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A B S T R A C T

In this paper, we propose a class of resource-based growth models with delays in algal digestion and detritus-
nutrient recycling, and investigate the model based on two different survival scenarios of algae during nutrient
transformation. One scenario considers the survival rates of algae during nutrient uptake, while the other
overlooks this factor. We find a significant difference in the estimated time window required for clearing the
lake of detritus between the two models, and both are longer compared to the model without algal digestion
delay. Moreover, the internal equilibria of both scenarios undergo an infinite number of stability switches,
however, the key parameters leading to these stability switches differ. Notably, in the model accounting for
algal death during nutrient uptake, there exists a safe zone where the stability of the internal equilibrium
remains unaffected by the detritus-nutrient recycling delay, provided that the algal digestion delay falls within
a suitable range. The findings derived from this study can provide valuable insights for the development of
efficacious approaches in safeguarding the ecological integrity, managing algal blooms, facilitating sustainable
fishery practices, and fostering favorable economic outcomes within the realm of water resources advancement.
1. Introduction

Algal bloom refers to the harmful ecological phenomenon caused
by the massive reproduction and accumulation of phytoplankton in
waterbodies. For example, the increase of dinoflagellate biomass may
discolor the water and destroy the marine environment, which is often
called red-tide disaster, while diatoms, most of which have spines, can
clog and damage the gills of fish, leading to death (Kent et al., 1995;
Sanseverino et al., 2016; Sellner et al., 2003). In fact, many algae can
produce toxins, which will accumulate in shellfish and filter-feeding
bivalves, seriously threatening the survival of the aquatic organisms.
Consumption of these toxic aquatic products may cause damage to
different systems of the human body, such as nervous and intestinal
system (Christian and Luckas, 2008). In addition, in the late stage of
the blooms, a large number of algae die and become debris under the
action of bacterial decomposition. This process would consume a large
amount of oxygen, which would lead to the anoxic death of marine
organisms, resulting in the loss of fishery economy (Berdalet et al.,
2016; Jeppesen et al., 2012). At present, blooms are occurring more
frequently and have become a global disaster. There are many factors
that affect the formation of algal bloom, such as appropriate tempera-
ture, high PH value, long time of light, low salinity and other natural
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conditions. Meanwhile, eutrophication of water and global warming
caused by human activities also accelerate its occurrence. With the
rapid development of modern chemical and agricultural production, a
large amount of industrial and agricultural wastewater and domestic
sewage is discharged into the sea, which leads to the increase of
nutrients such as nitrogen and phosphorus, trace elements such as iron
and manganese and organic compounds in the water, and promotes the
mass reproduction of algae (Conley et al., 2009; William et al., 2008).

In recent decades, scientists have developed many ways to control
and prevent blooms (Balaji-Prasath et al., 2022). The use of algaecides
is one of the effective ways to mitigate and control harmful algal
blooms, but due to its toxicity to other aquatic organisms, this method
also has certain limitations (Anderson, 2009; Ebenezer et al., 2014;
Grattan et al., 2016). There are also biological methods to kill algae
directly or indirectly by using natural enemies and some microbial
metabolites. These methods can ensure environmental safety but often
take a long time to achieve inhibition, and it is difficult to cultivate a
sufficient number of natural enemies, resulting in limited ecosystem-
scale applications (Xiao et al., 2019; Zhang et al., 2018). In addition,
ultrasonic vibrations, centrifugal separators and ultraviolet radiation
can also be used to remove harmful algae, which are typically effective
304-3800/© 2024 Published by Elsevier B.V.
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for small blooms but come with higher costs (Alam et al., 2001;
Dehghani, 2016). In general, the treatment of blooms has received
great attention and each method has its advantages. Compared with
governance methods, predicting the trend of nutrient load changes in
response to water blooms, evaluating the impact of water blooms on
ecosystems, and developing mitigation strategies are equally important
for effectively preventing the occurrence of water blooms.

At present, many mathematical models have been developed to
tease out the dynamics behind observations, simulate and predict al-
gal bloom events, and reduce their impact on ecology and fishery
economy (Jøorgensen, 1976; Voinov and Tonkikh, 1987; Wong et al.,
2007). O’Brien (1974) proposed one of the first successful models
to describe the dynamic characteristics of nutrient phytoplankton in-
teractions, indicating that the mortality rate of phytoplankton is an
important influence on the steady state nutrient concentration and
population density. Huppert et al. (2005a,b) described the bottom-up
nutrient phytoplankton models to help understand the dynamics of
seasonally recurring algae blooms. Chen et al. (2015) established a
nutrient phytoplankton model that combines the comprehensive effects
of temperature and light, and proved that reducing nutrient load is an
effective way to prevent the occurrence of algal bloom. A nonlinear
model for the algal bloom in a lake caused by excessive nutrient flow
in domestic drainage and farmland runoff, was studied by Shukla et al.
(2008), shown that as the rate of the cumulative nutrient discharge
increases, the equilibrium level of dissolved oxygen decreases, but algal
population and detritus increases, which will ultimately lead to algal
bloom and economic losses in the fish industry. Zhao et al. (2020)
investigated a stochastic algal growth model with the explicit incor-
poration of season-dependent light and nutrient availability, obtaining
the threshold for determining the persistence and extinction of algae.

Some models specifically address the impact of time delay on algal
blooms. Mukhopadhyay et al. (1998) considered the maturity time
of the new born cells and proposed a delay differential equation of
plankton growth with competition and allelopathy. The model shows
a stable limit cycle oscillation when the allelopathic effect is of a
stimulatory nature. On the basis of Mukhopadhyay‘s model, Chen
et al. (2007) analyzed a modified delay differential equation for the
growth of n-species of plankton and obtained a set of delay-dependent
condition which ensures the existence of at least one positive periodic
solution of the system. Chattopadhyay et al. (2002) discussed a delayed
phytoplankton–zooplankton model with toxic substances and explained
the cyclic nature of blooms by analyzing three types of distribution
of toxic substances. Misra et al. (2011) modified the model in Shukla
et al. (2008) by increasing the delay in conversion of detritus into nutri-
ents. They discovered the stable switching phenomenon of equilibrium
and used time delay as a parameter to obtain the threshold for the
possibility of large-scale fish population death.

The inclusion of time delays, such as the time delay from nutrient
absorption to algal growth and the time delay from detritus conver-
sion to nutrients, is crucial in algal modeling, akin to the predator
maturation delay in predator–prey interactions (see, e.g., Wang et al.,
2019). However, existing literature predominantly focuses on only one
of these delays in the system. In light of this gap, our study aims to
address this limitation by incorporating the digestion delay of algae
into the model in Misra et al. (2011), resulting in the establishment
of a class of resource-based algal growth models. We investigate the
impact of these two delays on the system and simultaneously consider
two scenarios, namely the presence or absence of algal death during
nutrient transformation, with a particular focus on determining the
optimal time window for detritus removal in a lake to ensure fish sur-
vival. Additionally, we explore the effects of controlling eutrophication
on algae dynamics and fish survival, offering valuable insights and
recommendations for algal bloom management.

The rest of the paper is organized as follows. In Section 2, we formu-
late the model with algal digestion delay and detritus-nutrient recycling
2

delay, and introduce two different scenarios related to the mortality
rate of algae in the process of nutrient transformation. In sections 3,
we study the stability and bifurcation properties of the model, and
present some simplified results of the degenerate model. In Section 4,
we conduct numerical simulations for the two scenarios introduced in
Section 2, respectively. Finally, we discuss the relationship between
these two scenarios, compare them with existing results, and propose
strategies for adapting to ensure fish survival in Section 5.

2. Mathematical models with two delays

Here, we consider a system with four variables, namely nutrient
concentration 𝑛(𝑡), algal population density 𝑎(𝑡), detritus density 𝑆(𝑡)
and dissolved oxygen concentration 𝐶(𝑡) in a lake. We make the fol-
lowing basic assumptions: (i) Nutrients from agriculture and industry
are supplied to the water body at a constant accumulation rate 𝑞
and deplete with the rate 𝛼0𝑛(𝑡) due to natural factors. (ii) The rate
t which nutrients are lost through algae is directly proportional to
he Monod interaction between the algae density and nutrient con-
entration, i.e., 𝛽1𝑛𝑎∕(𝛽12 + 𝛽11𝑛), where 𝛽1, 𝛽11, 𝛽12 are the Monod
onstants, with 𝛽1∕𝛽11 being the maximal growth rate and 𝛽12∕𝛽11 the
alf-saturation coefficient. It takes an average of 𝜏2 time for nutrients
o convert into algal biomass and the conversion rate is 𝜃1. (iii) The
ortality rate of algae is 𝑑 ≥ 0 within the average nutrient transfor-
ation period 𝜏2, then the survival rate of algae during this process is

−𝑑𝜏2 . (iv) The depletion of algae is jointly determined by natural death
t the rate of 𝛼1𝑎(𝑡) and intraspecific competition described by 𝛽10𝑎2(𝑡);
v) Detritus is formed by the death of algae at a production rate of
1𝛼1𝑎(𝑡)+𝜋2𝛽10𝑎2(𝑡). It can be converted into nutrients through bacterial
ecomposition at a ratio of 𝛿𝑆(𝑡). This process takes an average of 𝜏1
ime to complete, and the proportionality constant for the formation of
utrients from detritus is 𝜋. (vi) The concentration of dissolved oxygen
n water increases due to the exchange of oxygen between water and
ir at the rate of 𝑞𝑐 and the photosynthesis of algae at the rate of
11𝑎(𝑡), while decreases due to the natural factor at the rate of 𝛼2𝐶(𝑡)
nd decomposition of detritus by bacteria at the rate of 𝛿1𝑆(𝑡). Then,
e establish the following resource-based growth models with algal
igestion delay and detritus-nutrient recycling delay:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

d𝑛(𝑡)
d𝑡

= 𝑞 − 𝛼0𝑛(𝑡) −
𝛽1𝑛(𝑡)𝑎(𝑡)

𝛽12 + 𝛽11𝑛(𝑡)
+ 𝜋𝛿𝑆(𝑡 − 𝜏1),

d𝑎(𝑡)
d𝑡

=
𝑒−𝑑𝜏2𝜃1𝛽1𝑛(𝑡 − 𝜏2)𝑎(𝑡 − 𝜏2)

𝛽12 + 𝛽11𝑛(𝑡 − 𝜏2)
− 𝛼1𝑎(𝑡) − 𝛽10𝑎

2(𝑡),

d𝑆(𝑡)
d𝑡

= 𝜋1𝛼1𝑎(𝑡) + 𝜋2𝛽10𝑎
2(𝑡) − 𝛿𝑆(𝑡),

d𝐶(𝑡)
d𝑡

= 𝑞𝑐 − 𝛼2𝐶(𝑡) + 𝜆11𝑎(𝑡) − 𝛿1𝑆(𝑡),

(1)

here 𝑛(𝜃) = 𝑛0 > 0, 𝑎(𝜃) = 𝑎0 ≥ 0, 𝑆(𝜃) = 𝑆0 ≥ 0 for 𝜃 ∈ [−𝜏, 0],
= max{𝜏1, 𝜏2}, 𝐶(0) = 𝐶0 > 0. The descriptions of all the variables

nd parameters are given in Table 1. To make the model reasonable,
he conversion rates need to meet 0 < 𝜋, 𝜋1, 𝜋2 < 1. Meanwhile,
ince the growth rate of algae should be positive, it is assumed that
1𝛽1 − 𝛽11𝛼1 > 0.

In fact, the possibility of algal mortality during the absorption and
igestion of nutrients may vary depending on the algae species and
nvironmental factors. Therefore, in this article, we will consider two
cenarios:

(1) No algal death during nutrient transformation process, i.e., 𝑑 =
0.
This is because some algae, such as diatoms, can maximize
the utilization of nutrients by compressing and recycling nu-
trient containing vesicles (known as food vesicles), and they
also have hard cell walls that provide a certain degree of pro-
tection for themselves, making them more adaptable to the
environment (Sabater, 2009). Therefore, when the environment
is relatively suitable, they are less likely to die in the process of
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Table 1
Variables and parameters of model (1).

Variable or parameter Description

𝑛(𝑡) concentration of nutrients
𝑎(𝑡) density of algae
𝑆(𝑡) density of detritus
𝐶(𝑡) concentration of dissolved oxygen in a lake
𝑞 input rate of nutrients in a lake
𝛼0 natural loss rate of nutrients in a lake
𝛽1 Monod constant
𝛽12 Monod constant
𝛽11 Monod constant
𝜋 proportionality constant for the formation of nutrients from detritus
𝛿 decomposition rate of detritus due to the bacterial pool
𝜃1 proportional coefficient of algal growth rate
𝜏1 detritus-nutrient recycling delay
𝜏2 delay from nutrient uptake to algae growth
𝛼1 natural death rate of algae
𝛽10 death rate due to crowding of algae with respect to the aquatic habitat
𝜋1 proportional constant of production rate of detritus due to natural death of algae
𝜋2 proportional constant of production rate of detritus due to intraspecific competition of algae
𝑞𝑐 growth rate of dissolved oxygen through surface re-aeration
𝛼2 natural depletion rate of dissolved oxygen in a lake
𝜆11 growth rate of dissolved oxygen due to photosynthesis by algae
𝛿1 depletion rate of dissolved oxygen by transformation of detritus into nutrients
𝑑 average death rate of algea in the process of nutrient uptake and growth
a

3
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absorbing and digesting nutrients. In this case, we can assume
that the nutrients absorbed by algae are completely converted
into their biomass, and take 𝑑 = 0, then model (1) will degener-
ate into a two-delay model with delay-independent parameters.
We will refer to the model corresponding to this situation as a
degenerate model.

(2) Incorporating algal mortality during nutrient transformation
process, i.e., 𝑑 > 0.
In addition to the species of algae, environmental factors also
have a significant impact on the growth and metabolism of
algae. Under some harsh conditions, such as rapid or significant
temperature changes, the cell membrane structure of algae can
be disrupted, affecting the synthesis of intracellular proteins and
the transportation of active enzymes and nutrients, resulting in
the death of algae in the process of absorbing and digesting
nutrients (Zachleder et al., 2016). Therefore, in this case, we
need to consider the mortality of algae during the nutrient
transformation process, which requires the parameter to meet
𝑑 > 0. Then model (1) is actually a two-delay model with
delay-dependent parameters, and we call it the non-degenerate
model.

As we will see below, there are significant differences between the
two scenarios for determining the optimal time window for removing
lake debris.

3. Dynamic analysis for the algal growth model

In this section, we will discuss the stability and bifurcation of
model (1), and these results are applicable to both degenerate and
non-degenerate models. Comparing the two models, the degenerate
model is a model with coefficients independent of time delay, and the
corresponding analysis will be more concise. We will summarize some
simplified results about the degenerate model at the end of this section.

3.1. Equilibrium analysis

The model (1) has two non-negative equilibria. One is the trivial
equilibrium 0(𝑞∕𝛼0, 0, 0, 𝑞𝑐∕𝛼2), which always exists, and the other
is the interior equilibrium 1(𝑛0, 𝑎0, 𝑆0, 𝐶0), which exists under the
following conditions:

H1) (𝑒−𝑑𝜏2𝜃 𝛽 − 𝛽 𝛼 )𝑞 − 𝛽 𝛼 𝛼 > 0, 𝑞 + 𝜆 𝑎 − 𝛿 𝑆 > 0.
3

1 1 11 1 12 0 1 𝑐 11 0 1 0
Here 𝑎0 ∈
(

0, (𝑒−𝑑𝜏2𝜃1𝛽1 − 𝛽11𝛼1)∕𝛽10𝛽11
)

is the zero of the following
function:

𝐺(𝑎) =
[

(𝜋𝜋2 −
1

𝑒−𝑑𝜏2𝜃1
)𝛽10𝑎2 + (𝜋𝜋1 −

1
𝑒−𝑑𝜏2𝜃1

)𝛼1𝑎 + 𝑞
]

× [(𝑒−𝑑𝜏2𝜃1𝛽1 − 𝛽11𝛼1) − 𝛽10𝛽11𝑎] − 𝛽12𝛼0(𝛼1 + 𝛽10𝑎), (2)

nd
𝑛0 = 𝛽12(𝛼1 + 𝛽10𝑎0)∕[(𝑒−𝑑𝜏2𝜃1𝛽1 − 𝛽11𝛼1) − 𝛽10𝛽11𝑎0],

𝑆0 =
𝜋1𝛼1𝑎0 + 𝜋2𝛽10𝑎20

𝛿
,

𝐶0 =
1
𝛼2

(𝑞𝑐 + 𝜆11𝑎0 − 𝛿1𝑆0).

We can notice that when 𝑑 > 0, the interior equilibrium 1 depends
on the algae digestion delay 𝜏2, and exists only when 𝜏2 is not too
large, which is in line with the biological law that the average life
cycle of general algae is not long. In addition, when 𝜏2 = 0 or 𝑑 = 0,
the nontrivial equilibrium 1 degenerates to the case without time
delays (Shukla et al., 2008). For the sake of subsequent analysis, we
denote 1(𝑛0, 𝑎0, 𝑆0, 𝐶0) by 1(𝑛0(𝜏2), 𝑎0(𝜏2), 𝑆0(𝜏2), 𝐶0(𝜏2)).

.2. Bifurcation analysis

The stability of these two non-negative equilibria for (𝜏1, 𝜏2) = (0, 0)
ave been studied in Shukla et al. (2008), as stated in the following
emma:

emma 3.1. (Shukla et al., 2008) Assume that (𝐻1) holds, then for
𝜏1, 𝜏2) = (0, 0), the boundary equilibrium 0 is unstable and the internal
quilibrium 1 is locally asymptotically stable.

Next, we will study the influence of the two delays (𝜏1, 𝜏2) on the
tability of 1. Linearizing model (1) at 1 yields the following linear
ystem:
𝑑
𝑑𝑡

𝑣(𝑡) = 𝑣(𝑡) + 𝑣(𝑡 − 𝜏1) + 𝑣(𝑡 − 𝜏2), (3)

here 𝑣(𝑡) = (𝑛(𝑡), 𝑎(𝑡), 𝑆(𝑡), 𝐶(𝑡))𝑇 ,

=

⎛

⎜

⎜

⎜

⎜

−𝛼0 −
𝛽1𝛽12𝑎0

(𝛽12+𝛽11𝑛0)2
− 𝛽1𝑛0

𝛽12+𝛽11𝑛0
0 0

0 −𝛼1 − 2𝛽10𝑎0 0 0
0 𝜋1𝛼1 + 2𝜋2𝛽10𝑎0 −𝛿 0

⎞

⎟

⎟

⎟

⎟

,

⎝
0 𝜆11 −𝛿1 −𝛼2⎠
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⎛

⎜

⎜

⎜

⎜

⎝

0 0 𝜋𝛿 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,  =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0
𝑒−𝑑𝜏2 𝜃1𝛽1𝛽12𝑎0
(𝛽12+𝛽11𝑛0)2

𝑒−𝑑𝜏2 𝜃1𝛽1𝑛0
𝛽12+𝛽11𝑛0

0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The characteristic equation of (3) is a transcendental equation with
delay dependent parameters:

(𝜆 + 𝛼2)[𝑃0(𝜆, 𝜏2) + 𝑃1(𝜆, 𝜏2)𝑒−𝜆𝜏2 + 𝑃2(𝜆, 𝜏2)𝑒−𝜆(𝜏1+𝜏2)] = 0, (4)

where
𝑃0(𝜆, 𝜏2) =𝜆3 + 𝑏1𝜆

2 + 𝑏2𝜆 + 𝑏3,

𝑃1(𝜆, 𝜏2) = −
𝑒−𝑑𝜏2𝜃1𝛽1𝑛0
𝛽12 + 𝛽11𝑛0

[𝜆2 + (𝛿 + 𝛼0)𝜆 + 𝛿𝛼0],

𝑃2(𝜆, 𝜏2) = −
𝑒−𝑑𝜏2𝜋𝛿𝜃1𝛽1𝛽12𝑎0
(𝛽12 + 𝛽11𝑛0)2

(𝜋1𝛼1 + 2𝜋2𝛽10𝑎0),

with

𝑏1 = 𝛿 + 𝛼0 + 𝛼1 + 2𝛽10𝑎0 +
𝛽1𝛽12𝑎0

(𝛽12 + 𝛽11𝑛0)2
,

2 =
[

𝛼0+
𝛽1𝛽12𝑎0

(𝛽12 + 𝛽11𝑛0)2
]

(𝛼1+2𝛽10𝑎0)+𝛿
[

𝛼0 + 𝛼1 + 2𝛽10𝑎0 +
𝛽1𝛽12𝑎0

(𝛽12 + 𝛽11𝑛0)2
]

,

𝑏3 = 𝛿
[

𝛼0 +
𝛽1𝛽12𝑎0

(𝛽12 + 𝛽11𝑛0)2
]

(𝛼1 + 2𝛽10𝑎0).

It is easy to see that 𝜆 = −𝛼2 < 0 is one root of (4), and the other
oots satisfy

(𝜆; 𝜏1, 𝜏2) ≡ 𝑃0(𝜆, 𝜏2) + 𝑃1(𝜆, 𝜏2)𝑒−𝜆𝜏2 + 𝑃2(𝜆, 𝜏2)𝑒−𝜆(𝜏1+𝜏2) = 0. (5)

Note that all the characteristic roots of (5) have negative real parts for
(𝜏1, 𝜏2) = (0, 0), and the stability of 1 changes only if a characteristic
root appears on or crosses the imaginary axis. So we are going to find
the purely imaginary characteristic roots of (5). Substituting 𝜆 = 𝑖𝜔 into
(5), we have that (𝑖𝜔; 𝜏1, 𝜏2) = 0 if and only if

1 + 𝑎1(𝜔, 𝜏2)𝑒−𝑖𝜔𝜏2 + 𝑎2(𝜔, 𝜏2)𝑒−𝑖𝜔(𝜏1+𝜏2) = 0 (6)

where

𝑎𝑗 (𝜔, 𝜏2) = 𝑃𝑗 (𝑖𝜔, 𝜏2)∕𝑃0(𝑖𝜔, 𝜏2), 𝑗 = 1, 2.

According to the geometric method proposed in An et al. (2019),
Gu et al. (2005), Lin and Wang (2012), we consider the three terms 1,
𝑎1(𝜔, 𝜏2)𝑒−𝜆𝜏2 and 𝑎2(𝜔, 𝜏2)𝑒−𝜆(𝜏1+𝜏2), as three vectors in complex plane,
with the magnitudes 1, |𝑎1(𝜔, 𝜏2)| and |𝑎2(𝜔, 𝜏2)|, respectively. Then, any
solution of (6) must put these vectors connect to each other and form
a triangle, form which we have the following lemma for the feasible
region of (𝜔, 𝜏2).

Lemma 3.2. For 𝜔 > 0, (𝑖𝜔, 𝜏1, 𝜏2) can be the zero of (5) only if (𝜔, 𝜏2)
satisfies

𝐹1(𝜔, 𝜏2) ∶= |𝑃0(𝑖𝜔, 𝜏2)| + |𝑃1(𝑖𝜔, 𝜏2)| − |𝑃2(𝑖𝜔, 𝜏2)| ≥ 0,

𝐹2(𝜔, 𝜏2) ∶= |𝑃0(𝑖𝜔, 𝜏2)| + |𝑃2(𝑖𝜔, 𝜏2)| − |𝑃1(𝑖𝜔, 𝜏2)| ≥ 0,

𝐹3(𝜔, 𝜏2) ∶= |𝑃1(𝑖𝜔, 𝜏2)| + |𝑃2(𝑖𝜔, 𝜏2)| − |𝑃0(𝑖𝜔, 𝜏2)| ≥ 0.

(7)

We use 𝛺 to represent the set of all the points (𝜔, 𝜏2) ∈ R2
+ that

meet the inequalities (7). Note that 𝛺 may consist of multiple simply
connected regions 𝛺𝑘, 𝑘 = 1, 2,… , 𝑁 . For each 𝛺𝑘, the admissible range
for 𝜔 is denoted by 𝐼𝑘, 𝑘 = 1, 2,… , 𝑁 . According to the relationship of
these three vectors 1, 𝑎1(𝜔, 𝜏2)𝑒−𝜆𝜏2 and 𝑎2(𝜔, 𝜏2)𝑒−𝜆(𝜏1+𝜏2), the solution
(𝑖𝜔, 𝜏1, 𝜏2) of (5) must satisfy

arg(𝑎1(𝜔, 𝜏2)𝑒−𝑖𝜔𝜏2 ) = 𝜋 − 𝜃1(𝜔, 𝜏2),

arg(𝑎2(𝜔, 𝜏2)𝑒−𝑖𝜔(𝜏1+𝜏2)) = 𝜃2(𝜔, 𝜏2) − 𝜋, (𝜔, 𝜏2) ∈ 𝛺

or

arg(𝑎 (𝜔, 𝜏 )𝑒−𝑖𝜔𝜏2 ) = 𝜃 (𝜔, 𝜏 ) − 𝜋,
4

1 2 1 2 T
arg(𝑎2(𝜔, 𝜏2)𝑒−𝑖𝜔(𝜏1+𝜏2)) = 𝜋 − 𝜃2(𝜔, 𝜏2), (𝜔, 𝜏2) ∈ 𝛺

where 𝜃1(𝜔, 𝜏2), 𝜃2(𝜔, 𝜏2) are the angles formed by 1 and 𝑎1(𝜔, 𝜏2)𝑒−𝑖𝜔𝜏2 ,
1 and 𝑎2(𝜔, 𝜏2)𝑒−𝑖𝜔(𝜏1+𝜏2), respectively, given by the following formula:

𝜃1(𝜔, 𝜏2) = arccos

(

1 + |𝑎1(𝜔, 𝜏2)|
2 − |𝑎2(𝜔, 𝜏2)|

2

2|𝑎1(𝜔, 𝜏2)|

)

,

𝜃2(𝜔, 𝜏2) = arccos

(

1 + |𝑎2(𝜔, 𝜏2)|
2 − |𝑎1(𝜔, 𝜏2)|

2

2|𝑎2(𝜔, 𝜏2)|

)

.

Then, we can first solve (𝜔, 𝜏2) ∈ 𝛺 by finding the zeros of the following
implicit function:

𝑆±
𝑛 (𝜔, 𝜏2) = 𝜏2 −

1
𝜔
[arg(𝑎1(𝜔, 𝜏2)) ± 𝜃1(𝜔, 𝜏2) + (2𝑛 − 1)𝜋], 𝑛 ∈ Z. (8)

Some numerical methods are required to solve the above equations. The
zeros of (8), if they exist, are denoted by (𝜔, 𝜏𝑛±2 (𝜔)). The corresponding
critical values of 𝜏1 can be set up by

𝜏𝑚,𝑛±1 (𝜔) = 1
𝜔
[arg(𝑎2(𝜔, 𝜏

𝑛±
2 (𝜔)))∓𝜃2(𝜔, 𝜏

𝑛±
2 (𝜔))+(2𝑚+1)𝜋]−𝜏𝑛±2 (𝜔), 𝑚 ≥ 𝑚±

0 ,

(9)

where 𝑚±
0 is the smallest integer such that 𝜏𝑚,𝑛±1 (𝜔) > 0.

Generally, calculating the root of Eq. (8) requires temporarily fixing
𝜔, as 𝜔 takes the values throughout the interval 𝐼𝑘, 𝑘 = 1, 2,… , 𝑁 , and
we can get the curve

 ∶= {(𝜔, 𝜏𝑛±2 (𝜔)) ∣ 𝜔 ∈ 𝐼𝑘 (𝑘 = 1,… , 𝑁), 𝑆±
𝑛 (𝜔, 𝜏

𝑛±
2 (𝜔)) = 0} (10)

on 𝛺, which will later determine the shape of the crossing curves

 ∶= {(𝜏𝑚,𝑛±1 (𝜔), 𝜏𝑛±2 (𝜔)) ∈ R2
+ ∣ 𝜔 ∈ 𝐼𝑘, 𝑘 = 1, 2,… , 𝑁.} (11)

on (𝜏1, 𝜏2)-plane.
We obtain the following conclusion about the existence of pure

imaginary eigenvalues of Eq. (4).

Theorem 3.3. Assume that (𝐻1) holds. Then the characteristic equa-
tion (4) admits a pair of conjugate roots 𝜆 = ±𝑖𝜔 if and only if 𝜔 ∈ 𝐼𝑘,
𝑘 = 1, 2,… , 𝑁 , and (𝜏1, 𝜏2) = (𝜏𝑚,𝑛±1 (𝜔), 𝜏𝑛±2 (𝜔)) ∈  .

3.3. Crossing directions

All the points in  will form several continuous curves in 𝜏1 − 𝜏2
plane, we call them the crossing curves (which are also the bifurcation
curves under some suitable conditions). In this section, we will study
the variation of the pure imaginary eigenvalues of (4) with the time
delay (𝜏1, 𝜏2), that is, calculate the crossing direction of the crossing
curve. Assume that (𝜏∗1 , 𝜏

∗
2 ) ∈  , then there is a 𝜔∗ > 0 such that

(𝑖𝜔∗, 𝜏∗1 , 𝜏
∗
2 ) solved the characteristic equation (4). If 𝜕

𝜕𝜆 (𝑖𝜔
∗, 𝜏∗1 , 𝜏

∗
2 ) ≠

0, based on the implicit function theorem, the characteristic root 𝜆
an be considered as a function of (𝜏1, 𝜏2) in the neighborhood of
𝜏∗1 , 𝜏

∗
2 ). Let 𝜆(𝜏1, 𝜏2) = 𝛼(𝜏1, 𝜏2) + 𝑖𝛽(𝜏1, 𝜏2), which satisfies 𝛼(𝜏∗1 , 𝜏

∗
2 ) = 0

nd 𝛽(𝜏∗1 , 𝜏
∗
2 ) = 𝜔∗. Next, we will discuss the directional derivatives

f 𝛼(𝜏1, 𝜏2) with respect to (𝜏1, 𝜏2). As in An et al. (2019), Gu et al.
2005), we call the direction of the crossing curve  that corresponds
o increasing 𝜔 the positive direction, and the region on the left-hand
right-hand) side when we move along the positive direction of the
urve the region on the left (right).

heorem 3.4. Assume that (𝑖𝜔∗, 𝜏∗1 , 𝜏
∗
2 ) is a zero of (4) and satisfies

𝜕
𝜕𝜆 (𝑖𝜔

∗, 𝜏∗1 , 𝜏
∗
2 ) ≠ 0. Then as (𝜏1, 𝜏2) passes through (𝜏∗1 , 𝜏

∗
2 ) from the region

n the left to the region on the right of the crossing curves, the characteristic
oot 𝜆(𝜏1, 𝜏2) crosses the imaginary axis from left to right whenever

(𝜏∗1 , 𝜏
∗
2 ) = Im{(−𝜔∗+𝑑𝑖)[𝑃2(𝜔∗, 𝜏∗2 )𝑃1(𝜔∗, 𝜏∗2 )𝑒

𝑖𝜔∗𝜏∗1 ]}+𝑑|𝑃2(𝜔∗, 𝜏∗2 )|
2 > 0.

(12)
he crossing is in the opposite direction if the inequality is reversed.
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=

=

f

3

m
i
r
d
t

(

a

o

Proof. A careful calculation gives that
𝜕
𝜕𝜏1

(𝑖𝜔∗, 𝜏∗1 , 𝜏
∗
2 ) = − 𝑖𝜔∗𝑃2(𝑖𝜔∗, 𝜏∗2 )𝑒

−𝑖𝜔∗(𝜏∗1+𝜏
∗
2 ),

𝜕
𝜕𝜏2

(𝑖𝜔∗, 𝜏∗1 , 𝜏
∗
2 ) =

𝜕𝑃1
𝜕𝜏2

(𝑖𝜔∗, 𝜏∗2 )𝑒
−𝑖𝜔∗𝜏∗2 − 𝑖𝜔𝑃1(𝑖𝜔∗, 𝜏∗2 )𝑒

−𝑖𝜔∗𝜏∗2

+
𝜕𝑃2
𝜕𝜏2

(𝑖𝜔∗, 𝜏∗2 )𝑒
−𝑖𝜔∗(𝜏∗1+𝜏

∗
2 ) + 𝑖𝜔∗𝑃2(𝑖𝜔∗, 𝜏∗2 )𝑒

−𝑖𝜔∗(𝜏∗1+𝜏
∗
2 )

=− (𝑑+𝑖𝜔∗)[𝑃1(𝑖𝜔∗, 𝜏∗2 )𝑒
−𝑖𝜔∗𝜏∗2 + 𝑃2(𝑖𝜔∗, 𝜏∗2 )𝑒

−𝑖𝜔∗(𝜏∗1+𝜏
∗
2 )],

Then, according to the method proposed in An et al. (2019), Gu et al.
(2005), we have

Sgn

⎧

⎪

⎨

⎪

⎩

(

𝜕𝛼
𝜕𝜏1

, 𝜕𝛼
𝜕𝜏2

)

⋅
(

𝜕𝜏2
𝜕𝛽

,−
𝜕𝜏1
𝜕𝛽

)

|

|

|

|

|(𝜏1 ,𝜏2)=(𝜏∗1 ,𝜏
∗
2 )

⎫

⎪

⎬

⎪

⎭

Sgn

⎧

⎪

⎨

⎪

⎩

−Im
(

𝜕
𝜕𝜏1

⋅
𝜕
𝜕𝜏2

)

|

|

|

|

|(𝜏1 ,𝜏2)=(𝜏∗1 ,𝜏
∗
2 )

⎫

⎪

⎬

⎪

⎭

Sgn
{

(−𝜔 + 𝑑𝑖)
(

𝑃2(𝜔∗, 𝜏∗2 )𝑃1(𝜔∗, 𝜏∗2 )𝑒
𝑖𝜔∗𝜏∗1 + |𝑃2(𝜔∗, 𝜏∗2 )|

2
)}

= Sgn
{

Im{(−𝜔∗ + 𝑑𝑖)[𝑃2(𝜔∗, 𝜏∗2 )𝑃1(𝜔∗, 𝜏∗2 )𝑒
𝑖𝜔∗𝜏∗1 ]} + 𝑑|𝑃2(𝜔∗, 𝜏∗2 )|

2
}

rom which we completed the proof. □

.4. Some simplified results for the degenerate model

For model (1), we mainly consider two cases: 𝑑 = 0 and 𝑑 > 0, as
entioned in Section 2. For the case 𝑑 = 0, which means that there

s no algal death during the nutrient transformation process, it can be
egarded as a degenerate form of model (1), and the corresponding
ynamic analysis will be simpler. We list some simplified results for
he case 𝑑 = 0 as follows:

(1) When 𝑑 = 0, the interior equilibrium can be obtained by taking
𝜏2 = 0 in (2), i.e., 1(𝑛0, 𝑎0, 𝑆0, 𝐶0) = 1(𝑛0(0), 𝑎0(0), 𝑆0(0), 𝐶0(0)),
which is consistent with the model without time delays in Shukla
et al. (2008).

(2) The characteristic equation of (3) for the case 𝑑 = 0 reduces to a
transcendental equation with coefficients independent of delay.
More precisely, 𝜆 = 𝑖𝜔 is a characteristic root if and only if

(𝑖𝜔, 𝜏1, 𝜏2) ≡ 𝑃0(𝑖𝜔, 0) + 𝑃1(𝑖𝜔, 0)𝑒−𝑖𝜔𝜏2 + 𝑃2(𝑖𝜔, 0)𝑒−𝑖𝜔(𝜏1+𝜏2) = 0,

(13)

or

1 + 𝑎1(𝜔, 0)𝑒−𝑖𝜔𝜏2 + 𝑎2(𝜔, 0)𝑒−𝑖𝜔(𝜏1+𝜏2) = 0.

(3) For the degenerate case with zero algal mortality rate, we only
need to first determine the feasible region of 𝜔 by setting
𝜏2 = 0 in the inequalities (7), instead of determining the
two-dimensional region of (𝜔, 𝜏2) in Lemma 3.2 as for the non-
degenerate case. In general, the feasible domain with respect to
𝜔 for 𝑑 = 0 is an open interval, which can be denoted by 𝐼 for
brevity.

(4) After calculating the feasible region of 𝜔, we can obtain the
following explicit expressions for (𝜏1, 𝜏2) with respect to 𝜔, such
that (𝜔, 𝜏1, 𝜏2) ∈ 𝐼 × R2

+ solves Eq. (13):

𝜏2 = 𝜏𝑛±2 (𝜔) = 1
𝜔

[

arg(𝑎1(𝜔)) ± 𝜃1(𝜔) + (2𝑛 − 1)𝜋
]

, 𝑛 ∈ Z, 𝑛 ≥ 𝑛±0 ,

𝜏1 = 𝜏𝑚,𝑛±1 (𝜔) = 1
𝜔

[

arg(𝑎2(𝜔)) ∓ 𝜃2(𝜔)+(2𝑚 − 1)𝜋
]

−𝜏𝑛±2 (𝜔), 𝑚 ∈ Z, 𝑚 ≥ 𝑚±
0 ,

(14)

where 𝑛±0 , 𝑚
±
0 ∈ Z are the smallest possible integers that make

𝜏𝑚,𝑛±, 𝜏𝑛± nonnegative. This is different from the non-degenerate
5

1 2
Table 2
Parameter values in model (1).

Parameter Value of parameter Parameter Value of parameter

𝑞 0.5 mg l−1day−1 𝛽10 0.00001 l mg−1day−1

𝛼0 0.005 day−1 𝜋1 0.9
𝛽1 0.006 day−1 𝜋2 0.5
𝛽12 5 mg l−1 𝛿 0.1 day−1

𝛽11 1 𝑞𝑐 1 mg l−1day−1

𝜋 0.02 𝛼2 0.05 day−1

𝜃1 50 𝜆11 0.01 day−1

𝛼1 0.25 day−1 𝛿1 0.0044 day−1

case, where the expression for 𝜏2 can only be given implicitly
by (8), and also means that for the degenerate case, we do not
need to draw the curve  as in (10), but can directly obtain the
crossing curve  by tracing the point.

(5) For the case 𝑑 = 0, the expression (12) in Theorem 3.4 to
determine the crossing direction can be reduced to

𝛿(𝜏∗1 , 𝜏
∗
2 ) = −𝜔∗Im{𝜔∗[𝑃2(𝜔∗, 0)𝑃1(𝜔∗, 0)𝑒𝑖𝜔

∗𝜏∗1 ]} > 0. (15)

4. Numerical simulation

In order to verify the rationality of the previous theoretical analysis,
compare the dynamic behavior of model (1) with that of the model
with a single detritus-nutrient recycling delay, and explore the impact
of algal death during nutrient conversion on ecology, we will conduct
numerical simulations for the case of 𝑑 = 0 and 𝑑 > 0 respectively in
this section. The values of the parameters except the two delays and the
algae mortality 𝑑 are taken from Amemiyaa et al. (2007), Misra et al.
(2011) and the references therein (see Table 2).

4.1. Numerical simulation of the degenerate model

We first consider the situation where algae do not die during the
process of nutrient transformation, i.e. 𝑑 = 0. Under the parameter
values in the Table 2, the interior equilibrium 1(𝑛0, 𝑎0, 𝑆0, 𝐶0) of model
(1) exists, and is given by 𝑛0 = 29.31 mg l−1, 𝑎0 = 628.02 mg l−1,
𝑆0 = 1432.77 mg l−1, 𝐶0 = 19.52 mg l−1. By solving the inequalities
7) with 𝜏2 = 0, we can obtain that the feasible region for 𝜔 is 𝐼 =
(0.0375, 0.0950). For each 𝜔 ∈ 𝐼 , one can calculate

(

𝜏𝑚,𝑛±1 (𝜔), 𝜏𝑛±2 (𝜔)
)

∈
R2
+ by (14), for some suitable 𝑛, 𝑚 ∈ Z. Then the crossing curves

(bifurcation curves)

 = {(𝜏𝑚,𝑛±1 (𝜔), 𝜏𝑛±2 (𝜔)) ∈ R2
+ ∣ 𝜔 ∈ 𝐼, 𝑛 ≥ 𝑛±0 , 𝑚 ≥ 𝑚±

0 }

are obtained. Finally, the crossing direction for each (𝜏1, 𝜏2) ∈ 𝑇 can be
given by (15). We show the crossing curves and the crossing directions
in Fig. 1, where the characteristic root 𝜆(𝜏1, 𝜏2) will cross the imaginary
xis from left to right if (𝜏1, 𝜏2) is moving in the direction of the arrows.

By comparing the degenerate case of model (1) with the model that
nly considers the detritus-nutrient recycling delay 𝜏1 in Misra et al.

(2011), the following conclusions can be drawn:

(1) If we ignore the delay from nutrient uptake to algae growth
(i.e., 𝜏2 = 0), the first critical value of the detritus-nutrient recy-
cling delay 𝜏1 = 42, which is consistent with the result obtained
in Misra et al. (2011). See Fig. 1 for details. This implies that
when the time delay 𝜏1 exceeds 42 days, there can be fluctuations
in the concentration of dissolved oxygen. In certain instances, the
concentration of dissolved oxygen may sharply decrease, leading
to a significant mortality of the fish population in the lake.
Consequently, these findings highlight the importance of timely
detritus removal from the lake to prevent the occurrence of mass

fish fatalities, particularly before the 42-day threshold.
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Table 3
First critical value 𝜏1 for different 𝜏2.
𝜏2 (days) 0 1 3 5 7 9
First critical value of 𝜏1 (days) 42 45 51.89 58.77 65.5 71.9
Table 4
First critical value 𝜏1 for different 𝑞 when 𝜏2 = 5.
𝑞 (mg l−1day−1) 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7
𝜏2 (days) 5 5 5 5 5 5 5 5
First critical value of 𝜏1(days) 77 58.77 53.00 50.97 50.31 50.70 51.70 53.27
𝑛∗ (mg l−1) 26.99 29.31 31.72 34.26 36.95 39.83 42.93 46.29
𝑎∗ (mg l−1) 310.80 628.02 915.25 1179.27 1424.58 1654.31 1870.73 2075.53
𝑆∗ (mg l−1) 704.12 1432.77 2101.19 2722.89 3306.78 3859.04 4384.12 4885.32
𝐶∗ (mg l−1) 20.20 19.52 18.14 16.24 13.92 11.27 8.34 5.20
𝑎

Fig. 1. Crossing curves and crossing directions.

(2) The time window for removal of detritus in a lake in order to
guarantee the survival of fish will be underestimated if we ignore
the delay from nutrient absorption to algal growth. Table 3 shows
the changes of the first critical value 𝜏1 with the value of 𝜏2.
For instance, when 𝜏2 = 5, we can see that the corresponding
critical value 𝜏1 = 58.77 > 42. The solutions of model (1) with
𝑑 = 0 shown in Fig. 2 verify this point, that is, 𝐸1 is stable for
(𝜏1, 𝜏2) = (52, 5) and unstable for (𝜏1, 𝜏2) = (65, 5), while a stable
periodic solution bifurcated from 𝐸1.

(3) As shown in Table 4, when the nutrient concentration 𝑞 increases,
the algae population will intensify, accompanied by a decline in
the dissolved oxygen concentration in the water, resulting in a
gradual reduction in fish density. This implies that an increase
in water eutrophication will expedite the occurrence of algae
blooms, leading to significant harm to the ecological environ-
ment and posing a threat to the growth of fisheries. Therefore,
from both the environmental and economic perspectives, it is
imperative to control eutrophication.

(4) By observing the crossing curves, we find that 𝜏2 can cause the
stability switching of model (1) for the degenerate case. For
instance, the stability of the interior equilibrium 𝐸1 switches from
unstable to stable to unstable, as (𝜏1, 𝜏2) changes from (65, 5) to
(65, 50) to (65, 90). See Figs. 2 and 3 for details. This indicates that
the system stability hinges upon a favorable range of the algal
digestion delay 𝜏2 that should not be excessively high or low. This
can be regulated by manipulating external environmental factors
such as temperature or pH value.
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4.2. Numerical simulation of the non-degenerate model

Now we consider the presence of algal death during nutrient con-
version. The theoretical analysis in Section 3 shows that the non-
degenerate case is much more difficult than the degenerate case in
determining the bifurcation points due to the presence of the delay-
dependent parameters. For many calculations, such as the feasible
region 𝛺 for (𝜔, 𝜏2) and the exact value of 𝜏2, numerical methods are
required in this subsection. Therefore, in order to compare the dynamic
behaviors between these two situations, we will do some numerical
simulations on model (1) for 𝑑 > 0. Let the average death rate 𝑑 = 0.1
and the other parameter values except the two delays are the same as
those in Table 2. Now the interior equilibrium 1(𝑛0, 𝑎0, 𝑆0, 𝐶0) depends
on the value of 𝜏2. Specifically, 𝑎0 = 𝑎0(𝜏2) is the zeros of the function
𝐺(𝑎). It can be observed that 𝐺(𝑎) is a cubic function of the variable
𝑎, so the display expression of 𝑎0 = 𝑎0(𝜏2) cannot be given directly.
However, due to the need of subsequent calculation, we must find the
specific functional relationship between 𝑎0 and 𝜏2. Therefore, here we
shall make an approximation to the implicit function 𝑎0 = 𝑎0(𝜏2).

Note that the value of 𝛽10 = 0.00001 is sufficiently small, then by
comparing the coefficients, it can be found that the coefficient of the
cubic term −(𝜋𝜋2−

1
𝑒−𝑑𝜏2 𝜃1

)𝛽210𝛽11 in 𝐺(𝑎) is also sufficiently small, so we
ignore the cubic term. Define

̃0(𝜏2) =
−ℎ2(𝜏2) −

√

ℎ2(𝜏2)2 − 4ℎ1(𝜏2)ℎ3(𝜏2)
2ℎ1(𝜏2)

<
𝑒−𝑑𝜏2𝜃1𝛽1 − 𝛽11𝛼1

𝛽10𝛽11
where

ℎ1(𝜏2)= (𝑒−𝑑𝜏2𝜃1𝛽1 − 𝛽11𝛼1)(𝜋𝜋2 −
1

𝑒−𝑑𝜏2𝜃1
)𝛽10 − 𝛽10𝛽11(𝜋𝜋1−

1
𝑒−𝑑𝜏2𝜃1

)𝛼1,

ℎ2(𝜏2) = (𝑒−𝑑𝜏2𝜃1𝛽1 − 𝛽11𝛼1)(𝜋𝜋1 −
1

𝑒−𝑑𝜏2𝜃1
)𝛼1 − 𝑞𝛽10𝛽11 − 𝛽12𝛼0𝛽10,

ℎ3(𝜏2) = 𝑞(𝑒−𝑑𝜏2𝜃1𝛽1 − 𝛽11𝛼1) − 𝛽12𝛼0𝛼1.

Then the function 𝑎0 = 𝑎̃0(𝜏2) can be regarded as the approximation of
the exact solution 𝑎0 = 𝑎0(𝜏2), and likewise the function 𝑛0 = 𝑛̃0(𝜏2),
𝑆0 = 𝑆̃0(𝜏2) and 𝐶0 = 𝐶̃0(𝜏2) can be regarded as the approximation to
the exact solutions 𝑛0 = 𝑛0(𝜏2), 𝑆0 = 𝑆0(𝜏2) and 𝐶0 = 𝐶0(𝜏2), where

𝑛̃0(𝜏2) =
𝛽12(𝛼1 + 𝛽10𝑎̃(𝜏2))

(𝑒−𝑑𝜏2𝜃1𝛽1 − 𝛽11𝛼1) − 𝛽10𝛽11𝑎̃(𝜏2)
,

𝑆̃0(𝜏2) =
𝜋1𝛼1𝑎̃(𝜏2) + 𝜋2𝛽10𝑎̃2(𝜏2)

𝛿
,

𝐶̃0(𝜏2) =
1
𝛼2

[𝑞𝑐 + 𝜆11𝑎̃(𝜏2) − 𝛿1𝑆̃(𝜏2)].

The approximate and exact solutions corresponding to the different
values of 𝜏2 have been listed in Table 5. We can see that the errors
between them are relatively negligible, and will not affect the following
numerical simulation.

With the help of MATLAB, we first identify the feasible region for
(𝜔, 𝜏2), that is, the two simply connected regions enclosed by the red
and blue curves and coordinate axes in Fig. 4, which are marked as 𝛺1
and 𝛺 . Then the admissible range 𝐼 = (0.006, 0.092) and 𝐼 = (0, 0.081)
2 1 2
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Fig. 2. (a) 𝐸1 is stable for (𝜏1 , 𝜏2) = (52, 5); (b) A stable periodic solution is bifurcated from 𝐸1 as 𝜏1 increases to 65, while 𝐸1 becomes unstable.
Fig. 3. (a) 𝐸1 is stable for (𝜏1 , 𝜏2) = (65, 50); (b) A stable periodic solution is bifurcated from 𝐸1 as 𝜏2 increases to 90, while 𝐸1 becomes unstable.
Table 5
Comparison of the exact and approximate solutions.
𝜏2 (days) 0.1 0.3 0.5 0.7 1 1.2

𝑎0 = 𝑎0(𝜏2) (mg l−1) 567.87 464.08 375.25 295.36 172.83 78.44
𝑎0 = 𝑎̃0(𝜏2) (mg l−1) 561.71 460.55 373.26 293.31 172.58 78.43
𝑛0 = 𝑛0(𝜏2) (mg l−1) 30.93 34.89 40.13 47.24 63.82 82.00
𝑛0 = 𝑛̃0(𝜏2) (mg l−1) 30.87 34.85 40.10 47.22 63.81 82.00
𝑆0 = 𝑆0(𝜏2) (mg l−1) 1293.83 1054.95 851.36 666.65 390.37 176.80
𝑆0 = 𝑆̃0(𝜏2) (mg l−1) 1279.62 1046.85 846.80 664.25 389.80 176.74
𝐶0 = 𝐶0(𝜏2) (mg l−1) 19.72 19.98 20.13 20.21 20.21 20.13
𝐶0 = 𝐶̃0(𝜏2) (mg l−1) 19.74 19.99 20.13 20.21 20.21 20.13
of 𝜔 are obtained. For each 𝜔 ∈ 𝐼𝑘, 𝑘 = 1, 2, the corresponding critical
alue 𝜏2 can be found by solving the zeros of the function 𝑆±

𝑛 (𝜔, 𝜏2). By
racing points, we get the Curve  in Fig. 4. According to formulas (9)
nd (12), the crossing curves and the crossing directions are shown in
ig. 5.

It can be observed that the crossing curves (i.e. bifurcation curves
n Fig. 5) are mainly composed of two families of curves with different
hapes. One family is located below the red straight line and contains
umerous semicircular curves with openings downward, which corre-
pond to the Curve  in 𝛺1, and the other family is located above the

red curve and consists of several parabolic curves with openings to the
right, which correspond to the Curve  in 𝛺2. The red line is 𝜏2 = 1.33,
which is the value that makes (𝑒−𝑑𝜏2𝜃1𝛽1−𝛽11𝛼1)𝑞−𝛽12𝛼0𝛼1 = 0. A simple
analysis shows that the interior positive equilibrium 1(𝑛0, 𝑎0, 𝑆0, 𝐶0)
exists only when the (𝜏1, 𝜏2) value are below the red line, that is, 𝜏2 <
7

1.33.
Comparing Figs. 1 and 5, we find that the crossing curves between
the degenerate model and the non-degenerate model are quite different,
and these differences still exist even if the value of 𝜏2 is very small. In
a biological sense, these differences can result in distinct suggestions
for the advancement of fisheries. Here we make a detailed analysis as
follows:

(1) From Fig. 5, it can be seen that when 𝜏2 = 0 in the non-degenerate
model, the first critical value of the detritus-nutrient recycling
delay 𝜏1 ≈ 42.12, basically consistent with the result of the
degenerate model, with an error of about 0.12 days. This slight
error is caused by the approximation of the equilibrium point
during the numerical simulation.

(2) The degenerate model has no restriction on the value of 𝜏2
because the existence of the internal equilibrium point of the

model is independent of 𝜏2. However, if we consider the mortality
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Fig. 4. The Curve .
Fig. 5. Crossing curves and crossing directions.
of algae in the process of absorbing and digesting nutrients, the
situation is completely different. In the non-degenerate model, we
can see that (i) when 𝜏2 > 1.33, the internal equilibrium point
1 does not exist, and there is only one boundary equilibrium
point 0(𝑞∕𝛼0, 0, 0, 𝑞𝑐∕𝛼2) in the system. The numerical simulation
results show that this trivial equilibrium point is always stable
(see Fig. 6). The results suggest that when it takes too long for nu-
trients to be converted into the energy needed for algae to grow,
the algae will eventually die out due to the death phenomenon
present in the process. (ii) When 0.91 < 𝜏2 < 1.33, the internal
equilibrium point 1 is always stable, and this dynamic behavior
will not change with the increase of 𝜏1, see Fig. 6. That is to say,
when the energy conversion time 𝜏2 is in a suitable interval, the
whole water body will be in a very stable state. In particular,
the density of algae and fish will be maintained at a certain level
without fluctuation. (iii) When 𝜏2 < 0.91, the stability of 1 will be
affected by 𝜏1. In more detail, it can be seen from the bifurcation
diagram that as 𝜏1 increases from zero and passes through the first
crossing curve,  will change from stable to unstable, and at the
8

1

same time, a stable periodic solution will be bifurcated from 1,
Fig. 7 validates this result. This means that when the time for
nutrient conversion to algae growth is relatively short, and the
time for the cycle from detritus to nutrients is too long, the water
ecosystem will oscillate, causing a sharp decline in fish density
and damaging the economic interests of fishermen. Therefore, in
order to avoid such oscillations, we can regularly clean up detritus
in the lake to ensure the stability of the water system.

(3) We would like to give a new suggestion on the time window to
remove detritus from the lake. Considering the cost of personnel
and tools, this time window should not be too frequent, and con-
sidering the stability of the entire water ecosystem, this cleaning
period should not be too long. It can be seen from the analysis
that this time window must be longer than the 42 days mentioned
in Misra et al. (2011), and it is positively correlated with 𝜏2, which
is similar to the result of the degenerate model, but the suggested
value is still greater than that of the degenerate model. More
specifically, for both degenerate and non-degenerate models, the
critical crossing curve can be approximated as a straight line
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Table 6
Time window for removal of detritus in a lake.

Value of 𝜏2 (days) 0.2 0.4 0.6 0.8

Suggestions from the degenerate model (days) 42 43 43.5 44
Suggestions from the non-degenerate model (days) 49 59 73 104
Fig. 6. (a) 0 is stable for 𝜏2 > 1.3; (b) 1 is stable for 0.91 < 𝜏2 < 1.3.
Fig. 7. (a) 1 is stable for (𝜏1 , 𝜏2) = (50, 0.5); (b) A stable periodic solution is bifurcated from 1 as 𝜏1 increases to 100, while 1 becomes unstable.
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when 𝜏1 and 𝜏2 are small, as shown in the partial enlarged view
in Figs. 1 and 5. The slope of the line corresponding to the
degenerate model is greater than that of the line corresponding to
the non-degenerate model, so the recommended number of days
given by the non-degenerate model will be greater than that given
by the degenerate model. See Table 6 for the relevant values. The
results in Table 6 are reasonable because in the non-degenerate
model we considered algal death during the absorption and diges-
tion of nutrients. Then under the same conditions it is expected
that algal bloom should be less serious predicted by the non-
degenerate model. As a result, the control time window can be
longer for the non-degenerate model.

. Discussion

In this paper, we proposed and analyzed a class of algal growth
odels with algal digestion delay and detritus-nutrient recycling de-

ay, and considered two different scenarios, namely, the presence and
bsence of algal death during nutrient absorption. Among them, the
egenerate model ignores mortality rate of algae during the absorption
nd digestion of nutrients, while the non-degenerate model considers
9

he survival rate of algae during the reproductive process. Mathemati-
ally, they are fundamentally different. The non-degenerate model is a
ystem of functional differential equations with coefficients dependent
n algal digestion delay 𝜏2, which is more difficult to study.

The degenerate model demonstrates that eutrophication in water
odies contributes to an increase in algae abundance and a decline
n dissolved oxygen concentration, thereby posing detrimental effects
n ecological integrity and fishery development. Consequently, it holds
mmense importance to mitigate the direct discharge of agricultural and
ndustrial wastewater. Furthermore, we aim to establish a timeframe
or detritus removal from the lake. Upon analyzing the two models,
e observe that the non-degenerate model suggests a considerably

onger recommended timeframe compared to the degenerate model.
dditionally, the suggested timeframe in the degenerate model slightly
xceeds that of the model without considering algal digestion delay
i.e., 42 days). This indicates an underestimation of the required time
indow, leading to potential waste of personnel and resources.

From the biological point of view, the non-degenerate model seems
ore reasonable. For the non-degenerate model, the unique inter-
al equilibrium exists only when 𝜏2 is less than a certain threshold
(i.e., 𝜏2 < 1.33), and when 𝜏2 is greater than this threshold, the algae
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will become extinct. The degenerate model has no such limitation and
is more similar to the model without algal digestion delay.

We have also discovered some rich dynamic phenomena. Both of
these two models exhibit stability switching of equilibrium points, but
there are noticeable differences in the critical parameters that trigger
these transitions. For the degenerate model, when 𝜏1 is fixed, increasing
he value of 𝜏2 can cause the positive equilibrium to switch from
tability to instability and back to stability. This switching behavior
an occur infinitely, distinguishing it from the model without algal
igestion delay. In contrast, for the non-degenerate model, the key
arameter driving stability switching of the equilibrium point is 𝜏1.

Furthermore, we had an intriguing observation for the non-degenerate
model where there is a safe zone. When 𝜏2 is within a suitable range
(i.e., 0.91 < 𝜏2 < 1.33), the internal equilibrium point remains stable,
rendering the system unaffected by the detritus-nutrient recycling delay
𝜏1. In this case, the density of algae and fish remains within a stable
range, preventing algal blooms and facilitating ongoing fishery devel-
opment. This novel finding distinguishes our model from previous ones
and contributes to our understanding of the system dynamics.
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