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Abstract
Nonlocal perception is crucial to the mechanistic modeling of cognitive animal move-
ment. We formulate a diffusive consumer-resource model with nonlocal perception
on resource availability, where resource dynamics is explicitly modeled, to investi-
gate the influence of nonlocal perception on stability and spatiotemporal patterns. For
the finite domain, nonlocal perception described by two common types of resource
detection function (spatial average or Green function) has no impact on the stability of
the spatially homogeneous steady state. For the infinite domain, nonlocal perception
described by the Laplacian or Gaussian detection function has no impact on stability
either; however, the top-hat detection function can destabilize the spatially homoge-
neous steady state when the rate of perceptual movement is large and the detection
scale belongs to an appropriate interval. Using the more realistic top-hat perception
kernel, we investigate the influence of the detection scale, the perceptual movement
rate and the resource’s carrying capacity on the spatiotemporal patterns and find the
stripe spatial patterns, oscillatory patterns with different spatial profiles as well as
spatiotemporal chaos.
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1 Introduction

Animal movement is normally affected by external information including the spatial
distribution of resource availability, for example, the smell of pollen. Cognitive move-
ment in response to external information can be characterized by gradient-tracking.
Gradient-tracking means that the animal movement tracks the resource gradients,
which measures the fastest direction of the growth of the resource. One classical
example is the Patlak–Keller–Segel chemotaxis model (Keller and Segel 1971a, b;
Patlak 1953). The Patlak–Keller–Segel chemotaxis model provides some initial moti-
vation for how information-based movement models may be constructed and have
been extensively studied in the past decades (Carrillo et al. 2020; Hillen and Painter
2009; Tao andWinkler 2012, 2017a, b;Wang et al. 2019). The classical Patlak–Keller–
Segel model depends on the gradients of local external information by assuming that
bacteria only have a tiny perceptual range. However, nonlocal information, such as
visual, auditory, and olfactory cues, plays a vital role in animal movement decisions
because animals normally have a large perceptual range (Barnett andMoorcroft 2008;
Fagan et al. 2017; Martínez-García et al. 2013; Wang and Salmaniw 2023; Mogilner
and Edelstein-Keshet 1999).

The nonlocal information naturally exists and is obtained by an animal’s perception.
Denote u(x, t) as the density of resources at location x and time t for a one-dimensional
infinite landscape and define the forager’s resource perception function h(x, t) for the
density of resources as

h(x, t) =
∫

�

K (x − y)u(y, t)dy, (1.1)

where K (x − y) is some reasonable kernel function (also known as the detection
function), describing the perception strength of the forager at location x to the resource
at location y. The reasonable kernel function K (x) should satisfy the following
hypotheses (Wang and Salmaniw 2023): (i) K (x) is symmetric about the origin; (i i)∫
�
K (x)dx = 1; (i i i) lim

r→0+ K (x) = δ(x); (iv) K (x) is nonincreasing from the origin.

The specific form of the K (x − y) also depends on the boundary condition as is given
in Sect. 3. The function h reflects the nonlocal information of resources perceived
by foragers. Nonlocal gradient-tracking movements are often used to describe crowd
dynamics, flocking or swarming, cell-cell and cell-tissue adhesions; see (Green et al.
2010; Mogilner and Edelstein-Keshet 1999; Grünbaum and Okubo 1994; Börger et al.
2008; Bellomo and Dogbé 2011; Ducrot et al. 2018; Chen et al. 2020; Buttenschøn
and Hillen 2021; Giunta et al. 2021) and references therein. The landscapes are called
static when the resource distribution u(x, t) is constant in time, and called dynamic
otherwise. The issue of how foragers can exploit nonlocal information to improve
their success was investigated by Fagan et al. (2017). This study also mentioned that
nonlocal gradient-tracking is particularly important in dynamic landscapes, which is
the focus of this paper.

Letting v(x, t) denote the density of foragers at location x and time t and assuming
that the movement of the foragers follows a perceived nonlocal gradient (∂h/∂x),
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Fagan et al. (2017) proposed the following nonlocal advection–diffusion equation:

vt = Dvxx − α(vhx )x , (1.2)

where D and α are the random diffusion and the perception strength, respectively. In
Fagan et al. (2017), Eq.(1.2) has been mathematically solved for static resource dis-
tributions consisting of one or a sum of sine waves with a top-hat detection function
and numerically investigated for the dynamic resource distributions, with the goal of
quantifying the effects of the detection-length scale and the random diffusion and the
perception strength on foraging success. It has been shown that nonlocal information
can be highly beneficial, increasing the spatiotemporal concentration of foragers on
their resources up to twofold compared with movement based on purely local infor-
mation (Fagan et al. 2017).

In Eq.(1.2), the birth/death processes of the forager and the mechanistic dynamics
of the resource availability were ignored. Incorporating these important missing pieces
into Eq.(1.2), we propose the following consumer-resource model with the nonlocal
perception:

{
ut = d1uxx + f (u, v), x ∈ �, t > 0,

vt = d2vxx − α(vhx )x + g(u, v), x ∈ �, t > 0,
(1.3)

where� is the spatial domain,� = (0, �π) for the finite domain and� = (−∞,+∞)

for the infinite domain, d1 > 0 and d2 > 0 are the random diffusion coefficients of
the resource and consumer, respectively, α ≥ 0 is the perceptual diffusion coeffi-
cient of the consumer, f and g describe the vital rates of the resource and consumer,
respectively, and their interactions. Herbs spread over long distances bymeans of seed
dispersal, which can be considered as the diffusion mechanism of resources. Obvi-
ously, (1.3) is more realistic because the resource availability should heavily depend
on the consumer’s population and feeding rate.

For the biological relevance, we always assume in this paper that the detection
function K (x − y) satisfies

K (x − y) > 0, K (x − y) = K (y − x),
∫

�

K (x − y)dy = 1, x, y ∈ �. (1.4)

This condition ensures that the spatially homogeneous steady states of (1.3) are the
same as the corresponding system with local perception. If K (x − y) is chosen as
the Dirac delta function, i.e., K (x − y) = δ(x − y), then h(x, t) = u(x, t) and (1.3)
becomes the standard predator–prey model with prey-taxis (Wu et al. 2016; Jin and
Wang 2017;Wang et al. 2021;Wang andWang 2021).Wewill explore the influence of
the detection functions on the stability of (1.3) and expect the generation of spatially
inhomogeneous distributions with spatially periodic scenarios at bifurcations.

The remaining paper is organized as follows. In Sect. 2, we introduce some prelim-
inary results on the well-posedness of solutions. In Sect. 3, we investigate the stability
and instability of the spatially homogeneous steady states for different detection func-
tions in either the finite or infinite domain. In Sect. 4, we apply the theoretical results
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of Sect. 3 to investigate the dynamics of the consumer-resource model with nonlocal
resource perception and Holling type-II functional response. We summarize our paper
with discussion in Sect. 5.

Throughout the paper, N represents the set of all positive integers, N0 = N ∪ {0}
represents the set of all nonnegative integers, R represents the set of all real numbers
and R

+ represents the set of all positive real numbers.

2 Well-Posedness of Solutions

In this section,we investigate thewell-posedness (existence, uniqueness andpositivity)
of solutions to system (1.3). We assume that the initial condition u0 ∈ C2(�̄), v0 ∈
C2(�̄) and functions f , g in (1.3) satisfy the following conditions:

( f1) The function f ∈ C1([0,∞] × [0,∞],R), f (0, v) = 0 for v ≥ 0, and there
exists F : [0,∞) → R and M > 0 such that f (u, v) ≤ F(u), and F satisfies
F(0) = 0, F(u) < 0 for u > M .

(g1) The function g ∈ C1([0,∞] × [0,∞],R), g(u, 0) = 0 for u ≥ 0, and there
exist K1 > 0, K2 > 0 such that g(u, v) ≤ (K1 + K2u)v.

Proposition 2.1 Suppose that d1 > 0, d2 > 0, α ≥ 0 and f , g satisfy, ( f1), (g1),
respectively. Then,when� = (−∞,+∞) or� = (0, �π), system (1.3)with the initial
condition u0 ∈ C2(�̄), v0 ∈ C2(�̄) possesses a unique solution (u(x, t), v(x, t)) for
(x, t) ∈ �̄×[0,∞), and u, v ∈ C2,1(�̄×[0,∞)) if the detection function K satisfies

(H1):
∫
�
(
∫
�

∂x K (x − y)dy)pdx < +∞, for all p > 1

and the boundary conditions satisfy Bu = a(x)u+b(x)ux = Bv = a(x)v+b(x)vx =
0 with a(x), b(x) ∈ C([0, �π ]). Moreover, if u0(x) > 0 for x ∈ �̄, v0(x) ≥ ( �≡)0 for
x ∈ �̄, then u(x, t) > 0, v(x, t) > 0 for (x, t) ∈ �̄ × [0,∞).

Proof Define

h0(x) =
∫

�

K (x − y)u0(y)dy,

F (1)(t, x, u, v) = f (u(x, t), v(x, t)),

F (2)(t, x, u, v) = α(v(x, t)(h0)x )x + g(u(x, t), v(x, t)),

then it follows from ( f1), (g1) and (H1) that F (1) and F (2) are continuous and there
exist θ ∈ (0, 1) and L > 0 satisfying

|F (i)(t, x, u1, v1) − F (i)(s, x, u2, v2)|
≤ L(|t − s|θ + ||u1 − u2||C1 + ||v1 − v2||C1), i = 1, 2.

Thus, F (i)(i = 1, 2) satisfies a Hölder condition with respect to t , and a Lipschitz
condition with respect to u and v. It follows from Lunardi (1995, Proposition 7.3.3)
that u, v can be solved uniquely on t ∈ [0, δ] for some δ > 0. The condition ( f1)
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guarantees that u(x, t) is also bounded on [0, δ] by a constant B0 > 0, see, e.g.,
Alikakos (1979, Theorem 3.1). According to (g1), v(x, t) satisfies

{
vt (x, t) ≤ d2vxx (x, t) − α(v(x, t)(h0)x )x + (K1 + K2B0)v, x ∈ �, 0 < t < δ,

v(x, 0) = v0(x), x ∈ �,

then v(x, t) can also be bounded on [0, δ] fromAlikakos (1979, Theorem 3.1). Repeat-
ing this process the solution can be extended to [δ, 2δ] and further to [kδ, (k+1)δ] for
any k ∈ N in 1D finite or infinite domain �. Moreover from the maximum principle,
u(x, t) > 0 and v(x, t) > 0 for (x, t) ∈ �̄ × [0,∞). 
�
Remark 2.1 (1) It is worth mentioning that the diffusion matrix of system (1.3) is

triangular, so the local existence of nonnegative solution of (1.3) can also be
obtained by standard results such as Amann (1990, Theorem 0.1), which is similar
to the case of local prey-taxis systems (Wang et al. 2017) or general chemotaxis
systems (Winkler 2020). On the other hand, little is known for the global solvability
for (1.3), while such results are known for the case of systems with local prey-taxis
(Jin and Wang 2017). Following (Wu et al. 2016), as interaction functions and the
kernel function satisfy ( f1), (g1) and (H1), a unique global solution of (1.3) can
be uniformly bounded by a constant depending on initial values.

(2) The technical conditions ( f1), (g1) guarantee the global existence of the solutions
to (1.3). A typical form of f , g satisfying the conditions ( f1),(g1) is f (u, v) =
u

(
1 − u

a

) − buv
1+u , g(u, v) = −cv + buv

1+u , respectively. For this case, the condition

( f1) is satisfied by choosing F(u) = u(1− u

a
), and the condition (g1) is satisfied

by choosing K1 to be any positive number and K2 = b.

3 Stability and Instability of Spatially Homogeneous Steady State

In this section, we investigate the stability and instability of spatially homogeneous
steady state of (1.3) for different kernels in the finite or infinite domain. For this
purpose, we first assume that E∗ = (u∗, v∗) is a spatially homogeneous (positive)
steady state of (1.3). The linearized system of (1.3) at (u∗, v∗) is

(
ut
vt

)
= D1

(
uxx
vxx

)
+ D2

(
hxx
0

)
+ A

(
u
v

)
, (3.1)

where

D1 =
(
d1 0
0 d2

)
, D2 =

(
0 0

−αv∗ 0

)
, A =

(
a11 a12
a21 a22

)
, (3.2)

and

a11 = ∂ f (u∗, v∗)
∂u

, a12 = ∂ f (u∗, v∗)
∂v

, a21 = ∂g(u∗, v∗)
∂u

, a22 = ∂g(u∗, v∗)
∂v

.
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For the biological relevance of a consumer-resource model, throughout the paper,
we always assume that

a12 < 0, a21 > 0. (C1)

This implies that u is the resource and v is the consumer in (1.3). We further assume
that without the perceptual movement (α = 0), (u∗, v∗) is stable, i.e., the following
conditions

Tr(A) < 0, Det(A) > 0 (C2)

and

d1a22 + d2a11 < 2
√
d1d2Det(A) (C3)

hold.
In what follows, we always assume α > 0 and investigate the influence of the

perceptual movement rate α and the detection function on the stability of the steady
state E∗ of (1.3) in both finite and infinite domains.

3.1 Finite Domain Case

Assume that the finite domain � = (0, �π) and the problem (1.3) is subject to the
no-flux boundary condition

ux (0, t) = ux (�π, t) = 0. (3.3)

For the finite domain, one of the commonly used detection functions is the spatial
average K (x − y) = 1

�π
(Furter and Grinfeld 1989). This spatial average detection

function is often induced by the nonlocal crowding effect in the population dynamics,
and its influence on the spatiotemporal dynamics of the population dynamics has been
investigated in Chen and Yu (2018), Wu and Song (2019), Song et al. (2019), Shi
et al. (2021). However, for the forager’s resource perception function with this kind of
detection function, h(x, t) = 1

�π

∫ �π

0 u(y, t)dy is independent of the spatial variable
x . Thus, hx = 0, which implies that the perceptual diffusion term −α(vhx )x in (1.3)
vanishes. This implies that the spatial average detection function does not affect any
dynamics of (1.3).

For the finite domain, another commonly used detection function is the Green
function of the operator −d3

∂2

∂x2
+ I with Neumann boundary condition (Ni et al.

2018), i.e., K (x − y) is the solution of

{
−d3

∂2K
∂x2

+ K = δ(x − y), x ∈ (0, �π),

Kx (0 − y) = Kx (�π − y) = 0.
(3.4)
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The Green function K (x− y) is a monotonically decreasing function of |x− y| and
is consistent with the fact that the consumers have stronger perceptual to the resources
nearby than those further away. For more biological interpretations of this kind of
detection function, please refer to Gourley (2000), Ni et al. (2018).

It is easy from (3.4) and the symmetry of the Green function to verify that

∫ �π

0
K (x − y)dy =

∫ �π

0
δ(x − y)dx = 1. (3.5)

Let φn(x) = cos(nx/�) and define

L (φn) =
∫ �π

0
K (x − y)φn(y)dy.

Then, using integration by part and the boundary conditions in (3.4), we have

L (φn(x)) =
∫ �π

0
K (x − y) cos

(ny
�

)
dy

= − 1

(n/�)2

∫ �π

0
Kyy(x − y) cos

(ny
�

)
dy

= − 1

(n/�)2

∫ �π

0

(
1

d3
K (x − y) − 1

d3
δ(y − x)

)
cos

(ny
�

)
dy

= − 1

d3(n/�)2
L (φn(x)) + 1

d3(n/�)2
φn(x),

which implies that

L (φn(x)) = 1

1 + d3(n/�)2
φn(x). (3.6)

Assume that (3.1) has the solution as follows:

(
u
v

)
=

(
an
bn

)
eλn t cos

(nx
�

)
, (3.7)

which obviously satisfies the boundary condition (3.3) for n ∈ N0.

Lettingσn = (n/�)2, it is easy to verify that ∂2φn(x)
∂x2

= −σnφn(x). Then, substituting
(3.7) into (3.1) and noticing the orthogonality of the eigenfunctions cos(nx/�) and
(3.6), one can conclude that if λn is the root of Det (Mn(λ)) = 0, then (3.7) is the
solution of (1.3) subject to the boundary condition (3.3), where the characteristic
matrixMn(λ) is defined by

Mn(λ) = λI2 + σnD1 + σn

1 + d3σn
D2 − A. (3.8)
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Thus, if the detection function K (x − y) is determined by (3.4), then the characteristic
equation of (3.1) is

�n(λ) = Det (Mn(λ)) = λ2 − Tnλ + Jn(α) = 0, n ∈ N0, (3.9)

where

Tn = Tr(A) − Tr(D1)σn,

Jn(α) = d1d2σ
2
n − (d1a22 + d2a11) σn + Det(A) − αa12v∗σnH(σn),

(3.10)

with

Tr(A) = a11 + a22, Tr(D1) = d1 + d2, Det(A) = a11a22 − a12a21,

and

H(σn) = 1

1 + d3σn
> 0. (3.11)

Under the conditions (C2) and (C3), it is easy to see from (3.10) that Tn < 0 and
Jn(0) > 0. Furthermore, by the condition (C1) and (3.11), we have Jn(α) > 0 for
any α ≥ 0. This implies that under the conditions (C1), (C2) and (C3), all roots of
Eq.(3.9) have negative real parts for any n ∈ N0 and α ≥ 0. Therefore, the steady
state E∗ = (u∗, v∗) of (1.3) is asymptotically stable for the kernel function K (x − y)
defined by (3.4).

By the above discussion, we have the following results.

Theorem 3.1 For system (1.3) subject to the no-flux boundary condition, assuming
that the conditions (C1), (C2) and (C3) hold, then E∗ is always asymptotically stable
for any α ≥ 0 regardless of whether the kernel is the spatial average or the Green’s
function defined by (3.4).

3.2 Infinite Domain Case

For the infinite domain � = (−∞,+∞), we have

h(x, t) =
∫ ∞

−∞
K (x − y)u(y, t)dy =

∫ ∞

−∞
K (ξ)u(x − ξ, t)dξ. (3.12)

The following three widely used detection functions are considered (Ducrot et al.
2011; Fagan et al. 2017; Merchant and Nagata 2011):

1. Laplace: K (x) = 1
2R exp(−|x |/R);

2. Gaussian: K (x) = 1√
2πR

exp(−x2/2R2);

3. Top-hat: K (x) =
{ 1

2R −R ≤ x ≤ R,

0, otherwise.
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The Laplace and Gaussian detection functions allow the consumer to perceive
nearby resources and decaymonotonically as the increasing distance from the observa-
tion location. The top-hat detection function allows the consumer to perceive resources
equally a fixed distance away from its current location and cannot detect beyond that
fixed distance (Wang and Salmaniw 2023).

In the following, we investigate the influence of these three kinds of detection
functions as above on the stability of the steady state E∗ = (u∗, v∗) and the possible
bifurcation phenomenon.

Assume that (3.1) has the solution of the form

(
u
v

)
=

(
ak
bk

)
eλt+ikx , (3.13)

where λ ∈ C and k ∈ R. Substituting (3.13) into (3.1), we obtain the characteristic
equation

�k(λ) = λ2 − Tkλ + Jk(α, R) = 0, (3.14)

where

Tk = Tr(A) − Tr(D1)k
2, (3.15)

Jk(α, R) = d1d2k
4 − (d1a22 + d2a11) k

2 + Det(A) − αa12v∗k2H(R, k),

(3.16)

and

H(R, k) =
∫ ∞

−∞
K (x)e−ikxdx =

{ 1
1+R2k2

> 0, for Laplace detection function ,

e− R2k2
2 > 0, for Gaussian detection function,

(3.17)

and for the top-hat detection function,

H(R, k) = ∫ ∞
−∞ K (x)e−ikxdx = 1

2R

∫ R
−R e

−ikxdx

=
{ sin(kR)

kR , k �= 0,
1, k = 0.

(3.18)

3.2.1 Stability and Bifurcation Analysis for the Laplace and Gaussian Detection
Functions

For the Laplace and Gaussian detection functions, we have the following results.

Theorem 3.2 Assume that the conditions (C1), (C2) and (C3) hold. For Gaussian and
Laplacian detection functions, the steady state E∗ of system (1.3) is always asymptot-
ically stable for any α > 0 and R ≥ 0.
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Proof From the condition (C2) and noticing the fact that Tk is independent of α and
R, we Tr(A) < 0, which, together with (3.15), implies that for α > 0 and R ≥ 0,
Tk < 0 for any k ∈ R.

Under the conditions (C2) and (C3), it is easy to verify that Jk(0, R) > 0 for
any k ∈ R. It follows from (3.17) that for the Laplace kernel and Gaussian detection
functions, H(R, k) > 0 for R ≥ 0 and k ∈ R. This, together with the condition (C1)

and Jk(0, R) > 0, implies that Jk(α, R) = Jk(0, R) − αa12v∗k2H(R, k) > 0 for any
α > 0 and R ≥ 0 since a12 < 0.

Therefore, under the conditions (C1), (C2) and (C3), all roots of Eq.(3.9) have
negative real parts for any k ∈ R when α > 0 and R ≥ 0. This means that Laplace
kernel and Gaussian detection functions do not affect the stability of the steady state
E∗ of (1.3). The proof is completed. 
�

3.2.2 Stability and Bifurcation Analysis for the Top-Hat Detection Function

For the top-hat detection function, one can verify that

h(x, t) = lim
R→0+

∫
�

K (x − y)u(y, t)dy = u(x, t).

In this sense, we can say that R = 0 corresponds to the local perception. In this case,
Jk(α, 0) becomes

Jk(α, 0) = Jk(0, 0) − αa12v∗k2,

which yields Jk(α, 0) > 0 for k ∈ R and α > 0 under the conditions (C1), (C2) and
(C3). Therefore, the steady state E∗ of system (1.3) with the local perception (R = 0)
is asymptotically stable.

In what follows, for the nonlocal top-hat detection function (R > 0), we investigate
the influence of the perceptual movement rate α and the detection scale R on the
stability of the steady state E∗ of (1.3). For this purpose, we need to investigate
the distribution of roots of the characteristic equation (3.14) for H(k, R) defined by
(3.18). We first introduce the following two propositions, which are very useful for
the investigation of the distribution of roots of (3.14).

Proposition 3.1 Letting g1(z) = − sin(z)/z and denoting the countable number of
positive roots of the equation tan(z) = z by z j > 0, we have the following properties
on g1(z):

(i) g1(z) obtains its local maximum at z = z j , j = 2(m − 1) + 1 and

g1(z2(m−1)+1) > g1(z2m+1) > 0, m ∈ N;

(ii) g1(z) obtains its local minimum at z = z j , j = 2m and

g1(z2m) < g1(z2(m+1)) < 0, m ∈ N.
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Proof From g1(z) = − sin(z)/z, we have

dg1(z)

dz
= sin(z) − z cos(z)

z2
,
d2g1(z)

dz2
= z2 sin(z) − 2(sin(z) − z cos(z))

z3
.

In terms of tan(z j ) = z j as illustrated in Fig. 1, we have 0 < z j < z j+1, j =
1, 2, 3, · · · , and for j = 2(m − 1) + 1,

z j ∈
(
2(m − 1)π + π, 2(m − 1)π + 3π

2

)
, m ∈ N,

and for j = 2m,

z j ∈
(
2mπ, 2mπ + π

2

)
, m ∈ N.

Thus, we have

dg1(z)

dz

∣∣∣∣
z=z j

= 0,
d2g1(z)

dz2

∣∣∣∣
z=z j

= sin(z j )

z j

{
< 0, j = 2(m − 1) + 1,
> 0, j = 2m,

which implies that g1(z) obtains its local maximum at z = z j , j = 2(m − 1) + 1, and
obtains its local minimum at z = z j , j = 2m. Noticing that 1/z j = cos(z j )/ sin(z j ),
we have

g1(z2(m−1)+1) − g1(z2m+1) = cos(z2m+1) − cos(z2(m−1)+1). (3.19)

By the property of z j , we have

2mπ + 3π

2
− z2m+1 <

(
2(m − 1)π + 3π

2
− z2(m−1)+1

)
. (3.20)

From (3.19), (3.20) and the monotone and periodicity of the cosine function, we
conclude that

g1(z2(m−1)+1) > g1(z2m+1) > 0, m ∈ N.

Similarly, we can prove that g1(z2m) < g1(z2(m+1)) < 0, m ∈ N. The proof is
completed. 
�

Noticing that for k �= 0, H(R, k) = H(R,−k), we only consider the case of k > 0
in what follows and define

f1(k, R) = − sin(kR)

kR
. (3.21)

Then, the following proposition follows immediately.
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Fig. 1 The first five zeros z j of
tan(z) = z. z1

.= 4.4869, z2
.=

7.7250, z3
.= 10.9041, z4

.=
14.0657, z5

.= 17.2201

Fig. 2 The graphs of the function f1 = f1(k, R) for R = 6, R = 1, R = 0.6 and R = 0.4. g j (z j ) =
− sin(z j )

z j
, j = 1, 2, 3, 4, where z1

.= 4.4869, z2
.= 7.7250, z3

.= 10.9041, z4
.= 14.0657. When R is

decreasing, the curve f1 = f (k, R) stretches along the k-axis and the local extremums of the function
f1 = f1(k, R) keep unchanged, but the extremum point (k j , g1(z j )) moves along the straight line f1 =
− sin(z j )

z j

Proposition 3.2 Assuming that z j is defined by Proposition 3.1 and letting k j = z j/R,
then we have the following results on the function f1(k, R) with R as the parameter:

(i) for fixed R, the function f1 = f1(k, R)obtains its localmaximum f (k2(m−1)+1, R) =
g1(z2(m−1)+1) > 0 at k = k2(m−1)+1, and obtains its local minimum f (k2m, R) =
g1(z2m) < 0 at k = k2m, m ∈ N;

(i) when R is increasing, the local extremum f1(k j , R) of the function f1 = f1(k, R)

remains the same, but k j is decreasing and lim
R→0

k j = +∞, lim
R→+∞ k j = 0.

Figure2 illustrates the graph of the function f1 = f1(k, R) for different values of
R and intuitively shows the results of Proposition (3.2).

Under the condition (C2), it is easy to verify that Tk < 0 for any k ∈ R. Thus, for
fixed k ∈ R, two roots of Eq. (3.14) have negative real parts for Jk(α, R) > 0, Eq.(3.14)
has one positive root and one negative root for Jk(α, R) < 0 and Eq.(3.14) has zero
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root and one negative root for Jk(α, R) = 0. Taking α and R as bifurcation parameters,
we have the following results on the distribution of roots of the characteristic equation
(3.14).

Lemma 3.1 Assume that the conditions (C1), (C2) and (C3) hold, and let

α(m) =
(
2
√
d1d2Det(A) − (d1a22 + d2a11)

)
z2(m−1)+1

a12v∗ sin(z2(m−1)+1)
, m ∈ N. (3.22)

For the characteristic equation (3.14) with the top-hat detection function, we have the
following results.

(I) For 0 < α < α(1), all roots of Eq.(3.14) are negative for any k > 0 and any
R > 0.

(II) For α = α(1), there exist a critical value R∗
1 and a positive number k∗

1 such that
Eq.(3.14) has one zero root and one negative root at k = k∗

1 and all other roots
are negative at k �= k∗

1 for R = R∗
1 , and all roots of Eq.(3.14) have negative real

parts for any k > 0 and R �= R∗
1 .

(III) For α(m) < α < α(m+1),m ∈ N, there exist two critical values R∗ and R∗ of R
and two critical values kc1 and kc2 of k such that the curves f1 = f1(k, R) and
f2 = f2(k) are tangent at (k, R) = (kc1, R∗) or (k, R) = (kc2, R

∗). In this case,
we have the following results:

(1) if R ∈ (0, R∗) ∪ (R∗,+∞), then all roots of Eq.(3.14) are negative for any
k > 0; and if R = R∗, then Eq.(3.14) has one zero root and one negative root
at k = kc1 and all other roots are negative at k �= kc1; and if R = R∗, then
Eq.(3.14) has one zero root and one negative root at k = kc2 and all other roots
are negative at k �= kc2;

(2) if R ∈ (R∗, R∗), then letting

I+
R = {R |R ∈ (R∗, R∗), f1(k, R) < f2(k) for ∀k > 0 } ,

I−
R = {

R
∣∣R ∈ (R∗, R∗), ∃ a set k−

s ⊂ R
+, f1(k, R) > f2(k) for k ∈ k−

s

}
,

I 0R = {
R

∣∣R ∈ (R∗, R∗), ∃ a countable set k0s ⊂ R
+,

f1(k, R) = f2(k) for k ∈ k0s , f1(k, R) < f2(k) for k /∈ k0s
}
,

there are the following two cases:
(i) for I+

R = ∅ and I 0R = ∅, Eq.(3.14) has at least one positive root for
k ∈ k−

s ;
(ii) for I+

R �= ∅, all roots of Eq.(3.14) are negative for R ∈ I+
R , and Eq.(3.14)

has at least one positive root for k ∈ k−
s for R ∈ I−

R , and Eq.(3.14) has
zero roots for k ∈ k0s and all other roots are negative for k /∈ k0s for
R ∈ I 0R.

Proof From (3.16) and (3.18), it is easy to verify that Jk(α, R) > 0 is equivalent to

− sin(kR)

kR
<

1

−αa12v∗

(
d1d2k

2 + Det(A)

k2
− (d1a22 + d2a11)

)
. (3.23)
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Denote the function on the left-hand side of the inequality (3.23) by

f1(k, R) = − sin(kR)

kR
, (3.24)

and the function on the right-hand side of the inequality (3.23) by

f2(k) = 1

−αa12v∗

(
d1d2k

2 + Det(A)

k2
− (d1a22 + d2a11)

)
. (3.25)

From the condition (C3), it is easy to verify that

d1d2k
2 + Det(A)

k2
− (d1a22 + d2a11)

= 1

k2

(
d1d2k

4 − (d1a22 + d2a11) k
2 + Det(A)

)
> 0,

which, togetherwith the condition (C1), implies that f2(k) > 0.Noticing that f1(k, R)

and f2(k) are both even functions with respect to k, we only need to consider the case
of k > 0. From (3.25), we have

d f2(k)

dk
= 2

−αa12v∗

(
d1d2k − Det(A)

k3

)
,

which implies that for fixed α > 0, f2(k) is decreasing for 0 < k < kc and increasing
for k > kc, where

kc = 4

√
Det(A)

d1d2
.

Therefore, when k > 0, f2(k, α) obtains its minimum

min
k>0

{ f2(k)} = f2(kc) = 2
√
d1d2Det(A) − (d1a22 + d2a11)

−αa12v∗
> 0. (3.26)

From the conditions (C1) and (C3), we have a12 < 0 and 2
√
d1d2Det(A) −

(d1a22 + d2a11) > 0, which implies that the minimum f2(kc) > 0.
Solving g1(z2(m−1)+1) = f2(kc) for α, we have α = α(m) defined by (3.22). It is

easy to see that g1(z2(m−1)+1) > f2(kc) is equivalent to α > α(m).
By Proposition 3.1, we have

max
z>0

{g1(z)} = g1(z1) = − sin(z1)

z1
> 0, (3.27)
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where z1 ∈ (π, 3π/2). Then, from (3.26) and (3.27), we can conclude that when
α < α(1),

f2(kc) > max
z>0

{g1(z)} . (3.28)

In addition, from Proposition 3.2, it follows that

max
k>0

{ f1(k, R)} = g1(z1) = − sin(z1)

z1
. (3.29)

From (3.28) and (3.29), we can conclude that for α < α(1),

f2(kc, α) > max
k>0

{ f1(k, R)} , (3.30)

which, together with the fact that the minimum f2(kc) of the function f2(k) is increas-
ing with the decreasing of α, implies that for 0 < α < α(1), f2(k) > f1(k, R) for
k > 0 and any R > 0. This implies that for α < α(1), Jk(α, R) > 0 for any R > 0.
The conclusion (I ) is confirmed.

It follows from Propositions 3.1 and 3.2 that f (k, R) obtains its local extremum
g1(z j ) at k j , g1(z j ) is independent of R, but k j is decreasing with the increasing of
R and lim

R→+∞ k j = 0 and lim
R→0

k j = +∞. This implies that when R is large enough

or small enough, f1(k, R) < f2(k) for any k > 0. In addition, noticing that with
the increasing of R, the curve f1 = f (k, R) is compressed along the k-axis and the
extremum point (k j , g1(z j )) moves along the straight line f1 = g1(z j ) from right to
left.

Noticing that g1(z1) = f2(kc, α) for α = α(1). Therefore, when R is continuously
changed from small enough to large, there must exist a critical value R∗

1 and k∗
1

such that the curves f1 = f1(k, R∗
1) and f2 = f2(k) are tangent at k = k∗

1 and
f1(k, R∗

1) < f2(k) for k �= k∗
1 . This proves the conclusion (I I ).

For α(m) < α < α(m+1), by the definition of α(m), we have

g1(z2(m−1)+1) > min
k>0

{ f2(k)} = f2(kc, α) > g1(z2m+1).

In addition, noticing that when R is small enough, f1(k, R) < f2(k) for any k > 0,
and the curve f1 = f(k, R) is compressed along the k-axis with the increasing of R.
Therefore, when R is changed from small to large, the curve f1 = f1(k, R) must pass
through the curve f2 = f2(k) m times.

Denote the critical value of R by R∗ such that when R = R∗, the curve f1 =
f1(k, R∗) is firstly tangent to the curve f2 = f2(k) at k = kc1 and f2(k) > f1(k, R∗)
for k �= kc1, as shown in Fig. 3 for α(1) < α < α(2). Then, we have

f1(k
c
1, R∗) = f2(k

c
1),

∂ f1(kc1, R∗)
∂k

= f ′
2(k

c
1), π < kc1R∗ < z1.
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Fig. 3 The curves f1 = f1(k, R) for different values of R, and f2 = f2(k) for a11 = −0.25, a12 =
−1.6, a21 = 0.25, a22 = 0, d1 = 0.1, d2 = 0.2 and α(1) < α = 3 < α(2). The curve f2 = f2(k) is
independent of R and the curve f1 = f1(k, R) changes its shape as R varies. The first root of f1(k, R) is
decreasing as R increases. The local minima and maxima of f1 = f1(k, R) are independent of the R value.
Here R∗ = 1.2196, R∗ = 3.6090, z1

.= 4.4869 and − sin(z1)/z1
.= 0.2172

Similarly, denote the critical value of R by R∗ such that when R = R∗, the curve f1 =
f1(k, R∗) is finally tangent to the curve f2 = f2(k) at k = kc2 and f2(k) > f1(k, R∗)
for k �= kc2. Then, we have

f1(k
c
2, R

∗) = f2(k
c
2),

∂ f1(kc2, R
∗)

∂k
= f ′

2(k
c
2), z2(m−1)+1 < kc2R

∗ < 2mπ.

Therefore, if R ∈ (0, R∗) ∪ (R∗,+∞), then f1(k, R) < f2(k) for any k > 0. This
confirms the conclusion (I I I )(1).

For the case of α(m) < α < α(m+1) and R ∈ (R∗, R∗), when either R > R∗ and
close to R∗ enough, or R < R∗ and close to R∗ enough, there exist some k > 0 such
that f1(k, R) > f2(k). Therefore, when either R > R∗ and close to R∗ enough, or
R < R∗ and close to R∗ enough, Eq.(3.14) has at least one positive root. However, if
R ∈ (R∗, R∗) and far from R∗ and R∗ such that f1(k, R) < f2(k) for any k > 0, then
all roots of Eq.(3.14) are negative for any k > 0. Then, by the definitions of I+

R , I−
R

and I 0R , the conclusion (I I I )(2) follows immediately. 
�

Remark 3.1 For α(1) < α < α(2), it is easy to see that I+
R = ∅ and I 0R = ∅. Therefore,

in this case, the characteristic equation (3.14) has at least one positive root for any
R ∈ (R∗, R∗).

Then, by Lemma (3.1) and Remark (3.1), we have the following theorem on the
stability of the positive steady state E∗ of system (1.3).

Theorem 3.3 Assume that the conditions (C1), (C2) and (C3) hold, and α(m) is defined
by (3.22). For system (1.3) with the top-hat detection function,
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(I) when 0 ≤ α < α(1), E∗ is asymptotically stable for any R ≥ 0;
(II) when α > α(1), we have the following results:

(1) there exist two critical values R∗ and R∗ of R such that system (1.3) undergoes
Turing bifurcations at both R = R∗ and R = R∗, and E∗ is asymptotically
stable for R ∈ [0, R∗) ∪ (R∗,+∞);

(2) if α(1) < α < α(2), then E∗ is unstable for R ∈ (R∗, R∗);
(3) if α(m) < α < α(m+1) with m ≥ 2 and m ∈ N, then there are the following

two cases:
(i) for I+

R = ∅ and I 0R = ∅, E∗ is unstable for R ∈ (R∗, R∗);
(ii) for I+

R �= ∅, E∗ is asymptotically stable for R ∈ I+
R and unstable for

R ∈ I−
R , and system (1.3) undergoes Turing bifurcation for R ∈ I 0R.

If α > α(1) and the other parameters are fixed, the critical values R∗ and R∗ can be
considered as the function of α denoted by R∗(α) and R∗(α). It follows from (3.26)
that the minimum of f2(k) is decreasing as α increases. Therefore, by the proof of
Lem 3.1, the following results on the monotonicity of R∗(α) and R∗(α) with respect
to α follow immediately.

Theorem 3.4 Assume that the conditions (C1), (C2) and (C3) hold, and α(m) is defined
by (3.22). For system (1.3) with the top-hat detection function and α > α(1), R∗(α) is
increasing and R∗(α) is decreasing as α increases.

The corresponding ODE system of model (1.3) is

u′ = f (u, v), v′ = g(u, v). (3.31)

It is easy to see that if (φ(t), ψ(t)) is the solution of the ODE system (3.31), then
(u(x, t), v(x, t)) = (φ(t), ψ(t)) is the spatially homogeneous solution of system
(1.3). Thus the Hopf bifurcating periodic solution of the ODE system (3.31) is the
spatially homogeneous periodic solution of system (1.3). From this fact and Theorem
3.3, we obtain the following corollary.

Corollary 3.1 Assume that the conditions (C1) and (C3) hold, T r(A) ≥ 0 and
Det(A) > 0. If there exists a critical value μh of the parameter μ of the ODE system
(3.31) such that system (3.31) undergoes Hopf bifurcation at μ = μh, then when
α > α(1), system (1.3) with the top-hat detection function undergoes Turing–Hopf
bifurcation at either (μh, R∗) or (μh, R∗).

4 Application with Numerical Simulations

In this section, for the top-hat detection function, we illustrate how the detection scale
R yields spatiotemporal patterns driven by the nonlocal resource perception as an
application. We consider the following consumer-resource model with Holling type II
functional response in the finite spatial domain [−L, L] subject to periodic boundary
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conditions:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = d1uxx + u
(
1 − u

a

)
− buv

1 + u
, −L < x < L, t > 0,

vt = d2vxx − α(vhx )x − cv + buv

1 + u
, −L < x < L, t > 0,

u(−L, t) = u(L, t), ux (−L, t) = ux (L, t), t > 0,
v(−L, t) = u(L, t), vx (−L, t) = ux (L, t), t > 0.

(4.1)

Here, we use the periodic boundary conditions because the periodic boundary condi-
tions can be easily extend to the case of the infinite domain and it is easily operated
in the numerical simulations. The periodic boundary conditions are often used in the
literature for cognitive animal movement models (Wang and Salmaniw 2023; Giunta
et al. 2021).

System (4.1) has a unique positive spatially homogeneous steady state E∗(γ, vγ ),
where

γ = c

b − c
, vγ = (a − γ )(1 + γ )

ab
,

provided that b > c and a > c
b−c hold. For this equilibrium E∗(γ, vγ ), we have

a11 = γ (a − 1 − 2γ )

a(1 + γ )

{
< 0, c

b−c < a < 1 + 2c
b−c ,

> 0, a > 1 + 2c
b−c ,

a12 = −c < 0, a21 = a − γ

a(1 + γ )
> 0, a22 = 0.

(4.2)

From (4.2), we can see that Tr(A) = 0 if and only if a = ah , where

ah = 1 + 2c

b − c
, (4.3)

and when α = 0, system (4.1) undergoes Hopf bifurcation at a = ah , the spatially
homogeneous steady state E∗ is asymptotically stable when b > c and c

b−c < a < ah ,
and the Hopf bifurcating periodic solution for a > ah is stable (Yi et al. 2009). For any
a > ah , the corresponding ordinary differential system of (4.1) has a unique stable
limit cycle (Cheng 1981; Hsu et al. 1978).

4.1 Influence of Nonlocal Resource Perception Range on Stability and Turing
Patterns for a < ah

When b > c and c
b−c < a < ah , we have a11 < 0 and then d1a22 + d2a11 < 0.

Thus, the conditions (C1), (C2) and (C3) hold. Thus, when h(x, t) = u(x, t) (i.e.,
local resource perception), the spatially homogeneous steady state E∗ of system (4.1)
is linearly stable for any d1, d2 ≥ 0 and α ≥ 0.
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For numerical illustrations, we take the parameters as follows:

b = 3.2, c = 1.6, d1 = 0.1, d2 = 0.2. (4.4)

Then we have ah = 3. If we choose a = 2 < ah , we have

u∗ = 1, v∗ = 0.3125, a11 = −0.25, a12 = −1.6, a21 = 0.25, a22 = 0.

In this case, there is no Hopf bifurcation since a11 < 0 and a22 = 0. The minimal
positive root z1 of the equation tan(z) = z is z1

.= 4.4869, and z3
.= 10.9041, z5

.=
17.2201 (see Fig. 1). Then, by (3.22) we have

α(1) .= 2.1073, α(2) .= 5.0125, α(3) .= 7.8964.

Following Theorem 3.3, the positive steady state E∗ is asymptotically stable for
any R ≥ 0 for 0 ≤ α < α(1), and the stability of E∗ depends on the detection scale R
for α > α(1).

Setting α(1) .= 2.1073 < α = 3 < α(2) .= 5.0125, we have

f2(k) = 4

15k2
+ k2

75
+ 1

30
.

Letting

m(k, R) � f2(k) − f1(k, R) = 4

15k2
+ k2

75
+ 1

30
+ sin(kR)

kR
,

we can see from (3.23) that J (k, α) > 0 if and only ifm(k, R) > 0. In the k−R plane,
the curvem(k, R) = 0 forms an island as shown in the left figure in Fig. 4. The critical
values of R are R∗ = R∗(3)

.= 1.2196, R∗ = R∗(3) .= 3.6090. The positive steady
state E∗ is asymptotically stable for R ∈ [0, R∗) ∪ (R∗,∞) and becomes unstable
with the emergence of spatiotemporal patterns for R ∈ (R∗, R∗).

Similarly, for α(2) .= 5.0125 < α = 6 < α(3) .= 7.8964, we have

f2(k) = 2

15k2
+ k2

150
+ 1

60
,

and the curve m(k, R) = 0 forms two islands in the k − R plane as shown in the right
panel of Fig. 4, where

m(k, R) = 2

15k2
+ k2

150
+ 1

60
+ sin(kR)

kR
.

For this case, we have R∗ = R∗(6)
.= 0.7945, R∗ = R∗(6) .= 7.3135.
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Fig. 4 The islands enclosed by
m(k, R) = 0 for fixed α.
Jk (α) < 0 inside the islands and
Jk (α) > 0 outside the islands.
Left panel: for
α(1) < α = 3 < α(2), there is
only one island and the critical
values of R are R∗ = R∗(3)

.=
1.2196, R∗ = R∗(3)

.= 3.6090.
Right panel: for
α(2) < α = 6 < α(3), there is
two islands and the critical
values of R are R∗ = R∗(6)

.=
0.7945, R∗ = R∗(6)

.= 7.3135

Fig. 5 Numerical simulations for different values of R for system (4.1) with a = 2, α = 3 ∈
(
α(1), α(2)

)
and other parameters as in (4.4). (a)(d) R = 1.1 < R∗ .= 1.2196; (b)(e) R = 3 ∈ (

R∗, R∗)
; (c)(f)

R = 3.8 > R∗ .= 3.6096

For all numerical simulations, we choose L = 100 and consider the following
initial conditions

u(x, 0) =
{
1, |x | ≤ 50,
0, elsewhere,

v(x, 0) =
{
0.3, |x | ≤ 50,
0, elsewhere.

For α = 3 ∈ (
α(1), α(2)

)
, Fig. 5 shows simulation results of system (4.1) for

different values of R. Figure5a and d illustrates the stability of E∗ for R = 1.1 < R∗
.=

1.2196. Figure5c and f illustrates the stability of E∗ for R = 3.8 > R∗ .= 3.6096.
Figure5b and e illustrates Turing patterns for R = 3 ∈ (R∗, R∗).
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Fig. 6 Numerical simulations for different values of R ∈ (
R∗, R∗)

for system (4.1) with a = 2, α = 6 ∈(
α(2), α(3)

)
and other parameters as in (4.4). For α = 6, R∗ .= 0.7945 and R∗ .= 7.3135. (a)(d) R = 2;

(b)(e) R = 4.5; (c)(f) R = 6.5

Fig. 7 The islands enclosed by
m(k, R) = 0 for different values

of α ∈
(
α(1), α(2)

)
. For fixed α,

Jk (α) < 0 inside the island and
Jk (α) > 0 outside the island.
The critical value R∗(α) is
decreasing as α increases, and
R∗(α) is increasing as α

increases

For α = 6 ∈ (
α(2), α(3)

)
, Fig. 6 shows the Turing patterns of system (4.1) for

different values of R ∈ (R∗, R∗). Figure6(a)(d) illustrates the Turing patterns of
system (4.1) for R = 2 larger than but close to R∗. Figure6(b)(e) illustrates the Turing
patterns of system (4.1) for R = 4.5 between and far away from both R∗ and R∗.
Figure6(c)(f) illustrates the Turing patterns of system (4.1) for R = 6.5 smaller than
but close to R∗. All these Turing patterns look like stripe patterns. From the right panel
of Fig. 4, one can observe that the straight lines R = 2 and R = 6.5 cross one of the
two islands, but the straight line R = 4.5 crosses both islands, and the width of the
stripe patterns for R = 4.5 is larger than that of R = 2 or R = 6.5.
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Fig. 8 Numerical simulations for system (4.1) with α = 0.8 < α(1), a = 3.2 > ah and other parameters
given in (4.4). (a)(d) R = 0.6; (b)(e) R = 7; (c)(f) R = 100

Figure7 illustrates the islands enclosed by the curve m(k, R) = 0 in the k − R
plane for different values of α ∈ (

α(1), α(2)
)
. Figure7 additionally shows that a bigger

α leads to a larger island, which is in accordance with Theorem 3.4.

4.2 Spatiotemporal Patterns for a > ah

4.2.1 Influence of Nonlocal Resource Perception Range on Spatiotemporal Patterns
due to a Hopf Bifurcation

For fixed a = 3.2 > ah and other parameters b, c, d1, d2 same as in (4.4), we have
α(1) .= 1.3627. It follows from the proof of Theorem 3.3 that for α < α(1) .= 1.3627,
there is no Turing bifurcation for any R > 0. Taking α = 0.8 < α(1), Fig. 8(a)(d),
(b)(e) and (c)(f) illustrates the spatiotemporal patterns of system (4.1) for R = 0.6,
R = 7 and R = 100, respectively. These numerical simulations show the existence
of spatially inhomogeneous periodic solutions, and the spatial heterogeneity becomes
weaker with the increase of resource perception range R.

4.2.2 Spatiotemporal Patterns due to the Interaction of Hopf and Turing Bifurcations

If we choose a = ah = 3 and other parameters b, c, d1, d2 same as in (4.4), then it
follows from (3.22) that

α(1) .= 1.4263, α(2) .= 3.3927, α(3) = 5.3447.

123



Journal of Nonlinear Science            (2024) 34:19 Page 23 of 28    19 

Fig. 9 Numerical simulations for system (4.1) for a = 3.2 > ah , α = 1.5 ∈
(
α(1), α(2)

)
. (a)(e): for

system (4.1) with replacing h(x, t) by u(x, t) (equivalently, R = 0); (b)(f) R = 0.15 < R∗; (c)(g)
R = 2.31 ∈ (

R∗, R∗)
; (d)(h) R = 2.8 > R∗

The proof of Lemma 3.1 implies that Jk(α) > 0 for any R > 0 and k ∈ R when α <

α(1) .= 1.4263. Taking α = 1.5 ∈ (
α(1), α(2)

)
, we have R∗

.= 1.6656, R∗ .= 2.3536.
It follows from Corollary 3.1 that system (4.1) undergoes Turing–Hopf bifurcation at
either (a, R∗)

.= (3, 1.6656) or (a, R∗) .= (3, 2.3536). For fixed a = 3.2 > ah , Fig. 9
illustrates how the spatiotemporal dynamics change as R increases. For system (4.1)
with local perception (h(x, t) = u(x, t), equivalently R = 0), Fig. 9(a)(e) shows the
existence of spatially homogeneous periodic solution. For R > 0, the spatiotemporal
dynamics is shown in Fig. 9(b)(f), (c)(g) and (d)(h), respectively, for R = 0.15 < R∗,
R = 2.31 ∈ (R∗, R∗) and R = 2.8 > R∗.

For fixed a = 8 far away from the Hopf bifurcation value ah , Fig. 10 illustrates
the evolution of the spatiotemporal dynamics of system (4.1) for R = 4, R = 7 and
R = 100, respectively.

Finally, for fixed α = 3 and R = 10, we numerically investigate the influence
of maximum environmental capacity a on the spatiotemporal dynamics of system
(4.1). Figure11 illustrates the transition of the spatiotemporal dynamics of system
(4.1) for a = 3.5, a = 5 and a = 7, respectively. These numerical simulations show
the oscillatory patterns in time, and the oscillatory behavior and spatial heterogeneity
become stronger as a increases.When a increases to 15, spatiotemporal chaos appears
as shown in Fig. 12.

5 Discussion

In this paper, we investigate the spatiotemporal dynamics of cognitive consumer-
resource dynamics with nonlocal perception. We focus on the impact of different
detection functions on the stability of the spatially homogeneous steady state. We
show that the nonlocal resource perception with top-hat detection function is one of
the important mechanisms driving pattern formation. The investigation is performed
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Fig. 10 Numerical simulations for system (4.1) with parameters given in (4.4), a = 8, and α = 1.5 ∈(
α(1), α(2)

)
. (a)(d) R = 5; (b)(e) R = 7; (c)(f) R = 100

Fig. 11 Numerical simulations for system (4.1) for α = 3 and R = 10. (a)(d) a = 3.5; (b)(e) a = 5; (c)(f)
a = 7

for both finite and infinite domains. In the finite domain, the spatial average or Green
function of the operator −d3

∂2

∂x2
+ I is chosen as the detection function to show

that neither one affects the stability of the spatially homogeneous steady state. In the
infinite domain, the Laplacian, Gaussian or top-hat detection function is considered
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Fig. 12 Spatiotemporal chaotic patterns of resource (a) and consumer (d) for α = 3, R = 10 and a = 15.
(b)(e) are spatial distributions of resource and consumer, respectively, at time t = 300. (c)(f) are temporal
evolution of resource and consumer, respectively, at location x = 0

for analysis. We prove that the first two detection functions have no influence on the
stability of the spatially homogeneous steady state, but the top-hat detection function
has significant influence on the stability.

For the top-hat detection function in the infinite domain, we investigate in detail the
influence of the perceptual movement rate α and the detection scale R on the stability
of the spatially homogeneous steady state. We find that when α is less than some
threshold value α(1), the spatially homogeneous steady state is always asymptotically
stable no matter how large the detection scale R is. This implies that the nonlocal
resource perception has no effect on the asymptotic dynamics of cognitive animal
movement when the gradient-tracking movement is slow. However, when the percep-
tual movement rate is larger than the threshold value α(1), the stability of the spatially
homogeneous steady state depends on the detection scale. In this case, there exist two
critical values R∗ and R∗ such that when the detection scale R is either smaller than R∗
or larger than R∗, the spatially homogeneous steady state is asymptotically stable (see
Fig. 5). From the biological perspective, it is reasonable to obtain the result that when
the detection scale is small, the animal movement is the same as the local perception
scenario. When the detection scale is large enough, the animal’s perceptual movement
follows a cognitive map. Although the stability of the spatially homogeneous steady
state is consistent to the local perception scenario, the transient dynamics are expected
to be quite different. The transient dynamics are mathematically more challenging
but are worth a new development of rigorous methods. When the detection scale R is
within the interval (R∗, R∗), the spatially homogeneous steady state loses its stability
and a stable spatially inhomogeneous steady state emerges (see Fig. 6). This suggests
that animals can better locate themselves in high resource places if they respond to
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resources at intermediate perception ranges. This observation is not intuitively obvious
and thus needs empirical evidence. The dependence of the critical values R∗ and R∗
on α is diagrammed in the k-R plane (see Fig. 7). R∗ is increasing and R∗ is decreasing
with the increase of α. This implies that a faster gradient-tracking movement leads to
a wider nonlocal detection range that causes spatially inhomogeneous distributions.

Theoretical results are employed to study a concrete consumer-resourcemodel with
Holling-II functional response and periodic boundary conditions. When the system
with local resource perception has no Hopf bifurcation and the spatially homoge-
neous steady state is stable, the threshold values R∗ and R∗ of the detection scale are
determined. For R ∈ (R∗, R∗), stripe spatial patterns emerge.

When the corresponding ODE system undergoes Hopf bifurcation by taking the
resource carrying capacity a as the bifurcation parameter and denoting the Hopf bifur-
cation value as ah , we investigate the influence of the perceptual movement rate α

and detection scale R on the spatiotemporal patterns. For α < α(1) and a larger than
but close to ah , the spatial heterogeneity becomes weaker with the detection scale R
increases (see Fig. 8). The width of the top-hat kernel for the patterns near the ori-
gin of the spatial region is increasing as the detection scale R increases. Near the
neighborhood of the Turing–Hopf bifurcation points (αh, R∗) and (αh, R∗), the spa-
tiotemporal dynamics due to the interaction of Hopf bifurcation and Turing bifurcation
are numerically investigated, and spatially inhomogeneous periodic patterns emerge
(see Fig. 9). When a > ah , as R increases from zero to a value greater than R∗, the
spatiotemporal pattern switches from a spatially homogeneous periodic pattern, to
spatially inhomogeneous periodic patterns, to a spatially inhomogeneous steady state,
and eventually to spatially inhomogeneous periodic patterns. When a is far away from
theHopf bifurcation value ah , oscillatory patterns withW-shaped andV-shaped spatial
profiles emerge for different values of the detection scale R (see Fig. 10).

For a larger resource perception range, we investigate the influence of the resource
carrying capacity a on the spatiotemporal dynamics. As the parameter a increases,
the spatial heterogeneity becomes stronger (see Fig. 11) and the spatiotemporal pat-
terns finally become spatiotemporal chaos (see Fig. 12). To validate this observation,
empirical data need to be collected in resource-rich environments such as rainforests.
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