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A B S T R A C T

Critical transitions are usually accompanied by a decline in ecosystem services and potentially have negative
impacts on human economies. Although some early warning signals based on a generic characteristic of local
bifurcations, such as variance and autocorrelation, can be used to predict an imminent critical transition,
studies have shown that these indicators are ineffective for purely stochastic transitions. In this paper, we
propose to use the maximum likelihood state, based on the Fokker–Planck equation, to track the true state
of a predator–prey model under noisy fluctuations. Then, we use the maximal likely trajectory to determine
tipping times for the most probable transitions from a high biomass state to a low biomass one. Numerical
results show that the tipping times of population collapse depend strongly on the noise intensity and the growth
rate of predator. We uncover that the enhanced disturbance events promote ecosystem collapse and that an
increase in predator growth rate significantly alleviates the influence, which is beneficial to the stability and
biodiversity of an ecosystem. Based on this, we define a two-dimensional region, called the Safe Operating Set
(SOS) of the population ecosystem. SOS boundary exhibits a trade-off such that increased predator growth rates
can compensate to some degree for losses from environmental perturbations. To verify the above conclusions,
we fix noise intensity and calculate the quasi-potentials of the corresponding high biomass state for different
predator growth rates. We can see that the results for measuring the stability of the high biomass state derived
from the perspective of quasi-potential are consistent with the results obtained from the analysis of tipping
time.
1. Introduction

In complex ecosystems, critical transition (regime shift) refers to the
state of a system suddenly flipping from its current state to a contrasting
state when external inputs pass a tipping point [1]. These transitions
are usually irreversible tipping events, and may cause unexpected
catastrophic consequences. Examples of such sudden transitions are
common in nature [2–5], including the collapse of global fisheries [6]
and large African mammals (such as the Syncerus caffer) [7], and a
dramatic reduction in penguin and sardine populations [8]. In addition,
some abrupt transitions will directly threaten human survival and de-
velopment, such as tempestuous declines in crop yields due to extreme
weather [9]. Therefore, it is meaningful to identify and clarify the
potential mechanisms of these critical transitions. Current studies on
tipping effects primarily focus on the following three common tipping
mechanisms [10]:

• Bifurcation-induced tipping (B-tipping): the situation when the
time-varying parameter of a system approaches a bifurcation
point, where the system is vulnerable, and even weak distur-
bances can cause dramatic changes in the state [11–13].
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• Rate-induced tipping (R-tipping): the situation where a system
moves too far away from its moving equilibrium point on account
of rapid changes in time-varying parameters [10,14,15].

• Noise-induced tipping (N-tipping): the situation when the inten-
sity of the external random disturbance exceeds a certain critical
value, the random trajectory escapes from the basin of the at-
traction of a base state and enters the domain of attraction of a
distinct state [16–18].

Notice that all of the tipping mechanisms mentioned above are model-
based, i.e., the model structure has a significant impact on the results.
Recently, some seminal works of detecting tipping point based on data
have been reported. For example, Ref. [19] developed a model-free
approach to detect change points in time series data recorded by real
systems. Ref. [20] predicts tipping points in the system based on data
using a machine learning approach.

In reality, numerous complex ecosystems are embedded in highly
noisy environmental conditions. For instance, by analyzing high–
frequency monitoring data of Lake Mendota, Carpenter et al. [21]
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found that stochasticity can push the random switching of phycocyanin
between high and low concentrations. Blasius et al. [22] conducted
an experimental predator–prey ecosystem, and the results revealed
that stochasticity may lead to a reversible transition from coherent
to non-coherent oscillations. In this paper, we will probe the effect of
environmental stochasticity on a predator–prey model of noise-induced
tipping.

For the bifurcation-induced tipping mechanism, as the environmen-
tal conditions approach a tipping point, the resilience of the system
will change. In this case, the slightly perturbed system returns to its
previous state at a slower rate [12]. We refer to this hallmark as
‘‘critical slowing down (CSD)’’ in dynamical systems theory [12], and
an array of statistical metrics based on CSD are mentioned to as generic
early warning signals (EWS) [23], which can give managers some
hints before an approaching tipping point and avert an undesirable
state shift. However, Hastings et al. [24] have illustrated that EWS
are disabled for purely stochastic transition from one stable basin to
another in highly random environments. In this circumstance, it may
be better to implement nonparametric models [25] or threshold au-
toregressive models [26] to monitor upcoming transitions. In addition,
as is well known, the solution of a stochastic model is a stochastic
process, and the stochastic system can generate a large number of
sample trajectories for a given initial value in the phase plane, which
could hardly offer useful information for understanding the system’s
dynamics [27]. Therefore, the identification of the most probable posi-
tion of the solution trajectory starting from near the equilibrium point
in every moment is a key step to explore such an abrupt transition [28].
To this end, we focus on the maximal likely tipping path, based on
the Fokker–Planck equation, for a predator–prey model under the noise
perturbations.

In multistable systems, external stochastic forces can flip a system
from one attractor to another. Several available methods are proposed
to capture such transition paths in stochastic systems and implemented
in various fields. For instance, Zheng et al. [28], based on the solution
of the nonlocal Fokker–Planck equation, investigated the maximum
likelihood climate change of an energy balance system under the
extreme climate events, and found that the cold climate state suddenly
shifts to the warm climate state owing to the presence of noisy fluctua-
tion. Yang et al. [29] studied the sudden change of maximum likelihood
state in a random thermohaline circulation system. Another work of
theirs is to consider the disaster-happening tipping time of the maximal
likely trajectories for an Arctic sea ice system subject to the disturbance
of extreme weather events [30]. Moreover, Cheng et al. [31] applied
the tool of maximal likely trajectories to a genetic regulatory system,
and their results provide insights for further medical research.

It is worth emphasizing that the above mentioned works asso-
ciated with the maximum possible trajectories are considered in a
one-dimensional model. At present, no one has studied the mecha-
nism of ecosystem collapse utilizing the maximum possible trajectories.
Similar to [32], in this study, we call the time when the most likely
trajectory collapse suddenly from the high biomass to the low biomass
as the tipping time. We will scrutinize the impact of the intensity of
disturbance events on the disaster-happening tipping time of ecosys-
tems. Currently, most of the concepts of stability have been developed
in a deterministic framework, such as linear stability analysis. These
can be misleading when applied to stochastic dynamical systems with
alternative states since stochastic perturbations may lead to shifts be-
tween states [33]. Therefore, we also expect that the most probable
tipping time serves as a valid indicator to measure the stability of high
biomass equilibrium points. We believe that the larger the value of
tipping time, the stronger the stability of the high biomass equilibrium
point. In addition, we also compute another metric for the stability
of attractors in stochastic dynamical systems, the quasi-potential, to
validate the metric we propose here.

The paper is structured as follows. In Section 2, we introduce a
2

predator–prey model driven by Gaussian white noise. In Section 3 we
validate the numerical method of obtaining the probability density
function by Monte Carlo simulations. A detailed numerical method for
solving the probability density function is presented in Appendix B.
In Section 4, we examine the effects of Gaussian white noise on the
transition behavior of the high biomass. The disaster-happening tipping
time of the predator–prey model is also calculated in this section. The
meanings of our results are discussed in Section 5.

2. Model

In this paper, we consider the following stochastically forced
predator–prey model of Leslie type with generalized Holling type III
functional response:

d𝑥 =
[

𝑟𝑥
(

1 − 𝑥
𝐾

)

−
𝑚𝑥2𝑦

𝑎𝑥2 + 𝑏𝑥 + 1

]

d𝑡 + 𝜎1𝑥d𝐵1,

d𝑦 = 𝑠𝑦
(

1 −
𝑦
ℎ𝑥

)

d𝑡 + 𝜎2𝑦d𝐵2,
(2.1)

where 𝑥(𝑡) and 𝑦(𝑡) are respectively the population densities of the
prey and predator at time 𝑡. In the absence of predators, the prey
exhibits logistic growth with an intrinsic growth rate 𝑟 and a carrying
capacity 𝐾. In the presence of predators, the predators prey on their
prey according to the generalized Holling type III functional response
function 𝑚𝑥2

𝑎𝑥2+𝑏𝑥+1 (See Appendix A for detailed introductions on Holling
type response functions). Moreover, the predator population grows
logistically with an intrinsic growth rate 𝑠, and its carrying capacity
is assumed to be proportional to the biomass of the prey population,
that is ℎ𝑥 where the parameter ℎ measures the food quality of the prey
for conversion into the predator growth. The parameters 𝑟, 𝐾, 𝑚, 𝑎, 𝑠
and ℎ are positive constants, and 𝑏 > −2

√

𝑎 (so that 𝑎𝑥2 + 𝑏𝑥 + 1 > 0
for all 𝑥 > 0). 𝐵1(𝑡) and 𝐵2(𝑡) are Wiener processes whose formal
derivatives are Gaussian white noise processes, positive constants 𝜎1
and 𝜎2 denote the noise intensities. For the simplicity of discussion, we
assume 𝜎1 = 𝜎2 = 𝜎.

When 𝜎 = 0, i.e., without stochastic interferences, model (2.1) is
reduced to the following deterministic model:

d𝑥
d𝑡 = 𝑟𝑥

(

1 − 𝑥
𝐾

)

−
𝑚𝑥2𝑦

𝑎𝑥2 + 𝑏𝑥 + 1
,

d𝑦
d𝑡 = 𝑠𝑦

(

1 −
𝑦
ℎ𝑥

)

,
(2.2)

which has ever been considered in Refs. [34,35]. It is shown there
that the model can exhibit complex dynamics such as various bifur-
cations and multi-type bistability phenomena. Take the following set
of parameter values [34]:

𝑟 = 1, ℎ = 1, 𝑏 = −1.65, 𝐾 = 10, 𝑎 = 1.25, 𝑚 = 0.54, 𝑠 = 0.5. (2.3)

Then model (2.2) has two stable equilibria: 𝐸1 = (1, 1) and 𝐸3 =
(4, 4), which correspond respectively to a low biomass state and a high
biomass state; and one saddle point 𝐸2 = (2, 2). Fig. 2.1 shows the
phase portraits of model (2.2) for this set of parameter values. The
separatrices of the basins of attraction of two stable attractors are
indicated by dashed red lines. Obviously, the solution trajectories of
model (2.2) starting near the equilibrium points 𝐸1 and 𝐸3 converge
respectively to the attractors 𝐸1 and 𝐸3.

Although deterministic models can successfully capture certain
characteristics of population dynamics, a realistic feature of predator–
prey dynamics is its variability due to external fluctuations [36].
Now we consider the case when 𝜎 ≠ 0 and scrutinize the influence
of environmental noise on population dynamics. We take the same
parameter values as in Fig. 2.1 and set the noise intensity 𝜎 = 0.045.
Fig. 2.2 displays the stochastic trajectory originated from the vicinity
of 𝐸3 will escape from its attraction basin enter the basin of attraction
of equilibrium point 𝐸1. This indicates that environmental fluctuations
can trigger a regime shift (from the high biomass state to the low
biomass state) in the population ecosystem and cause a sudden and
unpredictable decrease in population size.
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Fig. 2.1. Phase portraits of model (2.2) with parameters 𝑟 = 1, ℎ = 1, 𝑏 = −1.65,
𝐾 = 10, 𝑎 = 1.25, 𝑚 = 0.54 and 𝑠 = 0.5. 𝐸1 , 𝐸3 are stable equilibria and 𝐸2 is unstable.

he separatrices of the basins of attraction of two stable attractors are indicated by
ashed red lines. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

Fig. 2.2. The phase trajectories of stochastic model (2.1) with initial value (4.1, 4.1)
nd noise intensity 𝜎 = 0.045.

In the sequel sections, we will investigate the effect of Gaussian
hite noise on the dynamics of predator–prey model (2.1) from the
erspective of stationary probability density function (SPDF), which
s one of the key tools for studying the stochastic dynamical be-
avior of models with multiple stable attractors. Specifically, we use
he coordinates at the maximum of SPDF to track the true state of
tochastic predator–prey model (2.1). Depending on the noise intensity,
he SPDF of species biomass may have one or two peaks near the
table attractors, and the shape and height of the peaks determine
he occupation probability of the corresponding attractor. Statistically,
he greater occupation probability determines the final population
ize.

. Numerical method

To obtain the most probable position of the solution trajectory
t each moment, we need to solve the corresponding Fokker–Planck
3

o

equation and then record the maximizer of probability density function
at every time 𝑡. For the readability of the article, the detailed numerical
method for solving the probability density function is provided in
Appendix B.

To validate the numerical algorithm, we simulate the following
formulas:
𝑥�̂�+1 = 𝑥�̂� + 𝑓1(𝑥�̂�, 𝑦�̂�)𝛥𝑡 + 𝜎1𝑥�̂�𝛥𝐵

1
�̂� ,

𝑦�̂�+1 = 𝑦�̂� + 𝑓2(𝑥�̂�, 𝑦�̂�)𝛥𝑡 + 𝜎2𝑦�̂�𝛥𝐵
2
�̂� ,

(3.1)

here random variables 𝛥𝐵𝑖
�̂�, 𝑖 = 1, 2, are independent and identically

distributed normal random variables with mean zero and variance 𝛥𝑡,
and �̂� is the number of iterations. Using formulas (3.1), we perform the
Monte Carlo simulation for 1000 times to acquire an estimate of the
probability density function. The results of the Monte Carlo simulation
are displayed in Fig. 3.1(b). We can see that although there are some
slight differences between the Monte Carlo results and the numerical
simulation results, there is generally a good agreement (see Fig. 3.1(a)).
In fact, the main reason for this slight difference is that Monte Carlo
simulations must be performed multiple times to obtain relatively accu-
rate statistical information. However, as the number of trials increases,
it will lead to a huge amount of computation. Furthermore, due to the
discrete nature of the Monte Carlo method, subtle dynamic features
may be ignored or discarded as ‘‘numerical noise’’ during numerical
integration.

4. Results

The probability density functions of model (2.1) with noise intensity
𝜎 = 0.03 and initial value (4.1, 4.1) at four different times are sketched in
Fig. 4.1. The highest probability density is located in the dark red area
in Fig. 4.1. At time 𝑇 = 1, the red area is mainly concentrated near the
initial value, which indicates that the stochastic trajectory at this time is
hovering near the initial point (see Fig. 4.1(a)). However this situation
changes at time 𝑇 = 5, 𝑇 = 15 and 𝑇 = 25, the dark red area gradually
moves as time goes on until it reaches near the low biomass state (1, 1)
see Fig. 4.1(b), (c) and (d)), which suggests that stochastic trajectory
tarting near high biomass state is attracted by low biomass state. This
esult agrees with the behavior of the previous stochastic trajectory
see Fig. 2.2). It is worthy to remark that by comparing the numerical
imulation results, we uncover that the shape of the probability density
unction does not alter after the time 𝑇 = 25, therefore the system can
e treated as stationary.

Next, for a fixed terminal time 𝑇 = 25, the influence of noise
ntensity on the evolution of the probability density function and the
aximal likely trajectories is discussed. Fig. 4.2 shows that the prob-

bility density function (the left plots of Fig. 4.2) and corresponding
ontour plots (the right plots of Fig. 4.2) of stochastic model (2.1)
ith different values of the noise intensity 𝜎. From top to bottom,
s 𝜎 increases, the probability density function experiences a process
rom unimodal to bimodal and then to unimodal again, but the position
f the corresponding single peak has altered. In Fig. 4.2(a)–(b), when

is small, the peak located near the high biomass state is quite
igh, indicating most of the stochastic trajectories starting from point
4.1, 4.1) are concentrated near the high biomass state. One can see
he weaker noise does not affect the dynamics of stochastic model
2.1). As 𝜎 increases further, the changes in the two peaks of the
tationary probability density function are shown in Fig. 4.2(c)–(f).
he peak near the low biomass state becomes higher while the peak
orresponding to high biomass state diminishes gradually. When the
isturbance intensity surpasses the critical noise intensity where the
wo peaks have the same height, the low biomass state dominates
see Fig. 4.2(g) and (h)), and thus we can state that the ecosystem
xperiences a regime shift under Gaussian noise.

For a fixed time 𝑡𝑖, we record the maximum of probability density
unction 𝑝(𝑥, 𝑦, 𝑡𝑖) to find the location (𝑥𝑖, 𝑦𝑖), then we link this series

f points (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2,… to obtain the maximal likely trajectory.
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Fig. 3.1. Probability density function 𝑝(𝑥, 𝑦) of the system (2.1) with 𝑠 = 1 and 𝜎 = 0.1. (a) Numerical solution obtained by the operator-splitting method. (b) Approximate solution
obtained by Monte Carlo simulation.
Fig. 4.1. The probability density function of stochastic model (2.1) at different time with 𝜎 = 0.03, 𝑠 = 0.5 and initial value (4.1, 4.1). (a)–(d) shows the representative probability
density function images of 𝑇 = 1, 𝑇 = 5, 𝑇 = 15, and 𝑇 = 25, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Through this construction process we clearly see that the ‘‘trajectory’’
is a sequence of locations (𝑥𝑖, 𝑦𝑖), so it is not the true trajectory of
random system (2.1). Note that the prey biomass changes similarly
to the predator under the interference of noise. We only present the
changes in predator biomass here. The 𝑦 coordinates of maximal likely
trajectory with the same initial value and different noise intensity are
4

presented in Fig. 4.3. In the case of weaker noise intensity (𝜎 = 0.01 or
𝜎 = 0.015), the time series of predator of the maximal likely trajectories
stay around the initial value 4.1 (see the red and blue dashed lines
in Fig. 4.3). It can be seen that weaker disturbance events have little
effect on the stability of the high biomass state. However, when 𝜎 is
relatively large (𝜎 = 0.03 or 𝜎 = 0.1), the maximal likely trajectories
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Fig. 4.2. The probability density function (left) and corresponding contour plots (right) of stochastic model (2.1) with initial value (4.1, 4.1) and different 𝜎. The initial value is
(4.1, 4.1). Time is limited to 25. From top to bottom, the noise intensity is 0.01, 0.015, 0.03 and 0.1, respectively.
escape from the attraction domain of 𝐸3 and are attracted by 𝐸1. Thus,
there must be one intermediate critical value of interference strength
𝜎 at which noise-induced tipping occurs. In addition, we can see the
vertiginous drop at time 𝑇 = 21.86 (the black solid line) and 𝑇 = 6.65
(the green dashed line) in Fig. 4.3. Fig. 4.4 shows the dependence of
the time of abrupt change on the noise intensity 𝜎 and the intrinsic
growth rate of predator 𝑠. Obviously, under increasing noise intensity,
the time of abrupt change monotonously decreases, that is, the abrupt
change occurs earlier with the stronger noise.

It is worth remarking that for 𝑠 ∈ [0.4, 1.5], the position and stability
of equilibrium points of deterministic system (2.2) do not change. Our
simulation results show that the time of the sudden decline of biomass
depends not only on the noise intensity 𝜎 but also on the intrinsic
growth rate of predator 𝑠. In the following, therefore, we take the
5

intrinsic growth rate 𝑠 to be a control parameter for investigating the
effect of 𝑠 on the time of abrupt change. As shown in Fig. 4.4, for
𝑠 = 0.4, 0.5, 1.0, and 1.5, we reveal that all four curves decrease with
the increase of noise intensity. When the disturbance event is strong
enough, the tipping time is insensitive to changes in 𝑠.

For an ecosystem with alternative stable states, the pressure from
the drivers of environmental conditions forces the system closer to a tip-
ping point. Once environmental conditions cross the tipping point, the
system undergoes a critical transition and transitions to a distinct state.
The term ‘‘tipping point’’ here generally refers to a critical threshold at
which a tiny perturbation can qualitatively alter the state or develop-
ment of a system. From the definitions of these three common tipping
mechanisms in the introduction, it can be seen that for B-tipping,
N-tipping, and R-tipping, the ‘‘tipping point’’ refers to a bifurcation
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Fig. 4.3. The time variation of the y-coordinate of the maximal likely trajectories with
initial value (4.1, 4.1) and different noise intensity 𝜎. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4.4. The time for abrupt change as function of noise intensity for stochastic model
(2.1) with initial value (4.1, 4.1) and different values of parameter 𝑠. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

point, a critical noise intensity, and a critical rate of change in system
parameter, respectively. In this paper, we consider the noise-induced
tipping mechanism, so it is natural to shift our attention to critical noise
intensity. Aiming at determining the smallest value of noise intensity
(tipping point) that incurs a critical transition from the high biomass
state to the low biomass state, we draw vertical lines in Fig. 4.4 from
the highest point of the four curves. The critical noise intensities are
approximately 𝜎 = 0.018, 0.027, 0.067, and 0.093 for growth rates 𝑠 =
0.4, 0.5, 1.0, and 1.5, respectively. For 𝑠 ∈ [0.4, 1.5], the dotted line in
Fig. 4.5 shows the relationship between intrinsic growth rate 𝑠 and the
critical noise intensity 𝜎. Our simulations indicate that the minimum
external force required for the critical transition increases as the rate of
predator growth increases. Meanwhile, the dotted line also divides the
𝜎− 𝑠 parameter space into two parts including the ecosystem collapsed
and the safe operating set (SOS) in which system state remains near
high biomass. If the multiple environmental drivers (e.g., extreme
weather events, fires and floods) trigger the system parameters crossed
the bound, the system will undergo a transition to an alternative state
6

Fig. 4.5. Safe Operating Set (SOS) for the population ecosystem. A predator growth
rate that is currently at a safe level (A) needs to be adjusted to a higher value (B) to
ensure system (2.1) within the safe operating set in a strongly disturbed event.

Fig. 4.6. Dependence of the tipping time on the parameter 𝑠.

(the low biomass state). As Fig. 4.5 illustrates, therefore, a predator
growth rate that is currently at a safe level (A) needs to be adjusted
to a higher value (B) to ensure system (2.1) within the safe operating
set in a strongly disturbed event. The SOS illustrates opportunities to
manage habitat quality or harvest to maintain ecosystem biodiversity
in the presence of uncertainties such as extreme climates condition,
human behavior, etc.

Another observation shown in Fig. 4.6 is that for a fixed noise
intensity (here, we take 𝜎 = 0.1), the greater the growth rate of
predators, the longer it takes for the maximal possible trajectory to shift
to the regime of low biomass. The above simulation results related to
tipping time show that increasing the intensity of external disturbance
events accelerates the reduction of biomass in the ecosystem. For a
fixed intensity of disturbance event, the increase of predator growth
rate has a positive effect on promoting stability of high biomass state.
It should be emphasized that the word ‘‘stability’’ here is determined
according to the magnitude of the tipping time. Generally, we think
that the larger the value of tipping time, the greater the ability of the
system to maintain high biomass and the stronger the stability of the
equilibrium point.
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Next, in order to verify the validity of the metric (tipping time)
proposed above, we shall explore the influence of parameter 𝑠 on
the stability of equilibrium point 𝐸3 from the perspective of quasi-
potentials. For a gradient system with multiple stable states, ball-in-cup
diagram is a convenient method to visualize states in corresponding
stochastic system [37]. In the ball-in-cup diagram, the state of the sys-
tem can be imagined as the position of a ball rolling on a surface which
is defined by a potential function. The ball constantly rolls downhill on
the surface and eventually falls into a valley (the local minimum of
the potential function). These valleys correspond to the stable state of
the system and the peaks to the unstable state. Environmental random
forces can propel the ball from one attraction domain over a mountain
to another. Therefore, the potential function can provide an effective
method to compare the stability of different stable states by the depth
difference of the valley (the potential depth) [33,38]. However, usually
only one-dimensional or gradient systems can write down a potential
function. For non-gradient systems, [33,39,40] proposed the quasi-
potential as a way similar to the traditional potential function to
quantify the difficulty of moving the system state from one domain of
attraction to another.

Mathematically, we assume that 𝜃(𝑡) is a path, starting from a stable
state 𝜃(0) = 𝐸∗ to another state 𝜃(𝑇 ) = 𝑥. 𝑇 is the total time the system
spends along this path. According to the Freidlin–Wentzell theory of
large deviations [41], the amount of work required for the state of
the system to trace a candidate path can be quantified by a functional
𝑆𝑇 named the action, one can see Ref. [41] for more details. Then,
the quasi-potential is defined as the value of the action 𝑆𝑇 for the
minimum-action path between 𝐸∗ and 𝑥, denoted

𝐻𝐸∗
(𝑥) = inf

𝑇>0
{𝑆𝑇 (𝜃)|𝜃(0) = 𝐸∗, 𝜃(𝑇 ) = 𝑥}. (4.1)

Since the calculation of the quasi-potential involves a class of static
Hamilton–Jacobi equations, the standard finite element and finite dif-
ference methods are often infeasible. Fortunately, Sethian et al. pro-
posed a family of fast ordered upwind methods to approximate solu-
tions to this class of equations [42,43]. Subsequently, Cameron [40]
improved the standard ordered headwind method. Based on Cameron’s
algorithm, Moore et al. [44] developed a freely available R package
𝑄𝑃𝑜𝑡 that computes quasi-potentials efficiently.

In this paper, resorting to the R package 𝑄𝑃𝑜𝑡, the quasi-potential 𝐻
of model (2.1) is derived, illustrated in Fig. 4.7. The quasi-potential at
the unstable equilibrium 𝐸2 are 0.0008068, 0.006627 and 0.01619 for
𝑠 = 0.5, 𝑠 = 1.0 and 𝑠 = 1.5, respectively. The quasi-potential at equilib-
rium points 𝐸3 and 𝐸1 are 1.62 ∗ 10−5 and 3.02 ∗ 10−6 respectively for
all parameters 𝑠. Then, we can easily calculate that the quasi-potential
depth at equilibrium point 𝐸3(𝐸1) are 𝛥𝐻1 = 0.0007905(0.00080378),
𝛥𝐻2 = 0.006611(0.00662398) and 𝛥𝐻3 = 0.016173(0.01618698) for 𝑠 =
0.5, 𝑠 = 1.0 and 𝑠 = 1.5, respectively. It is obvious that as the growth
rate of the predator increases, the valley at the equilibrium point 𝐸3 is
deeper, which indicates that the stability of 𝐸3 is stronger. Thus, more
random force is needed to push a ball from the basin of attraction of 𝐸3
to that of 𝐸1. We can see that the result of the stability of equilibrium
point 𝐸3 from the metric of quasi-potential has a good agreement with
the result obtained from the analysis of tipping time in Fig. 4.6.

5. Discussion

In recent years, the construction of ecological civilization and sus-
tainable development have been elevated to a national strategic posi-
tion. In the theoretical and practical studies of ecosystem degradation
and restoration, more and more researchers have paid extensive at-
tention to the phenomenon of abrupt change in multi-steady state
ecosystems [3,45]. In general, such dramatic changes have potentially
negative impacts on ecosystem persistence and human well-being. It
is therefore necessary to formulate strategies to adapt, mitigate and
avoid such changes. In this paper, we develop a Leslie-type predator–
7

prey model with environmental stochasticity that is suddenly forced d
through population collapse, in the presence of strong environmental
noise. To reveal the mechanism underlying the abrupt transition in
population size, we have put forward a research framework, based on
transition probability densities and FPK equation, to gain the maximal
likely trajectory from high biomass state to low biomass state under
Gaussian white noise. Subsequently, we acquire the tipping time of
population collapse and the critical noise intensity inducing the state
transition by using the maximal likely trajectory.

In light of the results of numerical experiments, we uncover that
the tipping times of population collapse depend strongly on the noise
intensity 𝜎, and the predator growth rate 𝑠. For a fixed growth rate
f predator, the tipping time of population collapse decreases with the
ncrease of environmental noise intensity (see Fig. 4.4). This shows that
nvironmental disturbance events (such as floods, fires, earthquakes,
tc.) can accelerate the collapse of the ecosystem. On the other hand,
or a fixed noise intensity, we observe that increasing the growth
ate of predators would effectively prolong the time the system was
aintained in a high biomass state (see Fig. 4.6). In other words, an

ncrease in the growth rate of predators is conducive to the stability and
iodiversity of the ecosystem from the perspective of a longer tipping
ime. To verify this conclusion, we also calculate the quasi-potentials
f the corresponding equilibrium state for different predator growth
ates. We can see that the result of the stability of high biomass state
rom the metric of quasi-potential has a good agreement with the result
btained from the analysis of tipping time. The SOS of an ecosystem–
he range of conditions that maintain population size at relatively high
evels–depends on various factors including environmental randomness
nd habitat quality (which determines predator growth rates). The
urve in Fig. 4.5 explains compensatory interactions. To maintain
iomass within the SOS, predator growth rates must be upregulated
ith increasing environmental disturbance.

For a purely stochastic transition event, since there is no effective
arly warning indicator, calculating the most likely trajectory from one
tate to another is an effective tool for understanding the mechanism
f sudden transition in a population ecosystem. Our study in this paper
rovides a probabilistic framework for investigating the mechanisms
nderlying ecosystem collapse under the influence of environmental
isturbances. In addition, our method here has two obvious advantages
or obtaining the most likely transition orbits. First, we numerically
olve the corresponding Fokker–Planck equation to acquire the prob-
bility density of the transition path, thus avoiding the difficulty of
btaining the action functional in the Onsager–Machlup method [46,
7]. Second, our method here is not an asymptotic approach and thus
voids the assumption that the noise intensity is sufficiently small in
he large deviation theory [41].

At present, there has been some excellent work on the tipping
henomenon in the predator–prey model. For example, Alkhayuon
t al. [48] identified a new mechanism called phase-sensitive tipping,
here tipping to extinction occurs only from certain phases of the cycle.
anselow et al. [14] found that the Rosenzweig–MacArthur predator–
rey model can undergo a rate-induced critical transition in response
o continued decline in habitat quality, leading to ecosystem collapse.
owever, in our work we pay our attention to noise-induced tipping.

t is worth noting that none of these tipping mechanisms involve any
ifurcation and all these works focus on one tipping mechanism. In
ature, there can be multiple tipping mechanisms working together,
nd one of them is dominant [49]. It is an interesting research direction
o explore the results of the joint action of multiple tipping mecha-
isms [50]. Also, in contrast to [48] that focused on the transition
henomenon from limit cycle to equilibrium, we focus on shifting
rom one equilibrium to another. In fact, the transition of population
ize from a stationary state to a periodically oscillating state is quite
ommon in nature. We will devote to developing suitable early warning
ignals to predict the onset of oscillations in future work.

Although the example we study in this paper is about a two-

imensional population dynamics model, our research ideas can be
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Fig. 4.7. The quasi-potential function for stochastic system (2.1) with fixed noise intensity 𝜎 = 0.001 and different intrinsic growth rate of predator 𝑠. The quasi-potential depth
of equilibrium point 𝐸3 are: (a) 𝛥𝐻1 = 0.0007905, (b) 𝛥𝐻2 = 0.006611 and (c) 𝛥𝐻3 = 0.016173, respectively.
easily extended to higher-dimensional systems. For example, for a
three-dimensional Itô stochastic differential equation, we can obtain
the corresponding FPK equation for the evolution of the transition
probability density, which can also be solved using the operator split-
ting method. We have noticed the literature [51] where by applying
the path integral formalism and the saddle point approximation, the
authors reduce the high-dimensional stochastic neural network model
to a two-dimensional system and describes numerically and analytically
how parameters and stochasticity affect the dynamics of the system. We
believe that for systems in more than three dimensions, the methods
implemented in literature [51,52] are potential tools for studying the
most likely transition paths.
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Appendix A. Holling type functional response functions

The functional response function 𝑝(𝑥), which depicts the change
in the density of the prey attacked per unit time per predator as
the prey density changes, is a key factor in modeling the ecological
interaction between predators and their prey and plays an important
role in determining the dynamics of the model. There are many type
functional response functions appeared in literatures, and in particular
the following three Holling type functional response functions are most
often used [53]:
8

• Holling type I, i.e., 𝑝(𝑥) = 𝑚𝑥(𝑚 > 0). This type is usually applied
to algae, cells, and lower organisms.

• Holling type II, i.e., 𝑝(𝑥) = 𝑚𝑥
𝑎+𝑥 (𝑚 > 0, 𝑎 > 0). It is usually applied

to invertebrates.
• Holling type III, i.e., 𝑝(𝑥) = 𝑚𝑥2

𝑎𝑥2+1 (𝑚 > 0, 𝑎 > 0). This type is
generally applied to vertebrates [54].

In [34,35], the authors used a more generalized form of Holling type
III response function as follows:

𝑝(𝑥) = 𝑚𝑥2

𝑎𝑥2 + 𝑏𝑥 + 1
, (A.1)

where 𝑚 > 0, 𝑎 > 0 and 𝑏 is a constant number. This generalized type
of Holling III functional response function suggests that predators have
some form of learning behavior, specifically, when the prey biomass
is below a certain threshold, predators will not exploit prey as food
with any large intensity and converges to 𝑚

𝑎 as the prey biomass tends
to infinity. But for 𝑏 ≥ 0, we can see from Fig. A.1(a) that once this
density threshold is exceeded, predators increase their predation rate
to its saturation level 𝑚

𝑎 monotonically; while for 𝑏 < 0, we can see
from Fig. A.1(b) that predation rate increases first to a maximum and
then drops, and converges to 𝑚

𝑎 as the prey biomass tends to infinity.
In the case of 𝑏 < 0, model (2.2) can exhibit complex dynamics such as
the bistability between multiple attractors.

Appendix B. Detailed numerical method to gain the probability
density function

For two-dimension Itô’s stochastic differential Eq. (2.1), the corre-
sponding Fokker–Planck (FPK) equation is

𝜕𝑝(𝑥, 𝑦, 𝑡)
𝜕𝑡

= −
𝜕(𝑓1𝑝(𝑥, 𝑦, 𝑡))

𝜕𝑥
+ 1

2
𝜕2(𝑔1𝑝(𝑥, 𝑦, 𝑡))

𝜕𝑥2

−
𝜕(𝑓2𝑝(𝑥, 𝑦, 𝑡))

𝜕𝑦
+ 1

2
𝜕2(𝑔2𝑝(𝑥, 𝑦, 𝑡))

𝜕𝑦2
, (B.1)

with a delta initial condition 𝑝(𝑥, 𝑦, 0) = 𝛿(𝑥 − 𝑥0, 𝑦 − 𝑦0), where

𝑓1 = 𝑟𝑥
(

1 − 𝑥
𝐾

)

−
𝑚𝑥2𝑦

𝑎𝑥2 + 𝑏𝑥 + 1
, 𝑔1 = (𝜎1𝑥)2,

𝑓2 = 𝑠𝑦
(

1 −
𝑦
ℎ𝑥

)

, 𝑔2 = (𝜎2𝑦)2.
(B.2)

In the following, we numerically solve Eq. (B.1) on the rectangular
bounded domain 𝐷 = (0, 𝐿) × (0, 𝐿) with the boundary condition

𝑝(𝑥, 𝑦, 𝑡) = 0, for (𝑥(𝑡), 𝑦(𝑡)) ∈ 𝜕𝐷, (B.3)

where 𝜕𝐷 is the boundary surface.
We employ an operator-splitting method [55–58] for FPK Eq. (B.1)

and divide the two-dimensional spatial operators into the following 2
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Fig. A.1. Generalized Holling III functional response. (a) 𝑏 ≥ 0; (b) 𝑏 < 0.
w

B

one-dimensional operators:

𝑝𝑚+1∕2 − 𝑝𝑚

𝛥𝑡
= − 𝜕

𝜕𝑥

(

𝑓1
𝑝𝑚+1∕2 + 𝑝𝑚

2

)

+ 1
2

𝜕2

𝜕𝑥2

(

𝑔1
𝑝𝑚+1∕2 + 𝑝𝑚

2

)

, (B.4)

and

𝑝𝑚+1 − 𝑝𝑚+1∕2

𝛥𝑡
= − 𝜕

𝜕𝑦

(

𝑓2
𝑝𝑚+1 + 𝑝𝑚+1∕2

2

)

+ 1
2

𝜕2

𝜕𝑦2

(

𝑔2
𝑝𝑚+1 + 𝑝𝑚+1∕2

2

)

,

(B.5)

here 𝑝𝑚, 𝑝𝑚+1∕2 and 𝑝𝑚+1 represent the values of the probability den-
sity function 𝑝(𝑥, 𝑦, 𝑡) at time 𝑚𝛥𝑡, (𝑚+1∕2)𝛥𝑡 and (𝑚+1)𝛥𝑡, respectively.
Let us discretize the spatial domain 𝐷 = (0, 6) × (0, 6) as 𝑥1 = 0, 𝑥2 =
𝛥𝑥,… , 𝑥𝑁 = 6 and 𝑦1 = 0, 𝑦2 = 𝛥𝑦,… , 𝑦𝑁 = 6, where

𝛥𝑥 =
𝑥𝑁 − 𝑥1
𝑁 − 1

, 𝛥𝑦 =
𝑦𝑁 − 𝑦1
𝑁 − 1

nd 𝑁 is taken as 61. We take the time step size 𝛥𝑡 = 0.01. 𝑝𝑖,𝑗 denote
he numerical solution of 𝑝 at (𝑥𝑖, 𝑦𝑗 , 𝑡). The finite differences are used
mplicitly to Eq. (B.4)

𝑝𝑚+1∕2𝑖,𝑗 − 𝑝𝑚𝑖,𝑗
𝛥𝑡

=

− 1
2

𝑓1,𝑖+1,𝑗𝑝
𝑚+1∕2
𝑖+1,𝑗 − 𝑓1,𝑖−1,𝑗𝑝

𝑚+1∕2
𝑖−1,𝑗 + 𝑓1,𝑖+1,𝑗𝑝𝑚𝑖+1,𝑗 − 𝑓1,𝑖−1,𝑗𝑝𝑚𝑖−1,𝑗

2𝛥𝑥

+ 1
4

𝑔1,𝑖+1,𝑗𝑝
𝑚+1∕2
𝑖+1,𝑗 − 2𝑔1,𝑖,𝑗𝑝

𝑚+1∕2
𝑖,𝑗 + 𝑔1,𝑖−1,𝑗𝑝

𝑚+1∕2
𝑖−1,𝑗 + 𝑔1,𝑖+1,𝑗𝑝𝑚𝑖+1,𝑗 − 2𝑔1,𝑖,𝑗𝑝𝑚𝑖,𝑗 + 𝑔1,𝑖−1,𝑗𝑝𝑚𝑖−1,𝑗
(𝛥𝑥)2

,

(B.6)

here 𝑖, 𝑗 = 1, 2,… , 𝑁 − 1 and 𝑚 = 0, 1, 2,…. The terms related to the
ime levels 𝑚 + 1∕2 and 𝑚 in Eq. (B.6) are respectively moved to the
eft and right sides of the equal sign, and we let 𝑢1 = 𝛥𝑡

𝛥𝑥 , 𝑣1 = 𝛥𝑡
(𝛥𝑥)2 ,

𝑖 = − 𝑢1𝑓1,𝑖−1
4 − 𝑣1𝑔1,𝑖−1

4 , 𝛽𝑖 = 1 + 𝑣1𝑔1,𝑖
2 , 𝛾𝑖 = 𝑢1𝑓1,𝑖+1

4 − 𝑣1𝑔1,𝑖+1
4 and

𝑖 = 1 − 𝑣1𝑔1,𝑖
2 . Then, Eq. (B.6) becomes

𝑖𝑝
𝑚+1∕2
𝑖−1,𝑗 + 𝛽𝑖𝑝

𝑚+1∕2
𝑖,𝑗 + 𝛾𝑖𝑝

𝑚+1∕2
𝑖+1,𝑗 = −𝛼𝑖𝑝𝑚𝑖−1,𝑗 + 𝜂𝑖𝑝

𝑚
𝑖,𝑗 − 𝛾𝑖𝑝

𝑚
𝑖+1,𝑗 . (B.7)

e can omit the subscript 𝑗 since it does not affect the partial deriva-
ives of 𝑥. Letting 𝛿𝑖 = −𝛼𝑖𝑝𝑚𝑖−1 + 𝜂𝑖𝑝𝑚𝑖 − 𝛾𝑖𝑝𝑚𝑖+1 we have

𝑖𝑝
𝑚+1∕2
𝑖−1 + 𝛽𝑖𝑝

𝑚+1∕2
𝑖 + 𝛾𝑖𝑝

𝑚+1∕2
𝑖+1 = 𝛿𝑖. (B.8)

q. (B.8) can be written in matrix form as follows:

𝑝 = 𝛿, (B.9)
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ith 𝑝 =
(

𝑝𝑚+1∕21 , 𝑝𝑚+1∕22 ,… , 𝑝𝑚+1∕2𝑛

)𝑇
, 𝛿 =

(

𝛿1, 𝛿2,… , 𝛿𝑛
)𝑇 and

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛽1 𝛾1 0 ⋯ 0 0 0
𝛼2 𝛽2 𝛾2 ⋯ 0 0 0
0 𝛼3 𝛽3 ⋯ 0 0 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 𝛼𝑛−1 𝛽𝑛−1 𝛾𝑛−1
0 0 0 ⋯ 0 𝛼𝑛 𝛽𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Obviously, the coefficient matrix 𝐴 is tridiagonal. After gaining the
probability density at the time level 𝑚, it is easy to acquire the solution
of the time level 𝑚 + 1∕2 by using the chasing method [59] for the
tridiagonal Eqs. (B.9) as follows:

𝑝 = 𝐴−1𝛿.

Similarly, in terms of finite differences methods, Eq. (B.5) becomes

𝑝𝑚+1𝑗 − 𝑝𝑚+1∕2𝑗

𝛥𝑡
=

− 1
2

𝑓2,𝑗+1𝑝𝑚+1𝑗+1 − 𝑓2,𝑗−1𝑝𝑚+1𝑗−1 + 𝑓2,𝑗+1𝑝
𝑚+1∕2
𝑗+1 − 𝑓2,𝑗−1𝑝

𝑚+1∕2
𝑗−1

2𝛥𝑦

+ 1
4

𝑔2,𝑗+1𝑝𝑚+1𝑗+1 − 2𝑔2,𝑗𝑝𝑚+1𝑗 + 𝑔2,𝑗−1𝑝𝑚+1𝑗−1 + 𝑔2,𝑗+1𝑝
𝑚+1∕2
𝑗+1 − 2𝑔2,𝑗𝑝

𝑚+1∕2
𝑗 + 𝑔2,𝑗−1𝑝

𝑚+1∕2
𝑗−1

(𝛥𝑦)2
.

(B.10)

y letting 𝑢2 = 𝛥𝑡
𝛥𝑦 , 𝑣2 = 𝛥𝑡

(𝛥𝑦)2 , 𝛼𝑗 = − 𝑢2𝑓2,𝑗−1
4 − 𝑣2𝑔2,𝑗−1

4 , 𝛽𝑗 = 1 + 𝑣2𝑔2,𝑗
2 ,

𝛾𝑗 =
𝑢2𝑓2,𝑗+1

4 − 𝑣2𝑔2,𝑗+1
4 and 𝜂𝑗 = 1 − 𝑣2𝑔2,𝑗

2 , Eq. (B.10) is rewritten as

𝛼𝑗𝑝
𝑚+1
𝑗−1 + 𝛽𝑗𝑝

𝑚+1
𝑗 + 𝛾𝑗𝑝

𝑚+1
𝑗+1 = 𝛿𝑗 , (B.11)

where 𝛿𝑗 = −𝛼𝑗𝑝
𝑚+1∕2
𝑗−1 +𝜂𝑗𝑝

𝑚+1∕2
𝑗 −𝛾𝑗𝑝

𝑚+1∕2
𝑗+1 . Here we resort to the chasing

method to acquire the transition probability density at the time level
𝑚 + 1. When 𝑡 is sufficiently large, we gain the stationary probability
density function 𝑝(𝑥, 𝑦). The whole program takes about 2 min using
MatLab R2019a running under macOS on a 1.6 GHz Intel Core i5.
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