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A B S T R A C T

A fundamental problem in ecology is to understand how mutualisms remain stable. The density-dependent 
regulations within interacting species potentially impact the persistence of these interspecific relationships. 
Yet few studies explore such intraspecific regulations’ role in stabilizing mutualisms. In addition, partner species 
often gain unequal benefits in mutualisms. To what extent such an interspecific asymmetry affects the stability of 
mutualisms is also poorly understood. We here developed a dynamic model for the asymmetric interaction be
tween plants and their pollinators in nursery mutualisms, considering the intraspecific competition of each 
mutualist. We found that (i) a mutualism can be stabilized only if both mutualists are subject to the regulation of 
intraspecific competition; (ii) stabilizing the system also requires that the degree of asymmetry in benefits be
tween mutualists must be limited to a range of ‘tolerance’, which narrows as intraspecific competition increases 
and even fades away with strong competition within both mutualistic species; (iii) when intraspecific compe
tition within a species increases, the tolerant range is compressed from the side beneficial for it, with thus its 
partner species gaining relatively more benefit allocation; (iv) if the plant-pollinator interaction initiates from a 
small host plant population, these host plants must offer pollinators high levels of benefits, that can be subse
quently reduced to favor plants once the mutualism has been successfully established. The agreement of 
empirical data to theoretical predictions suggests model reliability. These results highlight the role of intra
specific competition and the degree of benefit asymmetry between host plants and symbionts in stabilizing 
mutualisms.

1. Introduction

Nursery pollination mutualisms, such as Yucca tree–Yucca moth and 
fig tree–fig wasp, are mutually beneficial interactions between host 
plants and pollinators, in which pollinators lay eggs within plant 
reproductive structures when pollinating flowers, using these structures 
of the host plant as their only breeding sites (Castro and Hoffmeister, 
2020; Dufay and Anstett, 2003; Kerdelhue et al., 2000; Pellmyr and 
Huth, 1994), the result being a mutualism in which both host plant and 
pollinator obtain net benefits. However, such mutualistic interactions 

characterized as having positive feedbacks are theoretically prone to 
instability (Coyte et al., 2015; Sachs and Simms, 2006; Stone, 2020), 
because mutualistic population increase based on symmetric interaction 
between mutualists will lead to over-exploitation of the common 
resource (e.g., flower resources), analogous to resolving the “tragedy of 
the commons” of humans (Hardin, 1969; Rankin et al., 2007).

Notably, nursery pollination mutualisms are characterized by an 
inherently asymmetry in the interactions between the two mutualists are 
inherently asymmetric (Pellmyr and Huth, 1994; Wang et al., 2024). 
One partner is typically larger and in charge of resources (the “host”), 
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and the payoffs to the mutualistic partners are often unequal (Wang 
et al., 2024). In nursery pollination mutualisms (e.g., Yucca tree–Yucca 
moth and fig tree–fig wasp) the host provides its reproductive organs (e. 
g., flowers) as common breeding resources to both mutualists. The 
number of flowers consumed by seeds and pollinator offspring is often 
unequal (Addicott, 1986; Herre and West, 1997; Pellmyr et al., 1996a,b; 
Rosa-Conroy et al., 2019), leading to an asymmetry in benefits to the 
two partners. If the asymmetry in benefits becomes too skewed, the 
mutualism shifts into parasitism (i.e., extreme asymmetry). For 
example, there are several known “cheating” species of fig wasps and 
yucca moths that have evolved from pollinator lineages and still use the 
floral resources but no longer pollinate (Compton et al., 1991; Pellmyr 
et al., 1996; Zhang et al., 2021). However, mechanisms that can mod
erate the asymmetry in benefits can help prevent overexploitation of the 
common resource and thus promote mutualism stability (Pellmyr and 
Huth, 1994; Wang et al., 2011; Wang et al., 2024). One such mechanism 
is intraspecific competition (Bronstein et al., 1998; Craine and Dybzin
ski, 2013; Dunn et al., 2015; Gutiérrez et al., 2020; Huth and Pellmyr, 
1999; Kinoshita et al., 2002; Wang et al., 2009; Zhang et al., 2021), 
because intraspecific competition between host plants or between 
symbionts can reduce their reproductive capacity (Craine and Dybzin
ski, 2013; Douglas, 1981; Huth and Pellmyr, 1999; Wang et al., 2009; 
Wang et al., 2011) and thus may alter the degree of the asymmetric 
benefit allocation between the mutualists, which is likely to impact 
mutualism stability.

The stability of mutualisms is often linked to complex structural re
lationships arising from network structure and trait distributions, which 
can inherently generate competition and asymmetry (Bastolla et al., 
2009; García-Algarra et al., 2014; Gracia-Lázaro et al., 2018; Jousselin 
et al., 2006). While these structures are ecologically critical, they can 
mask the fundamental principles governing system dynamics. To 
address this, we develop a simplified, two-species model by employing 
mean-field assumptions. This model deliberately abstracts from complex 
network architectures and trait distributions to focus on the isolated 
effects of two key biological factors: intraspecific competition and 
asymmetry (modeled as a scalar parameter). This simplification allows 
us to derive analytical solutions for coexistence thresholds and asym
metry tolerance ranges—a significant advantage over more complex 
structural models where such metrics are often intractable. This 
approach achieves a crucial balance between ecological realism and 
analytical tractability, which is often a challenge in mutualism studies. 
This study aims to quantify the boundaries of asymmetry tolerance, 
which are crucial for understanding why some nursery pollination mu
tualisms remain stable while others evolve into parasitic relationships. 
Therefore, this research delves into how the externally imposed asym
metry and intraspecific competition jointly shape the dynamics of these 
mutualistic relationships.

Specifically, this paper will focus on the nursery pollination systems, 
and we here developed a dynamic model for asymmetric mutualistic 
interaction in benefit allocation between plants and their pollinators in 
nursery pollination mutualisms. This model assumes that the plant 
species compete for nutrients, water, sunlight and space (Craine and 
Dybzinski, 2013; Gutiérrez et al., 2020) (i.e., resource competition), and 
that the pollinators compete for access to oviposition sites (Bronstein 
et al., 1998; Dunn et al., 2015; Huth and Pellmyr, 1999; Kinoshita et al., 
2002; Wang et al., 2009). Our aim is to explore how intraspecific 
competition affects the degree of asymmetry in benefits and determine 
the tolerance of mutualistic systems to biased benefit allocation. These 
aspects remain unclear in the biological science community.

2. The models

Let us consider an insect nursery pollination mutualism such as that 
between a monoecious host fig tree (Ficus sp.) and its symbiont polli
nating wasp species (Hymenoptera: Agaonidae). The insect species 
pollinate the plant, and also lay egg in the flowers to nurture their 

offspring (Biere and Honders, 2006; Castro and Hoffmeister, 2020; 
Dufay and Anstett, 2003). We here simply assume that the proportion of 
flowers that the pollinators oviposit into is p (0 < p < 1), and the pro
portion of flowers pollinated is 1 − p. Note that the mutualistic interac
tion occurs through the behavior of the insects (pollination and 
oviposition). Because there exists the trade-off between the available 
time for a pollinator to search for flowers, pollinate, oviposit and 
competitively fight with other conspecific individuals (Dunn et al., 
2015; Miao et al., 2023), the Beddington-DeAngelis functional response 
(hereafter referred to as BD) should be applied to describe the benefit of 
plants and pollinators from the mutualistic interaction (Beddington, 
1975; DeAngelis et al., 1975; Holling, 1959; Zhang et al., 2011). 
Although the BD framework is a classic approach, it remains underu
tilized in mutualistic contexts—nevertheless, it provides a flexible 
framework for capturing saturation effects, as implemented by the first 
fraction in each equation of Eqn. 1 (see Suppl. Materials S1). Thus, the 
population dynamics of both host plants and their pollinators can be 
modeled as the following ordinary differential equations (see Fig. 1 for a 
diagram and Suppl. Materials S1): 

dx
dt

=
εa(1 − p)nxy

1 + au(1 − p)nx + avpnx + wy
(1 − cx) − γx

dy
dt

=
∊apnxy

1 + au(1 − p)nx + avpnx + wy
− δy

(1) 

Here, x and y are the population densities of host plants and pollinators, 
respectively; n denotes the number of efficient flowers (either pollinated 
or oviposited) that an individual plant produces on average. The fraction 

a(1− p)ny
1+au(1− p)nx+avpnx+wy is the rate at which a flower is pollinated, and 

apny
1+au(1− p)nx+avpnx+wy is the rate at which a flower is oviposited, where a 
represents the effort spent by a pollinator searching for flowers, u and v 
are times that a pollinator spends on pollination and oviposition, 
respectively, w is the strength of competition between pollinators (the 
product of the rate of direct interaction between two pollinators and the 
duration of each interaction). The parameter ε is the probability that a 
pollinated flower finally becomes a plant, and ∊ is the probability that a 
pollinator egg successfully translates into an adult female offspring and 
successfully disperses to next a flowering plant. The term (1 − cx) de
scribes density-dependent regulation on population growth in host 

Fig. 1. A schematic diagram for the nursery pollination interaction. Each arrow 
indicates the direction in which an ecological process (pollination, oviposition, 
or recruitment) is underway, and the expression close to the line with the arrow 
shows their occurrence rate per capita. In particular, red and violet respectively 
identify the reproduction process of plants and pollinators. Where the propor
tion of flowers that the pollinators oviposit into is p(0 < p < 1), and the pro
portion of flowers pollinated is 1 − p. n denotes the number of efficient flowers 
(either pollinated or oviposited) that an individual plant produces on average. a 
represents the effort spent by a pollinator searching for flowers, u and v are 
times that a pollinator spends on pollination and oviposition, respectively, w is 
the strength of competition between pollinators. The parameter ε is the prob
ability that a pollinated flower finally becomes a plant, and ∊ is the probability 
that a pollinator egg successfully translates into an adult female offspring and 
successfully disperses to next a flowering plant.
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plants due to resource competition, with competition strength c. The 
parameter γ and δ are the mortality rates of host plants and symbiont 
pollinators, respectively. Notably, the life history of plant and pollinator 
could be different in time scale (e.g., fig tree lives much longer than fig 
wasp). This can be reflected by letting parameter ε and γ are much 
smaller than ∊ and δ in our model (see Table 1).

This model (Eqn.1) integrates three kinds of ecological relationships: 
the nursery pollination mutualism between plants and pollinators, 
competition between pollinators, and resource competition between 
plants. The first two are described by the BD because both of them are 
associated with the behaviors of pollinators and involved in time trade- 
off (Beddington, 1975; DeAngelis et al., 1975), while the third one is 
expressed by the classical form modelling the density-dependent growth 
(i.e., the factor 1 − cx in Eqn.1). In addition, we here define an externally 
imposed asymmetry coefficient 

A = log
(

p
1 − p

)

(2) 

to express the asymmetric degree of the mutualistic relationship. Note 
that the right-hand side of Eqn.2 is mathematically equivalent to the 
logarithmic difference of both species in benefit, i.e., logp − log(1 − p). 
The sign of A indicates whether the mutualism favors pollinator (posi
tive) or plant (negative) over the other, while the degree of deviation 
indicates the level of asymmetry. In particular, A = 0 represents exactly 
equal benefit allocation between the two mutualists. The asymmetry 
parameter A allows for systematic exploration of skewed benefit sce
narios, which is a valuable feature for understanding mutualisms with 
unbalanced interactions. Thus, we can use this model to study how the 
asymmetric degree of the mutualistic relationship impacts the persis
tence and stability of the system, to what extent the mutualistic system 
can tolerate the asymmetric deviation in interacting benefit, and what 
role the intraspecific interactions play in stabilizing and maintaining the 
mutualistic system.

3. Results

3.1. Instability for the basic mutualism

We first consider the case in the absence of resource intraspecific 
competition between plants and intraspecific competition between 
pollinators (i.e., c = 0, w = 0). Here, our model (Eqn. 1) describes a 
basic mutualism between mutualists. The basic mutualism has an 
extinction equilibrium (0,0) and a unique internal equilibrium x* =

δ
an[(∊− δv+δu)p− δu] and y* =

γ[1+au(1− p)nx*+avpnx* ]
εa(1− p)n if p > δu

∊− δv+δu and ∊ > δv, and 
no internal equilibrium otherwise (see Suppl. Materials S3). In terms of 
the definition of asymmetry coefficient (Eqn.2), the condition can be 
rewritten as follows: 

A > log
( δu

∊ − δv

)
with ∊ > δv (3) 

According to the stability criteria of dynamics (Hastings and Gross, 
2012), the internal equilibrium is an unstable saddle point (see empty 
circle in Fig. 2A and Suppl. Materials S3), and extinction equilibrium 
(0,0) is always a locally stable equilibrium for Eqn.1 (see Suppl. Mate
rials S2). There exists a threshold line on the phase plane (see right 
boundary of the cyan region in Fig. 2A), the system (both partners) 
grows infinitely when the density combination of both mutualists is 
above the threshold line, but the system goes extinct when it falls below 
(see Fig. 2A). The inequality (Eqn.3) holds only if the probability that a 
pollinator egg successfully translates into an adult female offspring and 
successfully disperses to next a flowering plant is greater than a polli
nator’s mortality multiplied by the time it takes to lay eggs (i.e., ∊ > δv), 
this shows that the potential development of this symbiotic relationship 
requires relatively high fitness benefits for symbiont pollinators. That is 
to say, pollinators need to oviposit sufficient eggs (p > δu

∊− δv+δu, see the 
vertical black dashed line in Fig. 3A), and each egg may translate into an 
adult female offspring sufficiently and successfully disperses to next a 
flowering plant (∊ > δv) (see Fig. 3A). Moreover, it is noteworthy that 
the basic system is unstable with both species either becoming extinct or 
both growing infinitely depending on mutualist population densities (i. 
e., the system grows infinitely when the density combination of both 
mutualists is above the threshold line, but the system goes extinct when 
it falls below, see Fig. 2A). Thus, intraspecific competition in both mu
tualists may play a role in stabilizing mutualisms.

3.2. Factors stabilizing a nursery plant-pollination mutualism

Here, we assess the role of intraspecific resource competition among 
host plants and competition between pollinators in stabilizing a mutu
alism. First, if c > 0 but w = 0 in Eqn.1 (i.e., there is resource compe
tition among host plants but no competition between pollinators), the 
system has an extinction equilibrium (0,0) and a unique internal equi
librium x* = δ

an[(∊− δv+δu)p− δu ] and y* =
γ[1+au(1− p)nx*+avpnx* ]

εan(1− p)(1− cx*)
if satisfying the 

condition p > anδu+δc
an(∊− δv+δu), ∊ > δv, and 0 < c <

an(∊− δv)
δ , and no internal 

equilibrium otherwise (see Suppl. Materials S4). The condition, using 
the definition of the asymmetry coefficient (Eqn.2), can be rewritten as: 

A > log
(

anδu + δc
an(∊ − δv) − δc

)

with ∊ > δv and 0 < c <
an(∊ − δv)

δ

(4) 

Note that if c = 0, the condition (4) returns to the condition (3). Ac
cording to the stability criteria of dynamics (Hastings and Gross, 2012), 
the internal equilibrium is still an unstable saddle point (see empty circle 
in Fig. 2B and Suppl. Materials S4), and extinction equilibrium (0,0) is 
always a locally stable equilibrium for Eqn.1 (see Suppl. Materials S2). 
Thus, similar to when c = w = 0, the system (both partners) goes extinct 
when the density combination of both mutualists is below a threshold 
line on the phase plane, but grows infinitely when is above the line (see 
Fig. 2B). Notably, in this case, the population of host plants converges to 
1
c when the pollinator population increases infinitely (see vertical red 
dashed line in Fig. 2B and Suppl. Materials S4). A necessary condition 
that the system is able to grow like this is the pollinators produce suf
ficient offspring (p > anδu+δc

an(∊− δv+δu), ∊ > δv and see the vertical black dashed 
line in Fig. 3B), as well as limited competition among host plants 
(c <

an(∊− δv)
δ ). However, comparing condition (4) with (3), it is clear that 

intraspecific competition among host plants (c > 0) elevates the mini
mum requirement of the asymmetry coefficient for the emergence of an 
unstable internal equilibrium (see compare the position of the vertical 
black dashed line in Fig. 3A and Fig. 3B), this means that intraspecific 

Table 1 
Parameter values and their biological significance.

Para. Descriptions Values

a The effort spent by a pollinator searching for flowers 10
ε The probability that a pollinated flower finally becomes a plant 0.00001
∊ The probability that a pollinator egg successfully translates into 

an adult female offspring and successfully disperses to next a 
flowering plant

5

p The proportion of flowers that the pollinators oviposit 0.9
n The number of efficient flowers (either pollinated or oviposited) 

that an individual plant produces on average
500

c The strength of competition between plants 0.1
w The strength of competition between pollinators 0.0001
u The time that a pollinator spends on pollination 0.001
v The time that a pollinator spends on oviposition 0.0015
δ The mortality rates of symbiont pollinators 50
γ The mortality rates of host plants 0.01
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Fig. 2. Population dynamics of plants and pollinators on phase plane respectively when c = w = 0 (A), c > 0 but w = 0 (B), c = 0 but w > 0 (C), and c > 0 and w > 0 
(D). Empty circles denote unstable equilibria, and the solid circle is a stable equilibrium; cyan region indicates extinction region, and right boundary of the cyan 
region represents a threshold line; arrows point out the direction of the trajectories. The vertical red dashed line shows an asymptotical line that trajectories converge 
(B). This figure shows solutions (arrow lines) starting from different initial values, which either tend to extinction (cyan region), infinity (white region in A-C), or 
stability (solid circle in D). Parameters are a = 10, n = 500, u = 0.001, v = 0.0015, ε = 0.00001, ∊ = 5, γ = 0.01, δ = 50, and p = 0.9 for all panels; c = w = 0 for 
(A), c = 0.1 and w = 0 for (B), c = 0 and w = 0.0001 for (C), c = 0.1 and w = 0.0001 for (D).

Fig. 3. Dependence of unique internal equilibrium (unstable) on asymmetry coefficient (defined by Eqn.2) when c = w = 0 (A), c > 0 but w = 0 (B), and c = 0 but 
w > 0 (C). Dashed lines indicate maximum or minimum threshold of asymmetry coefficient that the internal equilibria emerge. That is, the upper and lower bounds 

of the asymmetric range in which the species can grow, i.e., dashed lines: A = log
(

δu
∊− δv

)
for (A), A = log

(
anδu+δc

an(∊− δv)− δc

)

for (B), the upper and lower bounds of the 

inequality (Eqn. 5) for (C). Parameters are a = 10, n = 500, ε = 0.00001, ∊ = 5, u = 0.001, v = 0.0015, γ = 0.01, and δ = 50 for all panels. Parameter c = w = 0 for 
(A), c = 1 and w = 0 for (B), c = 0 and w = 0.01 for (C).
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competition among host plants narrows the range of species that can 
grow. It is noteworthy that intraspecific competition between host 
plants cannot unilaterally stabilize the mutualism; both host plant and 
symbiont pollinator populations either go extinct or grow infinitely 
depending on mutualist population densities.

Second, if c = 0 and w > 0 in Eqn.1 (i.e., including competition 
among pollinators but excluding competition among host plants), the 
system has an extinction equilibrium (0,0) and a unique internal equi
librium x* =

ε(1− p)δ
anε(1− p)(Ωp− δu)− wγ∊p and y* =

γ∊p
anε(1− p)(Ωp− δu)− wγ∊p when 

anε(Ω+δu)− wγ∊−
̅̅̅
Δ

√

2anεΩ < p <
anε(Ω+δu)− wγ∊+

̅̅̅
Δ

√

2anεΩ , ∊>δv, and 0<w<
anε(Ω+δu− 2

̅̅̅̅̅̅
δuΩ

√
)

γ∊ , 

where Ω=∊− δv+δu and Δ=[anε(∊− δv)− wγ∊]2 − 4anεδuwγ∊ (see Suppl. 
Materials S5). In the terminology of the asymmetry coefficient (Eqn.2), 
the condition can be rewritten as: 

log

(
anε(Ω+δu) − wγ∊ −

̅̅̅̅
Δ

√

anε(Ω − δu)+wγ∊+
̅̅̅̅
Δ

√

)

<A< log

(
anε(Ω+δu) − wγ∊+

̅̅̅̅
Δ

√

anε(Ω − δu)+wγ∊ −
̅̅̅̅
Δ

√

)

with ∊> δv and 0<w<
anε
(
Ω+δu − 2

̅̅̅̅̅̅̅̅̅
δuΩ

√ )

γ∊
(5) 

Notably, letting w = 0, condition (5) returns to condition (3). According 
to the stability criteria of dynamics (Hastings and Gross, 2012), the in
ternal equilibrium is still an unstable saddle point (see empty circle in 
Fig. 2C and Suppl. Materials S5), and extinction equilibrium (0,0) is 
always a locally stable equilibrium for Eqn.1 (see Suppl. Materials S2). 
Both mutualists increase infinitely only if the density combination ex
ceeds a threshold line on the phase plane but both become extinct 
otherwise (see Fig. 2C). It is noteworthy that when the system only in
cludes competition between pollinators, the potential growth of both 
mutualists requires the asymmetry coefficient that not only exceeds a 
lower bound but also fails to reach an upper bound (see Eqn. (5) or two 
vertical black dashed lines in Fig. 3C). Therefore, competition among 
pollinators cannot unilaterally stabilize a mutualism; both host plants 
and symbiont pollinators either go extinct or grow infinitely depending 
on mutualist population densities.

Finally, we assess how intraspecific competition among both plants 

and pollinators may interact in contributing to mutualism stability. 
Letting c > 0 and w > 0 in Eqn.1 (i.e., including both resource compe
tition among host plants and competition among pollinators), the system 
has an extinction equilibrium (0,0), and two internal equilibria, and no 
internal equilibrium otherwise (see Fig. 2D and Fig. 4). Because the 
conditions for the existence of internal equilibria are complex but we 
here only provide a brief overview (see Suppl. Materials S6 for full de
tails). The existence of internal equilibria first requires that at least one 
of the parameters c and w is small enough and ∊ > δv; specifically, the 
larger one of these two parameters is, the smaller the other needs to be 
(see the gray region in Fig. 5). On satisfying this condition, a further 
requirement is that the parameter p must be between a lower and an 
upper bound (respectively denoted by pL and pU; see Suppl. Materials S6 
for their specific expressions and the surfaces in Fig. 5 for an intuitive 
presentation). Using the asymmetry coefficient (Eqn.2), this condition 
can be expressed as: 

log
(

pL

1 − pL

)

< A < log
(

pU

1 − pU

)

with ∊ > δv and 0 < w < f(c)
(6) 

where f(c) is a concave decreasing function with regards to parameter c, 
expressing the boundary curve of gray region in Fig. 5. These conditions 
suggest that both mutualists are subject to strong intraspecific compe
tition (see white region, i.e., unsolvable region in Fig. 5), or the extreme 
asymmetry in benefit allocation beyond the bounds (i.e., asymmetric 
intervals where species cannot coexist, see Fig. 4), which can result in 
the mutualistic system going extinct (because of no internal equilibrium 
in these cases). Otherwise, the mutualism has two internal equilibria: 
the larger one is locally stable (see solid circle in Fig. 2D), and the 
smaller one is an unstable saddle point (see empty circle in Fig. 2D), 
forming a bistable situation (Fig. 2D, see Suppl. Materials S6; note that 
extinction equilibrium is always stable, see Suppl. Materials S2). That is 
to say, the survival of species is not possible in smaller or extinction 
equilibrium, whereas species can thrive in larger and stable equilibrium 
(see solid circle in Fig. 2D). That is, the two mutualists can coexist stably 
only if initial density combinations are beyond a threshold line on the 

Fig. 4. Internal equilibria of plant-pollinator system (Eqn.1) when both the species are subject to intraspecific competition, expressed as a function with regards to 
asymmetry coefficient. Solid lines represent stable equilibria, and dashed lines unstable ones. The upper and lower bounds of the inequality (Eqn. 6) are the upper 
and lower bounds of the asymmetric range of species coexistence. Parameters are a = 10, n = 500, u = 0.001, v = 0.0015, ε = 0.00001, ∊ = 5, γ = 0.01, δ = 50.
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phase plane (see right boundary of the cyan region in Fig. 2D), otherwise 
they die out. Notably, only in the case of both mutualists being subject to 
intraspecific competition, it is possible that the mutualism has a stable 
internal equilibrium (see Fig. 2D and gray region in Fig. 5), otherwise it 
either goes extinct or grows infinitely (see Fig. 2A-C), whilst strong 
competition in any one species can potentially trigger the system to go 
extinct (see white region in Fig. 5). This suggests that moderate levels of 
intraspecific competition within each mutualist species may play a role 
in stabilizing the mutualism.

It is noteworthy that our ‘basic’ mutualism is unstable, with either 
both mutualists going extinct or growing infinitely (see Fig. 2A) 
depending on mutualists population densities. Furthermore, neither 
resource competition between host plants nor competition between 
symbiont pollinators can unilaterally stabilize the mutualism (see 
Fig. 2B, C), with either both mutualists going extinct or growing infi
nitely depending on mutualists population densities. Only when both 
mutualists are subject to intraspecific competition can the mutualism be 
stabilized by the avoidance of infinite growth (see Fig. 2D).

3.3. System tolerance for asymmetric benefits

Our previous models show that a ‘basic’ mutualism is unstable, and 
intraspecific competition of either host plants or symbiont pollinators 
alone cannot stabilize the system. Stable coexistence occurs only when 
both mutualists are subject to intraspecific competition (see Fig. 2). This 
also requires an asymmetry coefficient exceeding a lower bound but 
below an upper bound (see Eqn. (6) and Fig. 4). The interval range of the 
asymmetry coefficient (namely the tolerance of the mutualism to the 
degree of asymmetric benefits between host plants and symbionts) 
largely depends on the strength of intraspecific competition in each 
mutualist (i.e., the size of parameters c and w). When intraspecific 

competition in either host plants or symbiont pollinators gradually in
creases, the range of asymmetric coefficient allowing mutualism sta
bility will narrow (see Fig. 4) and even disappear when competition is 
intense (see white region in Fig. 5). Fig. 5 further illustrates that the 
color gradient quantifies how the tolerable asymmetry coefficient A 
varies with the competition strengths. Low asymmetry (blue surface) 
expands the viable parameter space, whereas high asymmetry (yellow 
surface) severely constrains the possibility of coexistence. In particular, 
increased intraspecific competition in host plants results in the lower 
bound of the range of the asymmetry coefficient to increase significantly 
(move rightwards, i.e., benefits to plants are reduced), whilst increased 
intraspecific competition among symbiont pollinators results in the 
range upper bound to decline significantly (move leftwards, i.e., benefits 
to pollinators are also reduced) (see Fig. 4). That is to say, when the 
intraspecific competition within one of species moderately strengthens, 
the range of asymmetric degree that interacting species can tolerate and 
persist will be compressed from the side beneficial for this species, which 
suggests that the partner species would gain relatively more benefit 
allocation in the process of mutualistic interaction. Additionally, 
increasing the asymmetry coefficient (i.e., when benefits tend to be 
gained by pollinators), the stable equilibrium size of the pollinator 
population increases sharply, but that of host plant population remains 
almost unchanged (see solid lines in Fig. 4). On the contrary, the un
stable equilibrium size of the host plant population decreases as the 
asymmetry coefficient increases, but that of the symbiont pollinator 
population remains almost unchanged (see dashed lines in Fig. 4). These 
results suggest that, if a plant-pollinator mutualism evolves initially with 
few host plants, these plants need to offer high benefits in order to 
attract sufficient pollinators. After the mutualism is established, the 
allocation of benefits becomes more biased to host plants due to 
enhancing intraspecific competition among pollinators resulting from 
increased population density. Therefore, intraspecific competition 
within both mutualists can stabilize a mutualism as long as the degree of 
asymmetric benefits is kept between the lower and upper bounds, and 
further significantly impacts the range of tolerance that both mutualists 
can coexist stably by adjusting the position of lower and upper bounds. 
However, strong intraspecific competition results in the disappearance 
of the range of tolerance and population extinction (see white region in 
Fig. 5). Intraspecific competition can therefore be a ‘double-edged 
sword’, which adds to our understanding of mutualisms.

3.4. Empirical evidences for theoretical predictions

To validate our model, we here compiled data on 64 different plants 
from five nursery species, such as figs (Anstett et al., 1996; Herre, 1989; 
Herre and West, 1997; Wang and Wang, 2022), yuccas (Pellmyr et al., 
2020), senita cactus (Pellmyr et al., 2020), leafflowers (Pellmyr et al., 
2020), trollius europaeus (Pellmyr, 1989). Each data point includes the 
average number of seeds and pollinators’ eggs in per flower or fruit of 
each population (see Table S1 in Suppl. Materials S7). Here we assume 
that the average total number of seeds and eggs denotes n in the model. 
The proportion of eggs is p in the model (p =

the average number of eggs
the average total number of seeds and eggs). The asymmetry coefficient (A) of each 
data can be calculated by bringing p into the Eqn. (2). Statistical analyses 
show a significant asymmetry in benefit between the host plants and 
pollinators (see Fig. 6A), with more plant seeds relative to the number of 
pollinators’ eggs (t-test, seeds and eggs: P < 0.001). Notably, most of 
asymmetry coefficients are smaller than zero (90.62 % with mean 
− 3.9573), further suggesting that the benefits are skewed towards the 
host plants in the nursery mutualisms (see Fig. 6B). According to the 
results from our model, such a deviation in benefit to host plants implies 
strong competition within pollinators (c = 0.02, w = 8 in Fig. 6C). 
Furthermore, these experimental data can be covered by the predictions 
of the model (see Fig. 6C). This shows that our model, despite simplicity, 
captures the essential aspects of the nursery pollination mutualisms. It 

Fig. 5. Effect of intraspecific competition on the range of asymmetry coeffi
cient emerging internal equilibria. The color gradient represents the magnitude 
of the asymmetry coefficient A (see Eqn. (2)) that permits stable coexistence, 
ranging from A ≈ − 4.9 (blue) to A ≈ 12.7 (yellow). Surface above white curve 
is the upper limit of the range, and surface below them is its lower limit. Gray 
region (coexistence region) on floor plane indicates the projection of the sur
faces, representing the system can persist potentially, whereas white region 
(extinction region) on the floor plane indicates parameter combinations (w, c) 
where no coexistence is possible for any value of A. Parameters are a = 10, n =

300, ε = 0.00001, ∊ = 5, γ = 0.01, δ = 50; u = 0.001 and v = 0.0015.
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should be noted here that the comparison between this model and the 
empirical data is qualitative and static. It successfully captured static 
patterns such as the uneven distribution of benefits, but it did not fit or 
contrast time series, stability patterns, dynamic trajectories, or bifur
cation structures with real data.

4. Discussion

The stability and resource allocation between the mutualists in 
nursery mutualisms have received much past attention (Dunn, 2020; 
Kulkarni et al., 2024; Li et al., 2016; Pellmyr and Huth, 1994). Some 
negative-feedback interactions such as competition (Coyte et al., 2015; 
Stone, 2020; Thompson, 2003), predation (Heithaus et al., 1980; Kawata 
and Takimoto, 2022; Thompson, 2003), parasitism (Gutiérrez et al., 
2020; Little, 2010), and host sanctions (Jandér et al., 2012; West et al., 
2002), have been shown to play a role in stabilizing some mutualisms. In 
host sanctions, the host plant allocates more resources to cooperative 
pollinators than to individuals that do not pollinate (cheaters) 
(Frederickson, 2013; Jandér and Herre, 2016; Jandér et al., 2012; Wang 
et al., 2014). The above literatures present more experimental analysis 
and does not fundamentally understand how negative feedback affects 
stability and asymmetric benefit allocations. This article will theoreti
cally or fundamentally address these issues. Our model here revealed: 
first, the mutualistic system can be stable only if the two species are 
subject to intraspecific competition; second, intraspecific competition 
profoundly impacts the range of asymmetry in benefit allocation that 
mutualistic system can tolerate; third, the degree of both intraspecific 
competition and asymmetry in benefit allocation must be moderate in 
order to maintain the long-term stability of the mutualistic system. 
Moreover, we confirmed the consistency between theoretical pre
dictions and empirical data, indicating the effectiveness of the model in 
predicting the range of tolerance in nursery pollination systems. In 
addition, we have derived the analytical coexistence conditions (see 
Suppl. Materials for details), revealing the precise mechanism behind 
them. This goes beyond the limitations of numerical simulations, not 
only enabling the prediction of system coexistence but also providing in- 
depth mechanistic explanations, thereby significantly enhancing the 
interpretability and pedagogical value.

Intraspecific competition has been shown to affect as diverse areas as 
niche expansion (Jones and Post, 2016), species diffusion (Grabowska 
et al., 2019), resource use diversity (Svanbck and Bolnick, 2007), life- 
history evolution (Gribbin and Thompson, 1990; Kleunen et al., 
2001), soil nutrient improvement (Wu et al., 2023), intraspecific vari
ation (Bolnick, 2004; Roughgarden, 1972), trophic polymorphism 
(Smith and Skulason, 1996), and speciation (Dieckmann et al., 2004; 
Rosenzweig, 1978). We here further show the role of intraspecific 

competition in stabilizing mutualism. We obtained that the mutualistic 
system cannot be stabilized only by the interspecific reciprocity between 
the mutualists (see Fig. 2A), nor by only resource competition among 
host plants or by only competition among pollinators (see Fig. 2B, C) −
the mutualistic system can be stable only if both mutualists are subject to 
intraspecific competition (see Fig. 2D). Intraspecific competition can 
only stabilize the mutualistic system when the degree of bias in the 
benefit allocation is moderate (within the upper and lower bounds 
calculated in Eqn. (6)) – more extreme asymmetry in the benefit allo
cation beyond these bounds results in species extinction, in fact, some 
species only acquire host resources without returning them, which can 
lead to extreme asymmetry and ultimately result in species extinction, 
for example, the cheater bees obtain floral nectar without pollinating 
plants (Maloof and Inouye, 2000; Sakhalkar et al., 2023); some fig wasps 
only oviposit in the syconia of figs rarely providing pollination service 
for figs (Zhang et al., 2021; Zhang et al., 2019). Therefore, mutualism 
can be stabilized only when both mutualists are subject to intraspecific 
competition and the degree of asymmetry in benefit allocation is 
moderate.

Furthermore, increased intraspecific competition within any one 
species, the range of asymmetry in benefit allocation that benefits this 
species is compressed (see the upper (lower) bound moves to the left 
(right) in Fig. 4), makes its partner gain more benefit allocation. For 
example, increased competition among pollinating fig wasps/yucca 
moth resulted in fewer eggs laid per pollinator (Huth and Pellmyr, 1999; 
Wang et al., 2009; Wang et al., 2011) (i.e., the upper bound moves to the 
left in Fig. 4), but can increase pollinators dispersal, which to some 
extent improves pollination efficiency and promotes pollen transmission 
(Moore et al., 2005), or may lead to them visiting flowers more 
frequently, thereby increasing the chances of pollination. Similarly, 
increased competition between plants can lead to an uneven allocation 
of resources such as light, water, and nutrients, thereby inhibiting the 
reproduction of plants (Craine and Dybzinski, 2013; Douglas, 1981) (i. 
e., the lower bound moves to the right in Fig. 4), the study suggests that 
pollinators have a clear preference for plants when foraging, as the ab
solute resource density of plants makes them more efficient foraging 
targets, therefore, it can be speculated that competition between plants 
may encourage them to better utilize these advantages to attract polli
nators, thereby providing them with more food resources and increasing 
their reproductive opportunities (Donkersley, 2019). Anyway, increased 
intraspecific competition within one of the mutualist species narrows 
the range of asymmetric bias in benefit allocation. But too strong 
intraspecific competition results in the species utilizing very little or no 
resources, leading to costs exceeding the basic growth needs, this leads 
to extreme asymmetric benefits so that the system collapses (see white 
region in Fig. 5). Therefore, intraspecific competition is closely related 

Fig. 6. We compiled data on 64 different plants from five nursery species, and each data point includes the average number of seeds and pollinators’ eggs in per 
flower or fruit of each population (see Table S1 in Suppl. Materials S7). Probability density of proportion of seeds or eggs for (A); Probability density of Asymmetry 
coefficients (B); According to Eqn. (6) in the text, the tolerance range (cyan region) can be calculated, see (C); the average total number of seeds and eggs within per 
flower or fruit is equal to n in model, see (C). The cyan region represents the coexistence region, the white region represents the extinction region, and red solid dots 
represent 64 data points, see (C). Parameters are a = 10, u = 0.00001, v = 0.000001, ε = 0.05, ∊ = 500, γ = 0.01, δ = 27, c = 0.02, w = 8 for (C).
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to the degree of asymmetry, influencing the stability of nursery systems. 
For mutualistic systems to remain stable, this competition must be kept 
at a moderate level.

Additionally, stable region predicted by the relatively strong 
competition within pollinators covers all empirical data (see cyan region 
in Fig. 6C). Statistical analysis suggests that benefits are skewed towards 
the host plants, which is consistent with the theoretical result that 
relatively strong intraspecific competition within pollinators results in 
the benefits being tilted towards host plants (comparison between Fig. 4
and Fig. 6B). Therefore, in nursery systems, it is common for intraspe
cific competition between pollinators to be relatively strong compared 
to intraspecific competition among host plants. Anyway, differences in 
intraspecific competition between mutualistic species lead to asym
metric benefits tilted toward partner species. In addition, there is a point 
that cannot provide a scientific explanation: why there is a negative 
correlation between the degree of asymmetric bias (A in Eqn. 2) and 
total resources (n in Eqn. 1) in nursery mutualisms? (see Fig. 6C) we 
speculate that this may be related to other ecological relationships (not 
shown in model). Additionally, it is noteworthy that we found it suffi
cient to validate the model using data on 64 different plants from five 
nursery species (see Fig. 6C), because adjusting the parameter values in 
the model appropriately can obtain a stable region covering data from 
different types of nursery systems, and the result obtained must be 
similar to Fig. 6C. This indicates that the generalization ability and 
parametric flexibility of the model are sufficient to explain the effects of 
intraspecific competition and asymmetric benefits on the stability of 
nursery mutualisms.

In mutualism research, studies have explored various mechanisms 
determining species coexistence and stability. García-Algarra et al. 
(2014) introduced an implicit form of mutual regulation within a lo
gistic framework, avoiding singularities and offering an integrated 
interpretation of competition (García-Algarra et al., 2014); Certain 
network architectures (e.g., nestedness or modularity) can effectively 
reduce competition and enhance coexistence (Bastolla et al., 2009). 
Importantly, competition can arise from topological overlap in bipartite 
mutualistic networks, with Gracia-Lázaro et al. (2018) demonstrating 
that such structure-based competition can lead to biodiversity loss at 
high mutualism strength (Gracia-Lázaro et al., 2018). Other research has 
modeled competition through externally imposed parameters, as seen in 
Fishman and Hadany suggested that pollinator efficiency requires a 
supercritical value, and stability stems from a balance between reci
procity and plant mortality (Fishman and Hadany, 2010), and Johnson 
and Amarasekare found that competition can stabilize systems within 
the same species (Johnson and Amarasekare, 2013). Our study similarly 
employs an externally imposed scalar parameter to model competition 
intensity, finding that system stability requires both species to experi
ence intraspecific competition.

A key distinction in our approach concerns how asymmetry is 
modeled. Although we impose asymmetry externally through a scalar 
parameter, many empirical systems exhibit structurally derived asym
metries. These emerge from network architecture and trait distributions 
(e.g., specialization or degree heterogeneity). Such structural factors can 
create asymmetric tolerance ranges (Bastolla et al., 2009), and stabilize 
systems through trait complementarity (García-Algarra et al., 2014; 
Jousselin et al., 2006; Segar et al., 2013; Wang et al., 2024). Instead of 
relying on complex structural models, our study constructed, using the 
mean-field formula, a simplified two-species model. Consequently, we 
were able to derive analytical solutions for the tolerance range and 
coexistence threshold—a feat that is typically unattainable with more 
complex network or trait-structured models (Bastolla et al., 2009; Gar
cía-Algarra et al., 2014; Gracia-Lázaro et al., 2018; Jousselin et al., 
2006). Thus, our model balances ecological realism and analytical 
tractability, overcoming the limitations of complex, high-dimensional 
network models.

In conclusion, intraspecific competition within host plants and 
symbiont pollinators can stabilize mutualism as long as the degree of 

asymmetry in benefit allocation is kept between the upper and lower 
bounds that the mutualistic system can tolerate, but extreme asymmetry 
in benefit allocation beyond these bounds results in species extinction. 
Moderate intraspecific competition makes partner species get relatively 
more asymmetric benefit allocation. Moreover, as intraspecific compe
tition increases, the range of tolerance narrows and even fades away 
with strong competition within both mutualistic species. Therefore, the 
degree of intraspecific competition and asymmetry in benefit allocation 
between mutualists must be moderate in order for the mutualistic sys
tem to be stable in the long run. The agreement of empirical data to 
theoretical predictions suggests model reliability. For nursery pollina
tion mutualisms, this study innovates by clarifying two critical points. 
We demonstrate that intraspecific competition is essential for curbing 
unbounded population growth and maintaining system stability. 
Furthermore, we define the tolerance range of benefit asymmetry and 
elucidate how this range is influenced by competition. These findings 
link theoretical models more closely with empirical data observations, 
providing new dimensions for understanding the universal mechanisms 
of mutualistic stability. (The codes for all the Figures are described in 
Suppl. Materials S8).
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