB

(
sBj (∞) − i Bj (0) − sBj (0)

)]
,

sBl (∞) = sBl (0)exp
[ nB∑

j=1

τBβl j pB( j)

〈k〉BγB

(
sBj (∞) − i Bj (0) − sBj (0)

)

+
nA∑

j=1

(1 − β)σB pA( j)

γA

(
s Aj (∞) − i Aj (0) − s Aj (0)

)]
.

(3.23)

We just need to prove the solution of Eq. (3.23) is unique. Write the vector form of
Eq. (3.23) as

s(∞) = exp
[
diag

(
FV−1(s(∞) − s(0) − i(0)

))]
s(0), (3.24)
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where s(∞) = [
s A1 (∞), . . . , s AnA

(∞), sB1 (∞), . . . , sBnB (∞)
]T , s(0) = [

s A1 (0), . . . ,

s AnA
(0), sB1 (0), . . . , sBnB (0)

]T , i(0) = [i A1 (0), . . . , i AnA
(0), i B1 (0), . . . , i BnB (0)

]T , F and
V are the same as before.

We use the following notations in the next discussion. We define X ≤ Y , if X A
k ≤

Y A
k and XB

l ≤ Y B
l for all k = 1, . . . , nA, l = 1, . . . , nB ; X < Y , if X ≤ Y and

X A
k < Y A

k (or XB
l < Y B

l ) for some k = 1, . . . , nA (or l = 1, . . . , nB); X � Y , if
X A
k < Y A

k and XB
l < Y B

l for all k = 1, . . . , nA, l = 1, . . . , nB . Defining a mapping
H : RnA+nB → RnA+nB :

H(X) = (H A
1 (X), . . . , H A

nA
(X), HB

1 (X), . . . , HB
nB (X)

)T
,

where X = [X A
1 , . . . , X A

nA
, XB

1 , . . . , XB
nB ]T ∈ RnA+nB ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H A
k (X) = s Ak (0) exp

[ nA∑

j=1

τAαk jpA( j)

〈k〉AγA

(
X A

j − i Aj (0) − s Aj (0)
)

+
nB∑

j=1

(1 − α)σA pB( j)

γB

(
XB

j − i Bj (0) − sBj (0)
)]

, k = 1, . . . , nA,

HB
l (X) = sBl (0) exp

[ nB∑

j=1

τBβl j pB( j)

〈k〉BγB

(
XB

j − i Bj (0) − sBj (0)
)

+
nA∑

j=1

(1 − β)σB pA( j)

γA

(
X A

j − i Aj (0) − s Aj (0)
)]

, l = 1, . . . , nB .

(3.25)

Based on the aforementioned definition, we further obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H A
k (X)

∂X A
j

= τAαk jpA( j)

〈k〉AγA
H A
k (X), k = 1, . . . , nA, j = 1, . . . , nA,

∂H A
k (X)

∂XB
j

= (1 − α)σA pB( j)

γB
H A
k (X), k = 1, . . . , nA, j = 1, . . . , nB ,

∂HB
l (X)

∂X A
j

= (1 − β)σB pA( j)

γA
H B
l (X), l = 1, . . . , nB, j = 1, . . . , nA,

∂HB
l (X)

∂XB
j

= τBβl j pB( j)

〈k〉BγB
H B
l (X), l = 1, . . . , nB, j = 1, . . . , nB ,

and thus D(H(X)) = diag(H(X))FV−1. From the above notation, it follows that
when X ≤ Y , then X A

k ≤ Y A
k and XB

l ≤ Y B
l for all k = 1, . . . , nA, l = 1, . . . , nB . By

the definition of H A
k (X) and HB

l (X), it follows that H A
k (X) ≤ H A

k (Y ) and HB
l (X) ≤

HB
l (Y ). Same as above by the previous notation we get H(X) ≤ H(Y ). This shows

that D(H(X)) and H(X) are monotonically increasing. Since τAαk jpA( j)
〈k〉AγA

> 0 and
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(1−β)σB pA( j)
γA

> 0 for 0 < α, β < 1, j, k = 1, . . . , nA,
τBβl j pB ( j)

〈k〉BγB
> 0 and

(1−α)σA pB ( j)
γB

> 0 for 0 < α, β < 1, j, l = 1, . . . , nB , we know if X � Y , then
H(X) � H(Y ). To sum up, for 0 � s(0), 0 ≤ i(0), the following relation holds:
0 � H(0) ≤ H(s(0)) ≤ s(0).

By iteration, for any κ ≥ 1 one has

0 � H(0) ≤ · · · ≤ Hκ+1(0) ≤ Hκ+1(s(0)) ≤ · · · ≤ H(s(0)) ≤ s(0).

Taking the limit to the above relation leads to

0 � lim
κ→+∞ Hκ(0) =: s− ≤ s+ := lim

κ→+∞ Hκ(s(0)) ≤ s(0).

According to H is continuous, we have 0 � H(s−) = s− and H(s+) = s+ ≤ s(0).
From the above discussion, the following theorem is obtained.

Theorem 3.2 If 0 < α < 1, 0 < β < 1, γA > 0, γB > 0, then F is a non-negative
irreduciblematrix. Formodel (2.2) with initial values 0 � s(0), 0 ≤ i(0), themapping
H satisfies

(1) H(s(0)) = s(0) if and only if i(0) = 0;
(2) if i(0) > 0, then H has a unique fixed point s(∞) and 0 � s(∞) < s(0).

Proof For (1), the necessity is obvious, and below we prove the sufficiency. When
H(s(0)) = s(0), it is implied from Eq. (3.24) that FV−1i(0) = 0. Since FV−1 is
non-negative irreducible and i(0) ≥ 0, one has i(0) = 0.

For (2), since i(0) > 0, we know 0 � H(s(0)) < s(0) and s+ < s(0). By the
monotonicity of H , we further have H(s+) = s+ ≤ H(s(0)). If s− = s+, then the
result is obvious.

Now consider the case of s− < s+,

s+ − s− = H(s+) − H(s−) =
∫ 1

0
DH(s− + m(s+ − s−))(s+ − s−)dm.

For any 0 ≤ m ≤ 1, then

DH(s− + m(s+ − s−))(s+ − s−) ≤ DH(s+)(s+ − s−).

Since s− < s+, one has

s+ − s− =
∫ 1

0
DH(s− + m(s+ − s−))(s+ − s−)dm ≤ DH(s+)(s+ − s−).

It follows from the Perron-Frobenius theorem that there exists a left eigenvector M 

0 corresponding to the spectral radius r(DH(s+)) of matrix DH(s+) such that

MT (s+ − s−) ≤ MT DH(s+)(s+ − s−) = r(DH(s+))MT (s+ − s−) ⇒ 1 ≤ r(DH(s+)).
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Moreover,

H(s(0)) − s+ = H(s(0)) − H(s+) =
∫ 1

0
DH(s+ + m(s(0) − s+))(s(0) − s+)dm

≥ DH(s+)(s(0) − s+).

So we get

MT (H(s(0)) − s+) ≥ r(DH(s+))MT (s(0) − s+).

Since r(DH(s+)) ≥ 1, it follows that

MT H(s(0)) ≥ MT s(0).

We see that the above inequality contradicts H(s(0)) < s(0). The theorem is proved.
�

Therefore, we demonstrate that the solution of the final size equation (3.19) is
unique.

In addition, we note that the method in Rass and Radcliffe (2003) can be also used
to prove the existence and uniqueness of the solution to the final size equation. To see
this, we rewrite Eq. (3.24) as

− ln(1 − yk) =
nA+nB∑

l=1

γkl yl + ak, k = 1, 2, . . . , nA + nB, (3.26)

where

yk = r Ak (∞) for k = 1, 2, . . . , nA, yk = r Bk−nA
(∞) for k = nA + 1, nA + 2, . . . , nA + nB ,

γkl =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τAαklpA(l)

〈k〉AγA
, 1 ≤ k ≤ nA, 1 ≤ l ≤ nA,

(1 − α)σA pB(l − nA)

γB
, 1 ≤ k ≤ nA, nA + 1 ≤ l ≤ nA + nB ,

(1 − β)σB pA(l)

γA
, nA + 1 ≤ k ≤ nA + nB , 1 ≤ l ≤ nA,

τBβ(k − nA)(l − nA)pB(l − nA)

〈k〉BγB
, nA + 1 ≤ k ≤ nA + nB , nA + 1 ≤ l ≤ nA + nB ,

ak = − ln s Ak (0) ≥ 0 for k = 1, 2, . . . , nA, ak = − ln sBk−nA
(0) ≥ 0 for k = nA + 1, nA + 2, . . . ,

nA + nB . Then, according to Theorem B.2 in Rass and Radcliffe (2003), the solution
of the final size equation (3.19) is unique when ak > 0. However, when ak = 0, the
final size equation has a zero solution. There is also a nonzero solution to the final
size equation when both ak = 0 and ρ(FV−1) > 1 hold, but this is less biologically
significant. ��
Remark 3.3 It follows from the above that Eq. (3.24) can be rewritten as (3.26), and
the matrix FV−1 is non-negative irreducible and ρ(FV−1) is finite, which satisfies
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the condition of (1) in Theorem 3.2 in Rass and Radcliffe (2003). Then, yk = vk is a
solution of Eq. (3.26), where vk represents the proportion of individuals with degree k
who eventually suffer an epidemic. It follows that yk = vk is a solution of Eq. (3.19). In
our research, we adopted an approach of Magal et al. (2016) to establish the existence
and uniqueness of the solution to the final size equation, as their method is considered
more tivial and intuitive for practical applications compared to the approach presented
in Rass and Radcliffe (2003).

From the expression of the final size we know that the final size is related to the
degrees of the nodes in the network. We further investigate the relationship between
them below. Inspired by the literature (Cui et al. 2022), we now use numerical sim-
ulations to analyze the case in which two communities have homogeneous degree
distributions. In particular, community network A has delta degree distribution k1 (all
nodes have the same degrees), and community network B has delta degree distribution
k2. Rewrite (3.19) in the following form

F(zAk1, z
B
k2) = 1, G(zAk1 , z

B
k2) = 1,

where

F(zAk1 , z
B
k2) = 1

zAk1

(

1 − s Ak1(0) exp

(

− τAαk1
γA

zAk1 − (1 − α)σA

γB
zBk2

))

,

G(zAk1 , z
B
k2) = 1

zBk2

(

1 − sBk2(0) exp

(

− τBβk2
γB

zBk2 − (1 − β)σB

γA
zAk1

))

.

(3.27)

Moreover, it is easily confirmed that the basic reproduction number in this case is

R0 = 1
2

(
τAαk1

γA
+ τBβk2

γB

)+ 1
2

√(
τAαk1

γA
− τBβk2

γB

)2 + 4(1−α)(1−β)σAσB
γAγB

. To obtain the rela-

tionship betweenR0 andα,β, calculating ∂R0
∂α

> 0 gives τAk1
√
C+ τAk1

γAγB
(τAαk1γB−

τBβk2γA)− 2(1−β)σAσB
γB

> 0, whereC = ( τAαk1
γA

− τBβk2
γB

)2+ 4(1−α)(1−β)σAσB
γAγB

, thenR0

increases as α increases. Otherwise, it decreases as α increases. Calculating ∂R0
∂β

> 0

yields τBk2
√
C + τBk2

γAγB
(τAαk1γB − τBβk2γA) − 2(1−α)σAσB

γA
> 0, thenR0 increases

as β increases.
In fact, the relationship between R0 and α, β is complex (non-monotonous),

as revealed by the above analysis. To explore this relationship, we calculated the
basic reproduction number R0 with different values of α (the contribution of dis-
ease transmission through intra-community A) and β (the contribution of disease
transmission through intra-community B). Specifically, we used the parameter values
k1 = 8, k2 = 12, τA = 0.3, τB = 0.2, σA = 0.4, σB = 0.3, γA = 0.4, γB = 0.4, and
the initial values s Ak1(0) = 0.998, sBk2(0) = 0.995, i Ak1(0) = 0.002, i Bk2(0) = 0.005.
Results are shown in Fig. 2. It illustrates that the relationship between R0 and β (or
α) is non-monotonous (R0 can either increase or decrease with β (or α)), when α

(or β) is fixed. For example, when β ∈ [0.9, 1], R0 decreases as α increases, while
R0 is also a decreasing function of β when α ∈ [0.92, 1]. The results suggest that,
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Fig. 2 Changes in the basic reproduction number R0 with α (the contribution of disease transmission
through intra-community A) and β (the contribution of disease transmission through intra-community B)

in scenarios with restricted movement of susceptible individuals within a community,
R0 does not follow a simple monotonous relationship, indicating that an unbending
decrease in the movement of susceptible individuals may increase the R0.

In order to better analyze the relationship between the basic reproduction number
and the parameters α and β, we give the following expanded model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙s Ak (t) = −τAαks Ak �A
i − α̃σAs

A
k i

B,

˙i Ak (t) = τAαks Ak �A
i + α̃σAs

A
k i

B − γAi
A
k ,

˙r Ak (t) = γAi
A
k ,

˙sBl (t) = −τBβlsBl �B
i − β̃σBs

B
l i

A,

˙i Bl (t) = τBβlsBl �B
i + β̃σBs

B
l i

A − γBi
B
l ,

˙r Bl (t) = γBi
B
l ,

(3.28)

where α (β) and α̃ (β̃) represent the flow of population within community A (B) and
the flow of population from community A (B) to community B (A), respectively. The
other parameters are the same as in the model (2.2).

When community network A has delta degree distribution k1 and community net-
work B has delta degree distribution k2, the basic reproduction number for model

(3.28) is R̃0 = 1
2

(
τAαk1

γA
+ τBβk2

γB

)+ 1
2

√(
τAαk1

γA
− τBβk2

γB

)2 + 4α̃β̃σAσB
γAγB

. By calculation,

one has ∂ R̃0
∂α

= τAk1
2γA

(
1+( τAαk1

γA
− τBβk2

γB

) 1√
D

)
, ∂ R̃0

∂β
= τBk2

2γB

(
1−( τAαk1

γA
− τBβk2

γB

) 1√
D

)
,
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Fig. 3 Effect of several relevant parameters on R̃0

∂ R̃0
∂α̃

= β̃σAσB
γAγB

1√
D

> 0 and ∂ R̃0

∂β̃
= α̃σAσB

γAγB

1√
D

> 0, where D = (
τAαk1

γA
− τBβk2

γB

)2 +
4α̃β̃σAσB

γAγB
. From this, we conclude that R̃0 is monotonically increasing with α̃ and β̃

while it is non-monotonically related to α and β. In order to reveal which of the param-
eters, namely α, α̃, β, and β̃, is more sensitive to basic reproduction number R̃0, we
performed a sensitivity analysis of R̃0 to α, α̃, β, and β̃. Results are shown in Fig. 3.
Here, we use the same values for the other parameters as in Fig. 2. As can be seen
from Fig. 3, R̃0 is more sensitive to α and β, and β has a greater impact on R̃0 than
α. This phenomenon could be attributed to the slightly larger degree distribution in
community B compared to that in community A. Additionally, α̃ and β̃ have almost
the same impact on R̃0. Therefore, from the perspective of controlling the outbreak of
an epidemic, our most basic task is to control contacts among individuals within com-
munities, but we must also not overlook contacts between individuals across different
communities.

Figure4 reveals the final sizes are determined by the intersection of F = 1 and
G = 1 for three sets of degrees (k1, k2). Given the parameters: τA = 0.3, τB = 0.2,
σA = 0.4, σB = 0.3, β = 0.4, α = 0.3, γA = 0.4, γB = 0.4, N A = 5000,
N B = 5000, and the initial values s Ak1(0) = 0.998, sBk2(0) = 0.995, i Ak1(0) = 0.002,

i Bk2(0) = 0.005, the left column of Fig. 4 shows the values of zAk1 , z
B
k2
are determined by

Eq. (3.27), as the intersection of F = 1 and G = 1 (marked with red dots); the right
column shows the epidemic curves of recovered individuals, which are simulation
results of system (2.2).

For the classical SIR model, the final size z is related to the basic reproduction
numberR0 as follows: z = 1− (1− ε)e−R0z , where 0 ≤ ε � 1 is the initial relative
density of infected individuals. Let f (z) = 1 − (1 − ε)e−R0z , where z ∈ [0, 1] and
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Fig. 4 The left column shows the final sizes at the three sets of degrees (k1, k2) represented by the intersec-
tion of F = 1 and G = 1. The right column shows the proportion of recovered individuals in communities
A, B under the three sets of degrees (k1, k2)

f (z) is continuous. Then we have the value of f (z) for both end points of variable z:
f (0) = ε ≥ 0 and f (1) = 1− (1− ε)e−R0 < 1. This implies that the graph of f (z)
starts on or above the diagonal, and ends below the diagonal, resulting in intersections
with the diagonal. Since f ′(z) = R0(1−ε)e−R0z > 0, f ′′(z) = −R2

0(1−ε)e−R0z <

0, f (z) is a concave function. When ε = 0, f (z) intersects the diagonal at two points,
namely the origin and z∗ ∈ [0, 1]; when ε > 0, f (z) intersects the diagonal only at z∗,
a single positive solution in the interval [0, 1]. Therefore, the final size equation has
either one trivial and one positive solution in the interval [0, 1], or only one positive
solution.
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Fig. 5 Graph of the final size z with respect to the basic reproduction number R0 for the classical SIR
model, which shows that z andR0 are positively correlated. Here, the relative density of the initially infected
individuals is ε = 0.002

When studying epidemic models, the final size z and the basic reproduction num-
ber R0 are of great interest. It is common believed that reducing the value of R0
can decrease the final size z of the infected population, which is consistent with the
positive relationship revealed in Fig. 5. Efforts to prevent and control epidemics have
traditionally focused on reducing the basic reproduction number R0. However, as
shown in Fig. 5, if the basic reproduction number is greater than 1, then the outbreak
is inevitable. Therefore, it is more practical and effective to implement public health
interventions to reduce the infected population rather than focusing solely on reducing
R0. This can be achieved by regulating interactions among individuals.

The classical SIR model predicts a positive correlation between the final size z
and the basic reproduction number R0. However, in our two-community model with
homogeneous degree distributions, this relationship may be reversed and become
negatively correlated when varying the degrees (k1, k2), as depicted in Fig. 6. In this
way taking relevant measures to reduce the value of R0 will in turn lead to higher
infected population. Furthermore, all the values of the basic reproduction number
shown in Fig. 6 are greater than 1, indicating that the outbreak of infectious disease is
unavoidable. Given such premise, the best strategy is to focus on reducing the number
of infected individuals, thereby mitigating the impact of the outbreak.

In addition to the above method of calculating the final size, we can also calculate
the final size of the disease through the reduced-dimensional model. The specific
calculation process is as follows.

From Eq. (3.4), we have
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Fig. 6 Graph of the evolution of the total final size z and the basic reproduction numberR0 with different
sets of degrees (k1, k2)

ln θA(t) = −τAα

∫ t

0
�A

i (s)ds, ln�A(t) = −(1 − α)σA

∫ t

0
i B(s)ds,

ln θB(t) = −τBβ

∫ t

0
�B

i (s)ds, ln�B(t) = −(1 − β)σB

∫ t

0
i A(s)ds.

(3.29)

Since �A
i

′
(t)+�A

s
′
(t) = −γA�A

i (t) and �B
i

′
(t)+�B

s
′
(t) = −γB�B

i (t), integrating
them yields

∫ t

0
�A

i (s)ds = 1

γA

(
1 − (�A

i + �A
s )
)
,

∫ t

0
�B

i (s)ds = 1

γB

(
1 − (�B

i + �B
s )
)
.

(3.30)

After inserting Eq. (3.30) into Eq. (3.29), one has

ln θA(t) = τAα

γA

(
�A

i + �A
s − 1

)
, ln θB(t) = τBβ

γB

(
�B

i + �B
s − 1

)
. (3.31)

From the definitions of �A
s and �B

s , it follows that

�A
s (∞) =

nA∑

k=1

kpA(k)

〈k〉A (1 − εAk )(θA(∞))k�A(∞),
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�B
s (∞) =

nB∑

l=1

lpB(l)

〈k〉B (1 − εBl )(θB(∞))l�B(∞). (3.32)

Since ˙r Ak (t) = γAi Ak (t), ˙r Bl (t) = γBi Bl (t), then

r Ak (∞) = γA

∫ ∞

0
i Ak (s)ds, r Bl (∞) = γB

∫ ∞

0
i Bl (s)ds.

Recall that the final size of community A and community B satisfies

zA = r A(∞) − r A(0) =
nA∑

k=1

pA(k)r Ak (∞) = γA

∫ ∞

0
i A(s)ds,

zB = r B(∞) − r B(0) =
nB∑

l=1

pB(l)r Bl (∞) = γB

∫ ∞

0
i B(s)ds.

(3.33)

From Eqs. (3.29) and (3.33), one has

�A(∞) = exp

(

− (1 − α)σA

γB
zB
)

, �B(∞) = exp

(

− (1 − β)σB

γA
zA
)

. (3.34)

And, from Eqs. (3.31) and (3.32), we know

θA(∞) = exp
[τAα

γA

( nA∑

k=1

kpA(k)

〈k〉A (1 − εAk )(θA(∞))k�A(∞) − 1
)]

,

θB(∞) = exp
[τBβ

γB

( nB∑

l=1

lpB(l)

〈k〉B (1 − εBl )(θB(∞))l�B(∞) − 1
)]

.

(3.35)

In addition, the final size of the disease can be expressed as

zA = 1 − s A(∞) = 1 −
nA∑

k=1

(1 − εAk )pA(k)(θA(∞))k�A(∞),

zB = 1 − sB(∞) = 1 −
nB∑

l=1

(1 − εBl )pB(l)(θB(∞))l�B(∞).

(3.36)
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The overall final epidemic size of the two communities is

z = νzA + (1 − ν)zB

= 1 −
(
ν

nA∑

k=1

(1 − εAk )pA(k)(θA(∞))k�A(∞)

+ (1 − ν)

nB∑

l=1

(1 − εBl )pB(l)(θB(∞))l�B(∞)
)
,

(3.37)

where ν = N A

N A+N B and 1 − ν = N B

N A+N B .
From the above, we see that Eq. (3.35) has a low dimension, making it suitable for

numerical computations in large-scale networks. It can be solved by iteration. Fur-
thermore, if εAk ≈ 0, εBl ≈ 0, then θA(∞) ≈ 1, θB(∞) ≈ 1, �A(∞) ≈ 1, �B(∞) ≈
1, zA ≈ 0 and zB ≈ 0 is the solution of Eqs. (3.34)–(3.36) in the disease-free state.

4 Numerical simulations

In Sect. 3 we analyzed the basic reproduction number R0 and the final size z. In this
section, we further specify factors affectingR0 and z, and figure out how their values
will change when the network obeys the Power-law distribution pq(k) = Ck−3 (C

satisfies
∑nq

k=1 p
q(k) = 1,q ∈ {A, B}) andPoissondistribution pq(k) = (1.4)ke−1.4

k! for
k = 1, . . . , nq(q ∈ {A, B}) through simulations.We choose the parameters γA = 0.4,
γB = 0.4, α = 0.4 or in (0, 1), β = 0.4 or in (0, 1), τA = 0.2 or in (0, 1), τB = 0.2 or
in (0, 1), σA = 0.3 or in (0, 1) and σB = 0.3 or in (0, 1). Let the maximum degree of
community A be nA = 100 and the maximum degree of community B be nB = 200.
By fixing two parameters among τA, τB , σA, σB and varying the other two parameters,
we generate four contour plots of the network obeying Power-law distribution and
Poisson distribution, respectively. Figures 7 and 8 illustrate that τA (τB) always has a
greater impact onR0 than that of σA (σB), regardless of whether the contact networks
of both communities obey the Power-law distribution or Poisson distribution. This
result can be explained by the fact that contacts among people within the community
are more frequent than contacts between communities during the epidemic. Hence,
people needs to prioritize the attention towards the contacts among individuals within
a community during the outbreak of epidemics, as this can effectively reduce the
likelihood and severity of disease transmission. Figure 9 indicates that the impact of
τB on R0 is slightly greater than that of τA on R0 as nB is larger than nA (There are
more contacts among people in community B than among people in community A).
This is consistent with reality: an epidemic spreads faster in a more crowded place.
Figure 10 shows that σA and σB have almost equal influence onR0, which means that
two transmission pathways of the disease between communities have the same effect
on the epidemic. Furthermore, we observe that the value of R0 is marginally higher
when the contact networks of both communities obey a Power-law distribution than
when they obey a Poisson distribution with the same parameter values. This implies
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Fig. 7 Contour plots ofR0 for parameters τA (disease transmission probability within community A) and
σA (disease transmission probability from community B to community A): a the contact networks of both
communities obey a Power-law distribution; b the contact networks of both communities obey a Poisson
distribution

Fig. 8 Contour plots ofR0 for parameters τB (disease transmission probability within community B) and
σB (disease transmission probability from community A to community B): a the contact networks of both
communities obey a Power-law distribution; b the contact networks of both communities obey a Poisson
distribution

the larger heterogeneity of the degree distribution may lead to higher risk of disease
outbreaks.

To show the relative significance of certain model parameters on the basic repro-
duction number R0, a sensitivity analysis is conducted on our model, and the results
are presented in Fig. 11. As evident from Fig. 11, the probabilities of transmission of
disease, namely, τA, τB , σA, and σB , are relatively more sensitive parameters with
respect toR0. The recovery rates γA and γB have almost the same negative effects on
R0. Moreover, the impact of intra-community disease transmission on R0 is slightly
greater than that of inter-community transmission, and both transmissions have a sig-
nificant effect. Figure11 also shows that the transmission rates within a community,
represented by τA and τB , have a relatively stronger impact on R0 than the rates
between communities, represented by σA and σB . Interestingly, we found that the
transmission rates from community A to B and from community B to A, i.e., σA and
σB , have almost equal impact on R0. All these sensitivity analysis suggests that the
fundamental approach to controlling the spread of epidemics is to control the contacts
of individuals within a community. However, relying solely on controlling individuals’
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Fig. 9 Contour plots ofR0 for parameters τA (disease transmission probability within community A) and
τB (disease transmission probability within community B): a the contact networks of both communities
obey a Power-law distribution; b the contact networks of both communities obey a Poisson distribution

Fig. 10 Contour plots of R0 for parameters σA (disease transmission probability from community B to
community A) and σB (disease transmission probability from community A to community B): a the contact
networks of both communities obey a Power-law distribution; b the contact networks of both communities
obey a Poisson distribution

contacts within communities may not be the most effective strategy, and other factors
should be considered.

The threshold value of R0 = 1 given two network distributions, under different
value combinations of disease transmission contribution parameters α and β, is illus-
trated in Fig. 12. For the contact networks of both communities follow a Power-law
distribution, the blue curve representsR0 = 1, with the region to the bottom left indi-
cating R0 values smaller than 1, and the region to the top right indicating R0 values
greater than 1. On the other hand, if the contact networks of both communities follow
a Poisson distribution, there will be a higher chance thatR0 < 1 as the corresponding
region is larger.

Figures 13 and 14 present the variation of the final epidemic size under two degree
distributions, presented here as the changes in the number of individuals affected
by disease, given different values of transmission probabilities τA, τB , σA and σB .
Here, in addition to the parameters given in the numerical simulation section, we
choose θA(0) = 0.8, θB(0) = 0.8, zA(0) = 0.1, zB(0) = 0.1, εAk = 0.002, k =
1, . . . , 100, εBl = 0.005, l = 1, . . . , 200. We assume that community A and com-
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Fig. 11 Effect of several relevant parameters on R0

Fig. 12 Changes in the value of R0 with α (the contribution of disease transmission through intra-
community A) and β (the contribution of disease transmission through intra-community B): a the contact
networks of both communities obey a Power-law distribution; b the contact networks of both communities
obey a Poisson distribution

munity B have 5000 individuals for each. Although the two models have the same
parameters and mean degrees, these figures suggest that the model in which the con-
tact networks of both communities obey a Power-law distribution has a smaller final
size than the one in which the contact networks of both communities obey a Poisson
distribution. This means that the heterogeneity of the degree distribution reduces the
final size. Figure 15 reveals the effect of α and β on the final size under two degree dis-
tributions. We find that the model in which the contact networks of both communities
obey the Poisson distribution has a greater final size than the one in which the contact
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Fig. 13 The relation of the final size (i.e. the number of individuals affected by disease) to τA (disease
transmission probability within community A) and σA (disease transmission probability from community
B to community A): a the contact networks of both communities obey a Power-law distribution; b the
contact networks of both communities obey a Poisson distribution

Fig. 14 The relation of the final size (i.e. the number of individuals affected by disease) to τB (disease
transmission probability within community B) and σB (disease transmission probability from community
A to community B): a the contact networks of both communities obey a Power-law distribution; b the
contact networks of both communities obey a Poisson distribution

networks of both communities obey the Power-law distribution when the parameters
are all the same.

5 Concluding remarks

Communities are often interconnected and exhibit asymmetric interactions among
them. The infectious disease can therefore be transmitted in a population through both
network contacts within communities and casual contacts between different com-
munities (Diekmann et al. 1998; Ball and Neal 2002). Previous research based on
the homogeneous population mixing assumption may not accommodate such epi-
demic transmission considerations. Motivated by the fact that the epidemic may be
affected by both intra-community and inter-community transmissions, we have for-
mulated a two-community SIR epidemic model with asymmetric coupling. For this
two-community SIR model with asymmetric coupling, we utilized an edge-based
compartmental modeling approach to derive a low-dimensional model corresponding
to the original model. This enabled us to attain an explicit expression for the basic
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Fig. 15 The relation of the final size (i.e. the number of individuals affected by disease) to α (the contribu-
tion of disease transmission within community A) and β (the contribution of disease transmission within
community B): a the contact networks of both communities obey a Power-law distribution; b the contact
networks of both communities obey a Poisson distribution

reproduction number, which intriguingly manifests as a root of a quaternion equa-
tion. Additionally, we derived an implicit equation for the final size and demonstrated
the existence and uniqueness of its solution through the construction of appropriate
mappings. Based on these theoretical results, we investigated the effects of contact
heterogeneity and asymmetric coupling on the basic reproduction number, final size,
and their relationship. This proposed model, along with these analyses, will contribute
to a deeper understanding of transmission mechanisms underlying infectious diseases
in large populations, allowing more efficient community-based preventive measures
and aiding in mitigation measures.

The findings presented in this paper demonstrate that incorporating contact het-
erogeneity and asymmetric coupling between communities in an epidemic model can
yield results that differ from those based on a single homogeneously mixed popula-
tion model. This discrepancy is particularly evident when considering the two crucial
quantities: the basic reproduction number (R0) and the final epidemic size (z). An
intriguing finding of our study is the relationship between R0 and z. In the classi-
cal SIR model, R0 and z display a positive correlation, as demonstrated in Fig. 5.
However, when considering contact heterogeneity and asymmetric coupling between
the two communities in the model, this relationship may be reversed, as depicted in
Fig. 6. Specifically, we found that an increase in the difference between the number of
individual contacts k1 and k2 within the community leads to an increase in R0 and a
decrease in z. The result of an increase inR0 in this case is consistent with the previ-
ous study by Tilman and Kareiva (1998), which suggested thatR0 tends to be greater
in the presence of salient spatial or heterogeneous characteristics. Counterintuitively,
mitigation efforts on reducing the outbreak crises (i.e.R0) may not necessarily result
in a lower number of individuals eventually affected by disease (i.e. z) when includ-
ing interactions between communities. Hence, solely relying onR0 or z to formulate
prevention policies may be misleading.

Another interesting finding of our study is that limiting themovement of susceptible
individuals in a community has a complex effect on R0, where R0 does not follow
a simple monotonous relationship, as illustrated in Fig. 2. We further present a more
comprehensive model (3.28) that not only reproduces the result that restricting the
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movement of susceptible individuals in a community makes R̃0 non-monotonous but
also uncovers the relationship where R̃0 is an increasing function of both α̃ and β̃.
This suggests that restricting the movement of susceptible individuals solely within a
community may not be an effective measure for controlling the disease, and additional
factors should be considered when developing prevention strategies. Additionally, our
results showed that network contacts within communities have a greater effect on
the basic reproduction number than casual contacts between communities. The basic
reproduction number is greater under a Power-law distribution than under a Poisson
distribution (cf. Fig. 7), while the opposite observation appears in the final size of the
disease (cf. Fig. 13).

This paper only considers a two-community epidemic model without demograph-
ics. Expanding the model to include demographics of n communities allows for the
inclusion of more complex dynamics. Further discussion on the epidemic peak and
the time reaching the peak (Cadoni 2020; Turkyilmazoglu 2021) remains to be done,
since the epidemic peak reflects the severity of an infectious disease and can provide
a scientific basis for the health department’s planning of limited medical resources. In
addition, nested models linking within-host viral dynamics and between-host disease
transmission dynamics are currently receiving a lot of attention from researchers, and
take into account the importance of spatial heterogeneity factors and the infection
age in studying epidemic transmission models. We subsequently intend to investigate
some of the dynamics of age-spatial nested models, such as the final size, using the
approaches in Thieme (1977) and Diekmann (1978). The uniqueness of the solution to
the final size equation may be able to be proved along the lines of Thieme (1979) using
the sublinearity/subhomogenity/concavity method for uniqueness in Krasnosel’skii
(1964), Sec. 6.1. We will examine this in detail in our future work.
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Appendix

We can obtain the roots of the quaternion equation (3.10) using the Ferrari’s solution
(see, https://en.wikipedia.org/wiki/Quartic_function#Ferraris_solution for the exact
solution procedure):
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