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ARTICLE INFO ABSTRACT

MSC: In this paper, we delve into double Hopf bifurcation induced by memory-driven directed
92D25 movement in a spatial predator-prey model with Allee effect and maturation delay of predators.
35B32

We first adopt a novel technique to handle the associated characteristic equation and thus obtain

g:ié‘; the crossing curves as well as the double Hopf points. We then calculate explicit formulae of
normal form regarding non-resonant double Hopf bifurcation. We thus divide the dynamics
Keywords:

of the developed model into several categories near the double Hopf bifurcation points. Our
numerical and theoretical results both demonstrate that the model can exhibit various complex
Maturation delay phenomena when the parameters are near the double Hopf bifurcation points. For example, the
Double Hopf bifurcation transition from one stable spatially inhomogeneous periodic orbit with mode-5 to another with
Predator—prey model mode-4 and the coexistence of them can be observed.

Normal form
Memory-based diffusion

1. Introduction

Understanding the spatiotemporal distribution of animals exerts a great influence on biodiversity conservation and is thought
of as one of the top five ranked research fronts in ecology [1,2]. The spatial predator—prey model could elucidate the underlying
mechanisms of some biological and abiotic processes and thus usually be thought of as an important tool to study spatial distribution.
Recently, considerable models have been dedicated to revealing the intricate biological processes via incorporating various factors
such as Allee effect [3,4] and maturation period of predators [5,6]. The Allee effect refers to the density-mediated intrinsic growth
rate of species, which can be applied to illustrate mechanisms such as group defense enhancement [7,8]. Sun accommodated
the fact that Allee effect in the prey also plays a critical role in pattern formation in predator-prey model [9]. Plenty of recent
research pointed out that Allee effect can also exist in predators owing to reproductive facilitation mechanisms and also merits
further consideration [10-12]. Maturation period of predators reflects the time that predators need to multiply offspring. Usually,
it can be characterized by delay-dependent parameters in predator-prey models [13,14]. Both maturation period and Allee effect
can independently induce complicated behaviors. However, the results on the models with considerations of two biotic processes
simultaneously are rare. Therefore, it is essential to delve further into this topic.

Note also that the movement pattern of an animal exerts great influence on its distribution in space and time and shapes global
biodiversity patterns [15]. It is acknowledged that random diffusions can induce the emergence of non-constant equilibria exhibiting
complicated spatial structure. This phenomenon is often dubbed Turing pattern [16,17]. In addition to random diffusion, some
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abiotic processes (such as wind or water current) can induce the passive directed movements of animals [18,19]. These processes can
be reflected by reaction—diffusion—advection equations and can alter population invasion outcomes [20]. Recently, some researchers
pointed out that some animals can move according to their spatial memory and cognition and thus adopt tactic movements [21-25].
Shi et al. opened the possibility of disclosing the memory-driven movement through a dynamical model by incorporating time delay
in the diffusion term [26]. Afterward, the authors in [27] generalized the aforementioned single species models to predator-prey
models with memory delay in predators. The authors in [28] considered the maturation period and incorporated maturation delay
into the reaction term of a model established in [26]. Wang et al. recently set up a diffusive predator-prey model incorporating
both memory delay and pregnancy delay in the prey [29]. They coped with the difficulties induced by two delays to perform linear
analysis and obtained the crossing curves in the delays plane.

However, results concerning the impact of memory-driven directed movement of the prey or predators along with Allee effect and
maturation period of predators on the spatial patterns are few. To characterize these biological processes, we recently formulated
the following spatial predator—prey model incorporating memory-based directed movement and delay-dependent parameters:

oON N
W = 51 Ny + 815 (NP(x,t =) +7N (1 - ?) —bNP,

2
P BNGF; _
;:522PXX+h+P:ed°—/4P,O<x<m',t>0, 1.1

N, (x,t)=P.(x,t) =0, x=0,1m, t >0,

where N = N(x,7) and P = P(x,1) respectively refer to the densities of the prey and adult predators at time ¢ and location x; N, and
P, respectively represent N(x,t — o) and P(x,? — o); all parameters in (1.1) are positive and their biological meanings are provided
in [30]. We generalized the crossing curves method to spatial model (1.1) and discerned the linear stable and unstable regions in
the delays plane. Noted that for a specific species, the maturation period is fixed. But the period of spatial memory and the ability of
directed movement are usually acquired and can be changed. We focus on the effects of tactical directed dispersal on the dynamics
of model (1.1) in the current work. Of course, we can also consider the scenario of spatial memory in predators, i.e., model (5.1). In
this paper, we will devote our main attention to the mathematical analysis of model (1.1). We can use the similar logic to cope with
model (5.1) with spatial memory in predators. The dynamics of model (5.1) will be numerically presented later in the discussion
Section 5 for the brevity of the presentation.

Model (1.1) falls into the category of partial functional differential equations (PFDEs) [31]. Recently, considerable research efforts
have been devoted to normal form of various bifurcations for PFDEs since the occurrences of these bifurcations are the precursors
to spatiotemporal patterns [32-34]. For example, Wu refined the method established in [35] to establish the calculation procedures
of normal form for reaction-diffusion equations with delays [31]. Also, Faria put forward a general framework to calculate normal
form for various bifurcations through parameter perturbation [36]. Afterward, An and Jiang performed the computation of normal
form with regard to Hopf-zero bifurcation [37]. Du et al. in [38] derived the formulae regarding the normal form of non-resonant
double Hopf bifurcation for PFDEs. Here non-resonance refers to the case that there are no positive integers ¢; and ¢, such that the
two pairs of purely imaginary roots +iw, and +iw,, of the associated characteristic equation satisfy ¢, @, = ¢,@,,, ¢,+q, <4 [39].

The above procedures to calculate normal forms cannot be directly applied to diffusive models with spatial memory since there
exist nonlinearity and delay in the diffusion terms. More recently, Song et al. generalized the method in [36]. They established
the algorithms to compute normal forms of non-resonant double Hopf bifurcation for the diffusive model with memory-based
directed dispersal [40]. Liu et al. presented the formulae of normal form for Turing-Hopf bifurcation in a predator—prey model
with memory-driven diffusion [41]. However, some topics in the memory-based diffusion model with two different types of delays
remain unsolved [28,40]. For instance, the effects of nonlinear terms can be considered. Also, the computation of the normal form
concerning double Hopf bifurcation induced by directed movement can be completed. Besides, it is worth noting that the two delays
incorporated in model (1.1) are of different types, and hence it is impossible to obtain the explicit expression of frequency w directly.
This means that we cannot obtain the double Hopf bifurcation points in the usual way as in the literature, which presents a striking
difference from models in [38,40]. The dynamics around the double Hopf bifurcation points may exhibit the coexistence of stable
spatially heterogeneous periodic solutions with different modes. These dynamics are not considered in the previous spatial models
with two delays [28,29]. In the present paper, we will dedicate our research efforts to investigating the normal form of double Hopf
bifurcation in a memory-driven diffusive predator—prey model with delays.

We organize the rest of this paper as follows. In Section 2, we obtain crossing curves in the (§;,,7) plane and then based on
which determine the double Hopf bifurcation points of model (1.1). In Section 3, we complete the calculation of the normal form
for the non-resonant double Hopf bifurcation. In Section 4, a numerical example is provided to verify the correctness of our obtained
results. In Section 5, we consider the scenario of spatial memory in predators and end our paper with some discussions.

2. Crossing curves and double Hopf bifurcation points

In this section, we perform the linear analysis of model (1.1) and determine double Hopf bifurcation points in the (§;,,7) plane.
From the ecological context, we are concerned with the coexistence of the prey and predators. We just consider the positive constant
equilibria of model (1.1) accordingly.

u(h + P*)edo

The positive equilibrium E* = (N*, P*) meets N* = 5P

and P* is a positive real root of the following equation:

BbK P? + (rue® — rKp)P + ruhe® = 0. 2.1)
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We can deduce that Eq. (2.1) admits two positive roots provided
1 r(KB — peo)?ed®

< pKe ™ and h < -
# < pKe™ an 4 bK

We denote the two positive equilibria respectively as E; = (N, P;) and E, = (N,, P,) with P, < P,. Linearizing model (1.1) at E;
we obtain

% =0 | Ny (x,0) + 6o N; P (x,t — 1) + a | N(x,1) + a1, P(x,1), x € (0,11),
% =0y P (X, 1) + an P(x,t) + f N(x,t — 0) + frpy P(x,t — 0), x € (0,11), (2.2)
N.(x,t)=P.(x,t)=0, x=0,1r, t >0,
where
rN; _ _
ﬂP‘-]Z( ’_Ma'z N b];]’i;i Plz':lzzﬂzi’;fpiﬂ,_dg
b =355 Pn=—(rpr
We then obtain the following characteristic equation of linear system (2.2):
gh(A) + gT(Ae™ + gi(8;)e ™) =0, 2.3)
where
gy(h) = A2 + g5 A+ g,
g (D) =g}, 4+ 0],
93(512) = 512920,
with

2 2
n n
91 =511(7) +n (7) -y -y,
4 2 2
n n n
98():511522(7) _5110’22<7) —5220‘11(7> +ay 0,
9 9'1‘1=—ﬂ227

2
n
9l = —nbn (7) +ay1 B —aphoy,

n n 2
90 = Ny (7) .

It is easy to check that E, is a saddle when memory delay and diffusions are absent, i.e., n = 0 and = = 0. Thus, we devote
ourselves to the stability of E, in the sequel. We are now in a position to state how to obtain the crossing curves in the (6,,, 1)
plane. Multiplying both sides of Eq. (2.3) by e** leads to

98(/1)6’16 +gi (D) + 93(512)6_’“ =0. 2.4
Substituting A = iw(w > 0) into Eq. (2.4) and doing some simple calculations yield

2 .
(w” — g(’;o)cos(wa) + gglw sin(wo) — g'l’o

cos(wr) = — = F,(81, @),
512920 2.5)
(gg0 — w?)sin(wo) + gglw cos(wo) + g, @ '
sin(wr) = m =G (65, ™).
512920
It follows from Eq. (2.5) that
F2(613, @) + G2(3,p, @) = 1. (2.6)
From this, the expression of §,, about w is
\/((mZ_ggo)cos(waHggl wsin(wa)—g']‘o>2+<(g80—u72) sin(wa)+ggl n7cos(1:1w)+g'l’l w)z (2.7)

oyt =

We can then obtain the following expression of /(@) 2 0) by plugging Eq. (2.7) into (2.5):

arccos(Fn(éq'z(w), w))+2jrx

s if G, (87, (w), w) > 0,

n - w
@ =3 2 arccos(F, (8" (w), @) + 2j

. i G, (w), @) <0.
w

We thus plot the curves I" /." = (6,(w), Tj'.'(w)) on the (6;,,7) plane by treating F/." as parametric curves about w > 0 (see Fig. 1).
The characteristic Eq. (2.3) has two pairs of purely imaginary roots at the points where the two curves T; .':‘ and Ly .’;2 interact. Once

3
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Fig. 1. Crossing curves and double Hopf bifurcation point.

the values of §,, and 7 at these points are determined, we can then calculate the critical frequencies @, and w,, according to (2.5).
We thus have the following theorem:

Theorem 2.1. If there exists 65 such that z-j'." = rl'.'z and Eq. (2.3) has two pairs of purely imaginary roots +iw,, , +iw,,, the associated

transversality condition is matched and all other roots have negative real parts. Then model (1.1) undergoes a double Hopf bifurcation at
2 _ sH —_ M _ " _ _H

E, provided 6 = 6,5, 7= T =T, =T

Remark 2.2. The condition that all other roots have negative real parts is necessary for the following two reasons. The first reason

is that the equilibrium E, is already unstable if there exist roots with positive real parts. The stability switch behaviors cannot be

observed in this case. Also, it follows from [42] that the dynamics of the normal form could not be topologically equivalent to those

of the original model if there exist characteristic roots with positive real parts. For instance, the bifurcating orbits projected in the

center manifold are stable but could be unstable in the whole phase space.

Remark 2.3. Noting that (2.6) can only hold for finite n, we hence plot ry only for finite n.

3. Normal form of the double Hopf bifurcation

We will deduce the explicit formulae of normal form concerning the non-resonant double Hopf bifurcation obtained in
Theorem 2.1 to understand the dynamics around the double Hopf bifurcation point. Denote 7 = 7/ + &,,5,, = 51’; + &,. Then
&= (§,&) =(0,0) is the double Hopf bifurcation point of model (1.1). We regard ¢&,, &, as variables when calculating normal form.
We further denote

ay ap 0 0 ) < 5, O > H < 0 64N, >
A= , B= . Dy = , Dy = 12 ,
< 0 ayp > < b Pn ! 0 op 2 0 0

and adopt the following real-valued Hilbert space:
-0}
x=0,1

v,
ox
Define C := C([— max{1, g},O]; Y) as the space constituted by all continuous mappings from [— max{1, %},O] toY.
We now make the following transformations to normalize the memory delay and translate E, to the origin:

o,

- — T 2 2.
Y = {1/ =, Uy € (H*(0,1m))" : o = ox

u (x,1) = N(x, 1) = Ny, uy(x,1) = P(x,71) = P,.

We also denote U'(x,t) and U;(p) = U'(x,t + p) as U'(r) and U; € C, respectively. We can then rewrite model (1.1) as below

dv(r)
dr

The ¢ = (¢, )T € C, 8(E)()yp» LE)) : C =Y, F(,-) : CxR? - Y in Eq. (3.1) are respectively formulated by
8O P)xx = 80(D)sr + F2(#.8), LEND) = (' +£)) (Ah(0) + Bp(—5)),

=6k + LOW) + F, ). 3.1
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and
11 (60(0) + N,, @ (0) + Py)
F(p, &) = H —L 5 3.2
(9,8 =(z +§1)< £2 (D) + Ny d20) + Pr. gV(=5) + Np. $D(=5) + P ((9[()] 3.2)
where
§=—2"
TH + §| ’
8o(P)xx =7 D1(#)11(0) + "D () (- 1),
H (1) 2),_ 1) 2),_
Fo(p.&) =cH 615 (¢x )y " (=1) + ¢ (0) i ( 1))
0
2
: < 8110 (0) + 6(§Nz¢i;(—1) )HH 52( NypZ(=1) ) (3.3)
522¢xx(0) 0
DO 1) + gV OPR-1
+(5g§]+7,,§2)< 08 )O¢ 03 (~1) )
Ny (-1 B0)p@ (1) + D)2 (1
+§1§2< LB )>+§1§2< 9O D+ DOPRD
0 0
Separating the linear term from Eq. (3.1), we have
dU N
20 W) + LU+ FW06), 3.4)
where Ly(¢) = TH(AP0) + Bqﬁ(—TiH)) and
F(U,.8) = LEP) — Lo(@) + F($.8) + F2(¢. &) (3.5)
We thus obtain the corresponding characteristic equation to system
dvU
dr(t) = 0p(Vxx + Lo(V) (3.6)
is
[ ] deta,an =o, 3.7)
n=0
where

2 2 o
A,(A) = AE, + ! (f) D+ (f) e Dl — o <A+Be o ) .
1 1
It follows from Theorem 2.1 that Eq. (3.7) admits two pairs of purely imaginary roots iiwrﬁ,iiwg anH and
wg =w,, H,

where wf}' =w

2
It is easy to check that s = (?) , n € Ny are the eigenvalues of one-dimensional Laplace operator with homogeneous Neumann
2
boundary conditions. The corresponding eigenfunctions with respect to s = (?) , n € Ny are as below:
cos(*) 7= if n=0,
s(% iz

0,(X) = ————— = N (3.8)

|| cos (?) 22 N cos(g), if n#0,

The symbol || - ||,, in Eq. (3.8) refers to the norm induced by the following inner product
[v.v]= /Om UTvdx, for U,V eY.

Denote gf,i) = 0,(x)e;, i = 1,2 where e¢; = (1,0)T and e, = (0, DT, and S, = span{[u(-), gi,i)]off) |uec, i=1,2}. It is acknowledged that
£y(S,) C span{o”, oP}.

We then let w,() € C, = C([— max{-1, —% },0], R?) and th(C)(gf,'),gf,z))T € S,. The linear system (3.6) can be then rewritten as
the following equation on the space S,:

(1) = LEw,(0)) + Lo, (), (3.9)
where
~811(5)? 0 0 SNy(2)
£g(wr(§)) =l ( 0 _522(?)2 > w,(0) — o < 0 ! 0 w,(=1).
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It is obvious that systems (3.6) and (3.9) have the same characteristic equation as is shown in Eq. (3.7). Let C; = C([0, max{1, % 1R,
and choose the adjoint bilinear form on C; X C, as below:

0 ¢
(Q(9), P©)) = QOP(0) - / . Q(p — $)d6,(O)P(p)dp, for Q € C5, P € C,,
—max %,1 p=0
where 0,(¢) € BV ([-max{1, Z},01;R>?). For P({) € C,, we have
0
LYPE) + Ly(P©) = / ) de,(OP©).

Define Q = {:w —iwl, :w” —th }. Let ¥, be the generalized eigenspace of (3.9) and ¥,/ be the associated adjoint space. We
then derive from [31] tflat 62 can be decomposed asC=¥,0,,i=12, where b, {u/ e C, <o,y >=0,Vp € ‘I’* }. We can
respectively adopt the bases P, 1(9) and Q, 1(9] of ¥, and 'I’ * s below

P () = (2 (0, 5y (), 0, () = (g} (5), 4T ()T,

meeting < Q,,, P, >= E,. Doing some calculations, we have

o= O Y 0 0= M) 2 @
O o a5 (s) "

and
1
Py ©0) = —Bye” " ,
—Sp (%) + ayy + Prpe” 7 — i,
1
4,0 =n; 511(?)2 —ay +iw, |,
with

ky
ky —ky + TH512N2(%)2ﬂzle_iw"’ e+ 4 kykyo = kyofype™ 0

n =

n;*

and k; = 511(?)2 —ay +iw,, k= —522(?)2 + gy + Prye T — i
We can then decompose the phase space C as

C =Imzn @ ker 7. (3.10)
x ¢ C — Imz in Eq. (3.10) is the projection map formulated by

[@(). 0]
(@) =P, () { 0, ©. o 04, ()
[ZON

n

PO <Q <c:),< (0.} >> Oy ().
" " [0(). 03] "

We further denote Cé ={peC: @EC, p0)€hom(8(-)yy)}, w = (W, (), w, (1), w5(1), wy(1)T and also set

wy = (wl(t)enl (%), wy(Do,, (x), ws(H)e,,(x), w4(f)0n2(x))T,
and

P = (1, ©: 5, ©: 2 .5 ©) )
It follows from [36,40] that for ¢(¢) € C!, we can decompose ¢(¢) as below

Q) = PQOw, +z, z= (2,20 e ¢y nkerz := Q"

Following from [36], we denote

0, ¢el-max{l,2},0),
Y0(§)={ ’
I, ¢=0.

(701 \7" (.0} ] (7, 04|
@ = col ’ @ :
(7.0 /0 (. 05) (7,021

and
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We can then decompose system (3.4) as the following system on R* x ker 7 :

[F(PQw, +2,€), 0]
z=Agiz+ I - DY OF PO w, + z,8),

(P L6), (1) Kk=n;
szw+Q(O)< (F(PQw, + 2.8), 0,] >

where
0(0) =diag{Q,, (0),0,,0)},
A :diag{iw:{, —iwﬁ, iwz, —iwrg 1

Ag1z =2+ Y5(0) (£5(2) + Lo(2) — 2(0)) .
Next we expand F(¢, &), F3(¢, &), F(p, &) as below:

LOW = X, L@, Fh = Y, 2.0, F .0 = Y, - F(.9),

Kk>1 K>2 k=2
and

5 _ 1. 1.5 1 s
F(¢,~§)—2F2(¢,§)+6F3(¢,§)+247"4(05,5)

We can derive from (3.3) that

Fi.6) = FJ ) + 67V (¢) + &3V (@),
and

Fi.6) =& F3 0 + 67OV () + & 67XV (@),
with

0
F0($) =2D; ., (0) + 2DY ¢, (1),

FI0O(g) —z,sHTH( P02 (1) + pDO)¢2 (1) >
2 12 ’

2cH
FyV(¢) == DY (1),
12

L0 (=1) + ¢V (0L (1)
P ) =657 ( 0 ’

FIOD (@) —6TH< #L0¢P (1) + $ DO -1) )
3 - £l

0
7:.;5(1,1)((1)) =6< Nz¢%)(—1) >

and
D0)p? (= 1) + pD 0P (=1
Pf<¢>=245152< # 0 ( >0¢ OB >>.

It then follows from (3.5) that
o

Po@.) =2 (Ad0) + BY (-5 ) + 589 (57 ) ) + Fo. 0 + FL(.0),

and

Fa(h, &) = L)) + F3(h, &) + 7’"35(47, $).
We thus rewrite (3.11) as
. 1
w=Aw + KZ& Eg,l((uh z,§),

z=Agiz+ Z %gﬁ(w, z,€),
Kk>2
with
[P (PQOwy +2,8,001 \
gl(w,z,8) = 0(0) (

(FePOw, +2.0.071 /] _,

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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and
gﬁ(w, z,8) = - )Yy F(PQOw, + 2, &).

Following the notations in [36], we define the following space

VS(X):{ Y " (m6) €N, c(,mex},

[(m.&)|=x
where X is a normed space. We also define the operator M, = (ML, M2), k >2 by
ML YSEh - viEh,
(ML), &) = Dyo(w, &) Aw — Ao(w, &),
M2 VEQY) € VE(ker m) — Vo(ker ),
(MZR)(w, &) = D, h(w, &) Aw — Agih(w, €).
We can easily check that
MW" e) = D, (w"E e)) Aw — Aw™"E e))
(iwnlml — iw, my + iw,, my — iw, my + (—=Diw, )wm'ffe_/’ (3.19)

(iw,,lml — iw, my + iw,, m3 — iw, my + (—1)/iw,,2>w'"§fe s
wherej =1,2,3,4, w" = wl w2 w w E=¢ 5;2, my +my +my +my+ ¢, +¢, = k. Therefore, for the non-resonant case, we have

ker(M;)=SPaﬂ{§jwlel, Sjwaey, Ewsey, jwyey, j=1,2},

S1&wey, 5,2’”191, w%w2el’ wiwswyey, §15w,e, f}wzez’
ker(Mé): wlwgez, wywswye,, & &wses, §?w3e3, w§w4e3, wywywses, o,
& & wyey, 5?“1494, w3wie4, wiwywsey, j=1,2
and

2
Wwyes, Wiwyrwses, W3l

4C4> W Wy W4ey ).

2
ey, WrW3Wyey, W

S = span{w%wzel,w1w3w4e1,w1w2 3

2

It also follows from [36] that the local center manifold for system (3.4) can be written as below

W= Aw + Z f (w,0,), (3.20)

r(>2

by making the following recursive transformation of variables:
— 3 Ll - 2 -
(w,z,8) =W, 2,9 + P V, ,8),V (0.8) ), (3.21)
where V, = (V1(,8), V2(,6)) € VYT x VS(@"). We recall from [38,40] that

15w, 0,8) = Projy . 1,8, (10, 0,8),
and

13(,0,8) = Projy 1,85, 0, €) = Proj 2,0, 0,0) + O(* | w), (3.22)
where g;(w, 0,¢) is the cubic polynomial of (w,&) by performing transformation (3.21). Besides, g;(w, 0,0) can be judged by ,

ker(M;), ker(M;) and S. In the sequel of this paper, for the convenience of notation, we denote

m

my 3 my 2
B(ﬁwmlw w wm4§ 5;"2)=< ﬁw wzw w 5 52 >,ﬁe(C.

ﬁwmlwz wy 3wm4§ 552

3.1. Cadlculation of f21(w, 0,&)

We can derive from (3.18) that

[Fy(PQ)wy, ), 0] >’="2

3 (2) (3.23)
[F(PQwy, 9, 0,1

£1(10.0.8) = 0(0) (

=ny
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We see from (3.16) that
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Fo(P(Ow,, &) =2¢, (A (POw,) + B (P (—TiH) wx) n TiHB (P’ (—iH) wx>>

+ Fr(P(Ow,, &) + F;’(P(C)wx,-f)-
In conjunction with (3.8), (3.13)—(3.15), (3.23) and (3.24),

for n; # n,, we can deduce that

[ 2z, (A (Powe,) 4 B(P (-5 ) w.) + 5B (P (-5 ) ) 0" ]

26 (4 (POw,) + B(P (-5 )w,) + 5B(P

2, <AP,,] )+ BP, (—%

2, <AP,,2 ©0)+ BP, (—LH

a7 O eowo.e"] ) —251("71)2 (12,
[ rimomnct] || ey o

and

(=2 w)).of]
()=
)

1=n,,

(0)+D§P,,](—1))< Z; > 1=n,,

Pn2(0)+D§’Pn2(—1))< Z; > P—

m \2 oH w
[ 7 P w,. o ]_ ~25 (%) ﬁ(Danl <—1>< w0y )) 1=

73 P w,. o

We can easily check from (3.2) that for all £ € R2,
Fr(P(Owy, &) = Fr(P(Qwy, 0).

In combination with Egs. (3.25)—(3.27), we deduce that
15(10,0,8) = Projy 1,8, 0,)

_ ( B((B114¢1 + Byraéwy) >
B((B1348 + Bosabws) )

where

1+

Biia =2q;l (0) (Ap,,] 0) + Bpn]

o )-
")

B34 22432(0) <Ap,,2(0) + Bp,,2 -z (1 +
%21,4:—2( g, (0) (D2 pnl(—1)),

) 5
By =-2(2 )5,,4”2(0)( U p(-1).

2y w
26 () %(D;’P,,J-l)( o )) 1= n,.

(nTl)z (z)lpnl(O)+D2 P (= 1))),

() (P1pn@ + DYp, 1)

For the scenario of n; = n,, it is straightforward to check le (w,0, ) has the same expression.

3.2. Calculation of f;(w,0,¢)

We devote ourselves to the calculation of f31 (w,0, &) via

Fy(P 0,00\
gﬁl’l’(w,z,O):Q(O)< [FoPEx+ 2,000 1 )

[y (P(Ow, + 2,0), 0]
and
&P (w,2,0) = 0(0) (

(F3(POw, +2.0.071 ),

Eq. (3.22). Denote

(P2 (POw, +2.0). 0] >’="2

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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We can also deduce from (3.29) that f2l (w,0,0) = (0,0,0,0)T. We thus obtain the expression g"31(w, 0,0) as below:
23,0,0) =g1(1,0,0) + 2 [(Dwgé(w, 0,0)) V2 (w,0) + ( 28" (w,0, 0)) V2(10,00¢)
(Do, 87@.0.0) V27 w,000)]
where gl (10,0,0) = g""(1,0,0) + g\ (0,0.0),
D, 80 w.0,0)= (D.g)"?(w,0,0), D, &"(w,0,0), D;_g'?(w,0,0)),
V21 (w,0) :(Mz)_lPrOJIm(M;)gz(w’ 0,0),

V2 (w,0)(¢) =(M3) ™" g3 (w, 0,0),

and
V.2 w,000) = (V2(w.00C). V2w, 0)0). V2 (. 00)) -

To complete the calculation of Proj 5g3(w, 0,0), we will divide four procedures.

2xx

Procedure 1: The calculation of Proj Sgé(w, 0,0)

It follows from (3.14) and (3.17) that 75(P({)w,,0) = F3(P({)w,,0). We can thus denote

F3(P(Owy, 0) =F3(P()w,.0)

- Ry mymymy O+ ()0 (00 0y ) i, 331
my+my+mz+my=3
In conjunction with (3.18) and (3.31), we can deduce that
+my+1 +m,
2m1+m2+m3+m4_’% Rm1m2m3m4 0'” nmll " (x )Qn3 *(x)dx
my
W whrwn Wy
1 _ 1wyt wytw
g3(W, 0, 0) = Q(O) i my+my m3+my+1 d
my+my+m3+my=3 Rm1m2m3m4 0 On (x )0 (x)dx
'wml me wm3 wm
1 Wy Wy
This along with the observation that
= ny =n
" 0} (062 ()dx = { e
g ny # ny,
yields
B (Cywwy + Crow wsw
Projsg}(w,0,0) = (Cu e ), (3.32)
’ B (Cg]w w4 + Cyw  wyws)
where
3 1
Cn= Eqnl(O)RZIOOv
3
Gy = quz (O)Roo21
3
ﬂqz O)Ryo11, M =ny,
Cp= 1 p
;qnl(O)RIOH’ ny #ny,
3 1
54y, OR 119, My =m
Cyp =

—qy Ry, my #ny.

Procedure 2: The calculation of Projg (Dwg;(w, 0, 0))1/21 (w,0)

It follows from (3.16) that

Fo(P(Ow,.0) = Fy(PQ)w,,0) + F3 "V (P(Ow,).

10
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We can derive from (3.28) that

Fry(PQ)w, + z,&) =F,(P(O)w, + z,0)

_ my+my my+my my
- lemzm;m4on] (X)Q (X)w (3.33)
my+my+my+my=2
WP Wt + T(PQw,, 2) + 0(zP),
where 7,(P({)w,, z) is the second cross terms of P({)w, and z. We can also deduce from (3.13)
FAPQOw, +2.8) = FLOV(P(Ow, + 2)
_ 8.1 mitmy (—ny mAMY o my my m
- Z anlrzzm3m4 (Tﬂnl (x)) (—nnz(X)) wwy wy w,t
my+my+m3+my=2
M) RG22 RG22 ")’ g6 2 m\2 62 2
- (T) oooon](x) ( . ) zooanl(x) 2 (T) Ryno nz(x) 3 (T) Ro0029 nz(x)w4 (3.34)

n (6.2) n (6.3) n (6.2) n (6.3)
—o,,l(x)o,,z(x){(<7) Rigio + (T) R1010>w1w3+ (( ; ) R0110+( ) R0110)w1w4
62, (M 563 ©2) ©3)
+ (( ) R0110+<T> R0110>w2w3+<( ) R0101+( ) R0101>w2w4}’

where 5, = V2 sin(@),i =1,2 and

Vi
RO _ gttt [P0 O D+ ) O 1)
1010 = 26127 )
0
ROD gt H< PP (=1) + pl )5 (=1) >
1001 — 0 s
6,1 _ p6.1h 6,1) _ pB.h
RO]lO - RlOOl’ ROlOl - RlOlO’
1)y 2
D) _ gOD _ p5h i Pu O)py (=1)
RZOOO R2000 - 25 ( 0 ’
)y 2
©.1) ©.2) H H pn2 ©)p,, (-1
ROOZO ROOZO - 25 < 0 ’
My 2
6.1 62) H_H R 0P (-1))
RllOO RllOO - 25 < ! ! )
0
My 2
(6.2) H L[ P O)p,,, (=1)
RlOlO - 26 < ’
My @
6.2) H (P (O)Pnl( 1)
RlOlO - 25 (
M (2
6.3) H_H Pnl (O)P , (=1
Rigp = 2657 <
2) o
6.2 H H Pnl( Dpn,
RlOOl - 26 <
D2
(63) _ B p (0) (=D
RlOOl - 26 < "

6.1) _ p6.2) (6 1 (6.2) (6,2) 6.3) _ p6.3)
ROZOO - ROZOO - RZOOO’ ROIIO - RlOOl’ ROIIO - RlOOl’

6.1) 6,2) (8,1) 6,2) _ p(6.2) 6.3) _ p6.3)
R0002 ROOOZ ROOZO’ ROlOl RlO]O’ ROlOl R]O]O

We can then perform simple calculations according to (3.33) and (3.34) to obtain

[P (P, 0), 0] >'=”2

£,(1.0.0) =0(0) ( o
[Fa(P©Owy, 0),0,”]

ny
Q(0)< R g10w,ws + Rygg ;104 + Roj1owaws + Rojg 10510, ) o
s H = 2ny,
V2 R2000W1 + R0200W2 + Ryjgotw; w0,
0,0,0, O)T, ny * 2"1 s

11
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where
2 2
n n
R —R nnm RG.D _ _LRG2) _ _2RG3)
mymymzmy mymymsiy 2 mymymsmy 2 mymymsimy 2 mymymsmy”
my,my,my,my =0,1, my +my =1, my+my =1,
and
2
~ N 62)
Rm1m2m3m4 = Rm]mZM3M4 - 1_2 <Rm1m2m3m4 + lemZM3m4) ’

my,my =0,1,2, my+my =2, my+my =0.
We thus have for n, # 2n,, Vzl(w, 0) = (0,0,0,0)T, and for n, = 2n,,

1 _ IN\=1ppai 1
v, (w,0) = (MZ) PrOJImM;gZ(w, 0,0)
T 15 15 1 5 1 >
q, (0)| =7 Rigjow w3 — —7 Rygoi W Wy + ———7 Ry110Wr W3 — ——— Ro1o1 W W,
n ol 1010W1 W3 ! 1001 W1 Wy @l 2wl 0110Wr W3 @l 2wl 0101 W Wy

()< H+2w 01011103 = T Rioon 4+wn”2' oot2t0s = o Roror 2104

iV2um

i
4, ()< o 2 HRzooow ol 7 Roogott — R1100W1w2>

AT
4,,(0) mRzoooW +ﬁR02OOW + HR1100W1W2>

We readily check that

B (D, w?w, + Dypw, w;yw
Projs (D,,g)(w.0,0)) ¥, (w,0) = (Dywiws + Dyywywsiwy) ’ .
B (D3]w§w4 + Dy wyws3)
where for n, # 2n,, Dy, = Dy, = D3, = Dy, =0, and for n, = 2n;, Dy, = 0, and
= l L T R T R 1 T 5 T ~
Dy =%in (—w_g (qnl(O)Rl()lO) (q"z(O)Rll()O) + w_g (qnl(O)Rl()Ol) (qnz(O)Rll()())
1 .o 5
T wH —2@H (q”l(O)RO” ) ( 2(O)Rzooo)
ny ny
1 T (W7 ~
t—F 7 0)R ) 0)R ) ,
@l + 2w <q"l( )Roio1 (‘1 , (O Ro000 )
=5 1 TR R 1 T 7w o=
o i (_w_g (qnl(O)Rlom) ( '(O)Rmm) " w_ﬁ (q"l(O)RmO‘) <qn1 (0)R1010)
1 -
wl 2wl (qnl(O)RUIIO) (qnl(o)RIOOI)
1
+W (qﬂl(O)RmOl) (‘1 (O)R1010)>,
) ny
P2 =%z (m (47, Rano ) (a7 ©Rori0)
1 T 1 T ~ 1 T - r -
+w_}? (qnz(O)RIIOO) (‘I,,] (O)Rlolo) + w—'{{ (q,,z(O)R“OO) (qnl(O)Rono)
: 2
2 T =
+w,f2’ +2wl (qnz(o)ROZOO) (qn,(o)R1010>>~
Procedure 3: The calculation of Proj 5( v g;l D(w,0, O))V2 (w.0)0)
Let
V30,000 = G0y = ) my({ o) (3.36)
neN,
where
h, (&, we,(x) = Z hn,mlmZM3m4(§)ernl w’2"2 w;ﬂs wzu’

my+my+mz+my=2

12
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with
W @ !
h",ml mpm3my ©= (hn,ml mymzmy (22 hn,ml mymsmy (C)> .
We then utilize (3.36) to find

V2@ =h(Cw) = = 3 (%) (o

neN

2
V2 w000 =h(Cw)=~ Y (?) 7y (C, 10)0, ().

neNg
It then follows from (3.30) and (3.36) that

(D88 @.0,0)) V20,0

[ [DFa(P@w, +2.0) Loy ( Toery, M€ 100,0).of" ]I"Z
= 00) .

[D-F2 P +2.0) | ( Boeriy Bl 00, 0|

=ny
It is straightforward to check that by noting (3.33)

DT (P, +2.0) lomg ( X halEe1000,(0) = T POy, Y, h(Cow)o, (),
neN, neNy

and

(72 (P, Ty 1@ 00, ) 0!
|72 (POwy: By 1l 00,)) 0
= 2 B (T Q01 3y (€ 100) + To(B, 10, (€ 10))

neN,

+ 2 Bryns (TalPay (O 1y (6 0)) + To(B O, (€ 10)))

neN

where n=0,1,2,..., 9=n,n, and

L, n=0, 9=mn,
N
1 , n=2n;, d=n;,
. iz
_ _ 1
ﬂnv,n,"l = o,,,(x)o,,(x)o,g(x)dx = n=mny;+n,, 9 =n; i+l
i i 3 i+(=1)
0 i
1
Vo n=m—n;, 9= Ry (—yi+l> Ny <,
iz
0, otherwise.

We thus have
(Duesw,0,0))VZ . 00¢)
cozn, Prynn (T2Pa, (O1, (6 10)) + To(By, Oty (€ 10)))
+ S snprny Py (TaPry @03, 1, 10) + To(Fy (O3, 1y (€ 10)) )
S c02ms Prsinny (TalPay O3, 16, 100) + Ty i, (€ 10)))
+ D sngrrny Py (TaBny €01, 1 10) + Ta(By, (O, 1y (€ 100) )

Therefore, we obtain

=0Q0(0)

(3.37)

B(Ej W W, + Epwwyws3)
Proj (Dwg;"”(w,o,0>V22<w,0))=( NIRRT,

B(é‘31w§w4 + Epw w,ws)

where

&y =\/%qfl 0 (Tz (pﬂl(C), ho,noo(c)) +7, (ﬁﬂl ©, ho’zooo(g)))
+ \/%q;fl (0) (Tz (Pnl ©, hznl,noo(C)> +7, (ﬁnl ©), h2n1,2000(§))) .
¥/

L

Vi

€12 =—=4" O, (2, ©), hogon ©) + —=" O (), gy 011 ©))

V2

13
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+ ﬁq}, O (72 (P © 10,000 ©)) + T2 (Pay €, Py 10000 )

+ L@y O (72 (Pry . gy 1001©)) + T2 (B Py 1010(©) ) )

&3 =ﬁqzz ©0) (Tz (Pnz(C), ho,oon(O) +7, (ﬁnz(C)’ h0,0020(§)>)
1

+ \/?qu O (75 (21 2y 001 ©) + 75 (uy . oy 00200 )
¥4
£ = \/_ 45O, (2 ©. o 1100®)) + \/?q O3 (1, @) gy 100(©))
+ \/%qnz O (72 (P ©: P11y 010 ) + T2 (g (€ By 10100 )
%3

+ Ty I, O (72 (P Oy 0100) + T3 (B, - Py 1010©)) )

with
1
_ i’ <y,
ynlnz - 1 _
7 ny =n,.
. . . (1,2) (2.5)
Procedure 4: The calculation of Projg D, . .8 ~(w,0,0))V,""w,0))

We can perform procedure 4 similar to procedure 3. Therefore, we obtain

B(EY whw, + EL wyw,ws)
Projg ((Dzzxz g(IZ)(w 0, 0)>V2(2’5)(w,0)(§)) = < 2 1Wa s >’

(3.38)
B( 31w3w4+£'32w|w2w3)
where
1 ny\2 , 5.1) (=
el = = (%) @ @ (7" (5, ©- 01100 ) + T (B, 2000 ) )
1 S N
* =N % X AT (5 g 1100 )
I 1 (1) 7(8,i)
g BT (B (€ Py 2000(0)
n 1 i=§3 ( 1 2ny,2000 )
1 2 , Ny
£l =- ﬁ (72) a5, (77 (2. o001 ©) + T (31, O Boon©) )
1 (2,i) (8,i)
—q" BEOTD (p, (€. B 00110
2 i=§3 < ) 2n,,0011 )
1 (21) (8,0)
——at O Y AT (By (s hany 00200
\/_ 223 ( ) 21,0020 )
and
2
£l =— % (%) a2 O7% (b ©. o0 ©))

+ \/1_4,,](0) Z ﬂ(mr(m (pnl(§)7h2n1.0011(§))

=gt @ X BT (5 P a0 @)

V2rx =123
1
+——=ah O 2 AT (5O P i000©) )
2rx i=1,2,3

)
L@t © Y, B2 T (5, Py a0 ©) )
=123

L@t © Y B2 T (5,0 Py 1010©) )
=123

14
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£ === (2 Y gL 07 (. Posin(©)

\/;

\/2 n
=t ¥ A, T
V2m =123

Z ﬂ(2 I)T(5 i) (pn2 ©), h2n2.1100(§))

=123

(i @ P 0110©) )

(Pn,(C) Py, 1010(@)

I 7t
+
/_21727 n nytny
T (1,i) (8,1)
+ Ty, () 2 ﬂ,,zin]T
=123

(P, ©: By 0110

+ T ©) Y ﬂf,;:)nlr“’” (P, ©: Py 10100
i=1,2,
with
n2
py = ——21, pU = —K—z, Kk =2ny, ng+my, ny—ny,
15
502 = { T k=2,
K —”’1—2'(, K =n,—ny,
2,1 n% 2.2 mK 23 KZ
ﬁ,(( ) =_l_2’ ﬂ,(( ) = 1_2, ﬂ,(r ) =—l_2»1(=2n2, ny +ny, hy —ny,
and
@ =1)pM(0)
6.1) TR B
700 @(@). b)) = 261 ( . :
a@(=1)p(0) aD(0)b@(-1)
722 (a(©). b(0)) = 28081 ( X + 2811 o :
Db (-1)
©.3) Pl B
709 @(©). () = 261 ( . :
for a(¢) = (@V(©), a? )T, bE) = BV, BPE)T.

We finally calculate R, 1 mym,» T2(P(Ow, 2) and hy, . 1y ym, that are in C;;, Dy, &;; as well as Slfj.. It follows from (3.12) that

F2($.0) = F2(.0) = f200097(0) + f110091 (02 (0) + So011P1(—6)2(=8) + Foppnd?(—5),
and
F3(#,0) = foo1261(=6)¢5(=6) + fooo3h3(—6),
where 6 = .,LH and
_2rrH —2beH
Sao00 = K . f1100=< >
0 0
0 0
Soout =| 2¢HpPe (P +2h) |. foor =| 2¢H N,peh?
(P, + h)? (P, + h)3
0 0
Joora =] 6rf pe=dop? Sooos =| —67H pe=° N, n?
(P, + h)3 (P, + h)*

We can acquire that

2 5 _ 2
Raooo =/fo002 (PE,ZI)(—G )"+ foor 117211)(—0 )Pf,zl)(—g )+ f1 1001’5,11) (O)PE,ZI)(O) + f2000 (Pf,]l) (D)

_0), =2 ) ), = _ _ _ 2
Ro200 =fo002 (piff(—a )+ oonPffl) (-6 )Pﬁ,zl)(—tf )+ fi 100115,11)(0)115,21)(0) + f2000 (pﬁ,ll)(O)) ,

Riy100 =2f0002P5,2)(—5)175,2)(—5) + foor 11’21)(—5)175,2)(—5') + foor 11’22)(—&)1721)(—5)

+ 110085 OB (0) + 2 fa0008) (05 (0) + 11008 (05 (0),

15
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Rio10 =2f0002135,2)(—5)pf,2)(—5') + fooqu,])(—E)PE,z)(—&) + fooupff)(—&)Pf,')(—E)
+ f11008 P 0 + f110002 ) (0) + 2 f 20008 () (0),
Roi01 =2f0002ﬁ5,2)(—5')13£,2)(—5') + fooi 155,1)(—&)ﬁ£12>(—5') + f0011l7£,2)(—5')55,1)(—&)
+ f11008 OB (0) + f110085 (OB (0) + 2 fr0005, (005 (0),
Rigo1 =2fo002p (—8B0 (=5) + foor1 P (=6)PD (=5) + foon1 Py (~5)BL (=5)
+ f11008 (OB (0) + 2 fa0008,) (05 (0) + 110085 (005 (0),
Ro110 —2fooozp(2)( 0)11(2)( )+ foouP(])( U)P(z)( )+ fooup(z)( G)P(')( )
+ f110085 (OB (0) + 2 fa0000) (05 (0) + f110085 (005 (0),
Ron20 =fo002 (175,2)(—5)) + foonp(l)( G)P(z)( 6) + fuool’(])(o)l’(z)(o) + /2000 (Pfq])(o))z’
Roont =2 o0l (=808 (=8) + foon1 P (=8B (=8) + foou1p) (=6)BL) (=)
+ Fr00p, (OB (0) + 2200085 (05 (0) + f11008L) (05 (0),
Raipo =(3o0032 (~)2(=5) + 2fonnal (5D (=3) + o012 (~D))(=5) ) pP (=5,
Roonr =(3fo003 P2 (0052 (=5) + 2 foonabl) (—)BZ (=) + foonap (-5 (=) ) (=),
Rig11 =2 ( 3fooo317(2)( G)p(z)( G)P(z)( G)+ fomzp(l)( G)p(z)( G)P(z)( )
+ fo0r2P 2 DB P 5) + fonarD DD DB (5) ),
Rio =2 (30032~ (=8) + foonapl)) (-2 (<552 (~5)
+ Lo0ap OB 8) + foorp P EWD (=) ),
and
To(pn, (0 2(0) =2fo0020) (=6)2P(=8) + foon1 ) (=5)22(=8) + foo10 (=6)2(=5)
+ f11008) @22 0) + f11007, (02D (0) + 2 f20008) ()21 (0),
T3P, (0, 2(0) =2fo002P. (=8)22(=8) + foor1 5 (=8)22(=8) + foor1 5 (=8)2 (=)
+ 11008 02 0) + f11008 0027 (0) + 2 £20007, )2V (0),
T3Py (©), 2(0) =2 fop0aply) (=8)2P(=8) + foo1194) (=8)2P (=) + foo11 ) (=52 (=6)
+ f11008%, @22 0) + f110005 (0)2D(0) + 2 f20008) )2V (0),
T3Py () 2(0)) =2fo002B ) (=6)22(=8) + foo11B) (=8)22(=8) + foon1 By, (~8)z(=5)
+ FiooBly, 020 + f11008, (0)27(0) + 2 /20007, (0)2V(0)
by noting that
W) + 2 =POw, + 2 = p, (w0, (X) + By, (100, (x)
+ Py (Ow30,,,(X) + Dy, (Owy0,,(x) + 2
P (1010, (¥) + Py (1020, (X) + Pl (Ow30,, () + By (10, (x) + 2V

P (1010, (X) + Py (1020, (X) + P2 (w30, () + B (1040, (x) + 2

Next, we will present the formulas of 7, m,m,- According to [36], we do some algebra yielding
[M3h,¢. w0, 0. 6" |
[ M3, ¢ 0,0, 0 |
= Ziw,{f (2000w = By 00 (w3) + ZiW,Z (00203 = By 0000 (w03
+il@! + @,y 010w ws + i@~y 001 (Owyw,

16
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. H H . H H
- l(wnl - wnz)hn,OIIO(C)I’UIWS - l(w”l +w,, W, 0101wy oy
= (7€, w) + Yo (Ey(1, (€, w)) — B, (0, w)))

where
Lo(h, (¢ w)) = =71 (D 7,0, w) + DI 7, (-1, w)) + (Ahn(O, w}+Bh,,(—iH,w)).
T

It follows from [40] that the explicit of 7,({, w) can be obtained for the cases n, # n, and n; = n,.

Case 1: ny # n,

T9,0200(6) = \/LI; (AO(Zzw )) Rzoooezm'ﬁ{’
10,0020(8) = \/;/Z (AO(th ) Roozoez"mﬂgg,
ho,1100(8) = \/LI»” (AO(O))_ Ry100»
ho0011(6) = \/L; (460) ™" Roo1»

2iwh ¢
T3, 0020(8) = r(AanQ’w )) Rogaoe™ 72,

P, 1100(8) = (0,0)T,

Moy 0011(8) = \/— <A2n2(0)> Roo11

1

V2
1

i(wH +a )
Ty 1010(8) = 1 ¥y )6

("1+"2(1(w +wH))) RlOloe

-1 i(wH —wH
- H = i(wH —wH )¢
Ty ey 1001 (8) = <An1+n2([(wnl ‘w,,z))) Rigpie ™ m7,

- Nﬁ‘
S

-1 i H — o H
i R (@, =@, )¢
oy 110©) = = (= 19) R
1
1 . -1 simH
g, 2000(8) = (Azn](Zzwg)) Ryonoe ¢
V2
) ! R for 2n,,
R, 1100(8) = (Az,,](O)) Ry100 ny # 2n,

V2

Ry 0011(8) = (0,0)7,

1 _ N .
T, 2000(6) =\/? (Aznl (””:II)) ( Rago0 = M, 4y, Qi )p,, (0).
1T

iwH
21117"1{ +

~ MyAy, (~iw!))5,, 0) ) e Myp,, &)

iz

+

1 _
M;p,, (©),
V2 20

1 -1~ . _
—\/2_ (Aan (O)) ( Ri100 — M34y,, (zwg)pn2 (), for n, =2n,,
1

- My4y, (—iw,!)p,,(0) ) +

hon, 1100(8) =

M3pn2 ((:)
2z

1 _
+ ——=Mp,,(©),
2

R 0011() =(0,0)T,
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1

V2
1

i(w,{’l' +n7,g )4
s

-1 -
Py 1010(8) = (Anm(i(w:{ +wg))) Rygy0e

(w}

H
'y~ Py K

-1 - )
I t001©) = (81, (@l = w!T) " Rigore’ . for my # 2n,,

2rx
1

-1 o H H
. H H 53 i(w, —w," )
Py—n0110) = (Anz—nl (i(w,, -, ))) Ropjoe 2 M7,

@

1 _ -l .
Ty —ny 1010(8) =\/? (Anz—nl(’(w,:[ +w[2’>>) < Ryo10 — Ms4,,_,, (iw,)p,, (0)
1T
= @l vl |1
_ M()Anz_nl(_lw,g)l’nl(o) ) ez(w,,l+w,.2)C + _Msl’nl(g)
¥4

\/_

1 _
+ —Mqgp, N
T M ©

-1 ~
Py 1001 ©) === (8o (! =@ ))  ( Rigor = Mra,y, (!, O)

1
Vrx
H- (ol w1
- MsAnz_”l(—lwﬁ)pnl(O) ) TR \/—_M7p,,l(§)
I

1 _
+ ——=MB, (). for my =2n,,
1¥3

\/_

-1 ~
oy 0110©) === (8o Gt = @))  ( Ropio = Mod,_y, (i, 0)

1
V2rx

o H\= i@l —ale 1
= Mgy, (=i, 0) ) 727 4 —— Mp, ©)
2z
+ —— M5, ).
2urx
where
M, = ! T O Ry, My=———L T OR
vy Ty 20000 Mo = ———5 i 2000
t(wn2 anl) "2 l(wn2 +2wnl) "2
My =— T O)R, 100, My = ———7" ()R
3 =73 I O R0, My = =774, (OR100,
ny n
Ms=— ——qT OF M=——1 TR
5 iw’g ny 1010> 6 i(zwr{.ll_l_wrg) ny 1010>
My = gT O Ry01, My = =———=3 (OR
7 iw}g ny 1001> Mg i(Z%’l’—wn’{) n 1001>
My=——L T R0 My = -——7" OF
9 Qo — o) 0110- Mo o 0110-
and
n
153 _ (6,1) (6,2)
Rm1m2m3m4 = lemzrn3m4 - 1_2 (Rm1m2m3m4 + Rm1m2m3m4) ’
my,my =0,1,2, my+my =4, m =my =0,
2 2
~ _ nny 6 M 62 "2 p(6.3)
Rm1m2m3M4 - lemzm_;M4 - 2 lemzm3M4 - 1_2 mymymymy - ?lem2m3m4’

my,my,m3,my =0,1, my +my =1, my+my =1.
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Case 2: n| = n,

In this case, we have

1 . -1 siwH
T19.0200(8) = —\/_ <AO(2””,{T)) Rogpoe” ™%,
174
1 . -1 2iwH
T9,0020(8) = F (AO(thg)) Roppoe” ™",
174
1 -1
7g,1100©) =—= (49(0)) " Ry1005
N
1 -1
T 0011(§) = T (40(0) ™" Ryoqy»
1 . (o H o H
ho1010() = NG <Ao(t(w + ! ))) Ry A
174
1 . -1 i(wH —wH )¢
ho1001(0) = = (40ticaf! = wl) " Rygore 7
1 . -1 it — )
N o110(8) = T (Ao(l(wg —w:]’))) ROHOC‘(ng @, )%
and
1 1~ 2iwH
thI,ZOOO(C) = (A2"1 (2!13' ) Ryp00€ 'nﬂlg’
1 1o 2iwH
thI,OOZO(C) = (Aan (21w ) Rog0€ lwnzg’
1
g, 1100(8) = (Aan(O)) R, 100-
1 ~
o001 (©) = (Az,,l(O)) Roous-
1 ~ iwH 4wl
g, 1010(8) = (AZ'II(’(W +w! ))) leoe'(ﬁ’nﬁwﬂz ¢
1 H
Pony.1001(6) = (Aznl(l(w —w,fz’))) Rygp e ™m
1 -1 . i H —aH
iy, 0110(8) = (Az,,l(l(w ::I’))) R011()C’(n”2 @)
where
”
R - 5,1 52 53
mymymamy lemzmsm + = ( gnlrrzzmym‘ - 5"1"32’"3’"4 - RE"]'zzmsﬂu) ,

my,my,my,my =0,1, m +m2 =1, my+my=1.

By noting that 2n, = n; + n, = 2n; and n, — n; = 0, we hence have Ny mymamymy € = Py s mymymymy, ©) = Py mymam, () and
h

nz—nl,m1m2m3m4(C) = hO,m|m2m3m4(C)-
3.3. Normal form of double Hopf bifurcation truncated to third terms

In the final of this section, we will give the expression of normal form truncated to third terms. Define
3 3
By =Cii+5 (D +E1+E8L) . By=Cp+ 5 (D + € +E5).
3 3
By =Cyi + 5 (D3 + &1 +E8) . By =Cyp + 5 (Dyy + & +£5).
In combination with (3.20), (3.29), (3.32), (3.35), (3.37) and (3.38), we obtain the following normal form truncated to third terms:
(B +%B yw BB w?w, +Bpw, wywy)
e Aw+— B((B14¢1 2148)w1) +é 1 ; 2 + Bpwwswy ' (3.39)
B((B134¢1 + Brsa&)ws) BB3wiwy + By w wows)
Similarly to the arguments in [40], we obtain the amplitude equations for (3.39) as below:
dry
dr

dry
dr

=(c; + a“r2 + alzrz)rl,
; i (3.40)
=(c, + ayry+ a22r2)r2,
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5.5

Stable

0.37 0.38 0.39 0. 40

Fig. 2. Complete bifurcation region around the double Hopf bifurcation point for model (4.1).

where
1 1
¢ = 59{ (Br1aéi + Baiad) > & = 59{ (Bi3aéi +Brab) -
and

1 1 1 1
ap = 691(15311), ap = ER(BIZ)’ ay = gm(Bm)’ ay = gm(Bn)

Remark 3.1. It follows from [43] that there exist no periodic orbits bifurcating from the nontrivial equilibrium of the amplitude
Egs. (3.40) provided a;,a,, > 0. The dynamics near double Hopf bifurcation points can be completely determined by the amplitude
Egs. (3.40) in this case.

4. Numerical example

In this section, we will present a numerical example to explicate the correctness of our obtained theoretical results. We choose
the same parameters as provided in [30]. Then model (1.1) can be rewritten as

IN N
Sr = 0N+ 6 (NPt =) +2N (1 - Z) —12NP, 0<x <27, t>0,

0.96N; | P2
9P 01P, 4+ —— 231,06 _o5p 0 <x <2 >0, (4.1)
ot 0.4+ Py

N, (x,t)= P.(x,1) =0, x=0,27, t > 0.

According to Theorem 2.1, we obtain the crossing curves in the (6,,, r) plane as is shown in Fig. 1. We thus obtain the critical values
for the double Hopf bifurcation point ny =4, n, =5, w, ~ 03044, @, ~ 0.3059, ﬁg ~0.3811, ¥ ~ 5.2576.

According to procedures in Section 3, we can calculate ¢, ~ —0.0009166¢, + 1.2172312¢,, ¢, ~ 0.0064241&, + 1.3039521¢&,,
a;; ~ —0.0700132, a;, ~ —0.1021972, a,; ~ —0.0817567, a5, ~ —0.0732399. We can thus classify the dynamics of model (4.1)
into 6 categories in the (§;,,7) plane as is displayed in Fig. 2 by the following curves:

H1: 7t —77=1327.9942(5,, — 677),

H2: 7t —7t7=-2029793(5,, — 6,
L1:7—7" =-609552(5,, — 6/1), 6,, > &1,
L2 : v — 7" =15.6715(5), - 83), 815 > 615

(4.2)

The dynamical behaviors in each region of model (4.1) are displayed in Fig. 3. The points of O, A and B in Fig. 3 refer to constant
steady state, spatially heterogeneous periodic solution with mode-4 and 5 respectively. We observe that when (6,5, 7) is in regions
R, and R4, model (4.1) can exhibit stable spatial periodic solutions with mode 4 and 5 respectively as is shown Fig. 4. When (6,,, )
is in region R,, the solution of model (4.1) can converge to spatially heterogeneous periodic solutions with mode 4 or 5 depending
on the initial values as is illustrated in Fig. 5.
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Fig. 4. The stable spatially inhomogeneous periodic solutions with mode 4 and 5 for (5,,,7) € R, and (§,,,7) € R, respectively.
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Fig. 5. The coexistence of stable spatially inhomogeneous periodic solutions with mode 4 and 5 for (6,,,7) € R,.
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Stable

Fig. 6. Crossing curves and double Hopf bifurcation point of model (5.1).

5. Discussions

We investigated the double Hopf bifurcation in a spatial model with directed movement, i.e., model (1.1), with the aim to clarify
the temporal-spatial distribution of predators and the prey under the joint influence of memory-driven movement, reproductive
facilitation and maturation period via model (1.1). Some significant findings and main contributions in this paper are as follows.

« We presented an innovative technique to plot crossing curves in the (6,,, r) plane by treating them as parametric curves about
frequency. We thus found the double Hopf bifurcation points.
We derived the explicit formulae concerning normal form of the non-resonant double Hopf bifurcation triggered by spatial

memory in memory-driven diffusive predator-prey models with double delays.

Our research shows that it is the tactic diffusion term rather than the reaction term of the developed model that induces
complicated dynamic behaviors around the double Hopf bifurcation point. This presents a completely different mechanism
from classical models with only random diffusions [38].

Spatial memory along with other biotic processes can induce complex spatial distribution of animals. For example, the
transition between stable spatially inhomogeneous periodic solutions with higher modes and coexistence of them can be
observed. These seem not to have ever been observed in the literature [26,28,40,44]. Also, these complex spatiotemporal
distributions may be a signal of resilience for species [45].

As we state in the introduction section, we can also consider the scenario of spatial memory in predators. Assume that the prey
population is viewed as “drunk” animals so that their memory or cognition can be ignored [27]. Then we consider the following
model:

‘)0—]:]=5uNxx+rN(l—%)—bNP, 0<x<uiz >0,

2
9P 5P, — 6y (PNy(x,1 =) + ﬁ:ie’d” —uP, 0<x<um, t>0, (5.1

ot +P,
N, (x,0) = Po(x,1) |y=0,z=0, 120,

where 6, and 7 represent respectively the memory-dependent diffusion and the averaged memory period coefficients of predators.
We can analyze model (5.1) in a similar way as model (1.1). Here we only elucidate the main results of model (5.1) through
numerical simulations.

Taking the same parameter values as in system (4.1), we can also plot the crossing curves in the (6,;,7) plane as is shown
in Fig. 6. We thus obtain the critical values for the double Hopf bifurcation point n; = 4, n, = 5, w, = 03045, @,
0.3060, 521 ~0.1208, 7/ ~ 8.3554. Similarly, we can calculate ¢, ~ —0.0014446¢, +6.10262045,. ¢, ~ 0.0102199¢, +6.5375531£,. ay,
—0.1215701, a;, =~ —0.2278062, a,; ~ —0.1377265, ay, ~ —0.1377265. We thus classify the dynamics of model (5.1) into 6 categories

Q

Q
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Fig. 7. Complete bifurcation region near the double Hopf bifurcation point.

in the (6,,, 7) plane as is displayed in Fig. 7 by the following curves:

H1:1— oM =42244733(5 - 571),

H2 : 71— =-639.6865(5,, — 611),

L1 : 7 — ot = -256.7359(5,) — 611), 6,5 > 613,
H

L2t — 7 = 11.6484(5,, - 651), 61, > 612

To sum up, the method developed in this paper by viewing some critical indices without explicit expression (such as frequency
or equilibrium) as parameters can provide a new paradigm to detect some bifurcations. It can also be extensively used to reveal the
complex effects of biotic process of animals on their distribution in space. There also exist some other problems that can be further
considered. For instance, both the prey and predators can possess spatial memory. In this case, we can deduce from (2.6) that its
left side is a high degree polynomial with respect to §,,, and therefore it is difficult to obtain the associated crossing curves. Also,
the derivation of normal form in this paper is under the assumption that the double Hopf bifurcation is non-resonant. When the
double Hopf bifurcation is not a non-resonant one, then we cannot obtain ker(M;) and ker(M;) from (3.19). A natural question is
to calculate normal form concerning resonant double Hopf bifurcation for diffusive predator-prey models with double delays and
spatial memory in this case. We will devote ourselves to these problems in the future.
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