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A B S T R A C T

Environmental factors have a significant impact on the transmission of infectious diseases. Existing results show
that the novel coronavirus can persist outside the host. We propose a susceptible–exposed–presymptomatic–
infectious–asymptomatic–recovered–susceptible (SEPIARS) model with a vaccination compartment and indirect
incidence to explore the effect of environmental conditions, temperature and humidity, on the transmission of
the SARS-CoV-2 virus. Using climate data and daily confirmed cases data in two Canadian cities with different
atmospheric conditions, we evaluate the mortality rates of the SARS-CoV-2 virus and further estimate the
transmission rates by the inverse method, respectively. The numerical results show that high temperature or
humidity can be helpful in mitigating the spread of COVID-19 during the warm summer months. Our findings
verify that nonpharmaceutical interventions are less effective if the virus can persist for a long time on surfaces.
Based on climate data, we can forecast the transmission rate and the infection cases up to four weeks in the
future by a generalized boosting machine learning model.
1. Introduction

SARS-CoV-2 has caused a serious pandemic in the past three years
and directly threatened global health systems. One current concern is
the appearance of many SARS-CoV-2 variants, such as Alpha, Beta,
Gamma, Delta and Omicron since 2019. These new variants spread
more easily and quickly than the original viral strain. A tremendous
amount of work on COVID-19 has been carried out in the past two
years [1–7]. Nonpharmaceutical interventions (NPIs), policies from the
government, are used to reduce the spread of some endemic, directly
transmitted, respiratory infections diseases, which has been proven
to be an effective strategy in reducing the transmission of COVID-19
[2,8–11].

COVID-19 is believed to be spread in several different ways. Ev-
idence suggests the virus transmits mainly between people who are
in close contact with infected individuals [12]. However, particles of
different sizes (droplets and aerosols) containing virus can also spread
indoors or in poorly ventilated areas [13–15]. In practice, contact with
contaminated surfaces also plays an important role in the spread of
COVID-19 [16–21]. Rwezaura et al. [21] showed that the virus in the
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environment has a significant effect on the transmission of COVID-19.
The virus can be transmitted to uninfected individuals by contamina-
tion of nearby surfaces. In this situation, understanding the factors that
contribute to the persistence of the virus on the environmental surface
will be helpful to mitigate the risk of COVID-19 transmission.

Environmental factors such as temperature, humidity, precipitation,
may play a significant role in the transmission of viruses [1,3,16,22–
26]. McClymont and Hu [24] suggested that weather and climate
can affect the transmission of COVID-19 significantly, and weather
covariates (temperature and humidity) can facilitate the increase of
COVID-19 transmission. Casanova et al. revealed that virus survival is
enhanced by lower air temperature and relative humidity [22]. In 2020,
Prata et al. [26] explored the relationship between annual average
temperature and COVID-19 confirmed cases for all 27 state capital
cities of Brazil. Their results explained that as temperature ranges from
16.8 ◦C to 27.4 ◦C, it has a negative linear relationship with the number
of confirmed cases.

Environmental conditions can affect the stability of SARS-CoV-
2. Matson et al. pointed out that the virus is more stable at low-
temperature and low-humidity conditions in nasal mucus and sputum,
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Fig. 1. Disease transmission flow of the System (2.1). We extended the susceptible–exposed–infectious–recovered model to include seven compartments: susceptible (𝑆), exposed
(𝐸), presymptomatic infected (𝑃 ), symptomatic infected (𝐼), asymptomatic infected (𝐴), recovered (𝑅), and the vaccinated individuals (𝑉 ). 𝑊 denotes the density of SARS-CoV-2
on environmental surfaces. Black solid line denotes the status transition. Black dashed line represents the virus shedding from infected individuals. Red dashed line represents the
indirect infection. Blue solid line denotes the status transition due to indirect infection.
l

Table 1
Half-life of SARS-CoV-2 exposed to different environmental conditions.
Source: Adapted from a slide shared by Bryan: https://www.washingtonpost.com/
weather/2020/04/23/lab-study-coronavirus-summer-weather/.

Condition Temperature Humidity Solar Half life

Surface 70–75 ◦F 20% None 18 h
Surface 70–75 ◦F 80% None 6 h
Surface 95 ◦F 80% None 1 h
Surface 70–75 ◦F 80% Summer 2 min

warmer temperature and higher humidity may result in decreased
virus transmission [23]. In 2020, Bryan studied the effect of sunlight,
temperature and humidity on the half-life of the virus respectively in
his laboratory experiment, and found that sunlight, higher temperature
and humidity can decrease the stability of coronavirus at the daily
press [27]. As shown in Table 1, temperature, humidity and sunlight
are significant factors affecting the decay of SARS-CoV-2. In the absence
of sunlight, at ambient indoor temperature, increasing humidity can
reduce the half-life of coronavirus. At the same humidity conditions,
higher temperature can shorten the half-life of the virus. Adding in
sunlight, the half-life of coronavirus reduces accordingly at the same
temperature and humidity conditions. This finding reveals that the
coronavirus exposed to direct sunlight or warmer temperature or higher
humidity would die quickly. In 2020, Biryukov et al. [28] showed that
the half life (𝑡1∕2) of SARS-CoV-2 on surfaces is determined by the
function of temperature and relative humidity as follows:

𝑡 1
2
= 32.426272 − 0.622108𝑇 − 0.153707𝐻,

where 𝑇 denotes the temperature in degrees Celsius and 𝐻 represents
the percent relative humidity. The half-life of the virus is inversely
proportional to increasing temperature and relative humidity. Similar
to the flu, in colder months, the coronavirus survives longer and
appears to spread efficiently [1,22,24,29].

2. Model formulation

Environmental surfaces are considered to be conducive to the
spreading of the virus. Existing results show that the SARS-CoV-2 virus
can persist outside the host [1,3]. Therefore, it is necessary to consider
the transmission dynamics of SARS-CoV-2 on environmental surfaces.
2

In our work, the transmission of SARS-CoV-2 is divided into two parts,
direct transmission (contact from an infected person to another person
without a contaminated intermediate object) and indirect transmission
(contact with a contaminated intermediate object). Several studies have
analyzed compartmental models describing human population and
bacterial population, and explored the transmission dynamics [30–34].

Susceptible–exposed–infectious–recovered framework can well mode
the dynamics of COVID-19 transmission. With the implementation
of the vaccination policy, we take the vaccination population into
account. Then the total population size (𝑁) is divided into seven
compartments, the susceptible (𝑆), the exposed (𝐸), the presymp-
tomatic infected (𝑃 ), the symptomatic infected (𝐼), the asymptomatic
infected (𝐴), the recovered individuals (𝑅), and the vaccinated in-
dividuals (𝑉 ), hence 𝑁 = 𝑆 + 𝐸 + 𝑃 + 𝐼 + 𝐴 + 𝑅 + 𝑉 . In this
paper, we propose a susceptible–exposed–presymptomatic–infectious–
asymptomatic–recovered–susceptible (SEPIARS) model with a vaccina-
tion compartment and indirect incidence:

⎧
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𝑑𝑆
𝑑𝑡 = −𝜆𝑆 − 𝛼(𝑊 )𝑆 − 𝜂𝑆 + 𝑟𝑉 𝑉 + 𝑟𝑅𝑅,
𝑑𝐸
𝑑𝑡 = 𝜆[𝑆 + (1 − 𝜎)𝑉 ] + 𝛼(𝑊 )[𝑆 + (1 − 𝜎)𝑉 ] − 𝛿𝐸,
𝑑𝑃
𝑑𝑡 = 𝛿𝐸 − 𝜏𝑃 ,
𝑑𝐼
𝑑𝑡 = (1 − 𝜌)𝜏𝑃 − (𝜇 + 𝑟𝐼 )𝐼,
𝑑𝐴
𝑑𝑡 = 𝜌𝜏𝑃 − 𝑟𝐴𝐴,
𝑑𝑅
𝑑𝑡 = 𝑟𝐼𝐼 + 𝑟𝐴𝐴 − 𝑟𝑅𝑅,
𝑑𝑉
𝑑𝑡 = 𝜂𝑆 − 𝜆(1 − 𝜎)𝑉 − 𝛼(𝑊 )(1 − 𝜎)𝑉 − 𝑟𝑉 𝑉 ,
𝑑𝑊
𝑑𝑡 = 𝜉𝐼𝐼 + 𝜉𝐴𝐴 − 𝑑(𝑇 ,𝐻)𝑊

(2.1)

with nonnegative initial conditions 𝑆(0), 𝐸(0), 𝑃 (0), 𝐼(0), 𝐴(0), 𝑅(0),
𝑉 (0), 𝑊 (0). Here 𝜆 is the force of infection and is defined as 𝜆 =
𝛽(𝑇 ,𝐻)(𝐼+𝜃𝐴𝐴+𝜃𝑝𝑃 )

𝑁 . 𝑊 denotes the density of SARS-CoV-2 on environ-
mental surfaces. A schematic diagram for System (2.1) is presented in
Fig. 1. Here 𝛽(𝑇 ,𝐻) represents the transmission parameter for direct
transmission, which depends on temperature and humidity, here 𝑇 de-
notes the temperature and 𝐻 represents humidity. 𝜂 is the vaccination
rate. Various COVID-19 vaccines were at clinical development stage in
2021. Most people in Canada took the Pfizer and Moderna vaccines
which have similar efficacy in 2021 [42], then we use 𝜎 to represent the

https://www.washingtonpost.com/weather/2020/04/23/lab-study-coronavirus-summer-weather/
https://www.washingtonpost.com/weather/2020/04/23/lab-study-coronavirus-summer-weather/
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Table 2
The parameter description of System (2.1).

Parameter Description Unit Value Source

𝛽 Transmission rate for direct transmission day−1

𝜃𝑃 Relative transmissibility of presymptomatic individuals 0.55 [6,35]
𝜃𝐴 Relative transmissibility of asymptomatic infected individuals 0.55 [6,35]
𝜂 Vaccination rate day−1 0–0.055 [36]
𝜎 Vaccine efficacy 0.8 Assumed
1∕𝛿 The mean length of latent period day 2.9 [12,35]
1∕𝜏 The pre-symptomatic infectious period day 2 [37]
𝜌 Proportion of asymptomatic infected individuals 0.6 [35]
𝜇 Death rate of symptomatic infected individuals due to SARS-CoV-2 day−1 0.0008–0.0016 [38,39]
𝑟𝐼 Symptomatic infected individuals recovery rate day−1 1/11 [35]
𝑟𝐴 Asymptomatic infected individuals recovery rate day−1 1/7 [35]
𝑟𝑅 Rate at which recovered individuals lose immunities day−1 1/180–1/90 [40,41]
𝑟𝑉 Rate at which vaccinated individuals lose immunities day−1 1/180–1/90 [40,41]
𝑎 Maximum rate of infection day−1 0.0001 Assumed
𝑏 Half-saturation of the virus density cells 600 000 Assumed
𝜉𝐼 Virus shedding rate from symptomatic infected individuals cells ind−1 day−1 13.5 [39]
𝜉𝐴 Virus shedding rate from asymptomatic infected individuals cells ind−1 day−1 3.4 [39]
𝑑 Mortality rate of SARS-CoV-2 day−1 Estimated
vaccine efficacy (0 ≤ 𝜎 ≤ 1). If 𝜎 = 1, the vaccine offers 100% protection
gainst the epidemic. Some studies suggest that COVID-19 vaccines are
ighly effective against SARS-CoV-2 after two doses, but the protection
eems to be reduced over time [43–45]. Due to the incidence terms and
he decline of vaccination protection, if the susceptible and vaccinated
ndividuals are infected by presymptomatic (𝑃 ), symptomatic (𝐼) and
symptomatic infected individuals (𝐴), they will all enter the exposed
ndividuals (𝐸). 𝜃𝑃 and 𝜃𝐴 are the relative transmissibility of presymp-
omatic and asymptomatic infected individuals, respectively. 1∕𝛿 is the
ncubation period. 𝑟𝐼 and 𝑟𝐴 denote recovery rates of the symptomatic
nd asymptomatic infected individuals, respectively. Asymptomatic in-
ections account for a proportion of 𝜌, and symptomatic infections
ccount for a proportion of 1 − 𝜌. In this work, we assume that there
re no births, as well as no deaths unrelated to COVID-19. 𝜇 is the
irus-caused death rate of symptomatic infected individuals. Recovered
nd vaccinated individuals may lose immunities and be reinfected
y SARS-CoV-2 [40,41,46]. Edridge et al. [40] showed that after a
uration of six months, about 50% of recovered individuals start losing
heir antibodies. We use 𝑟𝑅 and 𝑟𝑉 to represent the rates at which
ecovered and vaccinated individuals lose immunities, separately. Since
nfected patients can generate SARS-CoV-2 by coughing, talking, and
neezing, we use 𝜉𝐼 and 𝜉𝐴 to represent the virus shedding rates of
ymptomatic and asymptomatic infected individuals, respectively. Here
(𝑇 ,𝐻) denotes the death rate of SARS-CoV-2 on the environmental
urface, which depends on temperature and humidity. 𝛼(𝑊 ) is the
ndirect part of the incident term, which is defined by 𝛼(𝑊 ) = 𝑎𝑊

𝑊 +𝑏 . The
description of the parameters of System (2.1) is specified in Table 2.

The rest of this paper is organized as follows. We evaluate the
mortality rates of SARS-CoV-2 in two Canadian cities with different
environmental conditions and compare the dynamics of System (2.1)
under different viral mortality rates in Section 3. In Section 4, we
consider a time-dependent transmission rate and explore the effect of
weather conditions on the transmission rate. The effect of NPIs on
mitigating the transmission of COVID-19 under different atmospheric
conditions is presented in Section 5. We employ a machine learning
approach with climate data to make predictions of daily infection cases
in Section 6. In Section 7, we discuss the assumptions and limitations
of our study. We summarize and discuss our findings in the last section.

3. Evaluation of 𝒅(𝑻 ,𝑯)

To explore the impact of environmental conditions on the mortality
ate of SARS-CoV-2 on surfaces, we choose two cities, Edmonton in
lberta and Vancouver in British Columbia, Canada, with distinct
limatic conditions. We first collect the data of temperature and relative
umidity in Edmonton and Vancouver from January 1 to December 31
3

n 2021 [47]. Fig. 2(a) presents the average temperature in Edmonton
Fig. 2. Average temperature and relative humidity in Edmonton and Vancouver in
2021.

and Vancouver. From Fig. 2(a), we observe that the average tempera-
ture in Vancouver is obviously higher than in Edmonton in cold months.
In the warm months (June, July, August, and September), the average
temperatures in the two cities are close. The average relative humidity
in two cities is described in Fig. 2(b). Fig. 2(b) shows that the relative
humidity in Vancouver is higher than that in Edmonton in 2021.

In 2020, Biryukov et al. [28] fitted a linear regression equation,
which models the half-life of SARS-CoV-2 at the combination of temper-
ature and relative humidity conditions. They estimated that the mean
half life (𝑡1∕2) of SARS-CoV-2 on surfaces is a function of temperature
in degrees Celsius (𝑇 ) and percent relative humidity (𝐻) in hours:

𝑡 1
2
= 32.426272 − 0.622108𝑇 − 0.153707𝐻.

Consider 𝑒−𝑑𝑡 is the surviving probability of the virus at time 𝑡. From
the function of the half life (𝑡1∕2) of SARS-CoV-2 on surfaces, with the
relation 𝑒−𝑑𝑡 = 0.5, we can calculate the mortality rates of SARS-CoV-2
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Fig. 3. Mortality rates of SARS-CoV-2 on surfaces in Edmonton and Vancouver.

nder different weather conditions in days:

(𝑇 ,𝐻) = ln 2
𝑡 1
2

= ln 2
(32.426272 − 0.622108𝑇 − 0.153707𝐻)∕24

.

Then we can substitute the daily temperature and relative humidity
ata into above function to obtain the corresponding daily mortal-
ty rate of SARS-CoV-2 in Edmonton and Vancouver, separately. As
resented in Fig. 3, the mortality rate of SARS-CoV-2 on surfaces in
dmonton is lower than that in Vancouver. It should be pointed out
hat, beginning in March, with the increase of temperature in two cities,
he mortality rates of SARS-CoV-2 on surfaces increase correspondingly,
nd the mortality rates both reach the maximum value in summer. High
emperature and humidity can reduce the survival time of SARS-CoV-2,
ence leading to a higher viral mortality rate. After September, since
he average temperatures in Edmonton and Vancouver decrease, the
ortality rates of the SARS-CoV-2 virus on surfaces also decrease.

. A time varying transmission rate

In this section, we consider a time-dependent transmission rate
(𝑡) of System (2.1) to study the effect of environmental factors on
he spread of COVID-19. To explore the time varying transmission
ates in Edmonton and Vancouver in 2021, we collect the number of
aily confirmed cases in these two cities from January 1 to December
1 [48]. The 7-day moving average is a useful tool to smooth out
egular daily fluctuations. Given that the number of daily confirmed
ases may be underreported or delayed during the weekend, motivated
y the work in [49], we take the 7-day averaged confirmed cases (the
verage of the last 6 days and the current day) to reduce the inaccuracy
f daily reported confirmed cases. As shown in Fig. 4(a), the daily
onfirmed cases in two cities in July are significantly lower than that
n other months. The comparison presents the daily confirmed cases in
dmonton are higher than that in Vancouver.

Inverse method [49–53] is a useful tool to extract the time-
ependent transmission rate from infection data. It is a well-known
iscrete method for estimating the time-varying transmission rate in-
ersely. Using the data of daily confirmed cases in Edmonton and
ancouver in Canada, we intend to estimate the transmission rates

n these two cities by the inverse method, respectively. Let 𝑆[𝑖], 𝐸[𝑖],
[𝑖], 𝐼[𝑖], 𝐴[𝑖], 𝑅[𝑖], 𝑉 [𝑖] and 𝑊 [𝑖] denote the values of variables in

System (2.1) on day 𝑖. We choose (1 − 𝜌)𝜏𝑃 (𝑡) as the approximate
value of the notification data and let 𝑀[𝑖] = (1 − 𝜌)𝜏𝑃 (𝑡) represent the
daily notification data on the 𝑖th day, then we have 𝑃 [𝑖] = 𝑀[𝑖] , 𝑖 =
4

(1−𝜌)𝜏
1, 2,… , 𝐾, where 𝐾 denotes the length of the vector of the notification
data. With the relation 𝑁 = 𝑆(𝑡)+𝐸(𝑡)+𝑃 (𝑡)+𝐼(𝑡)+𝐴(𝑡)+𝑅(𝑡)+𝑉 (𝑡), we
ave 𝑁 = 𝑆[1]+𝐸[1]+𝑃 [1]+𝐼[1]+𝐴[1]+𝑅[1]+𝑉 [1]. Initial value 𝐼[1]

is reported from the Website [48] and we assume that 𝐴[1] = 2𝐼[1].
From the third equation of System (2.1), we can get

𝐸[𝑖] =
𝑃 [𝑖 + 1] + (𝜏 − 1)𝑃 [𝑖]

𝛿
.

Then from the second equation of System (2.1), we have

𝐸[2] − 𝐸[1] =
𝛽[1](𝑆[1] + (1 − 𝜎)𝑉 [1])(𝐼[1] + 𝜃𝑃𝑃 [1] + 𝜃𝐴𝐴[1])

𝑁
+ 𝛼(𝑊 [1])(𝑆[1] + (1 − 𝜎)𝑉 [1]) − 𝛿𝐸[1].

Hence, we can obtain that

𝛽[1] =
[𝐸[2] − 𝐸[1] + 𝛿𝐸[1] − 𝛼(𝑊 [1])(𝑆[1] + (1 − 𝜎)𝑉 [1])]𝑁

(𝑆[1] + (1 − 𝜎)𝑉 [1])(𝐼[1] + 𝜃𝑃𝑃 [1] + 𝜃𝐴𝐴[1])
.

Then from System (2.1), it follows that

𝐼[𝑖] = 𝐼[𝑖 − 1] + (1 − 𝜌)𝜏𝑃 [𝑖 − 1] − (𝑟𝐼 + 𝜇)𝐼[𝑖 − 1],

𝐴[𝑖] = 𝐴[𝑖 − 1] + 𝜌𝜏𝑃 [𝑖 − 1] − 𝑟𝐴𝐴[𝑖 − 1],

[𝑖] = 𝑅[𝑖 − 1] + 𝑟𝐼𝐼[𝑖 − 1] + 𝑟𝐴𝐴[𝑖 − 1],

[𝑖] = 𝑊 [𝑖 − 1] + 𝜉𝐼𝐼[𝑖 − 1] + 𝜉𝐴𝐴[𝑖 − 1] − 𝑑(𝑇 ,𝐻)𝑊 [𝑖 − 1],

[𝑖] = 𝑆[𝑖 − 1] −
𝛽[𝑖 − 1]𝑆[𝑖 − 1](𝐼[𝑖 − 1] + 𝜃𝑃𝑃 [𝑖 − 1] + 𝜃𝐴𝐴[𝑖 − 1])

𝑁
− 𝛼(𝑊 [𝑖 − 1])𝑆[𝑖 − 1] − 𝜂𝑆[𝑖 − 1] + 𝑟𝑉 𝑉 [𝑖 − 1] + 𝑟𝑅𝑅[𝑖 − 1],

𝑉 [𝑖] = 𝑁 − 𝑆[𝑖] − 𝐸[𝑖] − 𝑃 [𝑖] − 𝐼[𝑖] −𝐴[𝑖] −𝑅[𝑖], for 𝑖 = 2, 3,… , 𝐾. Here

[𝑖] =
[𝐸[𝑖 + 1] − 𝐸[𝑖] + 𝛿𝐸[𝑖] − 𝛼(𝑊 [𝑖])(𝑆[𝑖] + (1 − 𝜎)𝑉 [𝑖])]𝑁

(𝑆[𝑖] + (1 − 𝜎)𝑉 [𝑖])(𝐼[𝑖] + 𝜃𝑃𝑃 [𝑖] + 𝜃𝐴𝐴[𝑖])

or 𝑖 = 2, 3,… , 𝐾 − 1, and 𝛽[𝐾] ≈ 𝛽[𝐾 − 1].
From Statistics Canada [54], we obtain the total population of

dmonton and Vancouver are 1,418,118 and 2,642,825 in 2021, re-
pectively. Here, we keep 𝜃𝐴, 𝜃𝑃 , 𝛿, 𝜌, 𝑟𝐼 , 𝑟𝐴, 𝜉𝐼 , and 𝜉𝐴 at their baseline

values. These are 𝜃𝐴 = 𝜃𝑃 = 0.55 [6,35], 𝛿 = 1∕2.9 [12,35], 𝜌 = 0.6 [35],
𝑟𝐼 = 1∕11 [35], 𝑟𝐴 = 1∕7 [35], 𝜉𝐼 = 13.5 [39], and 𝜉𝐴 = 3.4 [39].
Since presymptomatic individuals start transmitting the infection 1–2
days to the end of the incubation period, we take 𝜏 = 1∕2. Previous
studies have estimated 𝜇 between 0.0008 and 0.0016 [38,39]. We take
𝜇 to be on the low end of this range, since these studies are based
on conditions outside of Canada, and we assume that Canada would
have a lower death rate by world standards due to its relatively high
quality of medical care. We take 𝑟𝑉 to be 1/180, close to the low end
of its estimated range [40,41], as the time window analyzed in this
paper covers time in which most vaccinated individuals only had one
dose (which would lead to faster waning of immunity). Furthermore,
we take 𝑟𝑅 = 1∕180 under the assumption that immunity conferred
by recovery is same to the immunity due to vaccination. We assume
a value of 0.8 for 𝜎 because available vaccines generally provided
good levels of protection against the strains of SARS-CoV-2 present
during 2021 (e.g. the original strain, Alpha, Delta). For 𝜂, we take a
value of 0.004. Although the vaccination rate in Canada varied during
2021 [36], we find a rate of 0.4 percent of the population per day to be
a reasonable average for 2021. 𝑎 and 𝑏 are fitted in order to ensure that
the derived transmission rate was non-negative and not unreasonably
large. Then, we use available data on climate and daily confirmed
cases in Edmonton and Vancouver to obtain the transmission rate 𝛽(𝑡)
separately. As shown in Fig. 4(b), transmission rates in two cities are
obtained by the inverse method, respectively. Moreover, we observe
that the daily confirmed cases and transmission rates in Edmonton and
Vancouver in June and July are well lower than that in November and
December. These numerical results verify that the transmission rate
of COVID-19 is low in the warm summer months, while cold winter
months can lead to high transmission rates.
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Fig. 4. (a) Daily confirmed cases in Edmonton and Vancouver in 2021. (b) Transmission rates in Edmonton and Vancouver obtained by the inverse method.

Fig. 5. Transmission rate in Edmonton obtained by the inverse method and the fitting with notification data. Initial condition is (𝑆[1], 𝐸[1], 𝑃 [1], 𝐼[1], 𝐴[1], 𝑅[1], 𝑉 [1],𝑊 [1]) =
(1000000, 2847, 2135, 44800, 89600, 37444, 241292, 200000).

Fig. 6. Transmission rate in Vancouver obtained by the inverse method and the fitting with notification data. Initial condition is (𝑆[1], 𝐸[1], 𝑃 [1], 𝐼[1], 𝐴[1], 𝑅[1], 𝑉 [1],𝑊 [1]) =
(2000000, 800, 420, 12373, 24746, 11000, 593486, 400000).
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Fig. 7. Transmission rates in Edmonton and Vancouver and government policies on
chool and workplace closures in 2021.

Figs. 5(a) and 6(a) illustrate the transmission rate 𝛽(𝑡) extracted
from daily confirmed cases data in Edmonton and Vancouver in 2021,
respectively. Then we use the obtained transmission rates 𝛽(𝑡) to fit the
daily notification data in Edmonton and Vancouver, respectively. We
substitute the daily transmission rate 𝛽(𝑡) obtained by inverse method
into System (2.1) to obtain 𝑃 (𝑡), then plot the curve of (1 − 𝜌)𝜏𝑃 (𝑡) to
compare with notification data. As presented in Figs. 5(b) and 6(b), we
observe that both transmission rates obtained by the inverse method fit
the notification data almost perfectly.

5. Implementation of NPIs

NPIs, such as facial coverings, physical distancing, school and work-
place closures are widely used to reduce the spread of COVID-19. These
government policies have been proven to be an effective strategy in
mitigating the transmission of COVID-19 [2,8–11]. In this section, we
intend to explore the effect of NPIs on mitigating the transmission of
COVID-19 under different climatic conditions. We collect the policy
responses to the coronavirus pandemic of the government of Canada
in 2021. The policy indices are obtained from the official website Our
World In Data [55]. The index ranges from 0 to 3, records the strictness
of government policies in 2021, where 0 represents no restrictions
and 3 represents maximum restrictions. In this work, we focus on the
government policies on school and workplace closures and compare the
effectiveness of NPIs under different environmental conditions.

As presented in Fig. 7, we find that the implementation of NPIs
has a great effect on mitigating the transmission of SARS-CoV-2. It
should be noted that stricter policies on school and workplace closures
can lead to a decrease of transmission rates in two cities. However,
we observe that under the same strict policy, the transmission rate in
Edmonton decreases slower than that in Vancouver between April and
June, mid-August and mid-October.

In Fig. 3, we see that the mortality rate of SARS-CoV-2 in Vancouver
is greater than that in Edmonton. Since SARS-CoV-2 can persist for
a long time on surfaces under low temperature and humidity condi-
tions, our work suggests that NPIs (school and workplace closures) are
relatively less effective in reducing the transmission of COVID-19 in
Edmonton than that in Vancouver. This finding verifies that if SARS-
CoV-2 can survive on the surface for a long time, NPIs are less effective
in mitigating the transmission of COVID-19.

6. Machine learning and prediction

In this section, we will explore the relationship between the trans-
mission rate and climatic factors. The gradient boosting machine (GBM)
6

Table 3
Training and testing durations.

Train length (days) Train duration Test duration

232 January 1 – August 20, 2021 August 21 –
September 17, 2021

239 January 1 – August 27, 2021 August 28 –
September 24, 2021

246 January 1 – September 3, 2021 September 4 –
October 1, 2021

253 January 1 – September 10, 2021 September 11 –
October 8, 2021

260 January 1 – September 17, 2021 September 18 –
October 15, 2021

267 January 1 – September 24, 2021 September 25 –
October 22, 2021

274 January 1 – October 1, 2021 October 2 –
October 29, 2021

281 January 1 – October 8, 2021 October 9 –
November 5, 2021

288 January 1 – October 15, 2021 October 16 –
November 12, 2021

295 January 1 – October 22, 2021 October 23 –
November 19, 2021

302 January 1 – October 29, 2021 October 30–
November 26, 2021

309 January 1 – November 5, 2021 November 6 –
December 3, 2021

316 January 1 – November 12, 2021 November 13 –
December 10, 2021

Table 4
MAPE and MAE of the predicted infection cases and notification confirmed cases under
different training durations.

Train length (days) MAPE (%) MAE

232 65.52 37
239 24.93 17
246 24.19 16
253 11.90 8
260 10.66 7
267 10.43 6
274 11.61 6
281 10.87 6
288 13.35 6
295 8.28 4
302 12.85 5
309 15.75 5
316 28.29 9

is a powerful machine learning algorithm in statistics. It is a popular
machine-learning technique which makes the prediction work sim-
pler [56,57]. We plan to employ GBM to estimate the transmission
rate from the average temperature and relative humidity with the gbm
package and the predict function in 𝐑.

We divide the data into two parts, training dataset and testing
dataset, where the training dataset is utilized to calibrate the param-
eters, and the testing dataset is used to test the model performance
in making predictions. In Fig. 7, we observe that NPIs are effective
to mitigate the transmission of COVID-19 after September. Then we
choose and fix the start date of training on January 1 and let the
training duration increase from 232 days. As shown in Table 3, we
train GBM for different training durations increasing from 232 days to
316 days by 7 days and test the models for 28 days following each
training duration. The daily transmission rates obtained by the inverse
method and climatic factors compose the training dataset. Based on the
climatic factors provided during the test duration, the trained GBM will
give a prediction for the transmission rate. Then, we can use the time
series of trained and tested daily transmission rates to evaluate the daily
infection cases, and plot the curve of (1− 𝜌)𝜏𝑃 (𝑡) of System (2.1). After
that, we compare the predicted infection cases with the notification

data of confirmed cases.
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Fig. 8. (a)(b) Using climate data in Vancouver, train 260 days from January 1 to September 17, 2021, test 28 days from September 18 to October 15, 2021. (c)(d) Using climate
data in Vancouver, train 267 days from January 1 to September 24, 2021, test 28 days from September 25 to October 22, 2021. (e)(f) Train 295 days from January 1 to October
22, 2021, test 28 days from October 23 to November 19, 2021.
In statistics, mean absolute percentage error (MAPE) is a common
measure of prediction accuracy of a forecasting method, mean absolute
error (MAE) is a measure of errors between paired observations express-
ing the same phenomenon [58,59]. In this work, we intend to use MAPE
and MAE to evaluate the differences between the predicted infection
cases and collected confirmed cases, and the differences between the
transmission rates predicted by GBMs and those derived from the
7

inverse method. Now, we introduce the formulas of MAPE and MAE:

MAPE = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

|

𝑦𝑖 − 𝑥𝑖
𝑥𝑖

|

|

|

|

and MAE = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑥𝑖|

where 𝑥𝑖 denotes the 𝑖th component of the vector of actual values, 𝑦𝑖 is
the 𝑖th component of the vector of prediction values, and 𝑛 is the total
number of data instances.
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Fig. 9. Relative influence of temperature (T) and humidity (H) when trained for 295
days from January 1 to October 22, 2021.

We employ GBM with a learning rate of 0.01, 1000 trees with a
Gaussian distribution of the response variable. The default depth of
each tree is 30. A minimum number of 10 observations is allowed in
the trees’ terminal nodes and a 10 fold cross validation is performed. As
we can see in Table 4, when the GBM is trained for 260 days, 267 days,
and 295 days, small MAPEs and MAEs are obtained. As shown in Fig. 8,
the prediction results based on each GBM are MAPE = 10.66%, MAPE
= 10.43% and MAPE = 8.24%, separately. In Fig. 8, we observe that
the trained transmission rates fit perfectly with the ones obtained from
the inverse method. However, the predicted transmission rates do not
fit well with the obtained transmission rate. Our numerical studies also
exhibit that trained cases fit almost perfectly with the real notification
confirmed data, and predicted infection cases fit quite well with the real
data. Fig. 9 shows the relative influence of temperature and humidity
in training the GBM. From Fig. 9, we see that temperature is the leading
influential factor when the model is trained for 295 days.

7. Limitations

Our analysis has some limitations. The persistence of SARS-CoV-2
virus under environmental conditions is complex and may influenced
by many factors, including temperature, humidity, surface type, and
sunlight. In this paper, we only estimate the viral mortality rate at
the combination of temperature and relative conditions, and explore
the effects of temperature and relative humidity on the transmission of
COVID-19. Another limitation is that we make assumptions of some
parameters during the pandemic. Various COVID-19 vaccines are at
clinical development stage, and these vaccines have different efficacy.
However most people in Canada took the Pfizer and Moderna vaccines
which have similar efficacy in 2021. We assume a high value for
vaccine efficacy because available vaccines generally provided good
levels of protection against the strains of SARS-CoV-2 present during
2021.

Data scarcity is a typical problem in our work. The notification
data may underestimate the actual number of infections. 7-day moving
average can be usually used to smooth out regular daily fluctuations
and this method can contribute to prevent major events from distorting
the data. In our work, to reduce the inaccuracy of daily reported
confirmed cases, we use a 7-day moving average (the average of the last
6 days and the current day) to visualize the number of new COVID-19
cases in Edmonton and Vancouver. In addition, we assume vaccinated
individuals have same immunity rates. Some individuals also get vac-
cinated even those who have already recovered from COVID-19. Since
the vaccinated data of exposed, infected, and recovered individuals is
not available, we do not introduce the vaccination in the recovered
8

class in our simple compartmental model. This may lead to an un-
derestimation of the vaccinated population. Then we may obtain low
prediction results for the infection cases.

Our works verified that high temperature or humidity can be helpful
in mitigating the spread of COVID-19 during the warm summer months
numerically. To find the explicit expression for 𝛽 as a function of 𝑇 and
𝐻 is an interesting but difficult work, which is beyond our analysis at
this stage.

In this work, we focused on how environmental conditions af-
fect the surface transmission. Existing works suggested that aerosol
transmission is also an important mode for COVID-19 [60,61]. Un-
derstanding aerosol transmission will contribute to the control of the
COVID-19 by reducing airborne transmission [62]. Environmental hu-
midity can also affect the survival of pathogens in respiratory aerosols
and droplets [63]. Exploring the effect of environmental conditions on
aerosol transmission can promote us to understand the transmission
mechanism of COVID-19.

8. Discussion

In this paper, we proposed an SEPIARS model with a vaccination
compartment and indirect incidence. Using the climate data in two
Canadian cities in 2021, we evaluated the mortality rates of the SARS-
CoV-2 virus, respectively. We found that the mortality rate of the
SARS-CoV-2 virus on environmental surfaces in Edmonton is lower
than that in Vancouver. Then by analyzing daily confirmed cases and
weather data in two cities, we extracted the time-varying transmission
rates by inverse method, respectively. Moreover, we observed that the
transmission rates obtained by the inverse method both give almost
perfect fits with the notification data. Our results suggested that high
temperature and humidity in the summers help reduce the spread
potential of COVID-19, which verifies that environmental factors affect
the transmission of COVID-19 [22,23,26]. The increased number of re-
ported cases in the United States contradicts our findings. It is possible
that some factors such as human behavior have exceeded the influence
of weather conditions. However, in most countries, the available data
enable us to better explore the effect of environmental factors on the
number of confirmed cases, and their results also support that high
temperature and high humidity mitigate the spread of COVID-19. These
results indicated that the spread of COVID-19 might be seasonally
associated with winter. It might be easier to control the spread of
COVID-19 in the summer warm months.

In our work, we also studied the effect of NPIs on mitigating the
transmission of COVID-19 under different atmospheric conditions. By
comparing the effect of school and workplace closures on the spread
of the SARS-CoV-2 virus in two cities with distinct climatic conditions,
we found that if the virus can survive on the surface for a long time,
NPIs are less effective in mitigating the COVID-19 epidemic. It is
necessary to employ NPIs to help control the spread of COVID-19.
The implementation of NPIs may lower the risk of coming in contact
with SARS-CoV-2 on environmental surfaces. Hence, the transmission
of COVID-19 can be decreased, and the burden of the epidemic on the
healthcare system can be reduced as well.

To explore the relationship between the transmission rate and cli-
matic factors, we employed gradient boosting machine to estimate
the transmission rate from the climate data of Vancouver, and made
predictions of the number of daily infection cases. We used MAE and
MAPE to evaluate the prediction performance of the GBMs on the
transmission rate and the fitting result of the number of confirmed
cases. Our model shows perfect data fittings. Based on climate data, our
model can be used to forecast the transmission rate and the infection
cases up to four weeks in the future.

In addition to COVID-19, other human infectious diseases, such as
cholera, malaria and dengue are all climate sensitive [64–67]. Climate
variation drives the dynamics of cholera, malaria and dengue. In this
paper, we only explored the impact of temperature and humidity on the
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transmission of SARS-CoV-2. Besides these two factors, precipitation
also plays an important role in the transmission of dengue, malaria
and cholera disease. Modeling the climatic conditions can be helpful
in making preparations for the outbreaks of these infectious diseases.
Different from SARS-CoV-2, we need to consider the vectors of dengue,
malaria and cholera viruses, such as water and mosquitoes. To apply
our work to the study of the above climate-sensitive infectious dis-
eases, it may be necessary to modify the infection mechanisms and
incorporate more climatic factors. The methods in this paper can be
used to make seasonal forecasts. In the future, we will continue to
explore the impact of atmospheric conditions on the transmission of
human infectious diseases, and try to use the inverse method and
machine learning approaches to make predictions on the spread of
climatic-sensitive infectious diseases.
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