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Abstract
Coral reefs provide refuge for prey and are important for the preservation of an oceanic
ecosystem. However, they have been experiencing severe destruction by environmen-
tal changes and human activities. In this paper, we propose and analyze a tri-trophic
food chain model consisting of coral, Crown-of-thorns starfish (CoTS), and triton in
deterministic and stochastic environments. We investigate the effects of harvesting in
the deterministic system and environmental noises in the stochastic system, respec-
tively. The existence of possible steady states along with their stability is rigorously
discussed. From the economic perspective, we examine the existence of the bionomic
equilibrium and establish the optimal harvesting policy. Subsequently, the determin-
istic system is extended to a stochastic system through nonlinear perturbation. The
stochastic system admits a unique positive global solution initiating from the inte-
rior of the positive quadrant. The long-time behaviors of the stochastic system are
explored. Numerical simulations are provided to validate and complement our theo-
retical results. We show that over-harvesting of triton is not beneficial to coral reefs
and modest harvesting of CoTS may promote sustainable growth in coral reefs. In
addition, the presence of strong noises can lead to population extinction.
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1 Introduction

Coral reefs, often known as “the rainforests of the sea", are considered the most
productive marine ecosystem in the world that are renowned for the staggering rich
biodiversity and the various beneficial ecosystem services they provide. Coral reefs
are the most diverse habitat supporting innumerable life above/below the water and
sustaining the highest concentration of marine biodiversity (Speers et al 2016; Hughes
et al 2017). The importance and the value of coral reefs extends far beyond the con-
servation of marine biodiversity. Coral reefs provide food for millions of humans
worldwide, protect and create land, supply natural medicines as a source of medical
advances, and are intrinsically full of beautiful natural wonder (Polidoro andCarpenter
2013). The condition of coral is a major indicator of the health of the global ecosystem.

However, in spite of the high levels of biomass, productivity, and species diver-
sity, coral reefs are some of the world’s most fragile ecosystems and are vulnerable
to changes in the external environment. Coral reefs can be damaged and degraded
from human activity as well as environmental factors. Coral reefs are highly threat-
ened and are declining worldwide at an alarming rate, primarily due to more frequent,
larger, and more sustainable bleaching events observed over the past decades. Eco-
logical pressures affecting the stability of coral reef ecosystems are usually divided
into natural perturbance (e.g., hurricanes, disease outbreaks, coral bleaching, volcanic
eruption) and anthropogenic pressures (e.g., global warming, environmental pollution,
overfishing) (Cybulski et al 2020).

Recently, both natural and anthropogenic stressors on coral reefs have increased,
resulting in large-scale loss of coral and potential shifts from coral-dominated to
macroalgae-dominated community states (Holbrook et al 2022). The serious effects of
coral mortality cascade through the ecosystem, which lead to decreased abundance or
even extirpation of some species (Keith et al 2018). Therefore, the healthy development
of coral reef ecosystems is a prerequisite for maintaining the biodiversity in coral reef
areas. Currently, the reserves are being established for restoration, and the dynamic
processes of coral reefs are beingmonitored.More effectivemeasures should be carried
out immediately to protect the marine environment and to reduce the harm caused by
human activities (Hall et al 2023).

Crown-of-Thorns Starfish (CoTS Acanthaster spp.) is a carnivorous starfish that
feeds on the living tissue of scleractinian (i.e., hard) coral, and is identified as the
main natural enemy of coral (Ling et al 2020). CoTS is characterized by an excep-
tional reproductive capacity, such that several kilometers of coral be engulfed by CoTS
aggregations during outbreaks, which is a major contributor to sustained declines in
coral cover (Balu et al 2021). The “outbreak” state has been quantitatively defined
when the rate of CoTS consuming coral is significantly greater than the coral growth
rate (Birkeland and Lucas 1990; Plagányi et al 2020). Two primary hypotheses are
put forward to explain the occurrence of outbreaks (Sweatman 2008). The first is the
“terrestrial run-off hypothesis” (Birkeland 1982), including anthropogenic changes in
environmental conditions that have eroded normal regulatory processes, which lead to
largely unbounded population fluctuations (Asik et al 2019). The other is the “predator
removal hypothesis” (Endean 1969), overfishing the key predators of CoTS results in
an increase in the size of both juvenile and adult CoTS, which improves reproductive
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performance. The origin and ultimate mechanisms underlying CoTS outbreaks are
not yet fully understood, despite considerable research efforts (Pratchett et al 2017).
At present, an advanced tool named Citizen Science has made it possible for scien-
tists to detect, monitor, and document CoTS outbreaks, and to prioritize management
responses at large scales. Citizen science is referred to as public participation in scien-
tific research, which is advocated to overcome data limitations when large scales are
considered and scientific resources are limited (Dumas et al 2020). Once an anomaly
occurs, they will take effective measures to eliminate CoTS such as using injections
of diluted bile salts into CoTS and artificial fishing (Rivera-Posada et al 2014). An
early strain of research claimed that triton was thought to be the only known natural
predator of adult CoTS (Kroon et al 2021). As one of the few active predators of adult
CoTS, it is of great significance to coral reefs. From that perspective, the enemy of
the enemy is a friend. However, triton is now considered naturally rare or endangered
due to over-exploitation (Klein et al 2021). There is no doubt that controlling CoTS
and protecting triton have an important sense in preserving coral reefs.

Declined reef health is characterized by increases in macroalgae. Many researchers
studied coral-algal interactions and considered grazing by herbivorous reef fish. The
pioneer work by Mumby et al (2007) showed that a coral reef ecosystem may lose
resilience and shift to coral-depleted state through reductions in grazing intensity.
Subsequently, Blackwood et al (2012) extended an analytic model to focus on the
effects of over-harvesting of herbivorous reef fish and identified critical fishing effort
levels to allow for coral recovery. Moreover, coral reefs are directly related to coral
predators (Bhattacharyya and Pal 2011; Fattahpour et al 2019; Li et al 2014). Although
the above mentioned papers considered predation in coral reef ecosystem, the inves-
tigation essentially focused on coral-macroalgal phase shift. Most studies suggested
that overfishing reef fish may reduce the resilience of coral reefs by increasing coral-
algal competition, such that the transition from the coral-dominated regime to the
macroalgae-dominated regime. However, we predict that removing the top-down con-
trol of CoTS by overfishing triton would increase coral-CoTS interactions, because
CoTSwould dominate in the absence of triton. Therefore, one of our aims in this paper
is to examine the effects of triton harvesting on the biomass of coral.

Coral reefs are dynamic systems influenced by both deterministic factors (e.g.,
coral-algal interactions and biological interactions) and stochastic factors (i.e., envi-
ronmental noises). The large-scale stochastic disturbances (e.g., tropical storms, cold
fronts,warming events, diseases, predator outbreaks) canbedescribedby a continuous-
timeMarkov chainmodel (Littler et al 2009;Kang andLanchier 2011). The population
is also inevitably disturbed by a variety of mild stochastic disturbances (e.g., sunlight,
water level, temperature, acidity, wind) which are modeled by the approach of param-
eter perturbations (Liu et al 2011). It is well known that the environmental noises are
unstable factor, increasing abundance fluctuations and extinction rates of populations.
For example, noises can sometimes push the population size above the Allee thresh-
old and promote population persistence, which indicates that noises can enhance the
biodiversity of ecosystems (D’Odorico et al 2008). It was found that a population may
die out due to random chance during periods when population size is extremely low,
which illustrates how noises can be associated with negative consequences for popu-
lation dynamics (Jnawali et al 2022). Mao et al (2002) revealed an important fact in
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the Lotka-Volterra model that the environmental noises can suppress a potential popu-
lation explosion. These results are valuable for further understanding the dynamics of
populations in oceanic coral reefs. Moreover, ecosystem thresholds can be combined
with stochastic noises to achieve targets for the restoration of ecosystem processes
(Mumby et al 2007). Thus, another purpose in this paper is to reveal how the noises
affect the population in coral reef ecosystems.

With an increased knowledge of coral reef ecosystem processes and a rise in com-
puter power, dynamic models are useful tools in assessing the synergistic effects of
local and global stressors on ecosystem functions.

The remaining paper is organized as follows. In Sect. 2, we propose a tri-trophic
food chain model that simulates the biological interaction of predation among the
three species: coral, CoTS and triton. The mathematical model also considers har-
vesting related to CoTS and triton. Then, stochastic environmental noises described
by Brownian motion are introduced to establish the stochastic system. The equilibria
dynamics of the deterministic system is studied in Sect. 3. The problem of the optimal
harvest policy is solved by Pontryagin’s maximal principle in Sect. 4. The dynamical
behaviors of the stochastic system are investigated in Sect. 5. We provide a series of
numerical simulations in Sect. 6. Finally, we conclude and discuss the paper in Sect. 7.

2 Model Formulation

In this section, we formulate our original model. Let x(t), y(t), and z(t) be the popula-
tion densities of coral, CoTS, and triton at time t , respectively. In order to characterize
the interactions among coral, CoTS, and triton, we make the following assumptions:

• In the absence of CoTS, coral follows the logistic growth with intrinsic growth
rate r1 and carrying capacity K1 (Sarkar et al 2021).

• As a carnivore, CoTS is a generalist predator. CoTSpreys not only on coral, but also
feeds on a variety of prey such as invertebrates. Thus, CoTS grows according to
the logistic growth with intrinsic growth rate r2 and carrying capacity K2 (Wilmes
et al 2016).

• Triton is a specialist predator and completely preys on CoTS for food.
• Experimental observations (Murray et al 2013) reveal that Holling type II func-
tional response is quite accurate in predicting the observed functional response of
invertebrates. Thus, the predation of CoTS and triton are assumed to follow the
Holling type II functional response.

• There is a demand for CoTS and triton in the market; therefore, harvesting of both
species is incorporated.

Based on the above assumptions, the interaction and population dynamics of coral,
CoTS, and triton are governed by the following system of ordinary differential equa-
tions:
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Table 1 Parameters in (1) Parameters Description Units

r1 Intrinsic growth rate of x /year

r2 Intrinsic growth rate of y /year

K1 Carrying capacity of x kg/km2

K2 Carrying capacity of y kg/km2

m1 Predation rate of y on x km2kg−1year−1

m2 Predation rate of z on y km2kg−1year−1

e1 Conversion rate of x by y Dimensionless

e2 Conversion rate of y by z Dimensionless

a1 Half-saturation constant for y kg/km2

a2 Half-saturation constant for z kg/km2

h1 Harvesting rate of y /year

h2 Harvesting rate of z /year

d Natural mortality rate of z /year

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= r1x

(

1 − x

K1

)

− m1xy

a1 + x
,

dy

dt
= r2y

(

1 − y

K2

)

+ e1m1xy

a1 + x
− m2yz

a2 + y
− h1y,

dz

dt
= e2m2yz

a2 + y
− dz − h2z.

(1)

The biological descriptions and units of parameters are listed in Table 1.
Next, we present the model parameterization to estimate the values of the key

parameters. The South China Sea is taken as an example, which covers an area of
about 3.5 × 106 km2, where coral reefs occupy 38462 km2 (Liao et al 2021). It was
found that coral has amass of 5mg/cm2 (Thornhill et al 2011), so themaximumweight
of coral per square kilometer of the ocean is about 550 kg. In general, there are two
CoTS per hectare under normal circumstances; however, it will increase dramatically
(about 1000 CoTS per square kilometer) when CoTS outbreaks (Yao et al 2022).
Typically, an adult CoTS weighs about 150 grams, so the average weight of CoTS per
square kilometer of the ocean is 30 kg (about 150 kg during outbreaks). Therefore, it
is estimated that K1 ≤ 550 and 30 ≤ K2 ≤ 150. Moreover, an individual CoTS is
estimated to consume about 10m2 of coral tissue in one year (Deaker andByrne 2022).
The loss of coral biomass yearly from each CoTS is about 0.5 kg. Thus, m1 = 0.5.
However, triton is either naturally rare or endangered due to unregulated harvesting, so
we have limited knowledge of its life history. For simulation purposes, a biologically
feasible parameter set is assumed: e1 = 0.8, m2 = 0.4, e2 = 0.8, d = 0.1.

System (1) is of deterministic type and neglects the effects of environmental noises.
May (1973) pointed out that the birth rates, carrying capacity, competition coefficients
or other parameters involved in the model exhibit random fluctuation to a greater or
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lesser extent due to the environmental noises. Hence, system (1) has a few limitations
in accurately characterizing the population dynamics. Since the physical and biolog-
ical nature of the system cannot be predicted appropriately, the study of a stochastic
system is more realistic than the deterministic one. There are several approaches to
incorporate the stochastic fluctuations into population models (e.g., parametric per-
turbations (Liu 2022; Yuan et al 2020), stochastic perturbations around the positive
equilibrium of the corresponding deterministic system (Beretta et al 1998), linear ran-
dom perturbations (Caraballo et al 2020), nonlinear perturbations (Lv et al 2018)). In
fact, the noises may be dependent on the intensity of each subpopulation. For exam-
ple, prey will reduce intra-specific competition and spread for hiding in safe havens
as the predator increases, which will reduce fluctuations in both prey and predator
populations. Therefore, the nonlinear perturbations may provide an additional degree
of realism in comparison with its linear counterpart. According to the technique by
Zhang et al (2021), the intrinsic growth rate r1 of x , the intrinsic growth rate r2 of
y, the intra-specific competition intensity r1/K1 of x , the intra-specific competition
intensity r2/K2 of y, and the natural mortality rate d of z are estimated by an average
value plus normally distributed errors. From the biological point of view, the sources
of environmental noises affecting the three species are different. Here, we assume
that the standard deviations (i.e., noise intensities) of the errors that occurred in the
estimations of r1, r1/K1 and r2, r2/K2 are independent of the densities of x and y,
respectively. Note that the triton is rare in the world, and then the environmental fluc-
tuations are concerned with the number of triton. Therefore, for the death rate d of
triton, its intensity only depends on the density of z. Specifically, the perturbations
have the following form

r1 → r1 + σ11 Ḃ1(t), − r1
K1

→ − r1
K1

+ σ12 Ḃ1(t),

r2 → r2 + σ21 Ḃ2(t), − r2
K2

→ − r2
K2

+ σ22 Ḃ2(t),

−d → −d + (σ31 + σ32z)Ḃ3(t),

where Bi (t) (i = 1, 2, 3) are mutually independent standard Brownian motions
defined on a complete probability space (�,F , {Ft }t≥0,P) with a filtration {Ft }t≥0
satisfying the usual conditions (i.e., it is right continuous and increasing while F0
contains all P-null sets) and σ 2

i j (i = 1, 2, 3, j = 1, 2) are the intensities of the white
noise. It is easy to see that

ridt + σi jdBi (t), − ri
Ki

dt + σi jdBi (t) (i, j = 1, 2), − ddt + (σ31 + σ32z)dB3(t)

are normally distributed and their variances tend to 0 as dt → 0 such that this way of
introducing stochastic white noise into (1) is reasonable. Then, the stochastic system
according to (1) writes as:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx =
[

r1x

(

1 − x

K1

)

− m1xy

a1 + x

]

dt + x(σ11 + σ12x)dB1(t),

dy =
[

r2y

(

1 − y

K2

)

+ e1m1xy

a1 + x
− m2yz

a2 + y
− h1y

]

dt + y(σ21 + σ22y)dB2(t),

dz =
[
e2m2yz

a2 + y
− dz − h2z

]

dt + z(σ31 + σ32z)dB3(t).

(2)

Denote by R
n+ = {x = (x1, · · · , xn) ∈ R

n : xi ≥ 0, 1 ≤ i ≤ n} and set inf ∅ = ∞.
The transpose of a vector or matrix A is represented by AT.

3 Dynamics of Deterministic System (1)

In what follows, we will discuss the positivity and boundedness of (1) to ensure the
model is well-posed. The detailed proofs are presented in Appendix A.1 andAppendix
A.2.

Lemma 1 R
3+ is a positive invariant set of (1).

Theorem 1 The solutions of (1) are all bounded for any given initial values in R3+.

Lemma 1 and Theorem 1 indicate that (1) is biologically meaningful and provide a
foundation for the further study of the dynamics of (1). The following lemma is also
very helpful for investigating (1). The proof can be found in Appendix A.3.

Lemma 2 Consider a polynomial α(x) = (−1)nxn + pn−1xn−1 + · · · + p1x + p0,
where p0, p1, · · · , pn−1 are real parameters and n is odd. If p0 > 0, then α(x) has
at least one positive root.

Now, we explore the existence and stability of the equilibria of (1). (1) has the
following possible equilibria or steady states:

E0 = (0, 0, 0); Ex = (K1, 0, 0); Ey =
(

0,
K2(r2 − h1)

r2
, 0

)

;

Exy = (x3, y3, 0), where x3 and y3 solve:

⎧
⎪⎪⎨

⎪⎪⎩

r1

(

1 − x

K1

)

− m1y

a1 + x
= 0,

r2

(

1 − y

K2

)

+ e1m1x

a1 + x
− h1 = 0;

(3)
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Eyz = (0, y4, z4), where y4 and z4 solve:

⎧
⎪⎪⎨

⎪⎪⎩

r2

(

1 − y

K2

)

− m2z

a2 + y
− h1 = 0,

e2m2y

a2 + y
− d − h2 = 0;

(4)

Exyz = (x∗, y∗, z∗), where x∗, y∗, and z∗ solve:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r1

(

1 − x

K1

)

− m1y

a1 + x
= 0,

r2

(

1 − y

K2

)

+ e1m1x

a1 + x
− m2z

a2 + y
− h1 = 0,

e2m2y

a2 + y
− d − h2 = 0.

(5)

The dynamical behavior of the equilibrium can be studied with the help of the
Jacobian matrix at each equilibrium. The Jacobian matrix J (x, y, z) of (1) is:

J =
⎛

⎜
⎝

r1 − 2r1
K1

x − m1a1y
(a1+x)2

− m1x
a1+x 0

e1m1a1y
(a1+x)2

r2 − 2r2
K2

y + e1m1x
a1+x − m2a2z

(a2+y)2
− h1 − m2 y

a2+y

0 e2m2a2z
(a2+y)2

e2m2 y
a2+y − d − h2

⎞

⎟
⎠ .

The next step is to explore the local stability of the extinction equilibrium and
the two single species equilibria. The proof of those results is presented in Appendix
A.4-Appendix A.6.

Theorem 2 (1) always has the extinction equilibrium E0 = (0, 0, 0)which is unstable.

Theorem 2 implies that total extinction of the system is not possible.

Theorem 3 The coral-dominated equilibrium Ex = (K1, 0, 0) always exists. More-
over, Ex is locally asymptotically stable if

h1 > r2 + e1m1K1

a1 + K1
.

Theorem 3 indicates that CoTS goes extinct when the harvesting rate h1 is sufficiently
high.Hence, triton also becomes extinct due to severe food shortages, but coral survives
(see Fig. 1(a-b)).

Theorem 4 The CoTS-dominated equilibrium Ey = (0, y2, 0) exists if h1 < r2, where
y2 = K2(r2 − h1)/r2. Moreover, Ey is locally asymptotically stable if

r1 <
m1K2(r2 − h1)

a1r2
, R1 := 1

d + h2

(
e2m2K2(r2 − h1)

a2r2 + K2(r2 − h1)

)

< 1. (6)
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Fig. 1 Time series dynamics (left column) and phase portraits (right column) for boundary equilibria
scenario of (1): a, b Ex is the attractor and only coral survives; c, d Ey is the attractor and only CoTS
survives; e, f Exy is the attractor and indicates that both coral and CoTS coexist; g, h Eyz is the attractor
and denotes that both CoTS and triton coexist. The values of the parameters are given in Table 2
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In (6), by its definition, R1 can be considered as the ecological reproduction number
of triton (i.e., the average number of newborn triton in the lifespan of a triton), where
e2m2K2(r2 − h1)/[a2r2 + K2(r2 − h1)] is the birth rate of triton and 1/(d + h2) is
the average lifespan of triton. Theorem 4 shows that if coral has a low growth rate,
CoTS has a high growth rate, and the ecological reproductive number of triton is small,
then both coral and triton are completely eliminated while CoTS survives, that is, (6)
guarantees that (1) is stabilized at Ey (see Fig. 1(c-d)).

The following two theorems provide sufficient conditions for the existence and
stability of the two species coexistence equilibria. The detailed proofs can be found
in Appendix A.7 and Appendix A.8.

Theorem 5 The triton-free equilibrium Exy = (x3, y3, 0) exists if

h1 < r2, r1 >
m1K2(r2 − h1)

a1r2
. (7)

Exy is locally asymptotically stable if

J11 + J22 < 0, J11 J22 > J12 J21, R2 := 1

d + h2

e2m2y3
a2 + y3

< 1,

where Ji j (i, j = 1, 2) are located in the i th row and the j th column of J |Exy .

Theorem 5 reveals that under appropriate conditions, if the threshold parameter
R2 < 1, both coral and CoTS have high growth rate, then coral and CoTS can coexist
and triton is completely eliminated (see Fig. 1(e-f)).

Theorem 6 The coral-free equilibrium Eyz = (0, y4, z4) exists if

h1 <
r2[e2m2K2 − (d + h2)(a2 + K2)]

K2(e2m2 − d − h2)
, d + h2 <

e2m2K2

a2 + K2
. (8)

Eyz is locally asymptotically stable if

r1 <
m1y4
a1

, r2 >
m2K2z4

(a2 + y4)2
. (9)

Theorem 6 implies that, if the growth rate r1 of coral, the harvesting rate h1 of
CoTS, and the sum of natural mortality and harvesting rate d + h2 of triton are low,
while the intrinsic growth rate r2 of CoTS is high, then CoTS and triton coexist while
coral goes extinct (see Fig. 1(g-h)).

We next investigate the existence and stability of the interior equilibrium
Exyz(x∗, y∗, z∗). It follows from the third equation of (5) that

y∗ = a2(d + h2)

e2m2 − d − h2
.
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Substituting y∗ into the first equation of (5) gives:

x2 + (a1 − K1)x + m1K1y∗ − a1K1r1
r1

= 0. (10)

The existence of solution of (10) can be divided into two cases.

• If r1 >
m1y∗
a1

holds, then (10) has a unique positive root as follows

x∗ =
K1 − a1 +

√

(a1 − K1)2 + 4K1
r1

(a1r1 − m1y∗)
2

.

• If 4m1K1y∗
(a1+K1)2

≤ r1 <
m1y∗
a1

and a1 < K1 hold, then (10) can admit two positive roots
x∗
1 and x∗

2 , where

x∗
1 =

K1 − a1 +
√

(a1 − K1)2 − 4K1
r1

(m1y∗ − a1r1)

2
,

x∗
2 =

K1 − a1 −
√

(a1 − K1)2 − 4K1
r1

(m1y∗ − a1r1)

2
.

Then

z∗ = a2 + y∗

m2

(

r2 − h1 − r2
K2

y∗ + e1m1x∗

a1 + x∗

)

can be expressed in terms of x∗ and y∗ rather than all the parameters involved in (1).
The explicit expressions for x∗ and y∗ could be obtained by direct calculation when
each parameter is provided. In the following, we consider the case that there exists
only one positive equilibrium.

Theorem 7 The coexistence equilibrium Exyz(x∗, y∗, z∗) exists if

d + h2 < e2m2, r1 >
m1a2(d + h2)

a1(e2m2 − d − h2)
, r2 > h1 + r2a2(d + h2)

K2(e2m2 − d − h2)
.

(11)

Exyz is locally asymptotically stable if

r1 >
K1m1y∗

(a1 + x∗)2
, r2 >

K2m2z∗

(a2 + y∗)2
, A1A2 > A3,

where A1, A2, A3 are defined in (A1). Exyz is globally asymptotically stable if

r1 >
K1m1y∗

a1 + x∗ , r2 >
K2m2z∗

a2 + y∗ . (12)
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The proof of Theorem 7 is attached in Appendix A.9. It follows that, if the intrinsic
growth rates of coral and CoTS are high and the harvesting rates of CoTS and triton
are low, then the three species can coexist (see Fig. 2(a-b)).

In summary, (1) admits rich dynamics and possibly has different dynamic scenar-
ios (see Fig. 1 for boundary dynamics and the parameters are given in Table 2). The
simultaneous extinction of all three populations will never occur since E0 is unstable.
Under suitable conditions, coral or CoTS can possibly dominate the system and tend
to its carrying capacity in the absence of the other two populations, i.e., Ex or Ey is
attractive. The more interesting scenarios include the possible disappearance of triton
only (Exy) or coral only (Eyz). The coral, CoTS, and triton can coexist together at
an interior equilibrium Exyz . The sufficient criteria for the existence and asymptotic
stability of some equilibria are presented by their components since the explicit expres-
sions are too complex to be expounded in terms of the original parameters in (1) (e.g.,
one can derive them with the help of a Maple or Matlab program). In addition to the
equilibrium dynamics, we can numerically observe the periodic dynamics of (1) (see
Fig. 2(c-d) for cyclic oscillation). The global dynamics of (1) is very complex and is
analytically challenging. The deterministic nature of (1) allows to carry out systematic
numerical analyses to characterize the effects of key parameters on the dynamics of
(1).

4 Optimal Harvesting

Artificial harvesting is an effective measure to control CoTS. The harvested CoTS can
be processed into organic fertilizer for plant growth. Both the ecological effects and
the economic benefits are fairly important (Fan and Wang 1998; Kang and Lanchier
2012; Liu and Bai 2016). The cost of CoTS harvesting cannot be ignored, such as
rental boats, hiring divers, and diving equipments. In this section, we investigate the
economic aspects of (1) by introducing harvesting efforts. The possibility of existence
of a bionomic equilibrium is considered when the total revenue obtained by the har-
vested biomass equals the total cost for the harvesting effort. The optimal bioeconomic
harvesting is studied by using Pontryagin’s maximal principle.

In (1), both CoTS and triton are subject to a combined harvesting effort E . The
combined harvesting effort is applied when a particular type of trawlers is used by
the fishermen in a specific fishery area. But for a particular type of trawlers, the
catchability may vary across different trophic levels (Kar et al 2019). According to
the usual catch-per-unit-effort hypothesis (Rago and Van Dyne 1978), the harvesting
rates take the form of h1 = q1E and h2 = q2E , where q1 and q2, respectively,
represent the catchability coefficients of CoTS and triton. It is assumed that the total
cost is proportional to the harvesting effort and the total profit from the harvesting is
proportional to the harvesting yield. The net economic rent or net revenue is given by

�(y, z, E) = (p1q1y + p2q2z − c)E,

where p1 and p2 denote the price per unit biomass of population y and z, respectively,
c represents the cost of per unit harvesting effort exerted. It is useful to find the
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Fig. 2 Time series dynamics (left column) and phase portraits (right column) for interior equilibrium
scenario of (1): a, b Exyz is an attractor and all the three species survive, here h2 = 0.18; c, d all the three
species coexist cyclically, here h2 = 0.05. The values of the parameters except h2 are r1 = 0.4, r2 =
0.8, K1 = 180, K2 = 60, m1 = 0.5, a1 = 55, e1 = 0.8, m2 = 0.4, a2 = 5, e2 = 0.8, d = 0.1, h1 =
0.2

bionomic equilibrium, which is a combination of the biological equilibrium and the
economic equilibrium, defined as the interior equilibrium of (1) corresponding to zero
net revenue (i.e., � = 0).

Theorem 8 The bionomic equilibrium (x̄, ȳ, z̄, Ē) exists if the following inequalities
hold

r1 <
m1K2

a1
,

p1
p2

> e2 + m1c

a1r1q1 p2
. (13)

The proof of Theorem 8 is given in Appendix B.1. It is obvious that Ē is the critical
threshold effort that determines the profitability of the harvesting. When E > Ē , the
total costwill exceed the total revenue, the harvesting causes amajor loss for fisherman,
and then E > Ē cannot be maintained indefinitely due to the fact that the fisherman
would withdraw from the fishery. When E < Ē , the investment is profitable such that
more and more fishermen will be attracted in an open access fishery, and E < Ē also
cannot be maintained indefinitely due to the increasing harvesting intensity. When the
revenue is equal to the total cost of harvesting, E = Ē can be established.
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Table 2 Parameter values for attractors of (1) depicted in Fig. 1

Figures Parameters Attractors

(a) and (b) r1 = 0.35, r2 = 0.7, K1 =
550, K2 = 84, m1 =
0.5, a1 = 200, e1 =
0.8, m2 = 0.4, a2 =
10, e2 = 0.8, d =
0.1, h1 = 1.2, h2 = 0.5

Ex is an attractor, coral can
survive, but CoTS and
triton cannot

(c) and (d) r1 = 0.05, r2 = 0.8, K1 =
550, K2 = 30, m1 =
0.5, a1 = 20, e1 =
0.8, m2 = 0.4, a2 =
5, e2 = 0.8, d =
0.1, h1 = 0.1, h2 = 0.7

Ey is an attractor, CoTS can
survive, but coral and triton
cannot

(e) and (f) r1 = 0.46, r2 = 0.8, K1 =
165, K2 = 60, m1 =
0.5, a1 = 55, e1 =
0.8, m2 = 0.4, a2 =
5, e2 = 0.8, d =
0.1, h1 = 0.2, h2 = 0.7

Exy is an attractor, only triton
cannot survive

(g) and (h) r1 = 0.5, r2 = 0.9, K1 =
550, K2 = 80, m1 =
0.5, a1 = 20, e1 =
0.8, m2 = 0.4, a2 =
30, e2 = 0.8, d =
0.1, h1 = 0.02, h2 = 0.05

Eyz is an attractor, only coral
cannot survive

In what follows, we will study the optimal harvesting strategy with the fuzzy net
discount rate of inflation. The objective is tomaximize the expected present discounted
value of future profit flows from harvesting in both CoTS and triton.

Let �̃ and ς̃ be the inflation and discount rates, and they are considered as fuzzy
numbers, essentially. The net present value J of continuous stream of revenue is now
considered to evaluate an optimal harvesting policy defined by

J (y, z, E) =
∫ ∞

0
e−δ̃t (p1q1y + p2q2z − c)Edt, (14)

where δ̃ = ς̃ − �̃ represents the net discount rate of inflation. Our objective is to
maximizeJ by solving this fuzzy optimization problem. The harvesting strategies not
only guarantee profitmaximization, but alsomaintain an optimal level for species. That
is to say, y(t) and z(t) tend to a non-zero number as t tends to ∞ such that J reaches
the maximum. The control variable E is subjected to the constraints 0 ≤ E ≤ Emax
and the fuzzy number δ̃ is expressed as an interval number [δu, δv] (Dawed et al 2020;
Maity and Maiti 2008). Maximizing J is equivalent to maximizing [Ju,Jv], where:
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Max[Ju,Jv] =
∫ ∞

0
e−[δu ,δv]t (p1q1y + p2q2z − c)Edt,

Ju =
∫ ∞

0
e−δv t (p1q1y + p2q2z − c)Edt,

Jv =
∫ ∞

0
e−δu t (p1q1y + p2q2z − c)Edt,

δu = ςu − �v, δv = ςv − �u, ς̃ = [ςu, ςv], �̃ = [�u, �v]. (15)

By the method of weighted sum, it yields that

MaxJ = Max[Ju,Jv] = ξ1Ju + ξ2Jv,

where ξ1 ≥ 0 and ξ2 ≥ 0 are two weights, such that ξ1 + ξ2 = 1. The Hamiltonian
function can be written as

F = (
ξ1e

−δv t + ξ2e
−δu t

)
(p1q1y + p2q2z − c)E + χ1

(

r1x − r1
K1

x2 − m1xy

a1 + x

)

+χ2

(

r2y − r2
K2

y2 + e1m1xy

a1 + x
− m2yz

a2 + y
− q1Ey

)

+χ3

(
e2m2yz

a2 + y
− dz − q2Ez

)

, (16)

where χ1, χ2, and χ3 are the adjoint variables.
The optimal control E must satisfy the conditions:

E =
{
Emax, if ∂F

∂E > 0,
0, if ∂F

∂E < 0.

Since ∂F
∂E causes E to switch between level 0 and Emax, ∂F

∂E is called switching function.
The optimal control is the so-called “bang-bang control” from one extreme point to
another one depending on the sign of the switching function. When the switching
function is zero on nontrivial time intervals, the Hamiltonian function is independent
of the control variable E , then it is called a singular control (Lenhart and Workman
2007; Djomegni et al 2019). Hence, the optimal effort level to be applied now follows:

E =
⎧
⎨

⎩

Emax, if ∂F
∂E > 0,

E∗∗, if ∂F
∂E = 0,

0, if ∂F
∂E < 0.

When ∂F
∂E = 0, it follows that

(
ξ1e

−δv t + ξ2e
−δu t

)
(p1q1y + p2q2z − c) − χ2q1y − χ3q2z = 0, (17)
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which implies that the cost of harvest per unit of effort equals the discounted value of
the future marginal profit of the effort at the steady state level. The following theorem
gives the sum up of the above analyses. The detailed proof is attached in Appendix
B.2.

Theorem 9 The optimal equilibrium solution (x∗∗, y∗∗, z∗∗, E∗∗) of the control prob-
lem can be obtained by solving the steady state equations (B4) together with (B12).
Moreover, the maximum net present revenue is:

J (y∗∗, z∗∗, E∗∗) = (p1q1y∗∗ + p2q2z∗∗ − c)E∗∗

δ̃
.

Theorem9demonstrates that, in the case of profit fromharvesting, the policymakers
should recommend the optimal effort E∗∗. Themaximum profit will be achievedwhile
all the species in the ecosystemare sustainable. This findingprovides analytical support
for the safe harvesting in bio-economical management.

5 Dynamics of Stochastic System (2)

In this section, we investigate the dynamics of (2) in the biologically reasonable region
R
3+. Since (2) satisfies the local Lipschitz condition, for any initial value (x0, y0, z0) ∈

R
3+, (2) has a unique local solution (x(t), y(t), z(t)) ∈ R

3+. That is to say, this solution
may possibly explode in finite time almost surely. Theorem 10 below shows that (2)
has a unique positive global solutionwith positive initial value by applying Lyapunov’s
direct method. One can find the detailed proof in Appendix C.1. In order to facilitate
the discussion, the following lemma is introduced.

Lemma 3 The function

f (x) = −p1x
θ+2 + p2x

2 + p3x
θ+1 + p4x + p5x

θ , x ≥ 0

has a maximum value, where pi > 0 (i = 1, 2, 3, 4, 5) and 0 < θ < 1.

Theorem 10 For any given initial value (x0, y0, z0) ∈ R
3+, there is a unique solution

(x(t), y(t), z(t)) of (2) for t ≥ 0 and the solution remains in R
3+ with probability 1.

We next explore the long-term dynamical behaviors of (2). The following theorem
shows that the θ̃ -th moment of the solution of (2) is bounded, whose proof is presented
in Appendix C.2.

Theorem 11 Assume that X̃(t) is the solutionof (2)withany initial value (x0, y0, z0) ∈
R
3+, then, for any 0 < θ̃ ≤ 1, there exists a positive constant G(θ̃) such that

lim sup
t→∞

Ex θ̃ ≤ G(θ̃), lim sup
t→∞

Ey θ̃ ≤ G(θ̃), lim sup
t→∞

Ezθ̃ ≤ G(θ̃).
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Asymptotic moment estimate, an important property of stochastic population sys-
tems, guarantees that (2) is biologically well-defined. Theorem 11 shows that no
matter how the environmental stochasticity varies, θ̃-th moment of the solution of (2)
is always bounded.

Fromabiological point of view, the coming two theorems characterize the extinction
scenario of (2). The proofs can be found in Appendix C.3 and Appendix C.4.

Theorem 12 Let (x(t), y(t), z(t))be the solution of (2)with initial value (x0, y0, z0) ∈
R
3+. Assume that

r1 >
σ 2
11

2
, μ := r2 − h1 − σ 2

21

2
+ e1m1

∫ ∞

0

xϕ(x)

a1 + x
dx < 0,

then both y(t) and z(t) die out with probability one, i.e., limt→∞ y(t) = 0,
limt→∞ z(t) = 0. Moreover, the distribution of x(t) converges weakly to the mea-
sure which has the following density

ϕ(x) = Qx2r1/σ
2
11−2(σ11 + σ12x)

−2r1/σ 2
11−2 exp

{
2r1(σ11 + K1σ12)

K1σ11σ12(σ11 + σ12x)

}

,

where Q is a constant such that

∞∫

0

ϕ(x)dx = 1.

Theorem 13 Let (x(t), y(t), z(t))be the solution of (2)with initial value (x0, y0, z0) ∈
R
3+. If r1 < σ 2

11/2, then x(t) dies out, i.e., limt→∞ x(t) = 0. If r2 − h1 < σ 2
21/2, then

both y(t) and z(t) die out, i.e., limt→∞ y(t) = 0, limt→∞ z(t) = 0.

Theorem 12 and Theorem 13 provide sufficient conditions for the survival and
extinction of coral, which are completely determined by the intensity of environmental
noise σ 2

11. When the intensity of environmental noise is small enough, coral will be
stochastically persistent; otherwise, coral will become extinct. From the expression of
the thresholdμ, it is observed that both the harvesting rate h1 and the noise intensityσ 2

21
together determine whether or not CoTS will become extinct. When the harvesting
intensity and the noise are large enough, it will lead to the extinction of CoTS in
the ecosystem and consequently the triton population goes extinct. That is to say,
the extinction of triton has nothing to do with the environmental disturbances, but
because of insufficient food sources. It indicates that large noises are devastating to
both coral and CoTS; in other words, the ability of either coral or CoTS to adapt
to external environmental fluctuations is limited. Moreover, we note that the higher-
order perturbation of CoTS does not influence the persistence criterion in terms of the
threshold μ.

From the ecological viewpoint, the detailed comparison between the deterministic
system (1) and the stochastic system (2) leads to the following conclusions:

(1) In Theorem 2, total extinction is impossible for the deterministic system (1),
whereas, it may happen in the stochastic system (2) due to the existence of envi-
ronmental noises.
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(2) In Theorem 3, if the harvesting rate h1 is smaller than the growth rate r2, then
Ex = (K1, 0, 0) is unstable in the deterministic system (1). However, as long
as the noise intensity is sufficiently large, CoTS in the stochastic system (2) will
become extinct even if the harvesting rate h1 is small enough.

(3) Theorem 4 exhibits CoTS-dominated scenario in the deterministic system (1),
while it cannot happen in the stochastic system (2). Since the environmental noises
are taken into account, CoTS and triton always exist or become extinct at the same
time. The situation in which CoTS persists but triton goes extinct in the stochastic
system is hard to achieve from the aspects of theoretical deduction and numerical
analysis.
Our results providemore evidence that environmental noises are critical and cannot
be neglected when the harvesting strategies are considered. The large environ-
mental noises are detrimental to the persistence of the species and may lead to
extinction. In real-world applications, this may happen when a serious epidemic or
severe weather occurs. The results are important for resource exploitation because
they clearly illustrate how noises can alter the dynamics of the species.

6 Numerical Simulations

In this section, some numerical simulations are performed to further expound the
effects of harvesting on the dynamics of (1) and the effects of environment noises on
the dynamics of (2).

6.1 Effects of Harvesting

In what follows, we study the effects of harvesting rates h1 and h2 on the population
dynamics of the whole system. The exploration is divided into three cases.

When h1 = 0, h2 	= 0, (1) exhibits cyclic oscillation when h2 is small. As h2 is
increased from h2 = 0.05 to h2 = 0.1, the three species coexist at an equilibrium (see
Fig. 3(a-b)). The effects of h2 in the form of bifurcation diagram are shown in Fig. 4.
When h2 is further increased, coral and triton will go to extinction while only CoTS
can survive. This example explains that, if the harvesting intensity of triton is slight,
then coral can survive periodically even if no measures are taken to harvest CoTS.
However, the harvesting of triton is not beneficial to control the biomass of CoTS such
that coral becomes extinct suddenly.

When h2 = 0, h1 	= 0, the three species will coexist cyclically with h1 being
small. As h1 increases from h1 = 0.02 to h1 = 0.7, the coexistence of the three
species is stable (see Fig. 3(c-d)). The effects of h1 in the form of bifurcation diagram
are shown in Fig. 5. Compared with the scenario in Fig. 1(g), we find that, if the
harvesting of triton is fully cut down, then coral can survive periodically under the
same harvesting intensity of CoTS. The protection of triton is beneficial to coral, and
the over-exploitation of CoTS will lead coral survive solely.

When h1 	= 0, h2 	= 0, the three species can coexist cyclically if h1 = 0.2, h2 =
0.02. As h2 increases to h2 = 0.4, coral and CoTS coexist at an equilibrium but triton
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Fig. 3 Time series dynamics of (1) under different harvesting scenarios: a, b only triton is harvested and
all the three species change from cyclic coexistence to stable coexistence equilibrium as h2 increases, here
r1 = 0.2, r2 = 0.7, K1 = 180, K2 = 30, m1 = 0.5, a1 = 50, e1 = 0.8, m2 = 0.4, a2 = 12, e2 =
0.8, d = 0.1; c, d only CoTS is harvested and all the three species change from cyclic coexistence to stable
coexistence equilibrium as h1 increases, here r1 = 0.5, r2 = 0.9, K1 = 550, K2 = 80, m1 = 0.5, a1 =
20, e1 = 0.8, m2 = 0.4, a2 = 30, e2 = 0.8, d = 0.1

Fig. 4 Bifurcation diagram of (1) with respect to h2 (h1 = 0). As h2 increases, coral and triton will go to
extinction but CoTS can survive. The values of the parameters except h1 and h2 are the same as those in
Fig. 3a, b
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Fig. 5 Bifurcation diagram of (1) with respect to h1 (h2 = 0). As h1 increases, only coral can survive. The
values of the parameters except h1 and h2 are the same as those in Fig. 3c, d
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Fig. 6 Time series dynamics of (1) when both CoTS and triton are harvested. The parameters except h1, h2
and the initial value are the same as those in Fig. 1e, f

tends to extinction (see Fig. 6(a-b)). However, the above situation is easily upset once
h1 is decreased. Figure6(c) reveals that, when h2 = 0.4 is fixed but h1 is reduced to
h1 = 0.02, coral will tend to extinct. Under this circumstance, only by decreasing the
harvesting intensity of triton to h2 = 0.1 can lead the three species coexist cyclically
(see Fig. 6(d)). This example illustrates that the appropriate harvesting can encourage
the three species to coexist. In order to keep the coexistence, the harvesting rate h1
should be controlled strictly and h2 cannot be too large. We also give the dynamic
evolution of coral, CoTS, and triton with varying h1 and h2 (see Fig. 7).
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Fig. 7 Bifurcation surface of (1) with h1 and h2 being the bifurcation parameters

6.2 Effects of Environmental Noises

Numerical simulations are presented for (2) to verify the theoretical findings and
to investigate the effects of stochastic noises. By employing Milstein’s higher-order
method (Higham 2001), (2) is transformed into the following discretized system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũk+1 = ũk +
[

r1ũk

(

1 − ũk
K1

)

− m1ũk ṽk
a1 + ũk

]

�t + ũk(σ11 + σ12ũk)
√

�t ξ̃k

+ ũk
2

(σ 2
11 + 3σ11σ12ũk + 2σ 2

12ũ
2
k)(ξ̃

2
k − 1)�t,

ṽk+1 = ṽk +
[

r2ṽk

(

1 − ṽk

K2

)

+ e1m1ũk ṽk
a1 + ũk

− m2ṽkw̃k

a2 + ṽk
− h1ṽk

]

�t

+ ṽk(σ21 + σ22ṽk)
√

�t η̃k + ṽk

2
(σ 2

21 + 3σ21σ22ṽk + 2σ 2
22ṽ

2
k )(η̃

2
k − 1)�t,

w̃k+1 = w̃k +
[
e2m2ṽkw̃k

a2 + ṽk
− dw̃k − h2w̃k

]

�t + w̃k(σ31 + σ32w̃k)
√

�t ϑ̃k

+ w̃k

2
(σ 2

31 + 3σ31σ32w̃k + 2σ 2
32w̃

2
k )(ϑ̃

2
k − 1)�t,

(18)

where ξ̃k, η̃k, and ϑ̃k (k = 1, 2, · · · ) are independent Gaussian random variables
∼ N (0, 1). The numerical results are achieved with the help of MATLAB.

We present two examples to verify the extinction scenario of (2). Taking the same
parameter values and initial values as those in Fig. 2(a-b). Figure8 shows that coral will
persist in a long term. BothCoTS and tritonwill tend to zero eventually, which strongly
supports Theorem 12. As the noise intensity continues to increase, the population
will be completely extinct which is shown in Theorem 13. Figure9 demonstrates
that all the species become extinct due to high intensity of noises even they coexist
in the deterministic environment. Therefore, the large environmental noises are not
conducive to the survival of population system.

It is worth mentioning that external perturbation may destroy the stability of an
equilibrium in a deterministic system, which will lead to a weak stability phenomenon
called stationary distribution, representing an ecological balance. Paying attention to
the existence of stationary distribution is an important research field of stochastic
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Fig. 8 Only coral persist: a, c, and e show time series of x, y, and z for (2); b, d, and f exhibit the histogram
of the probability density function of x, y and z for (2). Here σ11 = 0.01, σ12 = 0.01, σ21 = 1.5, σ22 =
0.01, σ31 = 0.01, σ32 = 0.01

differential equations (Khas’minskii 2011; Qi et al 2022; Zhao et al 2022). We keep
the same parameter values and initial values as those in Fig. 2(a-b) and choose the
following noise intensities: σ11 = 0.01, σ12 = 0.01, σ21 = 0.01, σ22 = 0.01, σ31 =
0.01, σ32 = 0.01. Clearly, we can obtain r1 > σ 2

11/2 andμ > 0. Figure10 (a), (c), and
(e) indicate a stationary distribution of all the species.When this is true, the histograms
shown inFig. 10 (b), (d), and (f) can be regarded as approximate probability distribution
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Fig. 9 All species go extinct: a, c, and e show time series of x, y, and z for (2); b, d, and f exhibit the
histogram of the probability density function of x, y, and z for (2). Here σ11 = 0.9, σ12 = 0.01, σ21 =
1.1, σ22 = 0.01, σ31 = 0.01, σ32 = 0.01

for the stationary distribution. Furthermore,μ is a thresholdwhich determineswhether
the stochastic system will ecologically persist or not.
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Fig. 10 Coral, CoTS, and triton present coexistence for a long time: a, c, and e show time series of x, y, and
z for (2); b, d, and f exhibit density function of x, y, and z for (2). Here σ11 = 0.01, σ12 = 0.01, σ21 =
0.01, σ22 = 0.01, σ31 = 0.01, σ32 = 0.01

7 Discussion

Overfishing is regarded as a major stressor of coral reefs and can shift areas from a
coral-dominated to a macroalgae-dominated state. Most of the modeling focuses on
the effects of overfishing the predators of macroalgae, without considering another
principal cause of coral reefs degradation, which is the consumption of coral by
CoTS resulting in mass coral mortality during CoTS outbreaks. Due to CoTS densities
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increasing with the removal of its predator triton, it is significant to turn attention to
coral-CoTSdynamics through the abundance of triton. This perspectivemotivates us to
design a tri-trophic food chain model to describe coral-CoTS-triton interactions based
on the “predator removal hypothesis” (Endean 1969) in an oceanic coral reef ecosys-
tem. We aim to systematically explore the effects of harvesting on the deterministic
system (1) and environmental noises on the persistence or extinction of populations
in stochastic system (2). Both theoretical analysis and numerical simulations have
positive effects on understanding the dynamics of coral reef system. We show that the
harvesting of triton is not beneficial to coral, once triton vanishes or faces extinction
due to overfishing, it is high time to take measures to harvest CoTS such that coral
can survive. Additionally, large white noises are negative for the survival of popula-
tions and accelerate population extinction, while small white noises can guarantee the
existence of stationary distribution standing for weak stability and the persistence of
(2).

Our work provides an extension of the following research results. Zikkah et al
(2020) considered biological interactions between coral-CoTS and macroalgae graz-
ers on coral reefs based on the pioneer work by Mumby et al (2007). However, they
overlooked the harvesting of CoTS, and the predation of CoTS was simplified as
Holling type I functional response. Quintero et al (2016) explored the predator–prey
relationship between coral-CoTS and the top predator wrasse. They showed how over-
fishing wrasse indirectly leads to a more rapid depletion of coral by CoTS predation,
which coincides with one of our main conclusions. In their established model, the top
predator grows logistically and the carrying capacity is based on the current density of
coral. Different from their biological background, the top predator triton in our study
is a specialist predator and completely preys on CoTS. We also consider the influence
of environmental noises such that our system is more realistic to reflect coral reef
dynamics.

The effects of harvesting and environmental noises have been investigated in
Sects. 6.1 and 6.2, respectively. We can safely draw the following conclusions:

(1) If no harvesting strategy is taken to control CoTS, then extinction is the fate of
coral with the increased harvesting intensity of triton (Fig. 4). This is consistent
with the results by Dulvy et al (2004), which suggests that predator removal
by exploitation may allow outbreaks of CoTS indirectly resulting in cascading
changes in ecosystem structure and function.

(2) If no harvesting strategy is taken to control triton, then the three species can
coexist cyclically (Fig. 3(c)) or reach an equilibrium (Fig. 3(d)). Only coral can
survive with an increased harvesting of CoTS.

(3) If both CoTS and triton are harvested, then multiple scenarios can happen: three
species coexist cyclically, coexist stably over a long period of time, coral and
CoTS coexist with the disappearance of triton, or only CoTS can survive (Fig. 7).

(4) The three species of (2)will die out ultimately if r1 < σ 2
11/2 and r2−h1 < σ 2

21/2.
In the real world, this may happen when a serious disease or sudden weather
change occurs. However, this is in sharp contrast to the dynamics of (1), which
suggests that the stochastic system ismore realistic than thedeterministic system.
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(5) Coral will survive while CoTS and triton go extinct if r1 > σ 2
11/2 and μ < 0.

In this case, we notice that h1 can be smaller than r2 + e1m1K1/(a1 + K1).
However, coral remains persistent while CoTS and triton become extinct ulti-
mately in (1) provided that h1 is sufficiently large (Theorem 3). Therefore, the
presence of environmental noises brings a difference to the population dynamics
and significantly affects the dynamics of the system, especially it can lead to the
extinction of species.

(6) System (2) admits a unique stationary distribution if r1 > σ 2
11/2 and μ > 0,

where the sign of thresholdμ specifies whether or not CoTS and triton go extinct
or persist in the long term, which implies that a weak white noise can guarantee
the existence of stationary distribution (Fig. 10).

Moreover, the optimal solution of the control problem is either a bang-bang or a
singular control, but cannot be a combination of them. The investment should not be
above a maximal effort Ē ; otherwise, it will result in economic loss. Considering the
case of profit from harvesting, policymakers should recommend the optimal effort
E∗∗ such that it will guarantee the maximum profit and also ensure the sustainability
of all species. According to Law of the People’s Republic of China on the Protection
of Wildlife, the state’s key protected wild animals are classified into the first-grade
and the second-grade protected wild animals. Triton has been a second-grade animal
under state protection in China and illegal acquisition of national protected animal will
be punished by law accordingly. The local government should forbid illegal fishing
activities. Other countries having triton resources also should reduce the harvesting of
triton to protect coral reefs.

The results in this paper are not exhaustive but rather a starting point of further
investigation.Anoceanic coral reef systembased on the “predator removal hypothesis”
(Endean 1969) is established to assess the synergistic effects of several key stressors.
However, the mechanisms underlying CoTS outbreaks are so complicated that more
trophic levels, more environmental factors, and other management strategies should be
taken into account. According to the “terrestrial run-off hypothesis” (Birkeland 1982),
the increase in certain nutrients in the ocean leads to the abundance of phytoplankton
(Yan et al 2021). Therefore, the survival rate of CoTS larvae becomes higher. In
particular, the mortality rates of CoTS at immature and mature stage are dramatically
different. If CoTS population can be monitored as juveniles, then human interventions
can be carried out once the density of juveniles approaches the critical value. From
this point of view, it is reasonable to consider the system with stage structure of
CoTS in coral-CoTS interaction. In addition, the environmental noise is assumed to
be described by Gaussian white noises in this study, while in real-world application,
the coral reef ecosystem is threatened by both coral diseases and ocean acidification
but these natural disasters cannot be well described by white noises. It is significant
to consider stochastic models driven by random fluctuations (e.g., Lévy noise and
Markovian switching) except white noise and to investigate the effect of other type
noises on the coral reef ecosystems.

In mathematics, the proof of the existence of a stationary distribution under
r1 > σ 2

11/2 and μ > 0 still remains an open problem, though Fig. 10 indicates a
stationary distribution of all the species. To our knowledge, there is a limitation of the
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available mathematical technique. The methods of constructing a series of appropriate
Lyapunov functions based on the positive equilibrium of (1) and utilizing the explicit
density function of the solution to the corresponding one-dimensional stochastic dif-
ferential equation are invalid to obtain the existence of a stationary distribution from
the theoretical perspective. Future work includes developing new methods to obtain
sufficient conditions for the existence of a unique ergodic stationary distribution. For
stochastic dynamicmodel, amore important but challenging problem is to estimate the
parameters in the model. If the key parameters can be determined or estimated from
some collected data, especially σ being rarely estimated, it will be more convenient
and more effective to well forecast and early warn the outbreaks of CoTS. All these
issues are left as potential avenues for future research.
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Appendix A: Proofs for Deterministic System

A.1 Proof of Lemma 1

Proof According to the first equation of (1), we have

x(t) = x(0)exp

(∫ t

0

[

r1

(

1 − s

K1

)

− m1y

a1 + s

]

ds

)

.

Similarly, we obtain

y(t) = y(0)exp

(∫ t

0

[

r2

(

1 − s

K2

)

+ e1m1x

a1 + x
− m2z

a2 + s
− h1

]

ds

)

and

z(t) = z(0)exp

(∫ t

0

(
e2m2y

a2 + y
− d − h2

)

ds

)

.

It is clear that x(t) > 0, y(t) > 0, and z(t) > 0 whenever x(0) > 0, y(0) > 0,
and z(0) > 0. Then any solution from the first quadrant of xyz-plane gives a positive
solution. This completes the proof. �
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A.2 Proof of Theorem 1

Proof Define W = e1e2x + e2y + z. Taking time derivative of W leads to

dW

dt
+ (d + h2)W = e1e2r1x

(

1 − x

K1

)

+ e2r2y

(

1 − y

K2

)

− e2h1y − dz − h2z

+(d + h2)(e1e2x + e2y + z)

≤ −e1e2r1
K1

(

x − K1(r1 + d + h2)

2r1

)2

+ e1e2K1(r1 + d + h2)2

4r1

−e2r2
K2

(

y − K2(r2 + d + h2)

2r2

)2

+ e2K2(r2 + d + h2)2

4r2

≤ e1e2K1(r1 + d + h2)2

4r1
+ e2K2(r2 + d + h2)2

4r2:= μ.

Due to the positivity of parameters and the nonnegativity of solutions, we obtain

0 ≤ W (x, y, z) ≤ μ

d + h2
(1 − e−(d+h2)t ) + W (x(0), y(0), z(0))e−(d+h2)t .

Taking the limit of the above inequality as t tends to ∞, we obtain

lim sup
t→∞

W (x, y, z) ≤ μ

d + h2
.

Therefore, all solutions of (1) with initial values (x(0), y(0), z(0)) ∈ R
3+Z are even-

tually confined to the region

� =
{

(x, y, z) ∈ R
3+ : 0 ≤ e1e2x + e2y + z ≤ μ

d + h2
+ 1

}

.

�

A.3 Proof of Lemma 2

Proof When n = 1, it is obvious that the claim is valid. Assume that the claim holds
for n = 2k − 1. Then, when n = 2k + 1, one has

α(x) = (−1)2k+1x2k+1 + p2k x
2k + · · · + p1x + p0.

If α(x) = 0 has one positive root, then the claim is valid. If all the roots are negative,
then there is a contradiction with p0 > 0. Thus, α(x) = 0 has at least a pair of
conjugate complex roots denoted by x0 = a + bi, x̄0 = a − bi with a 	= 0. Then,

α(x) = (x − a − bi)(x − a + bi)α̃(x) = (x2 − 2ax + a2 + b2)α̃(x),
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where α̃(x) = (−1)2k−1x2k−1 + q2k−2x2k−2 + · · · + q1x + q0 and q0(a2 + b2) =
p0 > 0. By the method of mathematical induction, α(x) has at least one positive root
if p0 > 0. The proof is complete. �

A.4 Proof of Theorem 2

Proof The local stability of equilibria is determined by computing the eigenvalues of
the Jacobian matrix about each equilibrium. The Jacobian matrix of (1) at E0 is

J |E0=
⎛

⎝
r1 0 0
0 r2 − h1 0
0 0 −d − h2

⎞

⎠ .

The three eigenvalues of this matrix are

λ1 = r1, λ2 = r2 − h1, λ3 = −d − h2.

Obviously, E0 = (0, 0, 0) is unstable. The proof is complete. �

A.5 Proof of Theorem 3

Proof The Jacobian matrix of (1) at Ex reads

J |Ex=
⎛

⎜
⎝

−r1 − m1K1
a1+K1

0

0 r2 + e1m1K1
a1+K1

− h1 0
0 0 −d − h2

⎞

⎟
⎠ .

The three eigenvalues of this matrix are

λ1 = −r1, λ2 = r2 + e1m1K1

a1 + K1
− h1, λ3 = −d − h2.

The equilibrium Ex = (K1, 0, 0) is locally asymptotically stable if h1 > r2 +
e1m1K1/(a1 + K1), otherwise it is a saddle point with stable manifold in x − z plane
and unstable manifold in y direction. The proof is complete. �

A.6 Proof of Theorem 4

Proof The Jacobian matrix of (1) at Ey takes the form

J |Ey=
⎛

⎜
⎝

r1 − m1y2
a1

0 0
e1m1y2

a1
−r2 + h1 − m2 y2

a2+y2
0 0 e2m2 y2

a2+y2
− d − h2

⎞

⎟
⎠ .
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Its eigenvalues are

λ1 = r1 − m1K2(r2 − h1)

a1r2
, λ2 = −(r2 − h1),

λ3 = e2m2K2(r2 − h1) − [a2r2 + K2(r2 − h1)](d + h2)

a2r2 + K2(r2 − h1)
.

Then it is not difficult to show that all the eigenvalues of J |Ey have negative real parts
when (6) is satisfied, then Ey is locally asymptotically stable. The proof is complete.

�

A.7 Proof of Theorem 5

Proof By (3), one has

y3 = (a1 + x3)(r1K1 − r1x3)

m1K1
.

Substituting the above equation into the second equation of (3) shows that x3 is a
positive solution of the following equation:

−x3 + (K1 − 2a1)x
2 + ν̂x + a21K1 − a1m1K1K2(r2 − h1)

r1r2
= 0,

where ν̂ = [m1K1K2(h1 − r2 − e1m1) + a1r1r2(2K1 − a1)]/(r1r2). From Lemma
2, it follows that x3 is positive if (7) is satisfied.

The Jacobian matrix of (1) at Exy writes

J |Exy=
⎛

⎜
⎝

m1x3y3
(a1+x3)2

− r1
K1

x3 − m1x3
a1+x3

0
e1m1a1y3
(a1+x3)2

− r2
K2

y3 − m2 y3
a2+y3

0 0 e2m2 y3
a2+y3

− d − h2

⎞

⎟
⎠ .

The characteristic equation of J |Exy of (1) is

[
λ2 − (J11 + J22)λ + J11 J22 − J12 J21

] [

λ −
(
e2m2y3
a2 + y3

− d − h2

)]

= 0.

Then λ1 < 0, λ2 < 0, and λ3 < 0 under the conditions of Theorem 5. Thus,
Exy = (x3, y3, 0) is locally asymptotically stable. The proof is complete. �

A.8 Proof of Theorem 6

Proof By (4), one has

y4 = a2(d + h2)

e2m2 − d − h2
, z4 = (a2 + y4)[K2(r2 − h1) − r2y4]

m2K2
.
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It is trivial to show that Eyz = (0, y4, z4) exists when (8) is satisfied.
The Jacobian matrix of (1) evaluated at Eyz reads

J |Eyz=

⎛

⎜
⎜
⎝

r1 − m1y4
a1

0 0
e1m1y4

a1

m2y4z4
(a2 + y4)2

− r2
K2

y4 − m2 y4
a2+y4

0 e2m2a2z4
(a2+y4)2

0

⎞

⎟
⎟
⎠ .

The characteristic equation of J |Eyz is

[

λ2 −
(

m2y4z4
(a2 + y4)2

− r2
K2

y4

)

λ + e2a2m2
2y4z4

(a2 + y4)3

][

λ −
(

r1 − m1y4
a1

)]

= 0.

Then, λ1 < 0, λ2 < 0, and λ3 < 0 when (9) holds. Therefore, Eyz = (0, y4, z4) is
locally asymptotically stable. The proof is complete. �

A.9 Proof of Theorem 7

Proof It is not difficult to show that y∗ > 0 and z∗ > 0 when (11) is satisfied. The
existence of Exyz(x∗, y∗, z∗) follows from direct calculation. The Jacobian matrix of
(1) evaluated at Exyz is

J |Exyz=

⎛

⎜
⎜
⎝

m1x∗y∗
(a1+x∗)2 − r1

K1
x∗ − m1x∗

a1+x∗ 0
e1m1a1y∗
(a1+x∗)2

m2 y∗z∗
(a2+y∗)2 − r2

K2
y∗ − m2 y∗

a2+y∗

0 e2m2a2z∗
(a2+y∗)2 0

⎞

⎟
⎟
⎠ .

The characteristic equation of J |Exyz of (1) is

λ3 + A1λ
2 + A2λ + A3 = 0,

where

A1 = −(J11 + J22), A2 = J11 J22 − J23 J32 − J12 J21, A3 = J11 J23 J32. (A1)

It is obvious that A1 > 0 and A3 > 0 when the conditions in Theorem 7 are satisfied.
By the Routh-Hurwitz criterion, it follows that Exyz is locally asymptotically stable
if A1A2 > A3.

For the global asymptotic stability of Exyz , consider the positive definite Lyapunov
function

V (x, y, z) = l1
(
x − x∗ − x∗ ln x

x∗
)

+
(

y − y∗ − y∗ ln y

y∗

)

+l2

(

z − z∗ − z∗ ln z

z∗

)

,
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where l1 and l2 are positive constants to be determined later.
By calculating the derivative of V (x, y, z) along the solutions of (1), we obtain

dV

dt
= l1(x − x∗)

[

r1

(

1 − x

K1

)

− m1y

a1 + x
− r1

(

1 − x∗

K1

)

+ m1y∗

a1 + x∗

]

+(y − y∗)
[

r2

(

1 − y

K2

)

+ e1m1x

a1 + x

− m2z

a2 + y
− r2

(

1 − y∗

K2

)

− e1m1x∗

a1 + x∗ + m2z∗

a2 + y∗

]

+l2(z − z∗)
(
e2m2y

a2 + y
− e2m2y∗

a2 + y∗

)

.

After simplification,

dV

dt
= −l1

[
r1
K1

− m1y∗

(a1 + x)(a1 + x∗)

]

(x − x∗)2

−
[
r2
K2

− m2z∗

(a2 + y)(a2 + y∗)

]

(y − y∗)2

+
[

e1m1a1
(a1 + x)(a1 + x∗)

− l1m1a1
(a1 + x)(a1 + x∗)

− l1m1x∗

(a1 + x)(a1 + x∗)

]

(x − x∗)(y − y∗)

+
[

l2e2m2a2
(a2 + y)(a2 + y∗)

− m2a2
(a2 + y)(a2 + y∗)

− m2y∗

(a2 + y)(a2 + y∗)

]

(y − y∗)(z − z∗). (A2)

Set

l1 = e1a1
a1 + x∗ , l2 = a2 + y∗

e2a2
(A3)

such that the right hand side of (A2) can be written as −XTDX , where XT = (x −
x∗, y − y∗, z − z∗) and the symmetric matrix D is given by

D =
⎛

⎜
⎝

l1r1
K1

− l1m1y∗
(a1+x)(a1+x∗) 0 0

0 r2
K2

− m2z∗
(a2+y)(a2+y∗) 0

0 0 0

⎞

⎟
⎠ .

Then dV /dt < 0 if and only if the symmetric matrix D is positive definite, which
is equivalent to (12). Therefore, Exyz is globally asymptotically stable. The proof is
complete. �
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Appendix B: Proofs for Optimal Harvesting

B.1 Proof of Theorem 8

Proof The bionomic equilibrium solves the system of algebraic equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1x

(

1 − x

K1

)

− m1xy

a1 + x
= 0,

r2y

(

1 − y

K2

)

+ e1m1xy

a1 + x
− m2yz

a2 + y
− q1Ey = 0,

e2m2yz

a2 + y
− dz − q2Ez = 0,

(p1q1y + p2q2z − c)E = 0.

(B4)

Define

�̄ =
{
(x, y, z, E) | 0 ≤ x ≤ K1,

a2d

e2m2 − d
≤ y ≤ c

p1q1
,

0 ≤ z ≤ c

p2q2
, 0 ≤ E ≤ e2m2c

q2(c + a2 p1q1)

}
.

Obviously, �̄ is a positive invariant set of (B4). From the first equation, one has

ȳ = r1
m1

(

1 − x̄

K1

)

(a1 + x̄).

Substituting ȳ into the third equation produces

Ē = 1

q2

e2m2
r1
m1

(
1 − x̄

K1

)
(a1 + x̄)

a2 + r1
m1

(
1 − x̄

K1

)
(a1 + x̄)

− d

q2
,

where Ē > 0 since d <
e2m2 ȳ
a2+ȳ . Similarly, we have

z̄ = c

p2q2
− p1q1r1

p2q2m1

(

1 − x̄

K1

)

(a1 + x̄),

where z̄ > 0 since c > p1q1 ȳ. According to the second equation of (B4), we can see
x̄ is a positive root of the following equation

r2

[

1 − r1
m1K2

(

1 − x

K1

)

(a1 + x)

]

+ e1m1x

a1 + x

−
m2

[
c

p2q2
− p1q1r1

p2q2m1

(
1 − x

K1

)
(a1 + x)

]

a2 + r1
m1

(
1 − x

K1

)
(a1 + x)
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−q1
q2

e2m2
r1
m1

(
1 − x

K1

)
(a1 + x)

a2 + r1
m1

(
1 − x

K1

)
(a1 + x)

+ dq1
q2

= 0,

which can be simplified by

− r21r2
m2

1K
2
1K2

x5 + �1x
4 + �2x

3 + �3x
2 + �4x + �0 = 0, (B5)

where

�0 = a1

(

a2 + a1r1
m1

)(

r2 − a1r1r2
m1K2

+ dq1
q2

)

+ a1r1m2q1
m1q2

(
p1
p2

− e2 − m1c

a1r1q1 p2

)

must be a positive constant under the condition r1 < m1K2
a1

and p1
p2

> e2 + m1c
a1r1q1 p2

.
From Lemma 2, it follows that there exists at least one positive root x̄ . Therefore, the
positive bionomic equilibrium exists if (13) is satisfied. The proof is complete. �

B.2 Proof of Theorem 9

Proof By Pontryagin’s maximum principle (1987), the adjoint equations read

dχ1

dt
= −∂F

∂x
,

dχ2

dt
= −∂F

∂ y
,

dχ3

dt
= −∂F

∂z
.

Consider the equilibrium of (B4), then the adjoint equations reduce to

dχ1

dt
=

(
r1
K1

x − m1xy

(a1 + x)2

)

χ1 − e1m1a1y

(a1 + x)2
χ2, (B6)

dχ2

dt
= m1x

a1 + x
χ1

+
(
r2
K2

y − m2yz

(a2 + y)2

)

χ2 − e2m2a2z

(a2 + y)2
χ3

− (
ξ1e

−δv t + ξ2e
−δu t

)
p1q1E, (B7)

dχ3

dt
= m2y

a2 + y
χ2 − (

ξ1e
−δv t + ξ2e

−δu t
)
p2q2E . (B8)

Then

χ
′′
2 −

(
r1
K1

x − m1xy

(a1 + x)2

)

χ
′
2

= −
(
r1
K1

x − m1xy

(a1 + x)2

)(
r2
K2

y − m2yz

(a2 + y)2

)

χ2
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+
(
r1
K1

x − m1xy

(a1 + x)2

)
e2m2a2z

(a2 + y)2
χ3

+
(
r1
K1

x − m1xy

(a1 + x)2

)
(
ξ1e

−δv t + ξ2e
−δu t

)
p1q1E − m1x

a1 + x

e1m1a1y

(a1 + x)2
χ2

+
(
r2
K2

y− m2yz

(a2+y)2

)

χ
′
2−

e2m2a2z

(a2+y)2

(
m2y

a2+y
χ2−

(
ξ1e

−δv t + ξ2e
−δu t

)
p2q2E

)

.

(B9)

Combining (17) with (B9), one has

χ
′′
2 + Q1χ

′
2 + Q2χ2 = Me−δv t + N e−δu t , (B10)

where

Q1 = −
(
r1
K1

x − m1xy

(a1 + x)2

)

−
(
r2
K2

y − m2yz

(a2 + y)2

)

,

Q2 =
(
r1
K1

x − m1xy

(a1 + x)2

)(
r2
K2

y − m2yz

(a2 + y)2

)

+
(
r1
K1

x − m1xy

(a1 + x)2

)
e2m2a2z

(a2 + y)2
q1y

q2z

+ m1x

a1 + x

e1m1a1y

(a1 + x)2
+ e2m2a2z

(a2 + y)2
m2y

a2 + y

M =
(
r1
K1

x − m1xy

(a1 + x)2

)
e2m2a2z

(a2 + y)2
ξ1(p1q1y + p2q2z − c)

q2z

+
(
r1
K1

x − m1xy

(a1 + x)2

)

ξ1 p1q1E + e2m2a2z

(a2 + y)2
ξ1 p2q2E,

N =
(
r1
K1

x − m1xy

(a1 + x)2

)
e2m2a2z

(a2 + y)2
ξ2(p1q1y + p2q2z − c)

q2z

+
(
r1
K1

x − m1xy

(a1 + x)2

)

ξ2 p1q1E + e2m2a2z

(a2 + y)2
ξ2 p2q2E .

This leads to the solution

χ2 = �1e
�1t + �2e

�2t + M
δ2v − Q1δv + Q2

e−δv t + N
δ2u − Q1δu + Q2

e−δu t ,

where�1 and�2 are constants of integration, �1 and�2 are the roots of the auxiliary
equation �2 + Q1� + Q2 = 0. Imposing the transverse condition χ2(t) → 0 as
t → ∞ leads to �1 = �2 = 0. Then,

χ2 = M
δ2v − Q1δv + Q2

e−δv t + N
δ2u − Q1δu + Q2

e−δu t .
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Substituting χ2 into (17) reaches

χ3 =
(
p1q1y + p2q2z − c

q2z
ξ1 − q1y

q2z

M
δ2v − Q1δv + Q2

)

e−δv t

+
(
p1q1y + p2q2z − c

q2z
ξ2 − q1y

q2z

N
δ2u − Q1δu + Q2

)

e−δu t .

Similarly,

χ
′′
1 + Q̃1χ

′
1 + Q̃2χ1 = M̃e−δv t + Ñ e−δu t , (B11)

where

Q̃1 = m1xy

(a1 + x)2
− r1

K1
x, Q̃2 = e1m2

1a1xy

(a1 + x)3
,

M̃ = − e1m1a1y

(a1 + x)2

(
r2
K2

y − m2yz

(a2 + y)2

) M
δ2v − Q1δv + Q2

+ e1m1a1y

(a1 + x)2
p1q1Eξ1

+ e1m1a1y

(a1 + x)2
e2m2a2z

(a2 + y)2

(
p1q1y + p2q2z − c

q2z
ξ1 − q1y

q2z

M
δ2v − Q1δv + Q2

)

,

Ñ = − e1m1a1y

(a1 + x)2

(
r2
K2

y − m2yz

(a2 + y)2

) N
δ2u − Q1δu + Q2

+ e1m1a1y

(a1 + x)2
p1q1Eξ2

+ e1m1a1y

(a1 + x)2
e2m2a2z

(a2 + y)2

(
p1q1y + p2q2z − c

q2z
ξ2 − q1y

q2z

N
δ2u − Q1δu + Q2

)

.

χ1 can be simplified as

χ1 = M̃
δ2v − Q̃1δv + Q̃2

e−δv t + Ñ
δ2u − Q̃1δu + Q̃2

e−δu t .

It is not difficult to find that the shadow prices χ1(t)eδu t , χ2(t)eδu t , and χ3(t)eδu t

are bounded and constant over time in optimal equilibrium when they satisfy the
transversality condition at ∞ (Sadhukhan et al 2010).

Substituting the values of χ2, χ3 into (B8), one obtains

E =
{[

δv

(
p1q1 y + p2q2z − c

q2z
ξ1 − q1 y

q2z

M
δ2v − Q1δv + Q2

)

+ m2 y

a2 + y

M
δ2v − Q1δv + Q2

]

e−δv t

+
[

δu

(
p1q1 y + p2q2z − c

q2z
ξ2 − q1 y

q2z

N
δ2u − Q1δu + Q2

)

+ m2 y

a2 + y

N
δ2u − Q1δu + Q2

]

e−δu t
}

1/
[(

ξ1e
−δv t + ξ2e

−δu t
)
p2q2

]
. (B12)

The optimal equilibrium solution (x∗∗, y∗∗, z∗∗, E∗∗) of the control problem can be
obtained by solving steady state equations together with (B12). Moreover, the maxi-
mum net present revenue is
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J (y∗∗, z∗∗, E∗∗) =
∫ ∞

0
e−δ̃t (p1q1y

∗∗ + p2q2z
∗∗ − c)E∗∗dt

= (p1q1y∗∗ + p2q2z∗∗ − c)E∗∗

δ̃
.

The proof is complete. �

Appendix C: Proofs for Stochastic System

C.1 Proof of Theorem 10

Proof Since (2) has a unique local solution (x(t), y(t), z(t)) ∈ R
3+ on [0, τe) a.s.,

where τe is the explosion time. In order to show that this solution is global, i.e.,
τe = ∞ a.s., let n0 ≥ 0 be sufficiently large such that x0, y0, and z0 are lying within
the interval [1/n0, n0]. For each integer n ≥ n0, define the stopping time as

τn = inf

{

t ∈ [0, τe) : min{x(t), y(t), z(t)} ≤ 1

n
or max{x(t), y(t), z(t)} ≥ n

}

.

Obviously, τn is increasing as n → ∞. Set τ∞ = limn→∞ τn , whence τ∞ ≤ τe a.s.
Hence, it only needs to prove that τ∞ = ∞ a.s. It can be proved by contradiction
arguments. Assume that the statement is not true, then there exist a pair of constants
T > 0 and κ ∈ (0, 1) such that P {τ∞ ≤ T } > κ. Whence there exists an integer
n1 ≥ n0 such that P {τn ≤ T } ≥ κ, n ≥ n1. Define a C2-function V : R3+ → R+ by

V (x, y, z) = xθ − ln x − 1

θ

(

1 − ln
1

θ

)

+ yθ − ln y − 1

θ

(

1 − ln
1

θ

)

+zθ − ln z − 1

θ

(

1 − ln
1

θ

)

with 0 < θ < 1. The nonnegativity of V follows from uθ − ln u − (1− ln(1/θ))/θ ≥
0, u ≥ 0. By applying Itô’s formula, one has

L(xθ ) = θr1xθ
(
1 − x

K1

)
− m1θxθ y

a1+x + 1
2θ(θ − 1)xθ (σ11 + σ12x)2,

L(yθ ) = θr2yθ
(
1 − y

K2

)
+ θe1m1xyθ

a1+x − θm2 yθ z
a2+y

−θh1yθ + 1
2θ(θ − 1)yθ (σ21 + σ22y)2,

L(zθ ) = θe2m2zθ y
a2+y − θdzθ − θh2zθ + 1

2θ(θ − 1)zθ (σ31 + σ32z)2,

L(ln x) = r1
(
1 − x

K1

)
− m1y

a1+x − 1
2 (σ11 + σ12x)2,

L(ln y) = r2
(
1 − y

K2

)
+ e1m1x

a1+x − m2z
a2+y − h1 − 1

2 (σ21 + σ22y)2,

L(ln z) = e2m2 y
a2+y − d − h2 − 1

2 (σ31 + σ32z)2.
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Then, by Lemma 3,

LV = θr1x
θ

(

1 − x

K1

)

− m1θxθ y

a1 + x
+ θ(θ − 1)

2
xθ (σ11 + σ12x)

2 − r1

(

1 − x

K1

)

+ m1y

a1 + x
+ 1

2
(σ11 + σ12x)

2 + θr2y
θ

(

1 − y

K2

)

+ θe1m1xyθ

a1 + x
− θm2yθ z

a2 + y

−θh1y
θ + θ(θ − 1)

2
yθ (σ21 + σ22y)

2 − r2

(

1 − y

K2

)

− e1m1x

a1 + x
+ m2z

a2 + y

+h1 + 1

2
(σ21 + σ22y)

2 + θe2m2zθ y

a2 + y
− θdzθ − θh2z

θ

+θ(θ − 1)

2
zθ (σ31 + σ32z)

2 − e2m2y

a2 + y
+ d + h2 + 1

2
(σ31 + σ32z)

2

≤ −θ(1 − θ)

2
σ 2
12x

θ+2 + 1

2
σ 2
12x

2 +
(
r1
K1

+ σ11σ12

)

x + θr1x
θ

−θ(1 − θ)

2
)σ 2

22y
θ+2 + 1

2
σ 2
22y

2 +
(
r2
K2

+ m1

a1
+ σ21σ22

)

y + (θr2 + θe1m1)y
θ

−θ(1 − θ)

2
σ 2
32z

θ+2 + 1

2
σ 2
32z

2 +
(
m2

a2
+ σ31σ32

)

z + θe2m2z
θ

+d + h1 + h2 + 1

2
σ 2
11 + 1

2
σ 2
21 + 1

2
σ 2
31

≤ ρ1 + ρ2 + ρ3 + d + h1 + h2 + 1

2
σ 2
11 + 1

2
σ 2
21 + 1

2
σ 2
31 := ρ,

where

ρ1 = sup
(x,y,z)∈R3+

{

− θ(1−θ)
2 σ 2

12x
θ+2 + σ 2

12
2 x2 +

(
r1
K1

+ σ11σ12

)
x + θr1xθ

}

,

ρ2= sup
(x,y,z)∈R3+

{

− θ(1−θ)
2 σ 2

22y
θ+2+σ 2

22
2 y2+

(
r2
K2

+m1
a1

+σ21σ22

)
y+(θr2+θe1m1)yθ

}

,

ρ3 = sup
(x,y,z)∈R3+

{

− θ(1−θ)
2 σ 2

32z
θ+2 + σ 2

32
2 z2 +

(
m2
a2

+ σ31σ32

)
z + θe2m2zθ

}

,

and ρ is a positive constant being independent of x, y, z, and t . Consequently,

dV ≤ ρdt + (θxθ − 1)(σ11 + σ12x)dB1(t)

+(θ yθ − 1)(σ21 + σ22y)dB2(t) + (θ zθ − 1)(σ31 + σ32z)dB3(t).

Integrating it from 0 to τn ∧ T and taking expectation produces

E(V (x(τn ∧ T ), y(τn ∧ T ), z(τn ∧ T ))) ≤ V (x0, y0, z0) + ρT .
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Set�n = {ω ∈ � : τn = τn(ω) ≤ T }, thenP(�n) ≥ κ , and, for anyω ∈ �n , x(τn, ω),
y(τn, ω) or z(τn, ω), equals either n or 1/n. Hence,

V (x0, y0, z0) + ρT ≥ E(I�n V (x(τn), y(τn), z(τn))
≥ ρ min

{
nθ − ln n − 1

θ

(
1 − ln 1

θ

)
, n−θ + ln n − 1

θ

(
1 − ln 1

θ

)}
,

where I�n denotes the indicator function of �n . Let n → ∞, then there is a contra-
diction

∞ > V (x0, y0, z0) + ρT = ∞.

Therefore, τ∞ = ∞. The proof is complete. �

C.2 Proof of Theorem 11

Proof Define

Ṽ (x, y, z) = (e1e2x + e2y + z)θ̃ .

By the generalized Itô’s formula, one has

dṼ = LṼ dt + e1e2θ̃ (e1e2x + e2y + z)θ̃−1x(σ11 + σ12x)dB1(t)

+e2θ̃ (e1e2x + e2y + z)θ̃−1y(σ21 + σ22y)dB2(t)

+θ̃ (e1e2x + e2y + z)θ̃−1z(σ31 + σ32z)dB3(t),

where

LṼ = θ̃ (e1e2x + e2y + z)θ̃−1
(

e1e2r1x

(

1 − x

K1

)

+ e2r2y

(

1 − y

K2

)

−e2h1y − (d + h2)z)

− θ̃ (1 − θ̃ )

2
(e1e2x + e2y + z)θ̃−2

×
(
[e1e2x(σ11 + σ12x)]2 + [e2y(σ21 + σ22y)]2 + [z(σ31 + σ32z)]2

)
.

For any 0 < β < d + h2, applying Itô’s formula to eβt Ṽ leads to

eβt (e1e2x(t) + e2y(t) + z(t))θ̃

= (e1e2x0 + e2y0 + z0)
θ̃ +

t∫

0

eβsG(X̃(s))ds

+e1e2θ̃

t∫

0

eβs((e1e2x(s) + e2y(s) + z(s))θ̃−1x(s)(σ11 + σ12x(s)))dB1(s)
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+e2θ̃

t∫

0

eβs((e1e2x(s) + e2y(s) + z(s))θ̃−1y(s)(σ21 + σ22y(s)))dB2(s)

+θ̃

t∫

0

eβs((e1e2x(s) + e2y(s) + z(s))θ̃−1z(s)(σ31 + σ32z(s)))dB3(s),

where

G(X̃) = β(e1e2x + e2y + z)θ̃ + θ̃ (e1e2x + e2y + z)θ̃−1

×
(

e1e2r1x

(

1 − x

K1

)

+ e2r2y

(

1 − y

K2

)

− e2h1y − (d + h2)z

)

− θ̃ (1 − θ̃ )

2
(e1e2x + e2y + z)θ̃−2

× ([e1e2x(σ11 + σ12x)]2 + [e2y(σ21 + σ22y)]2 + [z(σ31 + σ32z)]2).

On the one hand,

[e1e2x(σ11 + σ12x)]2 + [e2y(σ21 + σ22y)]2 + [z(σ31 + σ32z)]2
≥ (e1e2σ12)

2x4 + (e2σ22)
2y4 + σ 2

32z
4

≥ min{(e1e2σ12)2, (e2σ22)2, σ 2
32}(x4 + y4 + z4);

on the other side,

(e1e2x + e2y + z)4 ≤ 33[(e1e2x)4 + (e2y)
4 + z4]

≤ 33 max{(e1e2)4, e42, 1}(x4 + y4 + z4)

≤ 33(x4 + y4 + z4),

where the following HRolder inequality has been used

|
k∑

i=1

pi |n≤ kn−1
k∑

i=1

| pi |n .

Hence,

G(X̃) ≤ β(e1e2x + e2y + z)θ̃ + θ̃ (e1e2x + e2y + z)θ̃−1

×
(

e1e2r1x

(

1 − x

K1

)

+ e2r2y

(

1 − y

K2

)

− e2h1y − (d + h2)z

)

− θ̃ (1 − θ̃ )

54
(e1e2x + e2y + z)θ̃+2 min{(e1e2σ12)2, (e2σ22)2, σ 2

32},
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which is bounded, say by G∗(θ̃). Then

E

[
eβ(t∧τn)(e1e2x((t ∧ τn)) + e2y((t ∧ τn)) + z((t ∧ τn)))

θ̃
]

≤ (e1e2x0 + e2y0 + z0)θ̃ + G∗(θ̃)

t∧τn∫

0

eβsds.

Letting n → ∞ and then t → ∞ yields

lim sup
t→∞

E

[
(e1e2x(t) + e2y(t) + z(t))θ̃

]

≤ lim
t→∞ e−βt

(

(e1e2x0 + e2y0 + z0)θ̃ + G∗(θ̃)
(
eβt−1

)

β

)

= G∗(θ̃)
β

.

It follows that

lim sup
t→∞

Ex θ̃ ≤ G∗(θ̃)

β(e1e2)θ̃
, lim sup

t→∞
Ey θ̃ ≤ G∗(θ̃)

βeθ̃
2

, lim sup
t→∞

Ezθ̃ ≤ G∗(θ̃)

β
.

Set

G(θ̃) = G∗(θ̃)

β
max

{
(e1e2)

−θ̃ , e−θ̃
2 , 1

}
,

then

lim sup
t→∞

Ex θ̃ ≤ G(θ̃), lim sup
t→∞

Ey θ̃ ≤ G(θ̃), lim sup
t→∞

Ezθ̃ ≤ G(θ̃).

The proof is complete. �

C.3 Proof of Theorem 12

Proof Note that, for any (x0, y0, z0) ∈ R
3+, the solution of (2) is positive, then

dx ≤ r1x

(

1 − x

K1

)

dt + x(σ11 + σ12x)dB1(t).

Consider the following auxiliary one-dimensional stochastic differential equation

dX(t) = r1X

(

1 − X

K1

)

dt + X(σ11 + σ12X)dB1(t) (C13)
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with an initial value X(0) = x0 > 0. Set

f (x) = r1x

(

1 − x

K1

)

, σ (x) = x(σ11 + σ12x), x ∈ (0,∞).

Direct calculation shows that

∫
f (υ)

σ 2(υ)
dυ = r1

σ 2
11

ln
υ

σ11 + σ12υ
+ r1(σ11 + K1σ12)

K1σ11σ12(σ11 + σ12υ)
+ Q.

Then

∞∫

0

1

σ 2(x)
exp

{∫ x

1

2 f (υ)

σ 2(υ)
dυ

}

dx

= C
∞∫

0

x
2r1
σ211

−2
(σ11 + σ12x)

− 2r1
σ211

−2
exp

{
2r1(σ11 + K1σ12)

K1σ11σ12(σ11 + σ12x)

}

dx,

where

C = (σ11 + σ12)

2r1
σ211 exp

{

− 2r1(σ11 + K1σ12)

K1σ11σ12(σ11 + σ12)

}

.

Letting

φ̃(x) = x2(r1/σ
2
11−1)(σ11 + σ12x)

−2(r1/σ 2
11+1) exp

{
2r1(σ11 + K1σ12)

K1σ11σ12(σ11 + σ12x)

}

,

φ̃1(x) = x2(r1/σ
2
11−1) exp

{
2r1(σ11 + K1σ12)

K1σ11σ12(σ11 + σ12x)

}

,

then

lim
x→0+

φ̃(x)

φ̃1(x)
= σ

−2(r1/σ 2
11+1)

11 > 0,

which implies that

1∫

0

φ̃(x)dx has the same convergence as

1∫

0

φ̃1(x)dx . Since

1∫

0

φ̃1(x)dx ≤ exp

{
2r1(σ11 + K1σ12)

K1σ
2
11σ12

} 1∫

0

x2(r1/σ
2
11−1)dx
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and r1 > σ 2
11/2, one has

1∫

0

x2(r1/σ
2
11−1)dx < +∞. On th

φ̃2(x) = x−2 exp

{
2r1(σ11 + K1σ12)

K1σ11σ12(σ11 + σ12x)

}

,

then

lim
x→+∞

φ̃(x)

φ̃2(x)
= σ

−2(r1/σ 2
11+1)

12 > 0,

which implies that

∞∫

1

φ̃(x)dx has the same convergence as

∞∫

1

φ̃2(x)dx . Then

∞∫

1

φ̃2(x)dx ≤ exp

{
2r1(σ11 + K1σ12)

K1σ11σ12(σ11 + σ12)

} ∞∫

1

1

x2
dx < +∞.

Whence

∞∫

0

1

σ 2(x)
exp

⎧
⎨

⎩

x∫

1

2 f (υ)

σ 2(υ)
dυ

⎫
⎬

⎭
dx < ∞.

Due to the ergodic property (Kutoyants and Kutojanc 2004), the invariant density of
(C13) is

ϕ(x) = Qx2r1/σ
2
11−2(σ11 + σ12x)

−2r1/σ 2
11−2 exp

{
2r1(σ11 + K1σ12)

K1σ11σ12(σ11 + σ12x)

}

,

where Q is a constant such that
∫ ∞
0 ϕ(x)dx = 1. From the ergodic theorem, it follows

that

lim
t→∞

1

t

t∫

0

X(s)ds =
∞∫

0

xϕ(x)dx a.s.

Let X(t) be the solution of (C13) with X(0) = x0, then, by the comparison theorem
of one-dimensional stochastic differential equation (Peng and Zhu 2006), one has
x(t) ≤ X(t) for t ≥ 0 a.s.

123



   59 Page 44 of 49 X. Zhao et al.

Applying the Itô’s formula yields

d(ln y) =
[

r2 − r2
K2

+ e1m1x

a1 + x
− m2z

a2 + y
− h1 − σ 2

21

2
− σ21σ22y − σ 2

22

2
y2
]

dt

+ (σ21 + σ22y)dB2(t).

(C14)

Integrating both sides of (C14) from 0 to t and then dividing it by t leads to

ln y(t) − ln y0
t

≤ r2 − h1 − σ 2
21

2
+ e1m1

t

∫ t

0

x(s)

a1 + x(s)
ds − σ 2

22

2t

∫ t

0
y2(s)ds

+ σ21B2(t)

t
+ σ22

t

∫ t

0
y(s)dB2(s).

(C15)

Let M̃(t) = σ22
∫ t
0 y(s)dB2(s), then M̃(t) is a local martingale whose quadratic

variations is 〈M̃, M̃〉t = σ 2
22

∫ t
0 y2(s)ds. By employing the exponential martingales

inequality (Mao 2007), for any positive constant δ, one obtains

P

{

sup
0≤t≤δ

[

M̃(t) − 1

2
〈M̃, M̃〉t

]

> 2 ln δ

}

≤ 1

δ2
.

From Borel-Cantelli Lemma (Mao 2007), it follows that, for almost all ω ∈ �, there
exists a δ0 = δ0(ω) such that

sup
0≤t≤δ

[

M̃(t) − 1

2
〈M̃, M̃〉t

]

≤ 2 ln δ.

Then

M̃(t) ≤ 2 ln δ + 1

2
〈M̃, M̃〉t = 2 ln δ + σ 2

22

2

∫ t

0
y2(s)ds, 0 ≤ t ≤ δ, δ ≥ δ0, a.s.

Hence, for 0 ≤ δ − 1 ≤ t < δ, the following inequality holds:

ln y(t) − ln y0
t

≤ r2 − h1 − σ 2
21

2
+ e1m1

t

∫ t

0

X(s)

a1 + X(s)
ds + σ21B2(t)

t
+ 2 ln δ

δ − 1
.

(C16)

Taking the superior limit on both sides of (C16) and using limt→∞ B2(t)/t = 0 a.s.,
by the strong law of large numbers for local martingale (Mao 2007), one gets

lim sup
t→∞

ln y(t)

t
≤ r2 − h1 − σ 2

21

2
+ e1m1

∫ ∞

0

xϕ(x)

a1 + x
dx < 0,
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that is, limt→∞ y(t) = 0, and then limt→∞ z(t) = 0 a.s. As a result, for any ε > 0,
there exists an �ε ⊂ � such that

P(�ε) > 1 − ε,
m1xy

a1 + x
≤ m1εx

a1 + x
.

Note that

dx(t) ≥
[

r1x

(

1 − x

K1

)

− m1εx

a1 + x

]

dt + x(σ11 + σ12x)dB1(t)

and

dx(t) ≤ r1x

(

1 − x

K1

)

dt + x(σ11 + σ12x)dB1(t),

the distribution of the process x(t) converges to the measure with the density ϕ. The
proof is complete. �

C.4 Proof of Theorem 13

Proof Applying the Itô’s formula to ln x produces

d(ln x) =
[

r1 − r1
K1

x − m1y

a1 + x
− σ 2

11
2

− σ11σ12x − σ 2
12
2

x2
]

dt + (σ11 + σ12x)dB1(t).

(C17)

Integrating (C17) from 0 to t and dividing it by t on both sides leads to

ln x(t) − ln x0
t

≤ r1 − σ 2
11

2
− σ 2

12

2t

∫ t

0
x2(s)ds + σ11B1(t)

t
+ σ12

t

∫ t

0
x(s)dB1(s).

(C18)

Let M(t) = σ12
∫ t
0 x(s)dB1(s), then M(t) is a local martingale whose quadratic

variations is 〈M, M〉t = σ 2
12

∫ t
0 x

2(s)ds. By employing the exponential martingales
inequality (Mao2007), for any positive constant δ, one obtains the following inequality

P

{

sup
0≤t≤δ

[

M(t) − 1

2
〈M, M〉t

]

> 2 ln δ

}

≤ 1

δ2
.

From Borel-Cantelli Lemma (Mao 2007), it follows that, for almost all ω ∈ �, there
exists δ0 = δ0(ω) such that

sup
0≤t≤δ

[

M(t) − 1

2
〈M, M〉t

]

≤ 2 ln δ.
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It is trivial to show that

M(t) ≤ 2 ln δ + 1

2
〈M, M〉t = 2 ln δ + σ 2

12

2

∫ t

0
x2(s)ds, 0 ≤ t ≤ δ, δ ≥ δ0, a.s.

Hence, for 0 ≤ δ − 1 ≤ t < δ, the following inequality holds

ln x(t) − ln x0
t

≤ r1 − σ 2
11

2
+ σ11B1(t)

t
+ 2 ln δ

δ − 1
. (C19)

Taking the superior limit on the both sides of (C19) and noting that limt→∞ B1(t)/t =
0 a.s. the strong law of large numbers for local martingale (Mao 2007) implies that

lim sup
t→∞

ln x(t)

t
≤ r1 − σ 2

11

2
< 0,

then limt→∞ x(t) = 0 a.s. Therefore, there exists a set �ε ⊂ � such that

P(�ε) > 1 − ε,
e1m1xy

a1 + x
≤ e1m1εy

a1 + ε
<

e1m1ε

a1
y.

Applying the Itô’s formula to ln y, integrating it from 0 to t , and dividing it by t on
both sides, one has

ln y(t) − ln y0
t

≤ r2

+e1m1ε

a1
− h1 − σ 2

21

2
− σ 2

22

2t

∫ t

0
y2(s)ds + σ21B2(t)

t

+σ22

t

∫ t

0
y(s)dB2(s). (C20)

Taking the superior limit on both sides of (C20) and using the arbitrariness of ε yield

lim sup
t→∞

ln y(t)

t
≤ r2 − h1 − σ 2

21

2
< 0,

which implies that limt→∞ y(t) = 0 and limt→∞ z(t) = 0 a.s. The proof is complete.
�
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