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Abstract
In this paper, we revisit a predator–prey model with specialist and generalist predators
proposed by Hanski et al. (J Anim Ecol 60:353–367, 1991) , where the density of
generalist predators is assumed to be a constant. It is shown that the model admits a
nilpotent cusp of codimension 4 or a nilpotent focus of codimension 3 for different
parameter values. As the parameters vary, the model can undergo cusp type (or focus
type) degenerate Bogdanov–Takens bifurcations of codimension 4 (or 3). Our results
indicate that generalist predation can induce more complex dynamical behaviors and
bifurcation phenomena, such as three small-amplitude limit cycles enclosing one equi-
librium, one or two large-amplitude limit cycles enclosing one or three equilibria, three
limit cycles appearing in a Hopf bifurcation of codimension 3 and dying in a homo-
clinic bifurcation of codimension 3. In addition, we show that generalist predation
stabilizes the limit cycle driven by specialist predators to a stable equilibrium, which
clearly explains the famous Fennoscandia phenomenon.
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1 Introduction

1.1 Motivation

Long period, large amplitude predator–prey cycles have attracted much attention for
theoretical interpretation viamathematical models for a few decades. One famous phe-
nomenon in the literature is the following: a quite regular population cycle ofmicrotine
rodents in northern Fennoscandia cannot be observed in southern Fennoscandia. To
explain this striking Fennoscandia phenomenon in a mathematically rigorous way, we
revisit the predator–prey model with specialist and generalist predators proposed in
Hanski et al. (1991):

dx

dt
= r x

(
1 − x

k

)
− cxy

a + x
− mx2

x2 + b2
,

dy

dt
= qy

(
1 − y

px

)
,

(1.1)

where x is the small rodent density, y the specialist predator density, and m is the
generalist predator density which is assumed to be a constant. The growth rate of
the prey is logistic with carrying capacity k and intrinsic growth rate r . Model (1.1)
contains two kinds of predation, the specialist predation: cxy

a+x , where the functional
response of the specialist predators is Holling II (Michaelis–Menten kinetics) with
half-saturation constant a, and the generalist predation: mx2

x2 + b2
, where The functional

response of the generalist predators is Holling III with half-saturation constant b.
The intrinsic growth rate and the environmental carrying capacity for the specialist
predators are q and px (directly proportional to the prey density), respectively.

There have been enormously many papers analyzing predator–prey models with
only specialist predators, but little attention was paid to predator–prey models with
generalist predators. Recently, we found that generalist predators can induce more
complex dynamical behaviors and bifurcation phenomena (Lu et al. 2023; Xiang et al.
2022, 2020, 2023). To the best of our knowledge, there exists few rigorous analysis
work for predator–prey models with both specialist and generalist predators due to
their complexity of two different denominators. We make this effort in this paper.

1.2 Comparison to literature work

We first make the rescaling: x = ku, y = kr
c v, t = 1

r τ, then model (1.1) becomes
(still denote τ by t)

du

dt
= u(1 − u) − uv

α + u
− γ u2

u2 + η
,

dv

dt
= v(δ − β

v

u
),

(1.2)

where α = a
k , γ = m

kr , η = b2

k2
, δ = q

r , β = q
cp , and α, β, γ, δ, η are all positive.
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Unlike the traditional predator–prey models with only specialist predation, model
(1.2) admits more mathematical challenges, such as the boundary equilibria and the
positive equilibria depending on respectively a third-order algebraic equation and a
fourth-order algebraic equation, which makes the qualitative and bifurcation analyses
more difficult. Hanski et al. (1991) showed, by numerical simulation, that generalist
predation is likely to be the main stabilizing factor in south Fennoscandia. Lindström
(1993) analyzed the qualitative behavior and Hopf bifurcation of model (1.2) with
two examples showing that there may exist two limit cycles enclosing one or multiple
positive equilibria and complicated bifurcations by numerical simulation. Xiao and
Zhang (2007) proved the existence of a nilpotent focus of codimension 3 under a set of
specific parameter values, aroundwhich the existence of degenerateBogdanov–Takens
(BT) bifurcation of codimension 3 (focus case) was shown. However, for general
parameter values, the theoretical exploration for the complex dynamical behaviors
and bifurcation phenomenawere not well understood, especially the complete analysis
on bifurcations with high codimension. This is our main contribution in this paper.
Furthermore, we will explicitly illustrate the effect of generalist predation on the
dynamics of model (1.2), especially on the oscillatory dynamics, which will clearly
explain the well-known Fennoscandia phenomenon.

For general parameter values in model (1.2), we will provide a useful formula on
the fourth-order normal form of nilpotent singularities, and show theoretically the
existence of a nilpotent focus of codimension 3, around which degenerate BT bifurca-
tion of codimension 3 (focus case) can be fully unfolded in (1.2). Moreover, we will
provide another useful formula on the fifth-order normal form of nilpotent cusp, and
show the existence of a nilpotent cusp of codimension 4, aroundwhich the existence of
degenerate BT bifurcation of codimension 4 (cusp case) will be shown. To the best of
our knowledge, it is the first time to obtain these two bifurcations simultaneously in a
predator–prey model. Some algebraic and symbolic computation methods (Chen and
Zhang 2009; Yang 1999; Gelfand et al. 1994) are used to solve the semi-algebraic vari-
eties of normal form coefficients or nondegeneracy conditions. Our theoretical results
indicate that generalist predation can induce more complex bifurcations and dynam-
ics, such as cusp type (or focus type) degenerate BT bifurcations of codimension 4 (or
3), three limit cycles appearing in a Hopf bifurcation of codimension 3 and dying in
a homoclinic bifurcation of codimension 3, and for different parameter values, there
exist three limit cycles enclosing one positive equilibrium, one or two limit cycles
enclosing one or three positive equilibria, three positive equilibria but no limit cycles,
which explains roughly the famous Fennoscandia phenomenon. On the other hand,
when model (1.2) with γ = 0 has a stable cycle driven only by specialist predators,
we will show, by numerical bifurcation diagrams, that the amplitude of the previous
stable cycle will decrease as the density of generalist predators increases. Moreover,
a sufficiently large density of generalist predators will stabilize the limit cycle to a
stable equilibrium, which clearly answers the puzzling Fennoscandia phenomenon.
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1.3 Statement of main results

In Sect. 3 we will see that the positive equilibria depend on a fourth-order algebraic
Eq. (see (3.1)), which has at most three positive real roots. Denote the double posi-
tive equilibria E12 and E23 as E∗(u∗, v∗) and the triple positive equilibrium E123 as
E∗(u∗, v∗) (see Lemma 3), where u∗ and u∗ are the double and triple positive real
roots of the four-order algebraic Eq. (3.1), respectively.

First, we define the following sets

�1 = {(u∗, η) : 0 < u∗ <
1

2
, 0 < η < η0} � �11 ∪ �12 ∪ �13,

�11 = {(u∗, η) : 0 < u∗ <
1

3
and 0 < η < η1; or 1

3
≤ u∗ <

1

2
and 0 < η < η0},

�12 = {(u∗, η) : 0 < u∗ <
1

3
, η = η1},

�13 = {(u∗, η) : 0 < u∗ <
1

3
, η1 < η < η0}, (1.3)

where

η0 = u2∗(1 − 2u∗),

η1 = −u∗
√
9α4 + 14α3u∗ + 12α2u3∗ + 3α2(2α + 3)u2∗ + 6αu5∗ + α(α + 14)u4∗ + 9u6∗

2α

+3α2u∗ + αu3∗ + 3αu2∗ + 3u4∗
2α

, (1.4)

and define

�25 = {
(u∗, α, η) : (u∗, α, η) = (

u∗3, α0(u∗3), η00(u∗3, α0(u∗3))
)}

, (1.5)

where u∗3, α0(u∗3) and η00(u∗, α) are shown in (A4), (A8) and (A15), respectively.
Then, define the following three sets of parameters

(i) β̃ � u∗
α+u∗ , γ̃ �

(
α+u2∗

)(
η+u2∗

)2
u2∗(−η+2αu∗+u2∗)

, δ̃ � − (α+u∗)
(
η+(2u∗−1)u2∗

)
u∗(−η+2αu∗+u2∗)

; (1.6)

(ii) β �
δ(u∗)2

(
η−2αu∗−(u∗)2

)

(α+u∗)2
(
η+2(u∗)3−(u∗)2

) , γ �
(
α+(u∗)2

)(
η+(u∗)2

)2

(u∗)2
(−η+2αu∗+(u∗)2

) ,

δ � −
√(

3α2+α(u∗+3)u∗+3(u∗)3
)2−4αu∗(

α2+3α(u∗)2+(u∗)3
)

2u∗(α+u∗)

− α(u∗)2−3αu∗+3(u∗)3−2(u∗)2−3α2

2u∗(α+u∗)
, η � η1 |u∗→u∗ ;

(1.7)

(iii) β̂ � u∗
α+u∗ , γ̂ �

(
α+(u∗)2

)(
η+(u∗)2

)2

(u∗)2
(−η+2αu∗+(u∗)2

) , δ̂ � − (α+u∗)
(
η+(2u∗−1)(u∗)2

)

u∗(−η+2αu∗+(u∗)2
) , (1.8)
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and define

K3 = α7(42u∗ + 31) + 2α6(75(u∗)2 + 401u∗ + 88)u∗ + α5(u∗)2(−66(u∗)3
+2914(u∗)2 + 3681u∗ − 110) + α4(−30 (u∗)3 + 118 (u∗)2 + 15091u∗
+1716)(u∗)4 + 5α3(−93 (u∗)3 + 1263 (u∗)2 + 3274u∗ + 11) (u∗)5
+α2(−1335 (u∗)2 + 16236u∗ + 5093) (u∗)7 + 5α(36u∗ + 1985) (u∗)9
+4455 (u∗)11 .

(1.9)

The following theorems are the main results of this paper.

Theorem 1 When (β, γ, δ) = (β̃, γ̃ , δ̃) and (u∗, η) ∈ �1\�12, the double positive
equilibrium E∗(u∗, v∗) (i.e., E12 or E23) of system (1.2) is a cusp of codimension up
to 4, where β̃, γ̃ , δ̃, �1 and �12 are shown in (1.6) and (1.3), respectively.

The proof of Theorem 1 is given in Sect. 3.1, where we provide a useful formula on
the fifth-order normal form of nilpotent cusp (see Lemma 4) and a series of lengthy
calculations of semi-algebraic varieties consisting of normal form coefficients and
parameters conditions (see Appendix 1), some algebraic and symbolic computation
methods (Chen and Zhang 2009; Yang 1999; Gelfand et al. 1994) are used. A cusp of
codimension up to 4 has not been uncovered for system (1.2) in previous references.

System (1.2)with a cusp of codimension 4 is structurally unstable, andmay undergo
rich dynamics after parameters perturbation. In fact, the following theorem shows that
system (1.2) can exhibit cusp type degenerate BT bifurcations of codimension 4.

Theorem 2 If (β, γ, δ) = (β̃, γ̃ , δ̃) and (u∗, α, η) ∈ �25, then E∗ is a cusp of
codimension 4. System (1.2) can undergo cusp type BT bifurcation of codimension 4
around E∗ as (β, γ, δ, η) varies near (β̃, γ̃ , δ̃, η00(u∗, α)). There exists three limit
cycles appearing in a Hopf bifurcation of codimension 3 and dying in a homoclinic
bifurcation of codimension 3. Where β̃, γ̃ , δ̃ and �25 are shown in (1.6) and (1.5),
respectively.

The proof of Theorem 2 is given in Sect. 3.1. According to Chow et al. (1994);
Li and Rousseau (1989), there exist a series of bifurcations with lower codimension
within a cusp type BT bifurcation of codimension 4, such as

(i) codimension-1: saddle-node, Hopf, homoclinic bifurcations and double limit
cycle bifurcation;

(ii) codimension-2: BT bifurcation, Hopf bifurcation, homoclinic bifurcation, bifur-
cation of a triple limit cycle, simultaneous occurrence of Hopf and homoclinic
bifurcations, simultaneous occurrence of Hopf and double limit cycle bifurca-
tions, simultaneous occurrence of homoclinic and double limit cycle bifurca-
tions;

(iii) codimension-3:BTbifurcation,Hopf bifurcation, homoclinic bifurcation, simul-
taneous occurrence of degenerate Hopf and homoclinic bifurcations, simultane-
ous occurrence of Hopf and degenerate homoclinic bifurcations.

Theorem 3 If (β, γ, η) = (β, γ , η) and 0 < u∗ < 1
3 , then system (1.2) has a unique

positive equilibrium E∗ (i.e., E123). Moreover,
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(I) if δ �= δ, then E∗ is a stable (or unstable) degenerate node of codimension 2 if
0 < δ < δ (or δ > δ);

(II) if δ = δ and K3 �= 0, then E∗ is a nilpotent focus of codimension 3;

where β, γ , η, δ and K3 are shown in (1.7) and (1.9), respectively.

Theproof ofTheorem3 is given in Sect. 3.2. Case (I) follows directly from the center
manifold theorem and Theorem 7.1 in chapter 2 of Zhang et al. (1992). For Case (II),
we provide a useful formula on the fourth-order normal form of nilpotent singularities
(see Lemma 5) and use Lemma 3.1 in Cai et al. (2013). Xiao and Zhang (2007) proved
the existence of a nilpotent focus of codimension 3 under a set of specific parameter
values, while the exact codimension is unknown for general parameter values. Our
result shows that, for general parameter values, the codimension of nilpotent focus is
exact 3.

The following result shows that system (1.2) can exhibit focus type degenerate BT
bifurcations of codimension 3.

Theorem 4 If (β, γ, δ, η) = (β̂, γ̂ , δ̂, η), K3 �= 0 and 0 < u∗ < 1
3 , then E∗ is a

nilpotent focus of codimension 3. System (1.2) can undergo focus type BT bifurcation
of codimension 3 around E∗ as (β, γ, δ) varies near (β̂, γ̂ , δ̂). Where β̂, γ̂ , δ̂, η

and K3 are shown in (1.8), (1.7) and (1.9), respectively.

The proof of Theorem 4 is given in Sect. 3.2. According to Dumortier et al. (1991),
there exist a series of bifurcations with lower codimension within a focus type BT
bifurcation of codimension 3, such as

(i) codimension-1: Hopf bifurcation, homoclinic bifurcation, saddle-node homo-
clinic bifurcation, saddle-node bifurcation of limit cycles, saddle-node bifurca-
tion;

(ii) codimension-2: degenerate Hopf bifurcation, BT bifurcation, cuspidal bifurca-
tion, degenerate homoclinic bifurcation, saddle-node homoclinic bifurcation.

The paper is organized as follows. In Sect. 2, we show asymptotic dynamics near
the origin (0,0) and boundary equilibria and their types in system (1.2). In Sect. 3,
the numbers and types of positive equilibria are considered, moreover, cusp type BT
bifurcation of codimension 4 and focus type BT bifurcation of codimension 3 are
shown in detail. We provide a series of numerical simulations to demonstrate the
theoretical analysis and to interpret Fennoscandia phenomenon in Sect. 4. The paper
ends with a brief discussion in Sect. 5.

2 Asymptotic dynamics near (0,0) and boundary equilibria

Define

R2+ := {(u, v) : u > 0, v ≥ 0} , � :=
{
(u, v) : 0 < u < 1, 0 ≤ v < δ

β

}
. (2.1)

Notice that system (1.2) is not well defined at u = 0. We restrict our attention in
R2+ for the biological meaning. We first consider the asymptotic dynamics near (0, 0)
and boundedness of system (1.2) in the interior of R2+.
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Lemma 1 All trajectories near (0, 0) of system (1.2) with initial values located in R2+
will leave (0, 0). Moreover, � is a positive invariant and attracting set for the flows
of system (1.2) in R2+, where R2+ and � are shown in (2.1).

Proof First, we study the asymptotic dynamics near (0, 0). Let t = u(α+u)(u2+η)τ ,
then system (1.2) becomes

du

dτ
= u2(1 − u)(α + u)(u2 + η) − u2v(u2 + η) − γ u3(α + u),

dv

dτ
= v(uδ − βv)(α + u)(u2 + η),

(2.2)

which is topologically equivalent to system (1.2) in the interior of R2+. Notice that, the
Jacobian matrix of system (2.2) at the equilibrium (0, 0) is a null matrix. By using the
blow-up transformations: u = r cos θ, v = r sin θ, t = rτ , system (2.2) becomes

dr

dt
= r

(
αη(−β sin3 θ + δ sin2 θ cos θ + cos3 θ) + O(r)

)
,

dθ

dt
= αη sin θ cos θ((δ − 1) cos θ − β sin θ) + O(r),

(2.3)

where (r , θ) ∈ [0,+∞) × [0, π
2 ].

When δ > 1, system (2.3) has three equilibria: a hyperbolic unstable node (0, 0),
two hyperbolic saddles (0, arctan δ−1

β
) and (0, π

2 ) (see Fig. 1a); when δ < 1, it has
two equilibria: (0, 0) and (0, π

2 ), which are hyperbolic saddles (see Fig. 1b). Then the
corresponding trajectory structures of system (2.2) at degenerate equilibrium (0, 0)
are shown numerically in Fig. 1d, e, respectively.

Notice that, when δ = 1, system (2.3) has two equilibria: a degenerate equilibrium
(0, 0) and a hyperbolic saddle (0, π

2 ). By using the blow-up transformations along u
and v directions, and letting u = r , v = r y, t = rτ in coordinate chart x = 1, then
system (2.2) becomes

dr

dt
= αηr + O(r2),

dy

dt
= −αβηy2 + O(r), (2.4)

where r ≥ 0, y ≥ 0. System (2.4) has one equilibrium (0, 0) which is a saddle-node.
Similarly, let u = r x, v = r , t = rτ in coordinate chart y = 1, then system (2.2)
becomes

dr

dt
= (−αβη + αδηx)r + O(r2),

dx

dt
= αβηx + O(r), (2.5)

where r ≥ 0, x ≥ 0. System (2.5) has one equilibrium (0, 0) which is a hyperbolic
saddle. The trajectory structure in coordinate charts is shown in Fig. 1c, and the corre-
sponding trajectory structure of system (2.2) at degenerate equilibrium (0, 0) is shown
in Fig. 1e.
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Fig. 1 a and b Represent the trajectory structure of system (2.3) outside of unit circle when δ > 1 and
δ < 1, respectively. c Trajectory structure of systems (2.4) and (2.5) outside of unit circle when δ = 1. d
Phase portrait of system (2.2) near (0, 0) in R2+ when δ > 1. e Phase portrait of system (2.2) near (0, 0) in

R2+ when δ ≤ 1

Therefore, we know that all trajectories near (0, 0) of system (1.2)with initial values
located in R2+ will leave (0, 0).

Second, we consider the boundedness. It is easy to know that the u-axis is invariant.

From the first equation of system (1.2), we have
du

dt
< 0 when u ≥ 1 and v ≥ 0, then

there exists T0 > 0 such that 0 < u(t) < 1 when t > T0. From the second equation of

system (1.2), we have
dv

dt
< v(δ − βv) ≤ 0 when 0 < u < 1 and v ≥ δ

β
, then there

exists T > T0, such that all trajectories with initial values located in R2+ will enter
and remain in � when t > T , that is � is a positive invariant and attracting set for the
flows of (1.2) in R2+. 
�

We next consider the possible boundary equilibrium Eb(ub, 0) of system (1.2), it
is easy to see that ub is the positive real root of the following third-order algebraic
equation

Fb(u) � −η + (γ + η)u − u2 + u3 = 0, (2.6)

which has at least one and at most three positive real roots. Define

A � 1 − 3(γ + η), B � 9γ − 18η − 2, � � B2 − 4A3. (2.7)
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We have the following results by the Cardan formula and Theorems 7.1–7.3 in Zhang
et al. (1992).

Lemma 2 System (1.2) has at least one and at most three boundary equilibria.

(I) If � > 0, then system (1.2) has a unique boundary equilibrium Eb1(ub1, 0) (or
Eb3(ub3, 0)).

(II) If � = 0 and

(i) B < 0, then system (1.2)has twodifferent boundary equilibria: Eb12(
1−√

A
3 , 0),

Eb3(
1+2

√
A

3 , 0);

(ii) B > 0, then system (1.2)has twodifferent boundary equilibria: Eb1(
1−2

√
A

3 , 0),

Eb23(
1+√

A
3 , 0);

(iii) B = 0, then system (1.2) has a unique boundary equilibrium E∗
b (

1
3 , 0).

(III) If � < 0, then system (1.2) has three different boundary equilibria Ebi (ubi , 0)
(i=1, 2, 3).

(IV) Eb1 and Eb3 are elementary saddle, Eb2 is an unstable node, Eb12 and Eb23 are
saddle-node of codimension 1, E∗

b is a degenerate saddle of codimension 2.

Where A B and � are shown in (2.7) and 0 < ub1 < ub2 < ub3 < 1.

The stability and types of boundary equilibria of system (1.2) are also shown in
Theorem 2.2 of Xiao and Zhang (2007).

3 Positive equilibria and bifurcation

In this section, we consider the positive equilibria of system (1.2).
At the possible positive equilibrium E(u, v), we can see that v = δu

β
and u is the

positive real root of the following fourth-order algebraic equation

F(u) = αβη + (η(β − δ) − αβ(γ + η))u + β(α − γ − η)u2

+(−αβ + β − δ)u3 − βu4

� a4 + a3u + a2u
2 + a1u

3 + a0u
4 = 0, (3.1)

which has at least one negative real root and atmost three positive real roots.Moreover,

through simple calculation, we have di F(u)

dui
|u=1< 0 (i = 0, 1, 2, 3), which imply that

the positive roots of Eq. (3.1) must satisfy u < 1.
The Jacobian matrix of system (1.2) at any positive equilibrium E(u, v) has the

form

J (E(u, v)) =
⎛
⎝

2γ u3

(u2+η)
2 + vu

(u+α)2
− 2γ u

u2+η
− 2u − v

u+α
+ 1 − u

u+α

v2β

u2
δ − 2vβ

u

⎞
⎠ .
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From F(u) = 0, we have

β = −δu3−δηu
(α+u)(−η+u3−u2+γ u+ηu)

, (3.2)

where −η + u3 − u2 + γ u + ηu < 0, then we can get that

detJ (E(u, v)) = −η + u3 − u2 + u(γ + η)(
η + u2

)2 F ′(u). (3.3)

Define

D2 = 3a21 − 8a0a2,

D3 = 14a0a2a3a1 − 3a3a
3
1 + (a22 − 6a0a4)a

2
1 + 2a0(−2a32 + 8a0a4a2 − 9a0a

2
3),

D4 = a0(16a4a
4
2 − 4a23a

3
2 − 128a0a

2
4a

2
2 + 144a0a

2
3a4a2 + a0(256a0a

3
4 − 27a43))

− 27a24a
4
1 + (18a2a3a4 − 4a33)a

3
1 + (−4a4a

3
2 + a23a

2
2 + 144a0a

2
4a2

− 6a0a
2
3a4)a

2
1 − 2a0a3(40a4a

2
2 − 9a23a2 + 96a0a

2
4)a1, (3.4)

where a0, ..., a4 are given in (3.1), and notice that a0 < 0 and a4 > 0. According
to the Complete Discrimination System of polynomials (Yang 1999), we classify the
numbers and types of positive equilibria and provide some representative numerical
simulations of F(u) in Fig. 2.

Lemma 3 System (1.2) has at least one and at most three positive equilibria.

(i) If Di > 0 (i = 2, 3, 4), then system (1.2) has a unique positive equilibrium
E3(u3, v3) or three positive equilibria Ei (ui , vi ) (i = 1, 2, 3) (see Fig.2e);

(ii) If D4 < 0, then system (1.2) has a unique positive equilibrium E1(u1, v1) (or
E3(u3, v3)) (see Fig.2d);

(iii) If D4 = 0 and D3 > 0, then system (1.2) has a unique positive equilib-
rium E3(u3, v3), or two positive equilibria: E12(u12, v12) and E3(u3, v3) (or
E1(u1, v1) and E23(u23, v23)) (see Fig.2a–b);

(iv) If D4 = D3 = 0 and D2 > 0, then system (1.2) has a unique positive equilibrium
E3(u3, v3) (or E123(u123, v123)) (see Fig.2c);

(v) E1 and E3 are elementary anti-saddle, E2 is an elementary saddle, E12, E23 and
E123 are degenerate equilibria.

Where Di (i=2, 3, 4) are shown in (3.4) and u1 < u2 < u3.

Next, we further explore the detailed types of the double positive equilibria E12
and E23 and the triple positive equilibrium E123.

3.1 A double positive equilibrium

For simplicity, we denote the double positive equilibrium (E12 or E23) as E∗(u∗, v∗).
From F(u∗) = 0, F ′(u∗) = 0 and tr(J (E∗)) = 0, we obtain (β, γ, δ) = (β̃, γ̃ , δ̃),
where β̃, γ̃ and δ̃ are shown in (1.6).
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Fig. 2 The positive roots of F(u) = 0. a A double positive root u12 and a single positive root u3. b A
double positive root u23 and a single positive root u1. c A triple positive root u123. d A single positive root
u3. e Three single positive roots ui (i = 1, 2, 3)

From γ̃ > 0 and δ̃ > 0 we have

0 < u∗ < 1
2 , 0 < η < η0, (3.5)

where η0 is shown in (1.4).
If (β, γ, δ) satisfies the condition (1.6), we have

F ′′(u∗) = − 2H
u∗(α+u∗)(−η+2αu∗+u2∗)

, (3.6)

where

H = α2u3∗ + 3αu5∗ + u6∗ + (−3α2u∗ − αu3∗ − 3αu2∗ − 3u4∗
)
η + αη2,

which is a quadratic function of η, and H = 0 has two positive real roots and η1 is the
smaller one, where η1 is shown in (1.4).

Through straightforward calculation, we have signH(η0) = sign(3u∗ − 1) and
signH ′(η0) = −1. Combining the above analysis, we obtain

H > 0 (= 0, or < 0) if (u∗, η) ∈ �11 (�12, or �13), (3.7)

where�1i (i = 1, 2, 3) are shown in (1.3). Notice that E∗ becomes a triple equilibrium
when H = 0.
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We first provide a useful formula on the fifth-order normal form of nilpotent cusp,
which is a generalization of Proposition 5.3 in Lamontagne et al. (2008).

Lemma 4 When a20 �= 0, the system

dx

dt
= y,

dy

dt
=

5∑
i+ j=2

ai j x
i y j (3.8)

is equivalent to the system

dx

dt
= y,

dy

dt
= b20x2 + b11xy + b31x3y + b41x4y (3.9)

in a small neighborhood of the origin, where b20 = a20, b11 = a11,

b31 = 1

40a220

(
6a30a

3
11 − 8a20a21a

2
11 + (35a230 + 4a20(3a12a20 − 8a40))a11

+ 16a202a
2
20a11 − 4a02a20(a

3
11 + 9a30a11 − 10a20a21) − 40a20(3a03a

2
20

− a31a20 + a21a30)
)
,

b41 = 1

16a320

(
8a12a21a

3
20 − 8a11a22a

3
20 + 4a03(4a

2
11 + 3(a30 − 4a02a20))a

3
20

− 24a13a
4
20 + 20a21a

2
30a20 + 8a202(2a20a21 − a11a30)a

2
20 − 20a30a31a

2
20

− 16a21a40a
2
20 + 56a11a50a

2
20 − 72a11a30a40a20 − 2a02a20(2a20(7a21a30

− 6a20a31) + a11(4a20(a12a20 − 6a40) + 13a230)) + 16a41a
3
20 + 25a11a

3
30

)
.

Proof Make the following time and near-identity transformations

t = (
1 − a30

2a20
x
)
τ, x = x1 +

5∑
i+ j=2

c1i j x
i
1y

j
1 , y = y1 +

5∑
i+ j=2

c2i j x
i
1y

j
1 ,

where c1i j and c2i j are functions of ai j and we omit their detailed expressions, system
(3.8) becomes

dx1
dτ

= y1,
dy1
dτ

= b20x21 + b11x1y1 + b31x31 y1 + b41x41 y1, (3.10)

where bi j are shown in (3.9). 
�
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Remark 1 Lemma 4 can be used directly to investigate the codimension of a cusp.
When a11 = 0, we can simplify b31, b41 as

b31 =40a02a220a21 − 40a20(3a03a220 − a31a20 + a21a30)

40a220
,

b41 = 1

16a320
(16a202a21a

3
20 − 24a13a

4
20 + 8a12a21a

3
20 + 12a03 (a30 − 4a02a20) a

3
20

+ 16a41a
3
20 − 20a30a31a

2
20 − 4a02 (7a21a30 − 6a20a31) a

2
20 − 16a21a40a

2
20

+ 20a21a
2
30a20).

Moreover, when a20 = 1, a11 = a02 = a03 = a13 = a04 = 0 we have

b31 = a31 − a21a30,

which shows that Lemma 4 is a generalization of Proposition 5.3 in Lamontagne et al.
(2008).

Proof of Theorem 1 (I) Computing the fifth-order normal form. Under the conditions
(3.3) and (β, γ, δ) satisfies (1.6), we know that trJ (E∗) = detJ (E∗) = 0. Make the
following transformations successively

X = u − u∗, Y = v − δu∗
β

; x = X , y = dX

dt
,

system (1.2) becomes (up to the fifth-order expansion)

dx

dt
= y,

dy

dt
=

5∑
i+ j=2

ci j x
i y j , (3.11)

where ci j are expressions of (α, η, u∗), and we omit the detailed expressions.
Next, by Lemma 4 we know that in a small neighborhood of the origin, system

(3.11) is topologically equivalent to

dx

dt
= y,

dy

dt
= d20x

2 + d11xy + d31x
3y + d41x

4y, (3.12)

where

d20 =
(
η+2u3∗−u2∗

)
H

u2∗(η+u2∗)(−η+2αu∗+u2∗)2
, d11 = − M

u2∗(α+u∗)(η+u2∗)(−η+2αu∗+u2∗)
, (3.13)

and

M = u4∗(2u3∗ + (8u∗ − 1)u∗α + (2u∗ + 1)α2) − 2u2∗(3u3∗ + 3u∗α
+ (3 − u∗)α2)η + α(α + 3u∗)η2,

(3.14)
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and H is shown in (3.6). We omit the lengthy expressions of d31 and d41.
It is easy to know that

signd20 = −signH �= 0, signd11 = −signM . (3.15)

(II) Computing signM . Notice thatM is a quadratic polynomial ofη, the coefficients
are functions of α. Through simple calculation, we have signM(η0) = sign(3u∗ − 1)
and signM ′(η0) = −1, which show that M has at most one positive real root when
(u∗, η) ∈ �1\�12. Define

�2 = {(u∗, α) : 0 < u∗ <
1

2
and α > 0} � �21 ∪ �22 ∪ �23,

�21 = {
(u∗, α) : 0 < u∗ <

3 − √
6

12
and 0 < α < α1 or α > α2; or u∗ = 3 − √

6

12
,

α > 0 and α �= α1; or 3 − √
6

12
< u∗ <

1

3
and α > 0

}
,

�22 = {
(u∗, α) : 0 < u∗ <

3 − √
6

12
and α1 ≤ α ≤ α2; or u∗ = 3 − √

6

12
and α = α1

}
,

�23 = {(u∗, α) : 1

3
≤ u∗ <

1

2
and α > 0}, (3.16)

where α1 and α2 are positive real roots of M(0), i.e.,

α1 = u∗(1−8u∗−
√

48u2∗−24u∗+1)
4u∗+2 , α2 = u∗(1−8u∗+

√
48u2∗−24u∗+1)

4u∗+2 . (3.17)

When (u∗, α) ∈ �21, it is easy to know that M(0) > 0 and M(η0) < 0, M has
exactly one positive real root η = η∗ ∈ (0, η0), where

η∗ = − u2∗
√

8α4−8(α−2)α3u∗−8α2u3∗+α2((α−20)α+12)u2∗−6(α−2)αu4∗+9u6∗
α(α+3u∗)

+ 3α2u2∗−(α−3)αu3∗+3u5∗
α(α+3u∗) ,

(3.18)

otherwise, M has no root in (0, η0). Moreover, we can get that

M

⎧⎨
⎩

> 0, if (u∗, α, η) ∈ (�21 × (0, η∗)) ∪ (�23 × (0, η0)),

= 0, if (u∗, α, η) ∈ �21 × {η∗},
< 0, if (u∗, α, η) ∈ (�21 × (η∗, η0)) ∪ (�22 × (0, η0)).

(3.19)

Therefore, E∗ is a cusp of codimension at least 3 when (u∗, α, η) ∈ �21 × {η∗},
otherwise, E∗ is a cusp of codimension 2.
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(III) Proving E∗ is a cusp of codimension exactly 4. Notice that, when M = 0 we
have

d31 = M1

Hu3∗ (α + u∗) 3
(
η + u2∗

)
3
(−η + 2αu∗ + u2∗

) ,

d41 = M2

4H2u4∗ (α + u∗) 4
(
η + u2∗

)
4
(
η + 2u3∗ − u2∗

) (−η + 2αu∗ + u2∗
) ,

(3.20)

where H is shown in (3.6). We omit the lengthy expressions of M1 and M2.
Define

�24 � {(u∗, α, η) : (u∗, α) ∈ �21 and η = η∗}, (3.21)

where �21 and η∗ are shown in (3.16) and (3.18), respectively. By using the algebraic
methods of resultant elimination (Chen andZhang 2009) and pseudo-division (Gelfand
et al. 1994), we can show that V(M, M1)∩�24 �= ∅ and V(M, M1, M2)∩�24 = ∅,
i.e., E∗ is a cusp of codimension exactly 4. The complete analysis is very lengthy, we
only give the key steps in Appendix 1.

Moreover, in Appendix 1, we show M = M1 = 0 and M2 �= 0 in �25 ⊆ �24, that
is d11 = d31 = 0 and d41 �= 0 in �25, where �25 is shown in (1.5). Therefore, E∗ is
a cusp of codimension exactly 4 in �25. 
�

From Theorem 1, we know that system (1.2) has a cusp E∗ of codimension 4, and
in the following we will show that there exists a cusp type degenerate BT bifurcation
of codimension 4 around the double equilibrium E∗.

Proof of Theorem 2 We choose (β, γ, δ, η) as bifurcation parameters, and consider
the following unfolding system of system (1.2)

du

dt
= u(1 − u) − uv

α + u
− (γ + μ1)u2

u2 + η + μ2
,

dv

dt
= v(δ + μ3 − (β + μ4)

v

u
),

(3.22)

where (β, γ, δ, η) = (
β̃, γ̃ , δ̃, η00(u∗, α0(u∗))

)
, (u∗, α, η) ∈ �25 and μ =

(μ1, μ2, μ3, μ4) is a parameter vector in a small neighborhood of (0, 0, 0, 0).
For simplicity, we only use the substitution (β, γ, δ) = (β̃, γ̃ , δ̃) in the following

calculations.We next use the following steps to transform system (3.22) to its universal
unfolding (Xiang et al. 2022).

Step 1. Translation and near-identity transformations. Make the following trans-
formations successively

X = u − u∗, Y = v − δu∗
β

; x = X , y = dX
dt ,
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system (3.22) can be rewritten as

dx

dt
= y,

dy

dt
=

5∑
i+ j=0

ai j x
i y j + o(| x, y |5), (3.23)

where a03 = 0 and the other ai j are high-order polynomials of (u∗, α, η), the detailed
expressions are omitted for brevity.

Step 2. Removing y2, xy2, x2y2 and x3y2-terms of system (3.23). Let

x = x1 + ā02
2 x21 + 2ā202+ā12

6 x31 + 6ā302+7ā12ā02+2ā22
24 x41

+ 24ā402+46ā12ā202+22ā22ā02+7ā212+6ā32
120 x51 ,

y = y1 + ā02x1y1 + 2ā202+ā12
2 x21 y1 + 6ā302+7ā12ā02+2ā22

6 x31 y1

+ 24ā402+46ā12ā202+22ā22ā02+7ā212+6ā32
24 x41 y1,

system (3.23) becomes

dx1
dt

= y1,
dy1
dt

=
5∑

i+ j=0

bi j x
i
1y

j
1 + o(| x1, y1 |5), (3.24)

where b02 = b12 = b03 = b22 = b32 = 0, and the other bi j can be expressed by ai j .
Step 3. Removing x31 , x41 and x51 -terms of system (3.24). Let

dt = (1 − b̄30
2b̄20

x2 − 316b̄20b̄40−15b̄230
80b̄220

x22 + −175b̄330+336b̄20b̄40b̄30−160b̄220b̄50
240b̄320

x32)dτ,

x1 = x2 − b̄30
4b̄20

x22 − 16b̄20b̄40−15b̄230
80b̄220

x32 + −175b̄330+336b̄20b̄40b̄30−160b̄220b̄50
960b̄320

x42 , y1 = y2,

system (3.24) becomes (still denote τ by t)

dx2
dt

= y2,
dy2
dt

=
5∑

i+ j=0

ci j x
i
2y

j
2 + o(| x2, y2 |5), (3.25)

where c02 = c12 = c03 = c22 = c32 = 0, and c30 = c40 = c50 = 0 when μ = 0, the
other ci j can be expressed by bi j .

Step 4. Removing x22 y2-term of system (3.25). Let

dτ = (1 + c̄21
3c̄20

y3 + c̄221
36c̄220

y23 )dt, x2 = x3, y2 = y3 + c̄21
3c̄20

y23 + c̄221
36c̄220

y33 ;
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then system (3.25) becomes (still denote τ by t)

dx3
dt

= y3,

dy3
dt

= d00 + d10x3 + d01y3 + d20x
2
3 + d11x3y3

+d31x
3
3 y3 + d41x

4
3 y3 + R(x3, y3, μ), (3.26)

where di j can be expressed by ci j , and R(x3, y3, μ) satisfies the following property

R(x, y, μ) = y2O(| x, y |2) + O(| x, y |6) + O(μ)(O(y2) + O(| x, y |3))
+O(μ2)O(| x, y |). (3.27)

Step 5. Removing x3-term and transforming the coefficients of x23 and x43 y3 to 1
and −1 in (3.26), respectively.Notice that, under the conditions of Theorem 2, we can
get that d20 < 0 and d41 < 0 for small μ, the detailed analysis is shown in Appendix
1. Let

dt = −d̄1/741 d̄−4/7
20 dτ, x3 = d̄1/720 d̄−2/7

41 x4 − d̄10
2d̄20

, y3 = −d̄5/720 d̄−3/7
41 y4,

then system (3.26) becomes (still denote τ by t)

dx4
dt

= y4,

dy4
dt

= e1 + e2y4 + e3x4y4 + e4x
3
4 y4 + x24 − x44 y4 + R(x4, y4, μ), (3.28)

where ei can be expressed by di j , and R(x4, y4, μ) satisfies the property (3.27).
Further calculation shows that (using (u∗, α, η) ∈ �25)

∣∣∣∣
∂(e1, e2, e3, e4)

∂(μ1, μ2, μ3, μ4)

∣∣∣∣
μ=0

= −u4/7∗
(−η + 2αu∗ + u2∗

)
2 f 1

70 ∗ 23/7 ∗ 35/7 (α + u∗) 17/7
(
η + u2∗

)
3
(
η + 2u3∗ − u2∗

)
23/7 f

6
21 f

8/7
22

�= 0,

(3.29)

where

f 21 = αη2 − u∗(3α2 + αu2∗ + 3αu∗ + 3u3∗)η + u3∗(α2 + 3αu2∗ + u3∗),

f 1 and f 22 are high-order polynomials of (u∗, α, η), we omit their expressions. The
complete analysis of (3.29) is shown in Appendix 1.

Therefore, by the results in Chow et al. (1994); Li and Rousseau (1989), we know
that system (3.28) is the versal unfolding of cusp type BT bifurcation of codimension
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4, and system (1.2) undergoes cusp type BT bifurcation of codimension 4 in a small
neighborhood of E∗ as (β, γ, δ, η) varies near (β̃, γ̃ , δ̃, η00(u∗, α)). 
�

3.2 A triple positive equilibrium

For simplicity,wedenote the triple positive equilibrium E123(u123, v123) as E∗(u∗, v∗),
and consider the type of E∗, where v∗ = δu∗

β
and u∗ is a triple positive root of Eq.

(3.1), i.e., F(u∗) = F ′(u∗) = F ′′(u∗) = 0.
From F(u∗) = F ′(u∗) = 0, we can get that (β, γ ) = (β, γ ), where β and γ are

shown in (1.7). Moreover, from β > 0 and γ > 0, we have

0 < η < η0 � (u∗)2 (1 − 2u∗) , 0 < u∗ < 1
2 . (3.30)

When (β, γ ) = (β, γ ), we have

F ′′(u∗) = 2δH
(α+u∗)2

(
η+2(u∗)3−(u∗)2

) , (3.31)

where H = H |u∗→u∗ and H is shown in (3.6). From F ′′(u∗) = 0, we have η = η

where η is shown in (1.7), moreover we have 0 < u∗ < 1
3 and 0 < η < η0.

Moreover, if (β, γ ) = (β, γ ), we have

tr(J (E∗)) = δu∗(−η + 2αu∗ + (u∗)2) + (α + u∗) (η + (2u∗ − 1) (u∗)2)
u∗(η − 2αu∗ − (u∗)2)

� t1
u∗(η − 2αu∗ − (u∗)2)

, (3.32)

and letting tr(J (E∗)) = 0, we have δ = δ where δ is shown in (1.7), moreover we
have

tr(J (E∗)) > 0 (or < 0) if 0 < δ < δ (or δ > δ). (3.33)

Before exploring the type of E∗(u∗, v∗) (i.e., E123), we provide another useful
formula on the fourth-order normal form of nilpotent singularities.

Lemma 5 The system

dx

dt
= y +

4∑
i+ j=2

ei j x
i y j ,

dy

dt
=

4∑
i+ j=2

fi j x
i y j (3.34)

is equivalent to the system

dx

dt
= y,

dy

dt
= A20x

2 + A11xy + A30x
3 + A21x

2y + A40x
4 + A31x

3y

(3.35)

123



Bifurcations driven by generalist and specialist predation... Page 19 of 45    94 

in a small neighborhood of the origin, where

A20 = f20, A11 = 2e20 + f11, A30 = −e20 f11 + e11 f20 + f30,

A21 = 1

2
(−2e20 f02 + e11 f11 − 2e02 f20 + 6e30 + f02 f11 + 2 f21) ,

A40 = 1

12
(7e211 f20 + 6e11 f02 f20 + 18e11 f30 + 12e220 f02 − 12e30 f11 + 8e21 f20

+ 2e02 f11 f20 − 2e20 (3e11 f11 + 8e02 f20 + 3 f02 f11 + 6 f21) − f 202 f20
− 2 f12 f20 + 6 f02 f30 + 12 f40),

A31 = 1

6
(e211 (2e20 + f11) + 3e11 (4e30 + f02 f11 + 2 f21) − 8e20 f

2
02 + 6e30 f02

+ 2e21 f11 − 10e20 f12 − 6e12 f20 − e02(8e
2
20 + f 211 − 12 f02 f20 + 6 f30)

− 8e20e21 + 24e40 + 2 f 202 f11 + f11 f12 − 18 f03 f20 + 6 f02 f21 + 6 f31).

(3.36)

Proof Make the following near-identity transformation

x = x1 +
4∑

i+ j=2

e1i j x
i
1y

j
1 , y = y1 +

4∑
i+ j=2

e2i j x
i
1y

j
1 ,

where e1i j and e2i j are functions of ei j and fi j and we omit their detailed expressions,
system (3.34) becomes

dx1
dt

= y1,
dy1
dt

= A20x21 + A11x1y1 + A30x31 + A21x21 y1 + A40x41 + A31x31 y1,

(3.37)

where Ai j are given in (3.36). 
�

Proof of Theorem 3 (I)Under the conditions (3.3) and (β, γ ) = (β, γ ), we know that
E∗ is a degenerate equilibrium, and tr(J (E∗)) �= 0 when δ �= δ. Make the following
transformations successively:

X = u − u∗, Y = v − v∗; X = u∗
(α+u∗)2

(
u∗(η−u∗(2α+u∗))x

η+(2u∗−1)(u∗)2
+ y(α+u∗)

δ

)
,

Y = x + y, t = 1
tr(J (E∗))

τ,

where tr(J (E∗)) is shown in (3.32), system (1.2) becomes (still denote τ by t)

dx

dt
=

3∑
i+ j=2

gi j x
i y j + o(| x, y |3), dy

dt
= y +

3∑
i+ j=2

hi j x
i y j + o(| x, y |3),

(3.38)
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where g20 = h20 = 0 when η = η, and

g30 = δ(u∗)4(−η + 2αu∗ + (u∗)2)3L
t21 (α + u∗)6(η + (u∗)2)2(η + (2u∗ − 1)(u∗)2)2

,

L = (
α2η3 + α2(2u∗ − 1)(u∗)6 − η2u∗(4α3 + 7α2u∗ + 8α(u∗)3

+ 2α(α + 2)(u∗)2 + 4(u∗)4) + η(u∗)3(4α3 + α2(8u∗ + 7)u∗

+ 4α(2u∗ + 1)(u∗)2 + 4(u∗)4)
)
,

and t1 is shown in (3.32). The other coefficients are omitted here for simplicity.
According to Theorem 7.1 in chapter 2 of Zhang et al. (1992), we obtain the center

manifold as y = −h30x3 + o(| x |3), and system (3.38) restricted to the center
manifold takes the form

dx

dt
= g30x3 + o(| x |3). (3.39)

Notice that, signg30 = signL , we next consider signL . Under the condition (1.7),
we have

L = L1+L2

√
(u∗)2((3α2+α(u∗+3)u∗+3(u∗)3)2−4αu∗(α2+3α(u∗)2+(u∗)3))

8α2 ,

L1 = −36α7 (u∗)3 − 60α6 (u∗)5 − 172α6 (u∗)4 − 28α5 (u∗)7 − 340α5 (u∗)6
−316α5 (u∗)5 − 4α4 (u∗)9 − 212α4 (u∗)8 − 724α4 (u∗)7 − 276α4 (u∗)6
−44α3 (u∗)10 − 580α3 (u∗)9 − 748α3 (u∗)8 − 96α3 (u∗)7 − 172α2 (u∗)11
−748α2 (u∗)10 − 304α2 (u∗)9 − 276α (u∗)12 − 352α (u∗)11 − 144 (u∗)13 ,

L2 = 12α5 (u∗)2 + 16α4 (u∗)4 + 48α4 (u∗)3 + 4α3 (u∗)6
+80α3 (u∗)5 + 68α3 (u∗)4 + 32α2 (u∗)7 + 144α2 (u∗)6 + 32α2 (u∗)5
+76α (u∗)8 + 80α (u∗)7 + 48 (u∗)9 ,

and

L2
1 − L2

2(u
∗)2((3α2 + α(u∗ + 3)u∗ + 3(u∗)3)2 − 4αu∗(α2 + 3α(u∗)2 + (u∗)3))

= −512α2(u∗)8(α + u∗)5(α + (u∗)2)2(α3 + 6α2(u∗)2

+α(u∗)4 + 4α(u∗)3 + 4(u∗)5) < 0,

which shows that signL = signL2 = 1, that is g30 > 0.
Combining the time scale transformationwith (3.33),weknow that E∗ is an unstable

(or stable) degenerate node if 0 < δ < δ (or δ > δ).
(II) From F(u∗) = F ′(u∗) = tr(J (E∗)) = 0, we have (β, γ, δ) = (β̂, γ̂ , δ̂) and η

satisfies (3.30), where β̂, γ̂ and δ̂ are shown in (1.8).
When (β, γ, δ) = (β̂, γ̂ , δ̂), from F ′′(u∗) = 0, we have

η = η, (3.40)

where η is shown in (1.7).
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Wewill use the parameter condition (β, γ, δ, η) = (β̂, γ̂ , δ̂, η) in the following cal-
culations instead of the parameter condition (β, γ, δ, η) = (β, γ , δ, η) to simplify the
analysis. In fact, it is easy to know that these two parameter conditions are equivalent.

First, make the following transformations successively:

û = u − u∗, v̂ = v − v∗; û = x + y

u∗( δu∗
β(α+u∗)2 + 2γ (u∗)2(

η+(u∗)2
)2 − γ

η+(u∗)2 −1)
,

v̂ = x (α + u∗) ( δu∗
β(α+u∗)2 + 2γ (u∗)2(

η+(u∗)2
)2 − γ

η+(u∗)2 − 1),

then system (1.2) becomes (up to the fourth-order expansion)

dx

dt
= y +

4∑
i+ j=2

ki j x
i y j ,

dy

dt
=

4∑
i+ j=2

li j x
i y j , (3.41)

where ki j and li j are expressions of (η, α, u∗), we omit their detailed expressions.
According to Lemma 5, system (3.41) is equivalent to

dx

dt
= y,

dy

dt
= Â20x

2 + Â11xy + Â30x
3 + Â21x

2y + Â40x
4 + Â31x

3y

(3.42)

in a small neighborhood of the origin, where the coefficients Â20, ..., Â31 are expres-
sions of ki j and li j , see (3.36) for details.

Notice that,

Â20 = (η + 2(u∗)3 − (u∗)2)Ĥ
(u∗)2(η + (u∗)2)(2αu∗ − η + (u∗)2)2

= 0,

Â11 = −M̂

(u∗)2(α + u∗)(η + (u∗)2)(2αu∗ − η + (u∗)2)
,

(3.43)

where (Ĥ , M̂) = (H |u∗→u∗ , M |u∗→u∗), H and M are shown in (3.6) and (3.14),
respectively. Moreover, we can see that Â11 �= 0. In fact, by using the method of
resultant elimination (Chen andZhang 2009), we have res(Ĥ , M̂, η) = 8α2(u∗)6(α+
u∗)4(α + (u∗)2)2(3u∗ − 1), and then we have

V(Ĥ , M̂) = V(Ĥ , M̂, 3u∗ − 1),

by the condition in Theorem 3, we have 3u∗−1 �= 0, which shows that V(Ĥ , M̂) = ∅,
that is Â11 �= 0 since Ĥ = 0 when η = η.

Next, using the samemethod as in the analysis of sign(L) in the proof (I) of Theorem
3, we have

Â30 < 0 (3.44)
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under the condition (3.40).
Finally, we need to determine the signs of 5 Â30 Â21 − 3 Â11 Â40 and Â2

11 + 8 Â30 to
check the nondegeneracy. By a series of calculations, we have

5 Â30 Â21 − 3 Â11 Â40

= K

4 (u∗)6 (α + u∗)5
(
η + (u∗)2

)4 (
η + 2 (u∗)3 − (u∗)2

) (−η + 2αu∗ + (u∗)2
)3 ,

Â2
11 + 8 Â30 = J

(u∗)4 (α + u∗)2
(
η + (u∗)2

)2 (−η + 2αu∗ + (u∗)2
)2 , (3.45)

where K and J are polynomials of (u∗, α, η), we omit their complicated expressions.
First, we consider the sign of K . Substituting η = η (where η is shown in (3.40))

into K , we have

K = 2(u∗)7(α+u∗)6(α+(u∗)2)2
−α6 ×(

K1+K2u∗√(3α2+α(u∗ + 3)u∗+3(u∗)3)2−4αu∗(α2+3α(u∗)2+(u∗)3)
)
,

where K1 and K2 are polynomials of (u∗, α) and we omit their expressions. Notice
that, we have K1 > 0 (all terms positive) and K2 < 0 (all terms negative) when u∗ > 0
and α > 0. By further calculation, we have

K 2
1 − K 2

2 (u∗)2((3α2 + α(u∗ + 3)u∗ + 3(u∗)3)2 − 4αu∗(α2 + 3α(u∗)2 + (u∗)3))
= 1024α6 (1 − 3u∗)2 (u∗)9 (α + u∗)4 (α + (u∗)2)2K3,

where K3 is given in (1.9).
Notice that, K3 = 0 is equivalent to K = 0 because of K1K2 < 0. We can use

some symbolic calculations to show that K3 has zeros when 0 < u∗ < 1
3 and α > 0.

Let u∗ = 1
1000 , by using “realroot" isolation algorithm, there are two intervals of real

roots for K3, that is from K3 = 0 we have α
.= 0.000052 or α

.= 0.000532. Therefore,
5 Â30 Â21 − 3 Â11 Â40 can be zero.

Moreover,we can provide a sufficient condition such that K3 �= 0. In fact, from (1.9)
we know that K3 is a 7-order polynomial of α with coefficients are functions of u∗,
and all coefficients are positive when 1

3 > u∗ ≥ 34483039494027383649
1180591620717411303424

.= 0.029208,
that is K3 > 0.

Second, we consider the sign of J . Substituting η = η into J , we have

J = − (u∗)3(α+u∗)3(α+(u∗)2)
2α3 ×(

J1 + J2u∗√(3α2 + α(u∗ + 3)u∗ + 3(u∗)3)2 − 4αu∗(α2 + 3α(u∗)2 + (u∗)3)
)
,

where

J1 = − 81α7u∗ + 9α6(1 − 15u∗)(u∗)2 + α5(−63(u∗)2 − 57u∗ + 529)(u∗)3

+ α4(−9(u∗)3 − 105(u∗)2 + 1079u∗ + 791)(u∗)4 + α3(−39(u∗)3
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+ 655(u∗)2 + 2153u∗ + 384)(u∗)5 + α2(105(u∗)2 + 1945u∗

+ 1376)(u∗)7 + 9α(79u∗ + 192)(u∗)9 + 864(u∗)11,
J2 =27α5 + 12α4(3u∗ − 2)u∗ + α3(9(u∗)2 − 12u∗ − 163)(u∗)2 + 4α2

× (3(u∗)2 − 76u∗ − 32)(u∗)3 − α(141u∗ + 352)(u∗)5 − 288(u∗)7. (3.46)

Similarly, we have

J 21 − J 22 (u∗)2((3α2 + α(u∗ + 3)u∗ + 3(u∗)3)2 − 4αu∗(α2 + 3α(u∗)2 + (u∗)3))
= −256α3(u∗)6(3u∗ − 1)(α + u∗)(α + (u∗)2)J3,

where

J3 = α5(−3u∗ − 5) + α4(−3(u∗)2 − 30u∗ + 13)u∗ + α3(−(u∗)2 + 81u∗

+10)(u∗)2 + 4α2(9u∗ + 35)(u∗)4 + 2α(37u∗ + 32)(u∗)5 + 64(u∗)7. (3.47)

From (3.46), we know that J1 is a 7-order polynomial of α with coefficients are
functions of u∗, and the coefficients of (0–5)-order terms are positive when 0 < u∗ <
1
3 , the coefficient of 7-order term is negative, and the coefficient of 6-order term is
uncertain. By using the Descartes’ rule of signs, we know that J1 has a unique positive
real root α1, and

J1 > 0 (= 0, or < 0) if 0 < α < α1 (α = α1, or α > α1). (3.48)

Similarly, J2 (or J3) also has a unique positive real root α2 (or α3), and

J2 < 0 (= 0, or > 0) if 0 < α < α2 (α = α2, or α > α2);
J3 > 0 (= 0, or < 0) if 0 < α < α3 (α = α3, or α > α3).

(3.49)

Moreover, we can get that

−signJ = signJ1 (
signJ1+signJ2

2 , or signJ2) if 0 < α < α3 (α = α3, or α > α3), (3.50)

and α = α3 is the necessary condition of J = 0, that is

J = 0 onlyif α = α3. (3.51)

Next, we can prove αi �= α j (i, j = 1, 2, 3, i �= j). By using the method of resul-
tant elimination again, we have res(J1, J2, α) = 11080543933191684096(u∗)46(3u∗

−1)6(255(u∗)2−5u∗−24) = 0 ifu∗ = 5+13
√
145

510
.= 0.316747.Whenu∗ = 5+13

√
145

510 ,

from J1 = J2 = 0 we have α = 43
√
145−925
1530 < 0, which shows that V(J1, J2) = ∅

when 0 < u∗ < 1
3 and α > 0, that is α1 �= α2. Similarly, we can get that αi (i=1, 2,

3) are unequal to each other.
In fact, we can prove that α2 < α3 < α1 by contradiction. Assume that α3 < α1 <

α2, according to (3.48), (3.49) and (3.50), we have J < 0 if α ∈ (0, α3)∪ (α2, +∞);
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J = 0 if α = αi (i=2, 3); and J > 0 if α ∈ (α3, α2), which contradicts with (3.51).
Similarly, we can eliminate the other cases.

Therefore, from α2 < α3 < α1 and (3.50), we have that J < 0 when 0 < u∗ < 1
3

and α > 0. By Lemma 3.1 in Cai et al. (2013), we know that E∗ is a degenerate
nilpotent focus of codimension 3 under the conditions of Theorem 3(II). 
�

From Theorem 3, system (1.2) has a nilpotent focus E∗ of codimension 3, in the
following we will show that the focus type BT bifurcation of codimension 3 around
the triple equilibrium E∗ can be fully unfolded in system (1.2).

Proof of Theorem 4 We choose (β, γ, δ) as bifurcation parameters, and consider the
following unfolding system of system (1.2)

du

dt
= u(1 − u) − uv

α+u − u2(γ+λ1)

η+u2
,

dv

dt
= v(δ + λ2 − v(β+λ3)

u ),

(3.52)

where (β, γ, δ, η) = (β̂, γ̂ , δ̂, η), and λ = (λ1, λ2, λ3) is a parameter vector in a
small neighborhood of (0, 0, 0).

We next use the following two steps to transform system (3.52) to its versal unfold-
ing (Xiao and Zhang (2007); Lu and Huang (2021)).

Step 1. Using the similar transformations as Step 1 in the proof of Theorem 2.
Therefore, system (3.52) can be rewritten as

dx

dt
= y,

dy

dt
=

3∑
i+ j=0

âi j x
i y j + o(| x, y |3), (3.53)

where âi j are high-order polynomials of (u∗, α), we omit the detailed expressions.
Step 2. Removing x2-term and transforming the coefficients of x3 and x2y to -1

in system (3.53). Notice that, when λ = 0 we have â30 = Â30 < 0 ( Â30 is shown in
(3.44)) and

â21 = [3α3u∗(η2 − 6η(u∗)2 + (u∗)4) + α2(η3 + 5η2(u∗)3 + 10η2(u∗)2 − 14η(u∗)5

− 35η(u∗)4 + 5(u∗)7 + 4(u∗)6) + α(3η3u∗ + 15η2(u∗)4 + 9η2(u∗)3

− 22η(u∗)6 − 19η(u∗)5 + 11(u∗)8 − (u∗)7) + 2(3η2(u∗)5 − 8η(u∗)7

+ (u∗)9)]/[(u∗)2(α + u∗)2(η + (u∗)2)2(−η + 2αu∗ + (u∗)2)],

under the condition η = η, we have â21 |λ=0< 0. Let

t = â21
â30

τ, x = −
√−â30x1

â21
− â20

3â30
, y =

(−â30
)
3/2y1

â221
,

123



Bifurcations driven by generalist and specialist predation... Page 25 of 45    94 

then system (3.53) becomes (still denote τ by t)

dx1
dt

= y1,

dy1
dt

= b̂00 + b̂10x1 + b̂01y1 + b̂11x1y1 + b̂02y
2
1 − x31 − x21 y1 + b̂12x1y

2
1

+ b̂03y
3
1 + o(| x1, y1 |3), (3.54)

where

b̂00 = − 2â320â
3
21+27â00â230â

3
21−9â10â20â30â321

27(−â30)9/2
, b̂10 = â221

(
3â10â30−â220

)
3â330

,

b̂01 = â21
(
â21â220−3â11â30â20+9â01â230

)
9â330

, b̂11 = − 3â11â30−2â20â21
3(−â30)3/2

,

b̂02 = 3â02â30−â12â20
3â21

√
−â30

, b̂12 = − â12â30
â221

, b̂03 = − â03â230
â321

.

Further calculation shows that

∣∣∣∣∣
∂(b̂00, b̂10, b̂01)

∂(λ1, λ2, λ3)

∣∣∣∣∣
λ=0

=
ĉ51 ĉ2((u

∗)2 − η − 2(u∗)3)( (u∗)3(α+u∗)(η+(u∗)2)2(−η+2αu∗+(u∗)2)2
−ĉ3(η+2(u∗)3−(u∗)2) )

11
2

9ĉ33(u
∗)14(α + u∗)10(η + (u∗)2)14(2αu∗ + (u∗)2 − η)9

,

where

ĉ1 = η2u∗(3α3 + 10α2u∗ + 15α(u∗)3 + α(5α + 9)(u∗)2 + 6(u∗)4) − η(u∗)3(18α3

+35α2u∗ + 22α(u∗)3 + α(14α + 19)(u∗)2 + 16(u∗)4) + (u∗)5(3α3 + 4α2u∗
+11α(u∗)3 + α(5α − 1)(u∗)2 + 2(u∗)4) + αη3(α + 3u∗),

ĉ3 = α2η3 + α2(2u∗ − 1)(u∗)6 − η2u∗(4α3 + 7α2u∗ + 8α(u∗)3 + 2α(α + 2)(u∗)4)
+η(u∗)3(4α3 + 7α2u∗ + 8α(u∗)3 + 4α(2α + 1)(u∗)2 + 4(u∗)4),

and ĉ2 is a lengthy polynomial of (u∗, α, η), we omit its expression.

We next prove the non-degeneracy condition: | ∂(b̂00, b̂10, b̂01)
∂(λ1, λ2, λ3)

|λ=0 �= 0 when η = η

and 0 < u∗ < 1
3 . From (3.31), we know that η = η is the positive real root of H = 0.

Thus, we calculate the resultant “res(H , ĉ1ĉ2ĉ3, η)" as follows

res(H , ĉ1ĉ2ĉ3, η) = −169869312α6(u∗)58(3u∗ − 1)2(α + u∗)34(α + (u∗)2)15(α3

+6α2(u∗)2 + α(u∗)4 + 4α(u∗)3 + 4(u∗)5)4̂r211,

where

r̂11 = 18α4 + 84α3(u∗)2 + 19α3u∗ − 6α2(u∗)4 + 106α2(u∗)3 + 13α2(u∗)2
+3α(u∗)5 + 70α(u∗)4 + 45(u∗)6.
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Since r̂11 |u∗=0= 18α4 > 0, r̂11 |u∗= 1
3
= 1

81 (1458α
4+1269α3+429α2+71α+5) >

0, and

r̂11 |u∗= 1
3(1+u∗)

= 1
81(1+u∗)6 (1458α

4(u∗ + 1)6 + 27α3(19u∗ + 47)(u∗ + 1)4

+3α2(39(u∗)2 + 184u∗ + 143)(u∗ + 1)2 + α(70(u∗)2 + 141u∗
+71) + 5) > 0,

by Lemma 3.1 in Yang (1999), we know that r̂11 > 0, that is res(H , ĉ1ĉ2ĉ3, η) < 0.
Hence, we can get that V(H , ĉ1ĉ2ĉ3) = ∅, which shows that ĉ1ĉ2ĉ3 �= 0, that is,

| ∂(b̂00, b̂10, b̂01)
∂(λ1, λ2, λ3)

|λ=0 �= 0 when η = η and 0 < u∗ < 1
3 .

Moreover, by simple calculation, we have

b̂11 |λ=0=
d̂2(η + 2(u∗)3 − (u∗)2)( (u∗)3(α+u∗)(η+(u∗)2)2(2αu∗+(u∗)2−η)2

−d̂1(η+2(u∗)3−(u∗)2) )3/2

3(u∗)5(α + u∗)2(η + (u∗)2)2(2αu∗ + (u∗)2 − η)3
, (3.55)

where d̂1 and d̂2 are shown in (D1). We can prove 0 < b̂11 |λ=0< 2
√
2, the detailed

proof is shown in Appendix 1.
Therefore by the results in Dumortier et al. (1991), we know that system (3.54) is

the universal unfolding of focus type degenerate BT bifurcation of codimension 3, that
is system (3.54) (or system (1.2)) can undergo a focus type degenerate BT bifurcation
of codimension 3 in a small neighborhood of E∗. 
�

4 Numerical simulations

In this section, by Matcont software, we provide some numerical simulations to
illustrate the existence of three limit cycles in Fig. 3, the existence of cusp type BT
bifurcation in Figs. 4 and 5, the existence of focus type BT bifurcation of codimension
3 in Figs. 6 and 7, and explore the effect of generalist predation in model (1.2) with
γ �= 0 on the dynamics of model (1.2) with γ = 0, especially on the oscillations
dynamics driven by specialist predation in Fig. 8.

4.1 Bifurcation diagrams and phase portraits

In Fig. 3, we simulate the bifurcation diagram and phase portrait of three limit cycles
of system (1.2). From Fig. 3 we can get that there are three limit cycles for system
(1.2) when β ∈ (0.5082, 0.5093), the middle limit cycle is stable and the other two
limit cycles are unstable, and there is a stable positive equilibrium E1 near the origin.

In Fig. 4, we show the bifurcation diagram of cusp type BT bifurcation for system
(1.2). In details, in Fig. 4a, we fix (α, η, δ) = (0.022424, 0.000264, 0.607066) and
show the biparametric bifurcation diagram in (γ, β) plane. In Fig. 4b, we further
fix β = 0.736 and show the existence of saddle-node bifurcation of limit cycles in
(γ, u) plane. These bifurcation curves divide the (γ, β) plane into several regions,
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Fig. 3 a Bifurcation diagram of system (1.2) in β − v plane with (α, γ, δ, η) = (0.016, 0.004167,
0.65, 0.0000003). b Three limit cycles where β = 0.5086 and the other parameters are same as (a). The
red (or blue) lines represent stable (or unstable) equilibrium or limit cycle (color figure online)

system (1.2) will undergo a series of bifurcations and exhibit complex dynamics when
parameters vary in these regions.

In Fig. 5, we give the corresponding phase portraits for system (1.2) when (γ, β)

locate in different regions of Fig. 4a. Notice that, there is always an unstable boundary
equilibrium Eb. In Fig. 5a–f, β = 0.736 and γ increases from 0.0185 to 0.024; while
in (g)-(j), β = 0.755 and γ increases from 0.0185 to 0.024. The other parameters
are the same as those in Fig. 4a. Table 1 shows the detailed dynamics and bifurcation
phenomena in Fig. 5. From Fig. 5 and Table 1, as parameters vary, we observe the
following results:

(I) in case (a)-(f), system (1.2) undergoes successively saddle-node, repelling homo-
clinic cycle, attracting Hopf, degenerate Hopf and saddle-node bifurcations;

(II) in case (g)-(j), system (1.2) undergoes successively saddle-node, repelling
homoclinic cycle and repelling Hopf bifurcations, which actually correspond to the
repelling BT bifurcation of codimension 2.

In Fig. 6, we show the biparametric bifurcation diagram of focus type BT bifurca-
tion of codimension 3 for system (3.52) in (λ3, λ1) plane by usingMatcont program. In

details, in Fig. 6a, we fix (α, η, β, γ, δ, λ2) = ( 15 ,
17−2

√
61

125 , 1
2 ,

8(4
√
61−29)
125 , 9−√

61
5 ,

− 1
50 ). Similarly, in Fig. 6b, we fix (α, η, β, γ, δ, λ2) = ( 3

10 ,
199−2

√
8689

1620 , 5
14 ,

167
√
8689−15064
4050 , 102−√

8689
35 , 1

100 ). These bifurcation curves divide the (λ3, λ1) plane
into several regions, system (3.52) will undergo a series of bifurcations and exhibit
complex dynamical behaviors when parameters vary in these regions.

In Fig. 7, we give the corresponding phase portraits for system (3.52) when (λ3, λ1)

locate in different regions ofFig. 6a, b.Notice that, there is always anunstable boundary
equilibrium Eb. In Fig. 7a–g, λ1 = 0.001 and λ3 increases from−0.04 to−0.0337, the
other parameters are the same as Fig. 6a. In Fig. 7h–j, (λ1, λ3) = (0.0003, 0.01626),
(λ1, λ3) = (0.0003, 0.0164) and (λ1, λ3) = (0.00059, 0.0184), respectively, the
other parameters are the same as Fig. 6b. Table 2 shows the detailed dynamical behav-
iors and bifurcation phenomena in Fig. 7. From Fig. 7 and Table 2, as parameters vary,
we observe the following results:
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Table 1 Dynamics and bifurcations in Fig. 5, where s© (or u©) represents stable (or unstable) equilibria and
limit cycles

Fig. 5 Equilibria Limit cycles Bifurcation

(a) E3 s© 0 No

(b) E1 s© E2 u© E3 s© 0 Saddle-node

(c) E1 s© E2 u© E3 s© 1: u© Homoclinic

(d) E1 s© E2 u© E3 u© 2: outer u© inner s© Hopf

(e) E1 s© E2 u© E3 u© 0 Degenerate Hopf

(f) E1 s© 0 Saddle-node

(g) E3 s© 0 No

(h) E1 s© E2 u© E3 s© 0 Saddle-node

(i) E1 s© E2 u© E3 s© 1: u© Homoclinic

(j) E1 s© E2 u© E3 u© 0 Hopf

Fig. 4 Bifurcation diagrams of cusp type BT bifurcation for system (1.2) in (γ, β) and (γ, u) plane with
(α, η, δ) = (0.022424, 0.000264, 0.607066). a The red solid and dashed lines denote the supercritical
and subcritical Hopf bifurcation, respectively; the blue lines denote the saddle-node bifurcation; BT and
GH are the BT point and degenerate Hopf bifurcation point, respectively. b β = 0.736, the red and blue
lines denote the stable and unstable equilibrium or oscillation, respectively (color figure online)

(I) In case (a)–(g), system (3.52) undergoes successively degenerate Hopf, saddle-
node, repelling big homoclinic cycle, repelling small homoclinic cycle, repelling Hopf
and saddle-node bifurcations;

(II) In case (h)–(j), system (3.52) undergoes successively attracting Hopf and
attracting homoclinic bifurcations.

Moreover, it is easy to know that Fig. 7d–g actually implies the existence of the
repelling BT bifurcation of codimension 2; and Fig. 7h–j implies the existence of the
attracting BT bifurcation of codimension 2.
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Fig. 5 Phase portraits of system (1.2) corresponding to Fig. 4. a–f β = 0.736 and γ increases from 0.0185
to 0.024; g–j β = 0.755 and γ increases from 0.0185 to 0.024. The detailed dynamics are shown in Table 1
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Table 2 Dynamics and bifurcations in Fig. 7, where s© (or u©) represents stable (or unstable) equilibria and
limit cycles

Fig. 7 Equilibria Limit cycles Bifurcation

(a) E1 s© 0 No

(b) E1 s© 2: outer s© inner u© Degenerate Hopf

(c) E1 s© E2 u© E3 u© 2: outer s© inner u© Saddle-node

(d) E1 s© E2 u© E3 u© 1: s© Homoclinic

(e) E1 s© E2 u© E3 u© 2: outer s© inner u© Homoclinic

(f) E1 u© E2 u© E3 u© 1: s© Hopf

(g) E3 u© 1: s© Saddle-node

(h) E1 s© E2 u© E3 s© 0 No

(i) E1 s© E2 u© E3 u© 1: s© Hopf

(j) E1 s© E2 u© E3 u© 0 Homoclinic

Fig. 6 Bifurcation diagrams of focus type BT bifurcation of codimension 3 for system (3.52) in (λ3, λ1)

plane. a (α, η, β, γ, δ, λ2) = ( 15 , 17−2
√
61

125 , 1
2 ,

8(4
√
61−29)
125 , 9−√

61
5 , − 1

50 ); b (α, η, β, γ, δ, λ2) =
( 3
10 , 199−2

√
8689

1620 , 5
14 , 167

√
8689−15064
4050 , 102−√

8689
35 , 1

100 ). The red solid and dashed lines denote the
supercritical and subcriticalHopf bifurcation, respectively; the blue lines denote the saddle-node bifurcation;
BT ,CP and GH are the BT point, cusp point, and degenerate Hopf bifurcation point, respectively (color
figure online)

4.2 The impact of generalist predation on oscillations

In Fig. 8a, for model (1.2) with γ = 0, i.e., no generalist predation, there exists a
stable limit cycle enclosing an unstable positive equilibrium E0; for model (1.2) with
γ ≥ 0, we plot the bifurcation diagram in (γ − u) plane in Fig. 8c, from which
we can see that the amplitude of prey cycle density decreases as γ (the density of
generalist predators) increases. Moreover, a sufficiently large density of generalist
predators will stabilize the stable limit cycle to a stable equilibrium, which answers
the famous Fennoscandia phenomenon (Hanski et al. 1991): why can a quite regular
population cycle of microtine rodents in northern Fennoscandia not be observed in
southern Fennoscandia?
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Fig. 7 Phase portraits of system
(3.52) corresponding to Fig. 6.
a–g λ1 = 0.001 and λ3
increases from −0.04 to
−0.0337; h
(λ1, λ3) = (0.0003, 0.01626); i
(λ1, λ3) = (0.0003, 0.0164); j
(λ1, λ3) = (0.00059, 0.0184).
The detailed dynamics are
shown in Table 2
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Fig. 8 a One stable limit cycle of system (1.2) with γ = 0 (i.e., no generalist predators). b Two limit cycles
(the outer one is stable) of system (1.2) with γ = 0. c Bifurcation diagram of system (1.2) with γ ≥ 0 in
(γ − u) plane, where η = 0.002 and the other parameters are the same as (a). d Bifurcation diagram of
system (1.2) with γ ≥ 0 in (γ − u) plane, where η = 0.0000435 and the other parameters are the same as
(b)

In Fig. 8b, for model (1.2) with γ = 0, there exists two nested limit cycles, the outer
one is stable, enclosing a stable positive equilibrium E0; for model (1.2) with γ ≥ 0,
we plot the bifurcation diagram in (γ −u) plane in Fig. 8d, fromwhich we observe that
the amplitude of the unstable prey cycle decreases, while the amplitude of the stable
prey cycle increases first and then decreases as γ (the proxy for the constant density
of generalist predators) increases. Moreover, a sufficiently large density of generalist
predators will stabilize these two limit cycles to a stable equilibrium, which further
interprets Fennoscandia phenomenon.

5 Discussion

In this paper, we revisited a predator–prey model with two kinds of predations: spe-
cialist and generalist, where the density of generalist predators was assumed to be
a constant. This model was proposed by Hanski et al. (1991) and studied by Lind-
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ström (1993) and Xiao and Zhang (2007). By using the normal form theory and some
algebraic and symbolic computation methods (Chen and Zhang 2009; Yang 1999;
Gelfand et al. 1994), such as resultant elimination, pseudo-division, Complete Dis-
criminationSystemof polynomials andSturm’s theorem, etc.,we showed the existence
of a nilpotent cusp of codimension 4 or a nilpotent focus of codimension 3 for different
parameter values, and model (1.2) can undergo cusp type (or focus type) degenerate
BT bifurcations of codimension 4 (or 3) as the parameters vary. Our results provide
a rigorous mathematical confirmation of numerical observations and a mathematical
generalization of special cases in Hanski et al. (1991); Lindström (1993); Xiao and
Zhang (2007).

Compared tomodel (1.2) with only specialist predator, i.e., (1.2) withm = 0, where
there exist atmost one positive equilibrium,Hopf bifurcationwith codimension atmost
2, and no BT bifurcation (Gasull et al. 1997; Hsu andHuang 1999; Sáez andGonzález-
Olivares 1999). Our results about (1.2) with m > 0 indicate that generalist predation
can induce more complex dynamical behaviors and bifurcation phenomena, such as
three small-amplitude limit cycles enclosing one positive steady state, one or two
large-amplitude limit cycles enclosing one or three positive steady states, three limit
cycles appearing in a Hopf bifurcation of codimension 3 and dying in a homoclinic
bifurcation of codimension 3, cusp type (or focus type) degenerate BT bifurcations of
codimension 4 (or 3).

Our results imply that generalist predation can stabilize the limit cycle driven by
specialist predators to a stable equilibrium, which answers Fennoscandia phenomenon
(Hanski et al. 1991). The scientific value of this work is to interpret the puzzling
Fennoscandia observation in the mathematical perspective and to rigorously show
all possibilities of predator–prey limit cycles in the presence of both generalist and
specialist predators.
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Appendix A: The proof of Theorem 1

In this Appendix, we first show that E∗ is a cusp of codimension at most 4 in Theorem
1. We need to show that

V(M, M1, M2) ∩ �24 = ∅, (A1)

where �24 is shown in (3.21), and the other notations are shown in Theorem 1.
We denote “V( f1, f2, ..., fn)” as the set of common zeros of f1, f2, ..., fn ,

“res( f1, f2, x)” as the resultant of f1 and f2 with respect to x , “prem( f1, f2, x)” as
the pseudo-remainder of f1 divided by f2 with respect to x , and “lcoeff( f1, x)” as
the leading coefficient of f1 with respect to x .
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Step 1. Simplify the algebraic variety V(M, M1, M2) ∩ �24.
By eliminating variables in the order η ≺ α, we have

res(M, M1, η) = 1024α2u20∗ (α + u∗)8(α + u2∗)4r11,
res(M, M2, η) = −262144α3u34∗ (3u∗ − 1)(α + u∗)13(α + u2∗)7r12,
res(r11, r12, α) = 3676258543978604182634496000(u∗ − 3)8(u∗ − 1)7u175∗

× (3u∗ − 1)9r21r22, (A2)

where r11 and r12 are polynomials of (u∗, α), r21 and r22 are 17- and 54-order poly-
nomials of u∗, and we omit their complicated expressions.

Notice that, lcoeff(M, η) = α(α + 3u∗) > 0 and lcoeff(r11, α) = 27u4∗ + 86u3∗ −
112u2∗ − 8u∗ − 8 < 0 in �24. Similarly, from Theorem 1 in Chen and Zhang (2009)
we can get that

V(M, M1, M2) ∩ �24 = V(M, M1, M2, r11, r12, r21r22) ∩ �24. (A3)

Step 2. Simplify the algebraic variety V(r11, r12, r21r22) ∩ �24.
First, by using the Maple command “realroot′′, we know that there exist one

root u∗0 ∈ I0 for realroot(r21, 1/1010), and four roots u∗i ∈ Ii (i=1,...,4) for
realroot(r22, 1/1010) in �24, such that r21 |u∗=u∗0= r22 |u∗=u∗i = 0 (i=1,...,4), where

u∗0
.= 0.005234, u∗1

.= 0.017194, u∗2
.= 0.022588,

u∗3
.= 0.070624, u∗4

.= 0.2989611526,
(A4)

and

I0 = [ 1581734929692734191289
302231454903657293676544 ,

395433732423183547829
75557863725914323419136 ],

I1 = [ 20786838110638649144145
1208925819614629174706176 ,

41573676221277298288317
2417851639229258349412352 ],

I2 = [ 101727566390447
4503599627370496 ,

406910265561815
18014398509481984 ],

I3 = [ 5336187978172332291869
75557863725914323419136 ,

10672375956344664583765
151115727451828646838272 ],

I4 = [ 26296901083398796093022208 ,
5259380216687
17592186044416 ].

(A5)

Second, by using pseudo-division we can get nine pseudo-remainders

w1 = prem(r12, r11, α), w2 = prem(r11, w1, α),

wi = prem(wi−2, wi−1, α), (i = 3, ..., 9),
(A6)

where wi (i=1,...,9) are (10-i)-order functions of α, and the coefficients are functions
of u∗.

Notice that, lcoeff(r11, α) �= 0, and by using Sturm’s theorem we can get that
lcoeff(wi , α) �= 0, (i=1,...,9) when u∗ ∈ ∪4

j=0 I j .

Combining above analysis, we can get that in ∪4
j=0 I j , V(r12, r11) �= ∅ and

V(r12, r11) = V(r11, w1) = V(w1, w2) = ... = V(w8, w9) ⊆ V(w9). (A7)
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From (A6), we know that w9 is a linear function of α which has a unique root, and
from w9 = 0 we can get that α = α0(u∗). By using Sturm’s theorem again, we can
show that α0(u∗) is a well defined monotone function and has no roots in Ii (i=0,...,4).
Therefore, we can obtain that

α0(u∗0)
.= 0.002379, α0(u∗1)

.= 0.022203, α0(u∗2)
.= 0.015347,

α0(u∗3)
.= 0.048550, α0(u∗4)

.= −0.199313,
(A8)

which show that when u∗ = u∗4, we have α0(u∗) < 0, that is V(w9, r22) ∩ �24 = ∅.
So that, we only need to consider the cases u∗ = u∗i (i=0,...,3).

Notice that, (u∗, α0(u∗)) ∈ �21. In the following,wefirst consider themonotonicity

of α1 and α2 respect to u∗ where u∗ ∈ (0, 3−√
6

12 ]. Through simple calculation, we can
get that

dα1
du∗ = 36u∗−1−96u3∗−72u2∗+(1−16u2∗−16u∗)

√
48u2∗−24u∗+1

2(2u∗+1)2
√

48u2∗−24u∗+1
� α11+α12

√
48u2∗−24u∗+1

2(2u∗+1)2
√

48u2∗−24u∗+1
,

moreover, we have α2
11 − α2

12(48u
2∗ − 24u∗ + 1) < 0 (= 0, or > 0) if

0 < u∗ < 0.035607 (u∗ = 0.035607, or 0.035607 < u∗ ≤ 3−√
6

12 ), that is

sign dα1
du∗ = signα12 (

signα11+signα12
2 , or signα11)if0 < u∗ < 0.035607 (u∗ =

0.035607, or 0.035607 < u∗ ≤ 3−√
6

12 ). Further, we have α11 > 0 when 0.035607 ≤
u∗ ≤ 3−√

6
12 , and α12 > 0 when 0 < u∗ ≤ 0.035607. Therefore, we can get that

dα1
du∗ > 0 when u∗ ∈ (0, 3−√

6
12 ]. Similarly, we can show that dα2

du∗ > 0 (= 0, < 0)

when 0 < u∗ < 0.035607 (u∗ = 0.035607, or 0.035607 < u∗ ≤ 3−√
6

12 ).
Therefore, from the above analysis, we know that α1 and α2 are monotone when

u∗ ∈ ∪2
j=0 I j , and we have

α1(u∗0)
.= 0.000058, α2(u∗0)

.= 0.004905, α1(u∗1)
.= 0.000722,

α2(u∗1)
.= 0.013614, α1(u∗2)

.= 0.001348, α2(u∗2)
.= 0.016358.

(A9)

Combining (A4), (A8) and (A9), when u∗ = u∗i (i=0, 2, 4), we have
(u∗i , α0(u∗i )) /∈ �21, that is V(w9, r21r22) ∩ �24 = ∅, i.e., V(r11, r12, r21r22) ∩
�24 = ∅. When u∗ = u∗i (i=1, 3), we have (u∗i , α0(u∗i )) ∈ �21, that is
V(w9, r21r22) ∩ �24 = V(w9, r22) ∩ �24 = {(u∗, α) : u∗ = u∗i and α =
α0(u∗i ), i = 1, 3} �= ∅, then we can get that

V(r11, r12, r21r22) ∩ �24 = V(r11, r12, r22) ∩ �24

= ∪i=1,3{(u∗, α) : u∗ = u∗i and α = α0(u∗i )}, (A10)

where u∗i and α0(u∗i ) are shown in (A4) and (A8), respectively.
Summarizing the above analysis and from (A3) we can get that

V(M, M1, M2, r11, r12, r21r22) ∩ �24

123



   94 Page 36 of 45 Y. Zhang et al.

= V(M, M1, M2, r11, r12, r22) ∩ �24

= V(M, M1, M2) ∩ ( ∪i=1,3
{
(u∗, α) : (u∗, α) = (u∗i , α0(u∗i ))

}) ∩ �24

� ∪i=1,3Vi, (A11)

where

Vi = V(M, M1, M2) ∩ {
(u∗, α) : (u∗, α) = (u∗i , α0(u∗i ))

} ∩ �24. (A12)

Step 3. Prove that V1 = ∅ in (A11).
First, we simplify the algebraic variety V(M, M1) in (A11). By using pseudo-

division again, we can get one pseudo-remainder

w10 = prem(M1, M, η), (A13)

where w10 is 1-order function of η, and the coefficients are functions of (u∗, α). Then
we can get that

V(M1, M) = V(M, w10) ⊆ V(w10). (A14)

From (A13), we know that w10 is a linear function of η which has a unique root,
and from w10 = 0 we can get that η = η00(u∗, α), where

η00(u∗, α)

= [u2∗(−α10(27u3∗ − 130u2∗ + 64u∗ + 68) − α9(231u3∗ − 1358u2∗ + 882u∗
+276)u∗ − 2α8(252u3∗ − 2567u2∗ + 1931u∗ + 180)u2∗ + 2α7(438u3∗ + 3625u2∗
−3981u∗ + 128)u3∗ + 2α6(2385u3∗ − 2701u2∗ − 2579u∗ + 618)u4∗ + 2α5

×(1311u3∗ − 14171u2∗ + 5013u∗ + 402)u5∗ − 6α4(1956u3∗ + 3817u2∗ − 3453u∗
+132)u6∗ − 6α3(2406u3∗ − 1897u2∗ − 1827u∗ + 144)u7∗ + 9α2(777u2∗ + 2032u∗
−18)u9∗ + 27α(547u∗ + 80)u11∗ + 3240u13∗ )]/[α10(27u3∗ − 238u2∗ + 584u∗
−396) + α9(123u3∗ − 1438u2∗ + 3850u∗ − 2396)u∗ − 2α8(48u3∗ + 1063u2∗
−4771u∗ + 3060)u2∗ + 2α7(−654u3∗ + 2495u2∗ + 2993u∗ − 3384)u3∗ − 2α6

×(477u3∗ − 8865u2∗ + 8669u∗ − 1022)u4∗ + 2α5(2565u3∗ + 2883u2∗ − 16321u∗
+7254)u5∗ + 18α4(360u3∗ − 1805u2∗ − 295u∗ + 852)u6∗ − 54α3(162u3∗
+553u2∗ − 489u∗ − 104)u7∗ − 27α2(507u2∗ − 540u∗ − 622)u9∗ + 81α(67u∗
+240)u11∗ + 9720u13∗ ],

(A15)

and notice that
(
u∗1, α0(u∗1), η00

(
u∗1, α0(u∗1)

)) ∈ �24.
Denote η00(u∗, α) � η001

η002
, where η001 and η002 are polynomials of (u∗, α), and

we know that (u∗1, α0(u∗1)) ∈ I1 × [ 2220321857376
1014

, 2220332345838
1014

] � [u00, u01] ×
[α00, α01], where I1 is shown in (A5).

We first prove that η002 �= 0 in the region [u00, u01] × [α00, α01] by the following
2 substeps.

Step 3.1. Prove that η002 has no critical point in the interior of the region.

123



Bifurcations driven by generalist and specialist predation... Page 37 of 45    94 

The corresponding first-order partial derivatives of η002 as ∂η002
∂u∗ and ∂η002

∂α
,

where we omit the detailed expressions. By using Sturm’s theorem, we can get
that res

( ∂η002
∂u∗ ,

∂η002
∂α

, α
)
has no root in [u00, u01], and we have lcoeff( ∂η002

∂u∗ , α) =
81u∗2 − 476u∗ + 584 �= 0. Then, we can get that

V
(∂η002

∂u∗
,

∂η002

∂α

)
= V

(∂η002

∂u∗
,

∂η002

∂α
, res

(∂η002

∂u∗
,

∂η002

∂α
, α

)) = ∅

in [u00, u01], which shows that η002 has no critical point in the interior of [u00, u01]×
[α00, α01], moreover, the maximum and minimum of η002 can only be achieved on the
boundary of this region.

Step 3.2. Prove that η002 is monotone and rootless at the boundary of the region.
By using Sturm’s theorem again, we can get that

η002 |u∗=u00 , η002 |u∗=u01 ,
d(η002 |u∗=u00)

dα
,

d(η002 |u∗=u01)

dα

have no roots in [α00, α01], and

η002 |α=α00 , η002 |α=α01 ,
d(η002 |α=α00)

du∗
,

d(η002 |α=α01)

du∗

have no roots in [u00, u01].
Hence, by calculating the values of four vertices of rectangular field [u00, u01] ×

[α00, α01], we can get that η002 ∈ [−1.719412 × 10−16,−1.676935 × 10−16] in
[u00, u01] × [α00, α01], which shows that η002 is well defined in this region.

Second, by using the same techniques, we analyse the value range of η00(u∗, α) in
[u00, u01] × [α00, α01]. Through a series of calculations, we have

∂η00(u∗, α)
∂α

= 4u3∗η003
η2002

,
∂η00(u∗, α)

∂u∗ = −2u∗(α+u∗)η004
η2002

,

where η003 and η004 are polynomials of (u∗, α), and lcoeff(η003, α) = 729u6 −
9207u5 + 45790u4 − 109538u3 + 131768u2 − 74136u + 13408 �= 0 in [u00, u01].
By using Sturm’s theorem again, we can get that res(η003, η004, α) has no real roots
in [u00, u01].

Combining the above analysis, we have

V(η003, η004) = V(η003, η004, res(η003, η004, α)) = ∅

in [u00, u01]×[α00, α01], which shows that η00(u∗, α) has no critical point in the inte-
rior of [u00, u01] × [α00, α01]. Therefore, the maximum and minimum of η00(u∗, α)

can only be achieved on the boundary of this region.
By using Sturm’s theorem, we can get that

η00(u00, α), η00(u01, α),
d(η00(u00, α))

dα
,

d(η00(u01, α))

dα
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have no roots in [α00, α01], moreover, d(η00(u00, α))
dα

< 0 and d(η00(u01, α))
dα

< 0 in
[α00, α01]. Similarly,

η00(u∗, α00), η00(u∗, α01),
d(η00(u∗, α00))

du∗
,

d(η00(u∗, α01))

du∗

have no roots in [u00, u01], moreover, d(η00(u∗, α00))
du∗ > 0 and d(η00(u∗, α01))

du∗ > 0 in
[u00, u01].

Hence, the minimum and maximum of η00(u∗, α) in [u00, u01] × [α00, α01] are
η00(u00, α01)

.= 0.000920 and η00(u01, α00)
.= 0.000943, respectively. There-

fore, we have η00(u∗1, α0(u∗1)) ∈ [0.000920, 0.000943]. Similarly, we have η0
.=

0.000285 in [u00, u01]. Therefore, we can get that η00(u∗1, α0(u∗1)) > η0. That is,(
u∗1, α0(u∗1), η00

(
u∗1, α0(u∗1)

))
/∈ �24.

Summarizing the above analysis, we can obtain that

V1 = V(M, M1, M2) ∩ {
(u∗, α) : (u∗, α) = (u∗1, α0(u∗1))

} ∩ �24

⊆ V(w10, M2) ∩ {
(u∗, α) : (u∗, α) = (u∗1, α0(u∗1))

} ∩ �24
= V(M2) ∩ {

(u∗, α, η) : (u∗, α, η) = (
u∗1, α0(u∗1), η00(u∗1, α0(u∗1))

)}
∩�24

= ∅.

Step 4. Prove that V3 = ∅ in (A11).
In the following, we use the same method as Step 3 to analyse V3. We first simplify

the algebraic variety V(M, M1) in (A11), from (A13) and (A14) we know that

V(M, M1) ∩ {
(u∗, α) : (u∗, α) = (u∗3, α0(u∗3))

} ∩ �24

⊆ V(w10) ∩ {
(u∗, α) : (u∗, α) = (u∗3, α0(u∗3))

} ∩ �24

= {
(u∗, α, η) : (u∗, α, η) = (

u∗3, α0(u∗3), η00(u∗3, α0(u∗3))
)} ∩ �24. (A16)

We next prove that
(
u∗3, α0(u∗3), η00

(
u∗3, α0(u∗3)

)) ∈ �24. In fact, we have
(u∗3, α0(u∗3)) ∈ I3×[ 48549816647411

1015
, 48549816647417

1015
] � [u10, u11]×[α10, α11], where

I3 is shown in (A5).
Similarly, we can also show that η00(u∗, α) is well defined and

η00(u∗3, α0(u∗3)) ∈ [0.00026494773853172, 0.00026494773853175] (A17)

in [u10, u11] × [α10, α11], and η0
.= 0.004283 in [u10, u11]. Hence, we can get that

η00(u∗3, α0(u∗3)) < η0. That is,
(
u∗3, α0(u∗3), η00

(
u∗3, α0(u∗3)

)) ∈ �24.
Therefore, we can obtain that

V(M, M1) ∩ �24 ⊇ {
(u∗, α, η) : (u∗, α, η)

= (
u∗3, α0(u∗3), η00(u∗3, α0(u∗3))

)} ∩ �24 �= ∅,
(A18)

then we can get that E∗ is a cusp of codimension at least 4.
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Second, we continue to analyze the algebraic variety V(M, M2) in (A11), by using
pseudo-division once again, we can get one pseudo-remainder,

w11 = prem(M2, M, η), (A19)

where w11 is 1-order function of η, and the coefficients are functions of (u∗, α). Then
we have

V(M2, M) = V(M, w11) ⊆ V(w11), (A20)

and from w11 = 0 we can get a unique root η = η01(u∗, α).
Similarly, we can also show that η01(u∗, α) is well defined and η01(u∗3, α0(u∗3)) ∈

[0.014132345, 0.014132346] in [u10, u11] × [α10, α11]. Hence, we can get that
η01(u∗3, α0(u∗3)) > η0, that is,

(
u∗3, α0(u∗3), η01

(
u∗3, α0(u∗3)

))
/∈ �24.

Therefore, we can obtain that

V3 = V(M, M1, M2) ∩ {
(u∗, α) : (u∗, α) = (u∗3, α0(u∗3))

} ∩ �24

⊆ V(w11, M1) ∩ {
(u∗, α) : (u∗, α) = (u∗3, α0(u∗3))

} ∩ �24
= V(M1) ∩ {

(u∗, α, η) : (u∗, α, η) = (
u∗3, α0(u∗3), η01(u∗3, α0(u∗3))

)}
∩�24

= ∅.

Combining the above analysis and from (A3) and (A11), we can get that

V(M, M1, M2) ∩ �24 = ∅, V(M, M1) ∩ �24 �= ∅,

which shows that E∗ is a cusp of codimension exactly 4.
It is easy to know that �25 ⊆ V(M, M1) ∩ �24, where �25 is shown in (1.5), and

when (u∗, α, η) ∈ �25 we have M = M1 = 0 and M2 �= 0, that is E∗ is a cusp of
codimension exactly 4.

Appendix B: The proof of d20 < 0 and d41 < 0 in (3.26) of Theorem 2

From (3.26), when μ = 0 we have

d20 = (η+2u3∗−u2∗)d200
u2∗(η+u2∗)(−η+2αu∗+u2∗)2

,

d41 = d410
144u5∗(α+u∗)4(η+u2∗)4(η+2u3∗−u2∗)(η−2αu∗−u2∗)d200

3 ,
(B1)

where

d200 = αη2 − 3α2ηu∗ + α2u3∗ − αηu3∗ − 3αηu2∗ + 3αu5∗ − 3ηu4∗ + u6∗,

123



   94 Page 40 of 45 Y. Zhang et al.

and we omit the expression of d410. Notice that, (u∗, α, η) ∈ �25, �25 is shown
in (1.5), that is (u∗, α) = (u∗3, α0(u∗3)) ∈ I3 × [ 48549816647411

1015
, 48549816647417

1015
] �

[u10, u11] × [α10, α11], and η = η00(u∗, α), where η00(u∗, α) is shown in (A15).
We first calculate signd200. Substitute the parameter η = η00(u∗, α) into d200, we

can get that d200 |η=η00(u∗, α)= 4u3∗α(u∗+α)2d201
η2002

, where d201 is a polynomial of (u∗, α),

we omit the detailed expression. Therefore, we have

sign
(
d200 |η=η00(u∗, α)

)
= signd201.

By using the same method in Steps 3.1–3.2 of Appendix 1, we can get that d201 ∈
[4.7852072357 861× 10−16, 4.7852072357899 × 10−16] in [u00, u01] × [α00, α01].
Moreover, combining condition (3.5), we know that d20 < 0 for small μ.

Similarly, we can get that d410 |η=η00(u∗, α)= −16384u∗21α(α+u∗)11d411
η12002

, where d411 is

a polynomial of (u∗, α), and we omit the detailed expression. Therefore, we have

sign
(
d410 |η=η00(u∗, α)

)
= −signd411,

moreover, we can get that d411 ∈ [2.113486566436 × 10−96, 2.113486566447 ×
10−96] in [u00, u01] × [α00, α01], which shows that d41 < 0 for small μ.

Appendix C: The proof of nondegeneracy condition (3.29) of Theorem
2

In order to show that the nondegeneracy condition (3.29) holds when (u∗, α, η) ∈
�25, where �25 is shown in (1.5), we just need to show that f 1 f 21 f 22 �=
0. Notice that, �25 ⊆ V(M, M1, r11, r12, r22) ∩ �24, so that we first prove
V(M, M1, r11, r12, r22, f 1) ∩ �24 = ∅.

By eliminating variables in the order η ≺ α ≺ u∗, we have

res(M, f 1, η) = 18239578490850508800α10u96∗ (3u∗ − 1)6(α + u∗)40

(α + u2∗)21r31,
res(r11, r31, α) = C0(u∗ − 3)18(u∗ − 1)17u407∗ (u∗ + 5)(3u∗ − 1)18r32,

res(r22, r32, u∗) �= 0,

where C0 is a positive constant, r31 and r32 are polynomials of (u∗, α) and u∗, respec-
tively, and we omit their complicated expressions.

From Appendix 1 Step 1, we know that lcoeff(M, η) > 0 and lcoeff(r11, α) < 0
in �25. Similarly, from Theorem 1 in Chen and Zhang (2009) we can get that

V(M, M1, r11, r12, r22, f 1) ∩ �24

= V(M, M1, r11, r12, r22, f 1, r31, r32) ∩ �24 = ∅,
(C1)
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which shows that f 1 �= 0 in �25.
Second, we prove V(M, M1, r11, r12, r22, f 21 f 22) ∩ �24 = ∅. Similarly, by

eliminating variables in the order η ≺ α ≺ u∗, we have

res(M, f 21 f 22, η) = 21743271936α7u48∗ (3u∗ − 1)3(α + u∗)21(α + u2∗)11r41,
res(r11, r41, α) = 3676258543978604182634496000(u∗ − 3)8(u∗ − 1)7u175∗

(3u∗ − 1)9r42r22 = 0,

res(r22, r42, u∗) �= 0,

where r41 and r42 are polynomials of (u∗, α) and u∗, respectively, and we omit their
complicated expressions. From V(r11, r41) �= ∅, we have

V(M, f 21 f 22) ∩ �24 = (
V(M, f 21) ∪ V(M, f 22)

) ∩ �24 �= ∅. (C2)

By using pseudo-division, we can get that

prem(M, f 21, η) = −u∗ (α + u∗) 2
(
α + u2∗

) (
u2∗ − 3η

)
,

and from (3.29) we have lcoeff( f 21, η) = α �= 0, then we can get that

V(M, f 21) = V( f 21, (u2∗ − 3η)) ⊆ {η : η = u2∗
3 }.

Moreover, from (A17), when u∗ ∈ [u10, u11] we have u2∗
3

.= 0.00166258 >

η00(u∗3, α0(u∗3)), which shows that

V(M, M1, r11, r12, r22, f 21) ∩ �24

= V(M, M1, r11, r12, r22, f 21, (u
2∗ − 3η)) ∩ �24 = ∅.

(C3)

By using pseudo-division again, we can get that

prem( f 22, M, η) = − 9216u19∗ (α+u∗)6
(
α+u2∗

)
4

α7(α+3u∗)11 w12,

where w12 is 1-order function of η, and the coefficients are functions of (u∗, α). Then
we can get that

V( f 22, M) = V(M, w12) ⊆ V(w12).

and from w12 = 0 we can get a unique root η = η02(u∗, α).
By using the method in Appendix 1 Steps 3.1–3.2, we can also show that

η02(u∗, α) is well defined and η02(u∗3, α0(u∗3)) ∈ [0.01413234, 0.01413235]
in [u10, u11] × [α10, α11]. Hence, we have η02(u∗3, α0(u∗3)) > η0, that is,(
u∗3, α0(u∗3), η02

(
u∗3, α0(u∗3)

))
/∈ �24.
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Therefore, we can get that

V(M, M1, r11, r12, r22, f 22) ∩ �24
⊆ V(M1, r11, r12, r22, w12) ∩ �24
= V(M1) ∩ {(u∗, α, η) : (u∗, α, η)

= (u∗3, α0(u∗3), η02(u∗3, α0(u∗3)))} ∩ �24 = ∅.

(C4)

From (C1), (C3) and (C4), we can obtain that f 1 f 21 f 22 �= 0 when (u∗, α, η) ∈
�25, that is the nondegeneracy condition (3.29) holds.

Appendix D: The proof of 0 < b̂11 |�=0< 2
√
2 in (3.55)

Notice that, in (3.55) we have

d̂1 = α2η3 − 4α3η2u∗ − 7α2η2(u∗)2 + 2(u∗)7(α2 + 2η) + 4η(u∗)5(2α2 + α

−η) + 2αη(u∗)3(2α2 − αη − 2η) − α(u∗)6(α − 8η) + αη(u∗)4(7α − 8η),

d̂2 = 3α4η4 + 2(u∗)11(39α3 − 50αη) + 6α2η3(u∗)2(η − 13α2) + (u∗)12(88α2

−2α − 24η) + α3η3u∗(11η − 12α2) + α(u∗)9(28α3 + α2(68η + 1)
−172αη + 42η2) + α(u∗)8(α3(48η + 5) − 254α2η − 6αη(8η + 1)
+106η2) + 2α2(u∗)7(3α3 − 40α2η − αη(29η + 24) + 144η2) − 4(12α3

+3α2η − 50αη + 21η2)α2η(u∗)5 − 2α2η2(u∗)4(12α3 − 112α2 + 17αη

+21η) + 6α3η2(u∗)3(13α2 − 18η) + 2(u∗)10(6α4 + 11α3 − 36α2η

−15αη + 18η2) + 2αη(u∗)6(12α4 − 3α3(2η + 15) + 101α2η + 29αη

−21η2) + 34α(u∗)13 + 4(u∗)14.
(D1)

First, we prove b̂11 |λ=0> 0. Substituting η = η in (1.7) into d̂1, we have

d̂1 =
(
d̂11+d̂12

√
(u∗)2((3α2+α(u∗+3)u∗+3(u∗)3)2−4αu∗(α2+3α(u∗)2+(u∗)3))

)
−2α2

×(u∗)2(α2 + α(u∗)2 + αu∗ + (u∗)3),

where

d̂11 = 9α5u∗ + 6α4(u∗)3 + 34α4(u∗)2 + 36α3(u∗)4 + 45α3(u∗)3 + 10α2(u∗)6
+66α2(u∗)5 + 24α2(u∗)4 + 33α(u∗)7 + 52α(u∗)6 + 36(u∗)8 + α3(u∗)5,

d̂12 = −3α3 − α2(u∗)2 − 9α2u∗ − 7α(u∗)3 − 8α(u∗)2 − 12(u∗)4.

Through simple calculation, we have

d̂211 − d̂212(u
∗)2((3α2 + α(u∗ + 3)u∗ + 3(u∗)3)2 − 4αu∗(α2 + 3α(u∗)2 + (u∗)3))

= −32α2(u∗)4(α + u∗)3(α3 + 6α2(u∗)2 + α(u∗)4 + 4α(u∗)3 + 4(u∗)5) < 0,

and d̂12 < 0, which show that d̂1 > 0.
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Similarly, we can prove that d̂2 < 0. Combining the condition η = η and 0 < u∗ <
1
3 , we have b̂11 |λ=0> 0.

Second, we prove that b̂11 |λ=0< 2
√
2, from (3.55), which is equivalent to proving

that

72d̂31u
∗(α + u∗)(η + 2(u∗)3 − (u∗)2) + d̂22 (η + (u∗)2)2

= −
(
d̂21+d̂22

√
(u∗)2((3α2+α(u∗+3)u∗+3(u∗)3)2−4αu∗(α2+3α(u∗)2+(u∗)3))

)
2α7

×9(u∗)9(α + u∗)5(α + (u∗)2)3 < 0,

where

d̂21 = − 6561α17u∗ − 729α16((u∗)2(27u∗ + 67)) − 81α15((u∗)3(297(u∗)2

+ 2121u∗ + 1385)) − 9α14((u∗)4(1755(u∗)3 + 27819(u∗)2 + 54939u∗

− 13213)) + α13(−6075(u∗)4 − 196857(u∗)3 − 902097(u∗)2 + 173511u∗

+ 1295173)(u∗)5 − α12(1377(u∗)5 + 90441(u∗)4 + 883203(u∗)3

+ 311171(u∗)2 − 5142519u∗ − 3530471)(u∗)6 + α11(−171(u∗)6

− 24339(u∗)5 − 501571(u∗)4 − 934249(u∗)3 + 8332381(u∗)2

+ 16569133u∗ + 5489045)(u∗)7 + α10(−9(u∗)7 − 3561(u∗)6

− 165393(u∗)5 − 913593(u∗)4 + 6980391(u∗)3 + 32872783(u∗)2

+ 29149703u∗ + 5440095)(u∗)8 + α9(−219(u∗)7 − 29363(u∗)6

− 441427(u∗)5 + 3095111(u∗)4 + 35618269(u∗)3 + 66318797(u∗)2

+ 32229157u∗ + 3444736)(u∗)9 + α8(−2169(u∗)7 − 106569(u∗)6

+ 611581(u∗)5 + 22621213(u∗)4 + 83767639(u∗)3 + 82507335(u∗)2

+ 22611288u∗ + 1290240)(u∗)10 + α7(−10251(u∗)7 − 489(u∗)6

+ 8326479(u∗)5 + 63373303(u∗)4 + 118457877(u∗)3 + 64564384(u∗)2

+ 9351168u∗ + 221184)(u∗)11 + α6(−12315(u∗)6 + 1609645(u∗)5

+ 28651757(u∗)4 + 103141317(u∗)3 + 104191032(u∗)2 + 29649136u∗

+ 1769472)(u∗)13 + α5(120231(u∗)5 + 7137447(u∗)4 + 54545143(u∗)3

+ 102913984(u∗)2 + 53464944u∗ + 6225920)(u∗)15 + α4(749493(u∗)4

+ 16252821(u∗)3 + 62466696(u∗)2 + 59444000u∗ + 12527104)(u∗)17

+ 3α3(705861(u∗)3 + 7236576(u∗)2 + 13658976u∗ + 5208064)(u∗)19

+ 216α2(15687(u∗)2 + 75738u∗ + 56192)(u∗)21 + 3888α(765u∗

+ 1408)(u∗)23 + 1119744(u∗)25,

and d̂22 is also a polynomial of (α, u∗), we omit its expression, and d̂1 and d̂2 are
showing in (D1).
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By simple calculation, we have

d̂221 − d̂222(u
∗)2((3α2 + α(u∗ + 3)u∗ + 3(u∗)3)2 − 4αu∗(α2 + 3α(u∗)2 + (u∗)3))

= 16384α7d̂23(u
∗)10(1 − 3u∗)(α + u∗)7(α + (u∗)2)(α3 + 6α2(u∗)2 + α(u∗)4

+ 4α(u∗)3 + 4(u∗)5)2,

where

d̂23 = α5(−3u∗ − 5) + α4(−3(u∗)2 − 30u∗ + 13)u∗ + α3(−(u∗)2 + 81u∗
+10)(u∗)2 + 4α2(9u∗ + 35)(u∗)4 + 2α(37u∗ + 32)(u∗)5 + 64(u∗)7.

Notice that, d̂21 is a 17-order polynomial of α with coefficients are functions of
u∗, where the coefficients of (0–13)-order terms are positive, (15-17)-order terms are
negative and 14-order term is uncertain when 0 < u∗ < 1

3 . By using the Descartes’

rule of signs, we know that d̂21 has a unique positive real root α̂1, and

d̂21 > 0 (= 0, or < 0) if 0 < α < α̂1 (α = α̂1, or α > α̂1).

Similarly, d̂22 (or d̂23) also has a unique positive real root α̂2 (or α̂3), and

d22 < 0 (= 0, or > 0) if 0 < α < α̂2 (α = α̂2, or α > α̂2);
d23 > 0 (= 0, or < 0) if 0 < α < α̂3 (α = α̂3, or α > α̂3).

(D2)

Hence, by using the same method as in the analysis of sign(J ) in proof (II) of
Theorem 3, we can get that α̂2 < α̂3 < α̂1. Therefore, we can get that d̂21 +
d̂22

√
(u∗)2((3α2 + α(u∗ + 3)u∗ + 3(u∗)3)2 − 4αu∗(α2 + 3α(u∗)2 + (u∗)3)) > 0,

then we have 72d̂31u
∗(α + u∗)(η + 2(u∗)3 − (u∗)2) + d̂22 (η + (u∗)2)2 < 0, that

is b̂11 |λ=0< 2
√
2. We finish the proof.
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