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NONTRIVIAL TRAVELING WAVES OF PHAGE-BACTERIA
MODELS IN DIFFERENT MEDIA TYPES\ast 

ZHENKUN WANG\dagger AND HAO WANG\ddagger 

Abstract. Phages are ubiquitous in nature, but many essential factors of host-phage biology
have not yet been integrated into mathematical models. In this paper, we investigate a spatial
phage-bacteria model to describe the propagation of phages and bacteria in different types of nu-
trient media. Unlike existing models, we construct a more realistic reaction-diffusion model that
incorporates inoculum and bacterial growth and movement, then rigorous mathematical analysis is
challenging. We study traveling wave solutions and obtain complete information about the existence
and nonexistence of nontrivial traveling wave solutions. The threshold conditions for the existence
and nonexistence of traveling wave solutions are obtained by using Schauder's fixed point theorem,
limiting argument, and one-sided Laplace transform. Considering different propagation media, we
extend the existence of traveling wave solutions from liquid nutrition model to agar model. More-
over, in the absence of bacterial mortality, we obtain the existence of a new traveling wave solution
describing phage invasion. We attempt to explain the occurrence of co-transport by the existence
and nonexistence of traveling waves, and screen out the key parameters affecting the co-transport
of phages and bacteria according to the definition of critical wave speed. Finally, we provide nu-
merical simulations to verify the theoretical results and reveal the effects of key parameters on the
propagation of phages and bacteria.

Key words. phage-bacteria model, traveling wave solution, critical wave speed, bacterial infec-
tion, phage invasion, co-transport

MSC codes. 92-10, 92B05, 92D25, 35Kxx, 35A18

DOI. 10.1137/22M1505086

1. Introduction. Phages, viruses which infect and destroy bacteria, have been
referred to as bacterial parasites, with each phage type replicating on a specific strain
of host bacteria. There are two types of phage infection that are lytic and lysogenic.
The lytic life cycle is where phages infect and rapidly kill their infected host cells,
thereby shaping bacterial population dynamics and occasionally assisting in their long-
term evolution via generalized transduction. The lysogenic life cycle, in contrast, is
where phages, instead of directly killing their hosts, integrate into their host genome,
or exist as plasmid within their host cell. Lysogenic phages can also sometimes break
away from the host DNA and enter the lytic cycle, where they replicate and multiply
within the host cell to produce many progeny phages and eventually lyse bacteria
[32]. A plaque, also known as a negative colony, is a transparent circular spot formed
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NONTRIVIAL PHAGE-BACTERIA TRAVELING WAVES 557

on the surface of culture medium by phage infection of bacterial cells resulting in lysis
and death of host cells. The rate of phage invasion can often be described by looking
at the rate of negative colony expansion.

Phages have long been of interest to scientists as tools for understanding funda-
mental molecular biology, as vectors for horizontal gene transfer, as drivers of bacterial
evolution, as sources of diagnostic and genetic tools, and as novel therapeutics [4]. The
specificity of phages is a potential disadvantage for phage therapy when the particu-
lar species of infecting bacteria is unidentified [22]. However, the specificity of phages
reduces the chance that probiotics will be killed. From this point of view, the safety
of phage therapy is assured. The establishment of a suitable phage-bacteria model is
helpful to understand the relationship between phages and their hosts.

In the absence of bacterial movement, some results have been found in the study
of phage-bacteria PDE models. Jones et al. [15] proposed a delayed reaction-diffusion
system for virus diffusion on immobilized bacteria, and gave the first mathematically
rigorous proof of the spread of infection and of the existence of traveling wave solu-
tions representing an expanding plaque. In [13], Jones, Smith, and Thieme modified
the model in [15] by incorporating all virus removal terms including adsorption to
bacteria and decay of unabsorbed virus into a single linear loss rate. In this case they
showed that the spreading speed is also the minimum wave speed of the traveling wave
solution. The traveling wave profile for phage is pulse-like, and virus levels are low
well in front of the wave and well behind the wave. The profile for bacteria connects
the virus-free value to a significantly lower one. In [14], they extended earlier results
on the spread of virus and on the existence of traveling wave solutions when the basic
reproductive number for virus exceeds one, and compared these results with those in
[15, 13]. The above works assume that host bacteria do not grow or spread, but in
reality, we cannot ignore the growth and movement of bacteria. For example, if a
cyanophage-cyanobacteria model ignores the growth and movement of cyanobacteria,
the model will not play a role in describing the expansion of cyanobacteria and the
invasion of cyanophage.

The movement of bacteria is key to their survival. Bacteria explore their envi-
ronment by alternating between different swimming patterns. Wei et al. [37] showed
that bacteria with flagella and other mechanisms that push in random directions have
a competitive advantage over bacteria that move only in response to external forces.
Recently, Tian et al. [33] found a new swimming mode of singly flagellated bacte-
ria, namely, the wrap mode, which can randomly change the swimming direction of
bacteria and make bacteria evenly distributed in space, thus greatly improving the
efficiency of bacteria exploring the environment. Random movement of bacteria can
keep bacteria away from each other and thus gain a greater share of resources in
the environment. This is why bacteria have evolved to retain a pattern of random
diffusion. In the case of bacterial mobility, the matter state and nutrient concen-
tration of the medium greatly influence the pattern of bacterial colony formation
[25, 34].

Combining the ideas in [25, 33, 34, 37, 39], we assume that bacteria are able
to grow by breaking down nutrients and diffuse randomly in the culture medium.
Using these assumptions, we construct a more realistic reaction-diffusion model that
incorporates nutrients explicitly and bacterial growth and movement. A minimum
mathematical model for phage-bacteria interactions in the liquid base is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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558 ZHENKUN WANG AND HAO WANG\left\{               

\partial N

\partial t
=DN\Delta N  - 1

\gamma 
h(N)B,

\partial B

\partial t
=DB\Delta B + h(N)B  - kBV  - dB,

\partial V

\partial t
=DV \Delta V + \beta kBV  - \delta V,

where \Delta is a Laplacian, and DN , DB , DV are diffusion coefficients of nutrients,
bacteria, and phages, respectively. N(t, x), B(t, x), V (t, x) represent the density of
nutrient, host bacteria, and phage population at position x and t, respectively. Pa-
rameter k > 0 is the infection rate, \beta > 1 is the burst size, \delta > 0 is the mortality
rate of phage, and d is the mortality rate of bacteria. Bacteria multiply via binary
fission at a per capita rate that is a function of the resource concentration in the petri
dish, and \gamma < 1 is the yield constant. We assume that the nutrient uptake function
h satisfies h(0) = 0, h\prime (N) > 0, h\prime \prime (N) \leq 0; an example being the Monod function
h(N) = \alpha N

K+N , where \alpha > 0 is a maximum specific growth rate, and K > 0 is the
half saturation constant. The model has initial and homogeneous Neumann bound-
ary (zero flux) conditions: N(0, x) = N0, B(0, x) = B0, and V (0, x) = V0 for x \in \Omega ;
\nabla N \cdot \vec{}n = \nabla B \cdot \vec{}n = \nabla V \cdot \vec{}n = 0 on \partial \Omega , where \vec{}n is an outward normal vector to the
boundary \partial \Omega .

Compared to bacteria, phages themselves are almost immobile, so their disper-
sal relies on either free diffusion or transport by their hosts. However, diffusion is
inefficient for covering long distances. An increasing number of microbiologists are
concerned about the co-transport of phages and bacteria. Existing experiments and
data show that phages are able to hitchhike with expanding bacterial populations by
repeatedly reinfecting cells in an expanding bacterial front [19, 28]. To the best of our
knowledge, the mechanism of hitchhiking, whether biological or mathematical, is not
clear. The most obvious manifestation of this hitchhiking mechanism is that phages
and bacteria move at the same speed. It is worth noting that the traveling wave
solution is a special solution of the system, in which all components move at the same
speed, which is consistent with the hitchhiking mechanism of phages and bacteria.
The existence and nonexistence of traveling wave solutions can well explain whether
the co-transport occurs. To obtain a theoretical understanding, on the basis of the
work in [15, 13, 14, 31], we modify and extend an existing reaction-diffusion model of
bacteria-phage interaction incorporating nutrient explicitly. We assume that the bac-
teria and phage can diffuse, while nutrients may or may not diffuse. Mathematically,
without loss of generality, we only study the propagation dynamics of bacteria and
phages in one dimensional spatial domain \BbbR .

This paper is organized as follows. In section 2, we consider a bacteria-phage
model in liquid medium, convert the existence of traveling wave solutions into the
existence of fixed points for a certain operator, and provide full information about
the existence and nonexistence of traveling wave solutions for a bacterial-phage liquid
medium model. In section 3, we extend the conclusions in section 2 to other variant
models. Considering a class of agar models, the existence of traveling wave solutions
for a class of partially degenerate systems is proven. Then we consider the model
without mortality of bacteria, and prove the existence of a traveling wave solution,
which describes the spread of phages. In section 4, we simulate the propagation
phenomena of bacteria and phages, and explain the influence of some parameters in
the model on the propagation dynamics of the system. In section 5, we conclude and
discuss our findings.
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NONTRIVIAL PHAGE-BACTERIA TRAVELING WAVES 559

2. Mathematical results. In this section, we assume that the environment is
a kind of soup in which nutrients, bacteria, and phages all diffuse. We restrict the
space domain to the real line and describe the propagation dynamics via traveling
wave solutions. To consider the propagation dynamics of the following model:\left\{               

\partial N

\partial t
=DN

\partial 2N

\partial x2
 - 1

\gamma 
h(N)B,

\partial B

\partial t
=DB

\partial 2B

\partial x2
+ h(N)B  - kBV  - dB,

\partial V

\partial t
=DV

\partial 2V

\partial x2
+ \beta kBV  - \delta V,

(2.1)

we first consider the corresponding ODE model\left\{             

dN

dt
= - 1

\gamma 
h(N)B,

dB

dt
= h(N)B  - kBV  - dB,

dV

dt
= \beta kBV  - \delta V,

(2.2)

with initial conditions N(0) =N0,B(0) =B0, V (0) = V0.
For spatially uniform steady states where solutions are independent of time and

space, we have the following algebraic equations:\left\{     
h(N)B = 0,

(h(N) - kV  - d)B = 0,

k\beta BV  - \delta V = 0.

(2.3)

The first equation of (2.3) implies B = 0 or N = 0.
Case 1: d> 0.

Let N = 0. If B \not = 0, then by the second equation of (2.3), we have V =  - d
k < 0.

Thus, B = 0 and V = 0, that is, (0,0,0) is a steady state.
If N > 0, then B = 0 and V = 0. Thus, (Ns,0,0) with Ns \geq 0 are steady states.

Case 2: d= 0.
If N > 0, then B = 0 and V = 0, that is, (Ns,0,0) with Ns > 0 are steady states.
If N = 0, then V = 0 and B = Bs \geq 0. Therefore, (0,Bs,0) with Bs \geq 0 are steady
states.

2.1. Equivalent form. Here, we consider a system of reaction-diffusion equa-
tions

\partial U

\partial t
=DUxx + F (U) for x\in \BbbR , t\geq 0,(2.4)

where U = (N,B,V ), D = (DN ,DB ,DV ) with Di > 0 for i=N,B,V and DB \geq DV .
The reaction function is given by

F (U) = (fN (U), fB(U), fV (U)).

We seek a traveling wave solution of the form U(x+ct) with c being the traveling
speed. Substituting U(x, t) = U(x+ ct) into (2.4) and letting \xi = x+ ct, we obtain
the following system:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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560 ZHENKUN WANG AND HAO WANG\left\{       
cN \prime =DNN

\prime \prime  - 1

\gamma 
h(N)B,

cB\prime =DBB
\prime \prime + h(N)B  - kBV  - dB,

cV \prime =DV V
\prime \prime + \beta kBV  - \delta V,

(2.5)

where the symbol \prime denotes derivative with respect to the variable \xi . Then system
(2.5) can be reduced to the following system:

DU \prime \prime (\Xi ) - cU \prime (\Xi ) + F (U(\Xi )) = 0 for \Xi \in \BbbR .(2.6)

Now, we seek a solution of the form (Ui) = (e\lambda \xi \eta i\lambda ), \lambda > 0, \eta \lambda = (\eta i\lambda ) \gg 0 (i.e.,
\eta i\lambda > 0) for the linearization of (2.6) at an initial equilibrium E0, and arrive at the
following system:

diag(Di\lambda 
2  - c\lambda )\eta \lambda + F \prime (E0)\eta \lambda = 0,

which can be rewritten as the eigenvalue problem 1
\lambda A\lambda \eta \lambda = c\eta \lambda , where A\lambda = (ai,j\lambda ) =

diag(Di\lambda 
2) + F \prime (E0).

Let \Psi (A\lambda ) be the principal eigenvalue of A\lambda for \lambda \in [0,\infty ), and define \Phi (\lambda ) :=
1
\lambda \Psi (A\lambda )> 0.

From a biological perspective, we are interested in a traveling wave solution
connecting from one bacteria-free state E0(N

\ast ,0,0) to another bacteria-free state
E1(N\ast ,0,0). These traveling waves describe the propagation of the bacteria as a
wave with a fixed shape and a fixed speed. Linearizing the equations of B and V of
(2.1) at E0(N

\ast ,0,0), we obtain\Biggl\{ 
cB\prime =DBB

\prime \prime + h\prime (N\ast )B  - dB,

cV \prime =DV V
\prime \prime  - \delta V.

(2.7)

For \lambda \geq 0, two eigenvalues of the matrix

A\lambda =

\biggl( 
DB\lambda 

2 + h(N\ast ) - d 0
0 DV \lambda 

2  - \delta 

\biggr) 
are DB\lambda 

2 + h(N\ast ) - d,DV \lambda 
2  - \delta . A threshold speed can be defined as

c\ast := inf
\lambda >0

\Phi (\lambda ) = inf
\lambda >0

DB\lambda 
2 + h(N\ast ) - d

\lambda 
= 2
\sqrt{} 
DB(h(N\ast ) - d).

We set that RB := h(N\ast )/d > 1, c\ast = 2
\sqrt{} 
DB(h(N\ast ) - d). It is noted that RB is

the basic reproduction number of bacteria for the ordinary differential system without
diffusion. Moreover, linearizing the equation for B and V at the point (N\ast ,0,0) gives
the characteristic function

f(\lambda ) := - DB\lambda 
2 + c\lambda  - (h(N\ast ) - d), \widetilde f(\lambda ) := - DV \lambda 

2 + c\lambda + \delta .(2.8)

Then

\lambda 0 :=
c - 

\sqrt{} 
c2  - 4DB(h(N\ast ) - d)

2DB
> 0, \lambda 1 :=

c+
\surd 
c2 + 4DV \delta 

2DV
> 0(2.9)

are the minimum positive roots of f(\lambda ) and \widetilde f(\lambda ), and \lambda 0 <\lambda 1.
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NONTRIVIAL PHAGE-BACTERIA TRAVELING WAVES 561

Let \alpha N , \alpha B , and \alpha V be three sufficiently large constants, and we define the second-
order differential operator \frakD i with i=N,B,V by

\frakD ig := - Dig
\prime \prime + cg\prime + \alpha ig(2.10)

for any g \in C2(\BbbR ). Let

\lambda \pm i =
c\pm 

\surd 
c2 + 4Di\alpha i

2Di
, (\lambda  - i < 0< - \lambda  - i <\lambda 

+
i )(2.11)

be the two roots of the function

fi(\lambda ) := - Di\lambda 
2 + c\lambda + \alpha i.(2.12)

Denote

\rho i =Di(\lambda 
+
i  - \lambda  - i ) =

\sqrt{} 
c2 + 4Di\alpha i.(2.13)

The inverse operator \frakD  - 1
i is given by the following integral representation:

(\frakD  - 1
i g)(\xi ) :=

1

\rho i

\int \xi 

 - \infty 
e\lambda 

 - 
i (\xi  - s)g(s)ds+

1

\rho i

\int \infty 

\xi 

e\lambda 
+
i (\xi  - s)g(s)ds(2.14)

for g \in C\mu  - ,\mu +(\BbbR ) with \mu  - >\lambda  - i and \mu + <\lambda +i , where

C\mu  - ,\mu +(\BbbR ) :=

\Biggl\{ 
g \in C(\BbbR ) : sup

\xi \leq 0
| g(\xi )e - \mu  - \xi | +sup

\xi \geq 0
| g(\xi )e - \mu +\xi | <\infty 

\Biggr\} 
.

It is readily seen from its integral representation in (2.13) that \frakD  - 1
i g is differen-

tiable and

(\frakD  - 1
i g)\prime (\xi ) =

\lambda  - i
\rho i

\int \xi 

 - \infty 
e\lambda 

 - 
i (\xi  - s)g(s)ds+

\lambda +i
\rho i

\int \infty 

\xi 

e\lambda 
+
i (\xi  - s)g(s)ds,(2.15)

(\frakD  - 1
i g)\prime \prime (\xi ) =

(\lambda  - i )
2

\rho i

\int \xi 

 - \infty 
e\lambda 

 - 
i (\xi  - s)g(s)ds+

(\lambda +i )
2

\rho i

\int \infty 

\xi 

e\lambda 
+
i (\xi  - s)g(s)ds - g(\xi )

Di
.(2.16)

We choose \alpha i to be sufficiently large such that | \lambda  - i | =  - \lambda  - i > \lambda 1 > 0 for i =
N,B,V . Given \mu > \lambda 1 > 0 such that \mu <  - \lambda  - i for all i =N,B,V , we have \lambda 1 < \mu <
 - \lambda  - i <\lambda 

+
i and \lambda  - i < - \mu < \mu < \lambda +i .

Define the Banach space B\mu (\BbbR ,\BbbR 3) :=C - \mu ,\mu (\BbbR )\times C - \mu ,\mu (\BbbR )\times C - \mu ,\mu (\BbbR ) equipped
with the norm

| u | \mu := sup
\xi \in \BbbR 

e - \mu | \xi | | u(\xi ) | \BbbR 3 ,(2.17)

where u = (N,B,V ) \in B\mu (\BbbR ,\BbbR 3). Then, we define a map G = (GN ,GB ,GV ) on the
space B\mu (\BbbR ,\BbbR 3):

GN (N,B,V ) : =\frakD  - 1
N

\biggl[ 
\alpha NN  - 1

\gamma 
h(N)B

\biggr] 
,

GB(N,B,V ) : =\frakD  - 1
B [\alpha BB + h(N)B  - kBV  - dB],

GV (N,B,V ) : =\frakD  - 1
V [\alpha V V + \beta kBV  - \delta V ].

(2.18)

The following lemma shows that the fixed point of the map G is indeed a traveling
wave solution.
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562 ZHENKUN WANG AND HAO WANG

Lemma 2.1. Let (N,B,V ) \in B\mu (\BbbR ,\BbbR 3) be a fixed point of the map G, then
(N,B,V ) satisfies the traveling wave equations (2.5).

Proof. Set g1(N,B,V ) := \alpha NN  - 1
\gamma h(N)B. Since (N,B,V ) is a fixed point of G,

it follows that N =GN (N,B,V ) =\frakD  - 1
N g1, that is \frakD NN =\frakD N \circ \frakD  - 1

N g1. According to
[35, Lemma 3.1], we have\frakD N \circ \frakD  - 1

N g1 = - DN (\frakD  - 1
N g1)

\prime \prime +c(\frakD  - 1
N g1)

\prime +\alpha N (\frakD  - 1
N g1) = g1.

Thus, we obtain  - DNN
\prime \prime + cN \prime = - 1

\gamma h(N)B. Similarly, we can show that the other
two equations in (2.5) are also satisfied.

2.2. Preliminary. To obtain the existence of traveling wave solutions of (2.5),
we construct an auxiliary system\left\{       

cN \prime =DNN
\prime \prime  - 1

\gamma 
h(N)B,

cB\prime =DBB
\prime \prime + h(N)B  - kBV  - dB  - \epsilon B2,

cV \prime =DV V
\prime \prime + \beta kBV  - \delta V  - \epsilon V 2,

(2.19)

where \epsilon is a positive constant. Systems (2.19) and (2.5) have the same linearized
system at the equilibrium point (N\ast ,0,0). Accordingly, we define a map G\epsilon =
(GN ,G

\epsilon 
B ,G

\epsilon 
V ) as follows:

GN (N,B,V ) : =\frakD  - 1
N

\biggl[ 
\alpha NN  - 1

\gamma 
h(N)B

\biggr] 
,

G\epsilon 
B(N,B,V ) : =\frakD  - 1

B [\alpha BB + h(N)B  - kBV  - dB  - \epsilon B2],

G\epsilon 
V (N,B,V ) : =\frakD  - 1

V [\alpha V V + \beta kBV  - \delta V  - \epsilon V 2].

Set the upper and lower solutions as follows:

N(\xi ) :=N\ast , N(\xi ) :=max\{ N\ast (1 - M1e
\varepsilon 1\xi ),0\} ,(2.20)

B(\xi ) :=min\{ e\lambda 0\xi ,K1\} , B(\xi ) :=max\{ e\lambda 0\xi (1 - M2e
\varepsilon 2\xi ),0\} ,(2.21)

V (\xi ) :=min\{ e\lambda 1\xi + \varrho 1e
\lambda 0\xi ,K2\} , V (\xi ) := 0,(2.22)

where M1,M2,M3,K1,K2, \varepsilon 1, \varepsilon 2, \varepsilon 3, \varrho 1 are positive constants to be determined. De-
fine that \xi i(i = 1,2,3,4,5) satisfy Mie

\varepsilon i\xi i = 1(i = 1,2,3), e\lambda 0\xi 4 = K1, and e\lambda 1\xi 5 +
\varrho 1e

\lambda 0\xi 5 =K2.

Lemma 2.2. For appropriately given parameters, the following inequalities hold:

DNN
\prime \prime  - cN \prime  - 1

\gamma 
h(N)B \geq 0 for any \xi \in \BbbR \setminus \{ \xi 1\} ;(2.23)

DBB
\prime \prime  - cB\prime + h(N)B  - kBV  - dB  - \epsilon B2 \geq 0 for any \xi \in \BbbR \setminus \{ \xi 2\} ;(2.24)

DV V
\prime \prime  - cV \prime + \beta kBV  - \delta V  - \epsilon V 2 \geq 0 for any \xi \in \BbbR ;(2.25)

DNN
\prime \prime  - cN \prime  - 1

\gamma 
h(N)B \leq 0 for any \xi \in \BbbR ;(2.26)

DBB
\prime \prime  - cB\prime + h(N)B  - kBV  - dB  - \epsilon B

2 \leq 0 for any \xi \in \BbbR \setminus \{ \xi 4\} ;(2.27)

DV V
\prime \prime  - cV \prime + \beta kBV  - \delta V  - \epsilon V

2 \leq 0 for any \xi \in \BbbR \setminus \{ \xi 5\} .(2.28)
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NONTRIVIAL PHAGE-BACTERIA TRAVELING WAVES 563

Proof. If \xi > \xi 1 = - \varepsilon  - 1
1 lnM1, then N(\xi ) = 0 and inequality (2.23) holds. Given

a constant M0 := max\{ 1
\gamma h(N)\} > 0. To prove inequality (2.23) for \xi < \xi 1, we need

only prove that DNN
\prime \prime  - cN \prime  - M0B \geq 0. Choose a sufficiently small \varepsilon 1 > 0 such that

\varepsilon 1 <min\{ \lambda 0, c/DN\} . It is easy to get M
 - \lambda 0 - \varepsilon 1

\varepsilon 1
1 \rightarrow 0 as M1 \rightarrow +\infty . Then for M1 large

enough, we have

DNN
\prime \prime  - cN \prime  - M0B \geq e\varepsilon 1\xi 

\Bigl[ 
N\ast M1\varepsilon 1(c - DN\varepsilon 1) - M0e

(\lambda 0 - \varepsilon 1)\xi 
\Bigr] 

\geq e\varepsilon 1\xi 
\Bigl[ 
N\ast M1\varepsilon 1(c - DN\varepsilon 1) - M0M

 - (\lambda 0 - \varepsilon 1)/\varepsilon 1
1

\Bigr] 
\geq 0.

If \xi > \xi 2 =  - lnM2/\varepsilon 2, then B(\xi ) = 0 and the inequality (2.24) holds. Choose a
sufficiently small \varepsilon 2 \in (0, \varepsilon 1) such that f(\lambda 0 + \varepsilon 2) > 0. Set \tau =maxN\in [0,N\ast ]\{ h\prime (N)\} .
For \xi < \xi 2 < \xi 1 < 0, N(\xi ) = N\ast (1  - M1e

\varepsilon 1\xi ) > 0,B(\xi ) = e\lambda 0\xi 
\bigl( 
1 - M2e

\varepsilon 2\xi 
\bigr) 
> 0. To

prove inequality (2.24), it is enough to show e - \lambda 0\xi [DBB
\prime \prime  - cB\prime + h(N)B  - kBV  - 

dB  - \epsilon B2]\geq 0. In fact,

e - \lambda 0\xi [DBB
\prime \prime  - cB\prime + h(N)B  - kBV  - dB  - \epsilon B2]

= e - \lambda 0\xi [DBB
\prime \prime  - cB\prime + h(N\ast )B  - dB  - h(N\ast )B + h(N)B  - kBV  - \epsilon B2]

\geq M2f(\lambda 0 + \varepsilon 2)e
\varepsilon 2\xi  - M1N

\ast \tau e\varepsilon 1\xi (1 - M2e
\varepsilon 2\xi ) - k(1 - M2e

\varepsilon 2\xi )(e\lambda 1\xi + \varrho 1e
\lambda 0\xi )

 - \epsilon e\lambda 0\xi (1 - M2e
\varepsilon 2\xi )2

= e\varepsilon 2\xi [M2f(\lambda 0 + \varepsilon 2) - M1N
\ast \tau e(\varepsilon 1 - \varepsilon 2)\xi (1 - M2e

\varepsilon 2\xi )

 - k(1 - M2e
\varepsilon 2\xi )(e(\lambda 1 - \varepsilon 2)\xi + \varrho 1e

(\lambda 0 - \varepsilon 2)\xi ) - \epsilon e(\lambda 0 - \varepsilon 2)\xi (1 - M2e
\varepsilon 2\xi )2].

Since 0 \leq 1 - M2e
\varepsilon 2\xi \leq 1, 0 \leq e(\varepsilon 1 - \varepsilon 2)\xi \leq 1, 0 \leq e(\lambda 1 - \varepsilon 2)\xi \leq 1, and 0 \leq e(\lambda 0 - \varepsilon 2)\xi \leq 1,

then we need only prove M2f(\lambda 0 + \varepsilon 2)\geq M1N
\ast \tau + k(1 + \varrho 1) + \epsilon . By f(\lambda 0 + \varepsilon 2)> 0,

the above inequality holds if M2 >
M1N

\ast \tau +k(1+\varrho 1)+\epsilon 
f(\lambda 0+\varepsilon 2)

.

Inequality (2.25) is obviously true if V (\xi ) = 0. Now we intend to prove inequalities
(2.26)--(2.28). Since N(\xi ) is a constant function, inequality (2.26) is obviously true.

If \xi > \xi 6, then B(\xi ) =K1 and h(N)B  - kBV  - dB  - \epsilon B
2 \leq (h(N\ast ) - d - \epsilon K1)K1 <

0 =  - DBB
\prime \prime + cB\prime provided that K1 >

h(N\ast ) - d
\epsilon . If \xi < \xi 6, then B(\xi ) = e\lambda 0\xi and

h(N)B  - kBV  - dB  - \epsilon B
2 \leq h(N\ast )B  - dB = - DBB

\prime \prime + cB\prime .

If \xi > \xi 7, then V (\xi ) = K2 and \beta kBV  - \delta V  - \epsilon V
2 \leq (\beta kK1  - \delta  - \epsilon K2)K2 < 0 =

 - DV V
\prime \prime + cV \prime provided that K2 >

\beta kK1 - \delta 
\epsilon . Then, we assume \varrho 1 >K2/K1 such that

\xi 7 < \xi 6 holds. If \xi < \xi 7, then V (\xi ) = e\lambda 1\xi + \varrho 1e
\lambda 0\xi and

DV V
\prime \prime  - cV \prime + \beta kBV  - \delta V  - \epsilon V

2

\leq  - \varrho 1 \~f(\lambda 0)e\lambda 0\xi + \beta ke\lambda 0\xi K2

< 0

provided that \varrho 1 >max\{ \beta kK2/ \~f(\lambda 0),K2/K1\} . The proof is completed.

With the upper and lower solutions, we define a convex set \Gamma as

\Gamma := \{ (N,B,V )\in B\mu (\BbbR ,\BbbR 3) :N \leq N \leq N,B \leq B \leq B,V \leq V \leq V \} .(2.29)

Since \mu > \lambda 1 > 0, it is easily seen that \Gamma is uniformly bounded with respect to the
norm | \cdot | \mu defined in (2.17). To verify the Schauder fixed point theorem, the following
lemmas are given. The proofs of some lemmas are not novel, but for completeness,
we include the proofs in the appendix.
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564 ZHENKUN WANG AND HAO WANG

Lemma 2.3. The operator G\epsilon = (GN ,G
\epsilon 
B ,G

\epsilon 
V ) maps \Gamma into \Gamma .

Lemma 2.4. The operator G\epsilon = (GN ,G
\epsilon 
B ,G

\epsilon 
V ) is continuous and compact with

respect to the norm | \cdot | \mu .
Lemma 2.5. Assume that RB > 1. Then for any c > c\ast , auxiliary system (2.19)

admits a nontrivial traveling wave solution (N(\xi ),B(\xi ), V (\xi )), \xi = x+ ct satisfying

lim
\xi \rightarrow  - \infty 

(N(\xi ),B(\xi ), V (\xi )) = (N\ast ,0,0), lim
\xi \rightarrow +\infty 

(N(\xi ),B(\xi ), V (\xi )) = (N\ast ,0,0).(2.30)

Proof. Combining the Schauder fixed point theorem, Lemmas 2.3 and 2.4 imply
that (2.19) has a nonnegative solution (N(\cdot ),B(\cdot ), V (\cdot ))\in \Gamma , and N(\xi )\leq N(\xi )\leq N(\xi ),
B(\xi )\leq B(\xi )\leq B(\xi ), and V (\xi )\leq V (\xi )\leq V (\xi ), which follow

lim
\xi \rightarrow  - \infty 

(N(\xi ),B(\xi ), V (\xi )) = (N\ast ,0,0).

Applying the L'Hospital rule to the map G\epsilon , it is easy to show that

lim
\xi \rightarrow  - \infty 

(N \prime (\xi ),B\prime (\xi ), V \prime (\xi )) = (0,0,0).

Next, we investigate the asymptotic behavior of (N(\xi ),B(\xi ), V (\xi )) as \xi \rightarrow +\infty .
We then show that N(\xi ) is monotonically decreasing in \xi \in \BbbR . Indeed, in view of the
facts lim\xi \rightarrow  - \infty N(\xi ) = N\ast and lim\xi \rightarrow  - \infty N \prime (\xi ) = 0, integrating the two sides of the
first equation of (2.19) from  - \infty to \xi follows:

DNN
\prime (\xi ) = c (N(\xi ) - N\ast ) + (1/\gamma )

\int \xi 

 - \infty 
h(N)Bds.(2.31)

We now claim the integral
\int +\infty 
 - \infty h(N)Bds < +\infty . If not, noting that the fact 0 \leq 

N(\xi )\leq N\ast for all \xi \in \BbbR , we then conclude that there exists \delta 0 > 0 such that N \prime (\xi )> \delta 0
for all large \xi > 0, which implies that lim\xi \rightarrow +\infty N(\xi ) = +\infty , this is a contradiction.

Hence, the integral
\int +\infty 
 - \infty h(N)Bds converges, i.e.,

\int +\infty 
 - \infty h(N)Bds =: Q0 < +\infty . As a

result, it follows that N \prime (\xi ) is uniformly bounded for all \xi \in \BbbR . Note that the first

equation of (2.19) implies that (e
 - c\xi 

DN N \prime )\prime = 1
\gamma DN

e
 - c\xi 

DN h(N)B \forall \xi \in \BbbR . Integrating the

equality from \xi to +\infty yields N \prime (\xi ) =  - 1
\gamma DN

e
c\xi 

DN

\int +\infty 
\xi 

e
 - cs

DN h(N)Bd \forall \xi \in \BbbR , which,
together with the fact that N(\xi )\geq 0 and B(\xi )\geq 0 are continuous and not identically
zero in \xi \in \BbbR , implies N \prime (\xi )< 0 for all \xi \in \BbbR . Thus, N(\xi ) is monotonically decreasing
in \xi \in \BbbR , and let N\ast := lim\xi \rightarrow +\infty N(\xi ), and then, N\ast >N\ast \geq 0.

Set g2(N,B,V ) := \alpha BB + h(N)B  - kBV  - dB  - \epsilon B2. From (2.19), we have

B(\xi ) =
1

\rho B

\int \xi 

 - \infty 
e\lambda 

 - 
B(\xi  - s)g2(s)ds+

1

\rho B

\int \infty 

\xi 

e\lambda 
+
B(\xi  - s)g2(s)ds,(2.32)

where \lambda \pm B := c\pm 
\surd 
c2+4DB\alpha B

2DB
and \rho B :=DB

\bigl( 
\lambda +B  - \lambda  - B

\bigr) 
=
\surd 
c2 + 4DB\alpha B . Note that \lambda  - B <

0<\lambda 0 <\lambda 
+
B and \lambda \pm B are the two roots of the following equation:  - DB\lambda 

2+c\lambda +\alpha B = 0.
Since h(N)B is integrable on \BbbR , it follows from the integral equation (2.32) and
Fubini's theorem that B is also integrable on \BbbR , and\int \infty 

 - \infty 
B(\xi )d\xi \leq 1

d

\int \infty 

 - \infty 
h(N(\xi ))B(\xi )d\xi ,

\int \infty 

 - \infty 
B(\xi )V (\xi )d\xi \leq 1

k

\int \infty 

 - \infty 
h(N(\xi ))B(\xi )d\xi .
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NONTRIVIAL PHAGE-BACTERIA TRAVELING WAVES 565

Furthermore,

B\prime (\xi ) =
\lambda  - B
\rho B

\int \xi 

 - \infty 
e\lambda 

 - 
B(\xi  - s)g2(s)ds+

\lambda +B
\rho B

\int \infty 

\xi 

e\lambda 
+
B(\xi  - s)g2(s)ds.(2.33)

From \lambda  - B < 0 < \lambda +B , \rho B = DB(\lambda 
+
B  - \lambda  - B) and g2 \leq (\alpha B + h(N\ast )  - d)B =: L1B,

we have | B\prime (\xi )| \leq L1

DB

\int \infty 
 - \infty B(\xi )d\xi . Since B\prime (\xi ) is uniformly bounded and B \geq 0 is

integrable on \BbbR , it is easily seen that B(\xi ) \rightarrow 0 as \xi \rightarrow \infty ; otherwise, we can find a
number \varepsilon > 0, a sequence \xi n \rightarrow \infty , and a number \kappa > 0 such that B(\xi ) > \varepsilon for all
| \xi  - \xi n| < \kappa , which contradicts the integrability of B on \BbbR . Similarly, we can obtain\int \infty 
 - \infty V (\xi )d\xi = \beta k

\delta 

\int \infty 
 - \infty B(\xi )V (\xi )d\xi and | V \prime (\xi )| \leq L2

DV

\int \infty 
 - \infty V (\xi )d\xi , where L2 := \alpha V  - \delta .

It is seen that V (\xi )\rightarrow 0 as \xi \rightarrow \infty , and hence B(\xi ) and V (\xi ) are bounded. According
to the selected definition of B(\xi ), we obtain that B(\xi )> 0 for all \xi \in \BbbR by using the
Harnack inequality.

Combining the results obtained before, we can get lim\xi \rightarrow +\infty (N(\xi ),B(\xi ), V (\xi )) =
(N\ast ,0,0), where N\ast \in [0,N\ast ).

Our results show that different components of the system have different types of
traveling waves, namely wavefront and pulse wave. Such pulse wave profiles imply the
boundedness of traveling waves, and the uniform upper bound of traveling waves does
not depend on the selection of upper solutions. However, it is not easy to determine
the boundedness of traveling wave solutions in general. More details can be found in
[16]. Unfortunately, we cannot rule out the case of V (\xi )\equiv 0, since we have not found
a nonzero V (\xi ). It is worth noting that a function v(\xi ) = \varepsilon e - \mu | \xi  - \xi 0| cannot be used as
a lower solution because v

\prime 

+(\xi 0)< v
\prime 

 - (\xi 0); see [24]. For such a noncooperative system,
constructing a nonzero lower solution is difficult and remains an open problem.

2.3. Existence of traveling waves when \bfitc > \bfitc \ast . We now extend the existence
of traveling waves from the auxiliary system to the original system (2.1) by a limiting
argument.

Theorem 2.6. Assume that RB > 1. Then for any c > c\ast , system (2.1) admits a
nontrivial traveling wave solution (N(\xi ),B(\xi ), V (\xi )), \xi = x+ ct satisfying

lim
\xi \rightarrow  - \infty 

(N(\xi ),B(\xi ), V (\xi )) = (N\ast ,0,0), lim
\xi \rightarrow +\infty 

(N(\xi ),B(\xi ), V (\xi )) = (N\ast ,0,0).

Proof. For c > c\ast . Let \{ \epsilon n\} be a sequence such that 0< \epsilon i+1 < \epsilon i < 1 and \epsilon n \rightarrow 0 as
n\rightarrow \infty . By Lemma 2.5, there exists a solution Un(\xi ) = (Nn(\xi ),Bn(\xi ), Vn(\xi )) of (2.19)
for \epsilon = \epsilon n satisfying the conclusion of Lemma 2.5, and | N \prime 

n(\xi )| , | B\prime 
n(\xi )| , | V \prime 

n(\xi )| are
uniformly bounded for \xi \in \BbbR . By (2.19), there exists a positive constant \=L independent
of \xi such that | N \prime \prime 

n (\xi )| , | B\prime \prime 
n(\xi )| , | V \prime \prime 

n (\xi )| , | N \prime \prime \prime 
n (\xi )| , | B\prime \prime \prime 

n (\xi )| , | V \prime \prime \prime 
n (\xi )| \leqslant \=L \forall \xi \in \BbbR . Thus,

\{ Un(\xi )\} ,\{ U \prime 
n(\xi )\} , and \{ U \prime \prime 

n (\xi )\} are uniformly bounded and equi-continuous in \BbbR .
By Arzela-Ascoli's theorem, it follows that there exists a subsequence of \{ \epsilon n\} , still
denoted by \{ \epsilon n\} , such that limn\rightarrow \infty \epsilon n = 0 and

Un(\xi )\rightarrow U(\xi ), U \prime 
n(\xi )\rightarrow U \prime (\xi ), U \prime \prime 

n (\xi )\rightarrow U \prime \prime (\xi )

uniformly on every bounded and closed interval when n \rightarrow \infty , and pointwise on \BbbR ,
where U(\xi ) = (u, v,w). By Lebesque's dominated convergence theorem, letting n\rightarrow \infty 
in (2.19), we obtain
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566 ZHENKUN WANG AND HAO WANG\left\{         
cu\prime =DNu

\prime \prime  - 1

\gamma 
h(u)v,

cv\prime =DBv
\prime \prime + h(u)v - kvw - dv,

cw\prime =DV w
\prime \prime + \beta kvw - \delta w.

Therefore, U(\xi ) = (u(\xi ), v(\xi ),w(\xi )) is a solution of (2.5) satisfying lim\xi \rightarrow  - \infty U(\xi ) =
(N\ast ,0,0), lim\xi \rightarrow +\infty U(\xi ) = (N\ast ,0,0).

2.4. Existence of traveling waves when \bfitc = \bfitc \ast . In this subsection, we prove
the existence of the traveling wave solutions to the system (2.1) with the critical wave
speed c= c\ast .

Theorem 2.7. If RB > 1 and c = c\ast , then system (2.1) admits a nontrivial
traveling wave solution (N(x+ c\ast t),B(x+ c\ast t), V (x+ c\ast t)), \xi = x+ c\ast t satisfying

lim
\xi \rightarrow  - \infty 

(N(\xi ),B(\xi ), V (\xi )) = (N\ast ,0,0), lim
\xi \rightarrow +\infty 

(N(\xi ),B(\xi ), V (\xi )) = (N\ast ,0,0).

Proof. In the case where c= c\ast , we use a limiting argument. Choose the sequence
\{ cm\} m\geq 1 \subset (c\ast ,\infty ) such that limm\rightarrow \infty cm = c\ast . We have known that for each cm,
there exists a traveling wave (Nm,Bm, V m). Let Um(\xi ) = (Nm(\xi ),Bm(\xi ), V m(\xi )) be
the positive solution of (2.1) obtained in Theorem 2.6 with c= cm, where cm > c\ast and
cm \rightarrow c\ast . Since system (2.1) is autonomous, Nm(\xi ) is decreasing, and Nm(+\infty ) <
N\ast  - \epsilon 0 for some positive constant \epsilon 0 > 0, we can suppose by a possible translation
that Nm(0) = N\ast  - \epsilon 0/2,N

m(\xi ) > N\ast  - \epsilon 0/2 for \epsilon 0 > 0 and for any \xi < 0 and m.
Since \{ Um(\cdot )\} is uniformly bounded, the elliptic estimate shows that Um(\cdot )\rightarrow U\ast (\cdot )
in C2

loc(\BbbR ) norm by passing to a subsequence, where U\ast (\xi ) := (Nc\ast (\xi ),Bc\ast (\xi ), Vc\ast (\xi ))
is a nonnegative solution of (2.5) with c = c\ast and satisfies Nc\ast (\xi ) \geq N\ast  - \epsilon 0/2 for
\xi \leq 0. Nc\ast (\xi ) is decreasing with respect to \xi \in \BbbR since Nm(\xi ) is decreasing. A
similar argument as in the proof of existence theorem shows that this fixed point
actually satisfies Bc\ast (\pm \infty ) = Vc\ast (\pm \infty ) = 0. And then we need to show that the limit
is nontrivial because we have infinity many equilibria and the standard argument as
in [45] fails.

Suppose there exists some \xi a such that Nc\ast (\xi a) = 0, then N \prime 
c\ast (\xi a) = 0. According

to the first equation of (2.5), we can get N \prime \prime 
c\ast (\xi a) = 0, which implies Nc\ast (\xi ) = 0 for all

\xi \in \BbbR . This is in contradiction with Nc\ast (0) =N\ast  - \epsilon 0/2. Thus, Nc\ast (\xi )> 0.
Suppose that Bc\ast (\xi )\equiv 0. It follows from the first equation of (2.5) that c\ast N \prime 

c\ast (\xi ) =

DNN
\prime \prime 
c\ast (\xi ), \xi \in \BbbR . It is easy to obtainNc\ast (\xi ) =C1+C2e

c\ast 
DN

\xi 
for some positive constants

C1 and C2. Since 0<Nc\ast (\xi )\leq N\ast andNc\ast (0) =N\ast  - \epsilon 0/2, we haveNc\ast (\xi )\equiv N\ast  - \epsilon 0/2
at each point \xi \in \BbbR . This contradicts the monotonicity of Nc\ast (\xi ). Therefore, there
exists \xi 0 such that Bc\ast (\xi 0)> 0, by using Harnack inequality on [ - L,L], it follows that
Bc\ast (\xi )> 0 for all \xi \in [ - L,L]. We then obtain that Bc\ast (\xi )> 0 for all \xi \in \BbbR since L> 0
is arbitrarily chosen. Similarly, from

\int \infty 
 - \infty Vc\ast (\xi )d\xi =

\beta k
\delta 

\int \infty 
 - \infty Bc\ast (\xi )Vc\ast (\xi )d\xi , we can

obtain Vc\ast (\xi )> 0 for all \xi \in \BbbR unless Vc\ast (\xi )\equiv 0.
If Nc\ast (\xi b) =N\ast , then it follows that N \prime 

c\ast (\xi b) = 0,N \prime \prime 
c\ast (\xi b)\leq 0 since Nc\ast (\xi )\leq N\ast 

for any \xi \in \BbbR . From the first equation of (2.5), we have

DNN
\prime \prime 
c\ast (\xi b) =

1

\gamma 
h(Nc\ast (\xi b))Bc\ast (\xi b),

it means Bc\ast (\xi b) = 0, a contradiction, which implies Nc\ast (\xi )<N
\ast for any \xi \in \BbbR .

Next, we will prove that Nc\ast ( - \infty ) =N\ast . Nc\ast ( - \infty ) exists since Nc\ast (\xi ) is decreas-
ing with respect to \xi . The boundedness of N

\prime \prime 

c\ast (\xi ) on \BbbR yields N
\prime 

c\ast ( - \infty ) = 0. Similar
to the derivation of (2.31), we have
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NONTRIVIAL PHAGE-BACTERIA TRAVELING WAVES 567

DNN
m\prime (\xi ) = cm (Nm(\xi ) - N\ast ) + (1/\gamma )

\int \xi 

 - \infty 
h(Nm(s))Bm(s)ds.(2.34)

Setting m \rightarrow \infty yields that DNNc\ast 
\prime (\xi ) = c\ast (Nc\ast (\xi )  - N\ast ) + (1/\gamma )

\int \xi 

 - \infty h(Nc\ast (s))
Bc\ast (s)ds. Setting \xi \rightarrow  - \infty gives 0 = c\ast (Nc\ast ( - \infty ) - N\ast ). It follows that Nc\ast ( - \infty ) =
N\ast . Similar to the proof of Lemma 2.5, we can show (Nc\ast (+\infty ),Bc\ast (+\infty ), Vc\ast (+\infty )) =
(N\ast ,0,0).

2.5. Nonexistence of traveling wave solutions. In this subsection, we will
establish the nonexistence of traveling wave solution for system (2.1) either RB > 1
and 0< c< c\ast or RB \leq 1.

Theorem 2.8. If RB > 1 and 0< c< c\ast , then system (2.1) has no traveling wave
solution (N(\xi ),B(\xi ), V (\xi )), \xi = x+ ct satisfying

lim
\xi \rightarrow  - \infty 

(N(\xi ),B(\xi ), V (\xi )) = (N\ast ,0,0), lim
\xi \rightarrow +\infty 

(N(\xi ),B(\xi ), V (\xi )) = (N\ast ,0,0).(2.35)

Proof. We will prove this theorem by a contradiction. Suppose that (2.1) has
a positive solution (N(\xi ),B(\xi ), V (\xi )) satisfying (2.35). It is evident that c < c\ast is
equivalent to c < 2

\sqrt{} 
DB(h(N\ast ) - d). Then it follows by stable manifold theorem in

[27] (see also the proof of [46, Lemma 3.1]) that there exists a positive constant \omega 
such that

sup
\xi <0

\{ B(\xi )e - \omega \xi \} <+\infty , sup
\xi <0

\{ | B\prime (\xi )| e - \omega \xi \} <+\infty , sup
\xi <0

\{ | B\prime \prime (\xi )| e - \omega \xi \} <+\infty .

(2.36)

Next, we introduce the definition of the negative one-sided Laplace transform

\scrB (\lambda ) =\scrN [B(\cdot )](\lambda ) :=
\int 0

 - \infty 
e - \lambda \xi B(\xi )d\xi 

for \lambda \geq 0. By this definition we know that \scrB (\lambda ) is increasing on [0, \lambda \ast ), where \lambda \ast =+\infty 
or \lambda \ast <+\infty with lim\lambda \rightarrow \lambda \ast  - \scrB (\lambda ) =+\infty . It follows from (2.36) that \lambda \ast \geq \omega .

According to [45, Lemma 3.7], there exists a constant Mc > 0 such that\int 0

 - \infty 
e - \lambda \xi | B\prime (\xi )| d\xi \leq Mc

\int 0

 - \infty 
e - \lambda \xi B(\xi )d\xi <+\infty 

implying that
\int 0

 - \infty e - \lambda \xi B\prime (\xi )d\xi is convergent. Then it follows from [e - \lambda \xi B(\xi )]\prime =

e - \lambda \xi B\prime (\xi ) - \lambda e - \lambda \xi B(\xi ) that

B(0) - e - \lambda \xi B(\xi ) =

\int 0

\xi 

e - \lambda sB\prime (s)ds - \lambda 

\int 0

\xi 

e - \lambda sB(s)ds.

We obtain that lim\xi \rightarrow  - \infty e - \lambda \xi B(\xi ) exists since the right-hand side of above equality
is convergent if \xi \rightarrow  - \infty . Then lim\xi \rightarrow  - \infty e - \lambda \xi B(\xi ) = 0 since lim\xi \rightarrow  - \infty e - \lambda \xi B(\xi ) \not = 0

implies that
\int 0

 - \infty e - \lambda \xi B(\xi )d\xi is divergent. It can be similarly shown that

lim
\xi \rightarrow  - \infty 

e - \lambda \xi B\prime (\xi ) = 0.
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568 ZHENKUN WANG AND HAO WANG

Then we can verify that \scrN [\cdot ] satisfies

\scrN [B\prime (\cdot )] (\lambda ) = \lambda \scrB (\lambda ) +B(0) - lim
\xi \rightarrow  - \infty 

e - \lambda \xi B(\xi ) = \lambda \scrB (\lambda ) +B(0),

\scrN [B\prime \prime (\cdot )] (\lambda ) = \lambda 2\scrB (\lambda ) + \lambda B(0) +B\prime (0) - lim
\xi \rightarrow  - \infty 

e - \lambda \xi B\prime (\xi ) - \lambda lim
\xi \rightarrow  - \infty 

e - \lambda \xi B(\xi )

= \lambda 2\scrB (\lambda ) + \lambda B(0) +B\prime (0)

for all \lambda \in [0, \lambda \ast ). Let L[B(\cdot )](\xi ) := DBB
\prime \prime (\xi )  - cB\prime (\xi ) + (h(N\ast )  - d)B(\xi ). Then

L[B(\cdot )](\xi ) = [h(N\ast ) - h(N) + kV ]B(\xi ). Define \sigma :=min\{ P (\lambda ) : \lambda \geq \omega \} , where P (\lambda ) =
DB\lambda 

2 + c\lambda + h(N\ast ) - d. It follows from condition c < c\ast that \sigma > 0. Since (2.5) is
autonomous, for any a \in \BbbR , (N(\xi  - a),B(\xi  - a), V (\xi  - a)) is also a solution of (2.5)
satisfying lim\xi \rightarrow  - \infty N(\xi  - a) =N\ast , lim\xi \rightarrow  - \infty B(\xi  - a) = 0, and lim\xi \rightarrow  - \infty V (\xi  - a) = 0.
By using the fact that (N( - \infty ),B( - \infty ), V ( - \infty )) = (N\ast ,0,0), we obtain that N\ast  - 
N(\xi ), B(\xi ), and V (\xi ) can be small enough when \xi is negatively large. We then choose
some a0 \in \BbbR such that N(\xi  - a0), B(\xi  - a0), V (\xi  - a0) satisfy

h(N\ast ) + kV (\xi  - a0) - h(N(\xi  - a0))<
\sigma 

2
\forall \xi \leq 0.

Consequently, without losing generality, we assume h(N\ast ) + kV (\xi )  - h(N(\xi )) < \sigma 
2

for all \xi \leq 0, which implies L[B(\cdot )](\xi ) \leq \sigma 
2B(\xi ). Applying the operator \scrN [\cdot ] to this

inequality, we have \sigma 
2\scrB (\lambda )\geq \scrN [L[B(\cdot )](\cdot )](\lambda ) = P (\lambda )\scrB (\lambda )+q(\lambda ), where q(\lambda ) =B\prime (0)+

(\lambda  - c)B(0). Thus, we have \scrH (\lambda ) := [P (\lambda )  - \sigma 
2 ]\scrB (\lambda ) + q(\lambda ) \leq 0. If \lambda \ast < +\infty , then

lim\lambda \rightarrow \lambda \ast  - \scrB (\lambda ) =+\infty , and hence, lim\lambda \rightarrow \lambda \ast  - \scrH (\lambda ) =+\infty , which is a contradiction. If
\lambda \ast = +\infty , we have that lim\lambda \rightarrow +\infty \scrH (\lambda ) = +\infty by the monotonicity of \scrB (\lambda ) and the
definitions of P (\lambda ) and q(\lambda ), which is still a contradiction. The proof is completed.

Theorem 2.9. If RB = h(N\ast )/d \leq 1, then there does not exist a nontrivial
and nonnegative traveling wave solution of system (2.1) such that N( - \infty ) = N\ast ,
N(+\infty )<N\ast , B(\pm \infty ) = 0, and V ( - \infty ) = 0.

Proof. We prove by contradiction. Let (N,B,V ) be a nontrivial and nonnegative
solution to (2.5). Based on the argument in subsection 2.2, and

B\prime (\xi ) =
\lambda  - B
\rho B

\int \xi 

 - \infty 
e\lambda 

 - 
B(\xi  - s)g2(s)ds+

\lambda +B
\rho B

\int \infty 

\xi 

e\lambda 
+
B(\xi  - s)g2(s)ds,

by the L'Hospital rule, we have B(\pm \infty ) = 0,B\prime (\pm \infty ) = 0,B\prime \prime (\pm \infty ) = 0. If RB =
h(N\ast )/d\leq 1, then h(N(\xi ))\leq h(N\ast )\leq d for all \xi \in \BbbR . Thus,

d

d\xi 

\biggl[ 
e - (c/DB)\xi d

d\xi 
B(\xi )

\biggr] 
= - 1

DB
e - (c/DB)\xi [h(N(\xi ))B(\xi ) - kB(\xi )V (\xi ) - dB(\xi )]\geq 0.

It implies that the function e - (c/DB)\xi B\prime (\xi ) is nondecreasing. Since B\prime (+\infty ) = 0 and
e - (c/DB)\xi \rightarrow 0 as \xi \rightarrow +\infty , it follows that B\prime (\xi )\leq 0 for all \xi \in \BbbR . By B(\pm \infty ) = 0, we
obtain B(\xi )\equiv 0 for all \xi \in \BbbR . This is a contradiction.

3. Extensions. We obtain full information about the existence and nonexistence
of traveling wave solutions for a general class of bacterial-phage liquid medium model,
and the threshold dynamics for spatial spread of the bacterial by constructing an
invariant cone and applying Schauder fixed point theorem. Our results on traveling
waves for such models are the basis for several possible extensions.
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NONTRIVIAL PHAGE-BACTERIA TRAVELING WAVES 569

3.1. General agar model. For agar media, nutrients cannot diffuse, while bac-
teria and phages can. We remove the nutrient diffusion term from system (2.1) to
obtain a generic agar model:\left\{               

\partial N

\partial t
= - 1

\gamma 
h(N)B,

\partial B

\partial t
=DB

\partial 2B

\partial x2
+ h(N)B  - kBV  - dB,

\partial V

\partial t
=DV

\partial 2V

\partial x2
+ \beta kBV  - \delta V.

(3.1)

In general, a system is said to be nondegenerate if each diffusion coefficient Di is
positive, such as system (2.1), and partially degenerate if some but not all diffusion
coefficients are zero, such as system (3.1).

Define a sequence Dj
N such that Dj

N \rightarrow 0 as j \rightarrow \infty . We construct the following
nondegenerate system:\left\{               

\partial N

\partial t
=Dj

N

\partial 2N

\partial x2
 - 1

\gamma 
h(N)B,

\partial B

\partial t
=DB

\partial 2B

\partial x2
+ h(N)B  - kBV  - dB,

\partial V

\partial t
=DV

\partial 2V

\partial x2
+ \beta kBV  - \delta V.

(3.2)

According to Theorems 2.6 and 2.7, for any j \geq 1, if RB > 1 and c\geq c\ast , then system
(3.2) admits a nontrivial traveling wave solution (N j(x + ct),B(x + ct), V (x + ct))
satisfying

lim
\xi \rightarrow  - \infty 

(N j(\xi ),B(\xi ), V (\xi )) = (N\ast ,0,0), lim
\xi \rightarrow +\infty 

(N(\xi ),B(\xi ), V (\xi )) = (N\ast ,0,0),

where \xi = x+ct, and the wave speed c does not depend on the diffusion coefficient Dj
N .

Suppose c > 0, \alpha N > 0 such that g1(N,B,V ) := \alpha NN + fN (N,B,V ) is nondecreasing
in N , where fN (N,B,V ) = - 1

\gamma h(N)B. From (2.10)--(2.14), we know that N j satisfies

the wave profile equation Dj
N (N j)\prime \prime  - c(N j)\prime + fN

\bigl( 
N j ,B,V

\bigr) 
= 0, which is equivalent

to the following integral system:

N j(\xi ) =
1

\rho jN

\Biggl( \int \xi 

 - \infty 
e\lambda 

j - 
N (\xi  - s)g1(N

j(s))ds+

\int \infty 

\xi 

e\lambda 
j+
N (\xi  - s)g1(N

j(s))ds

\Biggr) 

with \rho jN =
\sqrt{} 
c2 + 4Dj

N\alpha N , \lambda 
j - 
N =

c - 
\surd 

c2+4Dj
N\alpha N

2Dj
N

, \lambda j+N =
c+
\surd 

c2+4Dj
N\alpha N

2Dj
N

. By direct

computation, we obtain \rho N = limj\rightarrow \infty \rho jN = limj\rightarrow \infty 

\sqrt{} 
c2 + 4Dj

N\alpha N = c \not = 0, \lambda  - N :=

limj\rightarrow \infty \lambda j - N = limj\rightarrow \infty =
c - 
\surd 

c2+4Dj
N\alpha N

2Dj
N

= - \alpha N

c , and \lambda 
+
N := limj\rightarrow \infty \lambda j+N = limj\rightarrow \infty =

c+
\surd 

c2+4Dj
N\alpha N

2Dj
N

= +\infty . By the Lebesgue dominated convergence theorem, it then

follows that N(\xi ) = 1
\rho N

(
\int \xi 

 - \infty e\lambda 
 - 
N (\xi  - s)g1(N(s))ds +

\int \infty 
\xi 
e\lambda 

+
N (\xi  - s)g1(N(s))ds), which

is equivalent to  - cN \prime + fN (N,B,V ) = 0. Here, the expressions of \frakD N and \frakD  - 1
N

are reduced to \frakD Ng := cg
\prime 
+ \alpha Ng, and (\frakD  - 1

N g)(x) := 1
c

\int x

 - \infty e - 
\alpha N
c (x - y)g(y)dy. Let

GN (N,B,V ) := \frakD  - 1
N [\alpha NN  - 1

\gamma h(N)B], we can verify N \leq GN (N,B,V ) \leq N , and
map GN is uniformly bounded and equi-continuous. Similar to the discussion in the
previous section, we can prove the existence of traveling wave solutions.
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570 ZHENKUN WANG AND HAO WANG

Theorem 3.1. Assume that RB > 1. Then for any c\geq c\ast , system (3.1) admits a
nontrivial traveling wave solution (N(\xi ),B(\xi ), V (\xi )), \xi = x+ ct satisfying

lim
\xi \rightarrow  - \infty 

(N(\xi ),B(\xi ), V (\xi )) = (N\ast ,0,0), lim
\xi \rightarrow +\infty 

(N(\xi ),B(\xi ), V (\xi )) = (N\ast ,0,0).

3.2. General minimum model without mortality of bacteria. In this sec-
tion, we assume that the environment is a kind of soup in which nutrients, bacteria,
and phages all diffuse. Hence, the model becomes\left\{               

\partial N

\partial t
=DN

\partial 2N

\partial x2
 - 1

\gamma 
h(N)B,

\partial B

\partial t
=DB

\partial 2B

\partial x2
+ h(N)B  - kBV  - dB,

\partial V

\partial t
=DV

\partial 2V

\partial x2
+ \beta kBV  - \delta V.

(3.3)

Let d = 0. If N > 0, then B = 0 and V = 0, that is, (Ns,0,0) with Ns > 0
are steady states. Similar to the argument before, we can get that system (3.3) has a
traveling wave solution connecting from one bacteria-free state E0(N

\ast ,0,0) to another
bacteria-free state E1(N\ast ,0,0). If N = 0, then V = 0 and B = Bs \geq 0. Therefore,
(0,Bs,0) with Bs \geq 0 are steady states. The important thing is to show the invasion of
phage, we are interested in a traveling wave solution connecting from one phage-free
state E2(0,B

\ast ,0) to another bacteria-free state E3(0,B\ast ,0). Linearizing the equations
of B and V of (3.3) at E2(0,B

\ast ,0), we get\left\{     
\partial B

\partial t
=DB

\partial 2B

\partial x2
 - kBV,

\partial V

\partial t
=DV

\partial 2V

\partial x2
+ \beta kBV  - \delta V.

(3.4)

We set RV := \beta kB\ast /\delta . It is noted that RV is the basic reproduction number of
bacteria for the corresponding ordinary differential system. The minimum wave speed

can be defined as c\ast \ast := inf\lambda >0
DV \lambda 2+\beta kB\ast  - \delta 

\lambda = 2
\sqrt{} 
DV (\beta kB\ast  - \delta ).

The value c\ast \ast denotes the spreading speed of the phage V in the absence of
nutrients, i.e., N \equiv 0. Note that RV > 1 if and only if B\ast >Bcri, where Bcri =

\delta 
\beta k .

Theorem 3.2. Assume B\ast is a positive constant. If B\ast >Bcri, then there exists
a positive constant c\ast \ast such that system (3.4) has a positive traveling wave solution
(B(\xi ), V (\xi )) , \xi = x+ ct, c > 0 satisfying

(B( - \infty ), V ( - \infty )) = (B\ast ,0), (B(+\infty ), V (+\infty )) = (B\ast ,0)

if and only if c\geq c\ast \ast , where B\ast is a nonnegative constant depending on c. If B\ast \leq Bcri

or c < c\ast \ast , (3.4) has no traveling wave solution with wave speed c for any c > 0.

4. Numerical simulations. In this section, we use a numerical simulation to
illustrate and complement our theoretical results. We verify the existence of traveling
waves in different nutrient media and simulate the effects of key parameters on the
propagation dynamics of bacteria and phages. We estimate reasonable parameter
ranges from the literature (see Table 4.1). We select proper parameter values from
these ranges to run simulations.
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NONTRIVIAL PHAGE-BACTERIA TRAVELING WAVES 571

Table 4.1
Variables and parameters.

Var/Par Definition Unit Value Reference

B Density of bacteria \mu g(cm) - 3 - -
V Density of phage \mu g(cm) - 3 - -

N Density of nutrient \mu g(cm) - 3 - -

DB Diffusion coefficient of bacteria (cm)2h - 1 0 - 0.03 [12]
DV Diffusion coefficient of phage (cm)2h - 1 0 - 0.002 [12]

DN Diffusion coefficient of nutrient (cm)2h - 1 0 - 10 [12]

\alpha Resource uptake rate h - 1 0.7 - 0.8 [2, 12, 17]
\delta Phage mortality rate h - 1 0.003 - 0.03 [2]

\gamma Yield constants - 0.5 -

K Half-saturation constant \mu g(cm) - 3 4 - 5 [2, 17]
\beta Burst size - 50 - 150 [15, 17, 36]

k Infection rate h - 1 (6.24)10 - 8  - (6.24)10 - 6 [2, 36]

d Decompose rate h - 1 0 - 0.01 -

Fig. 4.1. Densities over time and space in general minimum model case.

4.1. General minimum model. By Theorem 2.6, system (2.1) admits travel-
ing wave solutions whose components have the same wave speed but different wave-
forms. The parameter values are given in Table 4.1: \alpha = 0.75, K = 5, k = 0.0000624,
\beta = 150, d = 0.008, \delta = 0.03, \gamma = 0.5, DN = 0.5, DB = 0.02, DV = 0.0002, and the
initial conditions are

N0(x) = 600,B0(x) =

\left\{   0, x < 0,
4x, 0\leq x\leq 10,
40, x > 10,

and V0(x) = 10.

The evolution of the solution is shown in Figure 4.1. Our simulation result shows the
propagation dynamics of bacteria in the culture medium with phages. A bacterial
front composed of the fastest migrating bacteria, which carry a hitchhiking phage
population, is trailed by a secondary phage front where bacteria collapse under infec-
tion pressure. From the observation, bacteria propagate in the form of a pulse wave
at a low concentration, and the bacterial density at both ends of the wave is almost
zero, respectively representing the state that is not invaded by bacteria and the state
that has been decomposed into bacteriophage plaque. It can also be seen from the
simulation that bacteria and phages cannot persist in a given location. This shows
that early release of phages in the culture medium can effectively ward off bacterial
invasion.

4.2. General agar model. Here we consider the general agar model (3.1), in
which nutrients cannot diffuse while bacteria can. Nutrient media vary from liquid
to agar by changing the nutrient diffusion rate. We choose the same parameters as
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572 ZHENKUN WANG AND HAO WANG

Fig. 4.2. Densities over time and space in the general agar model case.

Fig. 4.3. Densities over time and space in general minimum model case. The chosen values of
the parameters are \alpha = 0.75, K = 5, k = 0.0000624, \beta = 150, d = 0, \delta = 0.03, \gamma = 0.5, DN = 0.2,
DB = 0.02, DV = 0.0002.

in the previous simulation, except for the diffusion coefficient of nutrients DN = 0.
Compared to the system (2.1), the agar model has similar results (see Figure 4.2).
The density of nutrients is propagated by wave fronts, while the density of bacteria
and phages is propagated by pulse waves. The smoothness of the nutrient wavefront
in the agar model is weaker than that in the liquid model.

4.3. General minimum model without mortality of bacteria. In this sub-
section, we consider system (2.1) with d= 0, and choose the initial functions

N0(x) = 0, B0(x) = 500, and V0(x) =

\left\{   0, x < 0,
0.4x, 0\leq x\leq 10,
4, x > 10.

A new class of steady state solutions appears when the mortality of bacteria d= 0.
Our simulation depicts the state of phage invasion of bacteria when all nutrients
are consumed and the bacterial density has stabilized. The density of bacteria is
propagated by wave fronts, while the density of phages is propagated by pulse waves
(see Figure 4.3).

4.4. Impact of diffusion coefficient. To explain the influence of the diffusivity
of each component on the propagation dynamics. We select parameter values from
ranges given in Table 4.1: \alpha = 0.75, K = 5, k = 0.000624, \beta = 150, d= 0.01, \delta = 0.03,
\gamma = 0.5, and the initial conditions: N0(x) = 600, V0(x) = 10, and

B0(x) =

\left\{   0, x < - 10,
3cos(\pi x/20),  - 10\leq x\leq 10,
0, x > 10.

The diffusion coefficient of nutrients could not change the spreading speed of bacteria
and phage (see Figures 4.4 and 4.5), but the diffusion coefficient of bacteria could
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NONTRIVIAL PHAGE-BACTERIA TRAVELING WAVES 573

Fig. 4.4. Densities evolve over time and space when DN = 0.5, DB = 0.02, DV = 0.002.

Fig. 4.5. Densities evolve over time and space when DN = 0, DB = 0.02, DV = 0.002.

Fig. 4.6. Densities evolve over time and space when DN = 0, DB = 0, DV = 0.002.

obviously change the spreading speed of bacteria and phage (see Figures 4.5 and 4.6).
Our results provide some insight into the long-term preservation of phages in bounded
region by a strategy of reducing bacterial diffusion to slow the removal of phages from
the environment.

4.5. Impact of burst size. In this subsection, we explain the effects of different
burst sizes on bacterial and phage propagation. We select the following parameter
values: \alpha = 0.75, K = 5, k= 0.0000624, \delta = 0.03, \gamma = 0.5, d= 0, DN = 0.2, DB = 0.02,
DV = 0.002 and the initial conditions: N0(x) = 50, V0(x) = 2, and

B0(x) =

\left\{   0, x < - 1,
30cos(\pi x/2),  - 1\leq x\leq 1,
0, x > 1.

We increase the burst size \beta from 50 to 140 to see its impact on the density of bacteria.
Our results show that as \beta increases, the spread of bacteria remains constant, the

expansion speed of plaque increases, and the living space of bacteria becomes narrow.
This means that bacteria and plaque can spread at different speeds. The lower burst
size can take a longer time to infect and remove bacteria (see Figure 4.7). Therefore,
the bacteria will be controlled if the burst size of phage is greater than a certain
threshold. This provides a theoretical basis for the rapid control of bacteria.
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574 ZHENKUN WANG AND HAO WANG

(a) β = 50 (b) β = 80 (c) β = 110 (d) β = 140

Fig. 4.7. Impact of the burst size on density of bacteria over time and space.

(a) k = 0.000024 (b) k = 0.00006 (c) k = 0.00024 (d) k = 0.0006

Fig. 4.8. Impact of the infection rate on density of bacteria over time and space.

4.6. Impact of infection rate. We then explain the effects of different burst
sizes on bacterial and phage propagation. We select parameter values: \alpha = 0.75,
K = 5, \beta = 140, \delta = 0.03, \gamma = 0.5, d= 0.01, DN = 0.2, DB = 0.02, DV = 0.002 and the
initial conditions:

N0(x) = 50, B0(x) = 500, and V0(x) =

\left\{   0, x < - 1,
3cos(\pi x/2),  - 1\leq x\leq 1,
0, x > 1.

We increase the infection rate k from 0.000024 to 0.0006 to see its impact on the
density of bacteria.

Our simulation shows that the removal rate of bacteria depends heavily on the
infection rate. With the increase of infection rate, bacteria will be removed quickly
(see Figure 4.8). In addition, the expansion of plaque produced by phage invasion
may have variable speed, which is a new phenomenon compared to the traditional
predator-prey system.

4.7. Propagating terraces and multipulse waves. In this subsection, we ex-
plain the effects of impact of the nutrient concentration on bacterial and phage prop-
agation. We select the following parameter values: \alpha = 0.75, K = 5, k = 0.0000624,
\delta = 0.03, \beta = 150, \gamma = 0.5, d= 0.005, DN = 0.2, DB = 0.02, DV = 0.002 and the initial
conditions: V0(x) = 0.01, and

B0(x) =

\left\{   0, x < - 1,
cos(\pi x/2),  - 1\leq x\leq 1,
0, x > 1.

We increase the nutrient concentration N0(x) from 500 to 2000 to investigate the
distribution pattern of bacteria. As the concentration of nutrients increases, bacteria
and phages experience multiple outbreaks, manifested as a series of multipulse waves.
According to our Theorem 2.6, nutrient N(\xi ) may generate a front connecting the
initial concentration N\ast and the final concentration N\ast . However, N\ast may still satisfy
the condition h(N\ast )/d > 1. Our simulation supplements this setting (see Figures 4.9
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(a) N0(x) = 500 (b) N0(x) = 1000 (c) N0(x) = 1500 (d) N0(x) = 2000

Fig. 4.9. Impact of the nutrient concentration on density of bacteria over time and space.

Fig. 4.10. Propagating terraces and multipulse waves phenomenon when N0(x) = 2000.

and 4.10). It can be observed that there is a pair of traveling waves for components B
and V propagating in opposite directions, which are multipulse waves. At the same
time, it can be observed that the waveform of N evolves into a terrace.

5. Discussion. Substrate quantified by nutrient concentration is one key factor
regulating the distribution of bacterial colonies. However, previous studies rarely
considered the role of nutrients in bacteriophage invasion on culture medium. Focusing
on the lytic phage life cycle rather than the lysogenic cycle, we introduce a group of
reaction-diffusion models to describe possible elimination of bacteria by phage. The
main feature of our theoretical framework is to incorporate the nutrient explicitly for
bacterial consumption and growth.

There is evidence that some immobile microbes use cross-species hitchhiking to
travel through their environment. Carrier bacteria (host or nonhost) can expand the
migration range of the phage, thus improving the chances of infecting the host bacte-
ria [26, 42, 43]. Specific adsorption allows phages to hitch a ride with an expanding
bacterial population by repeatedly reinfecting cells in the front of the expanding bac-
teria [28]. The main feature of this hitchhiking mechanism is that the phage and
bacteria move at the same speed. This is consistent with the traveling wave solution
definition of the system. Therefore, this paper attempts to explain the occurrence
of co-transport by the existence and nonexistence of traveling wave, and screen out
the key parameters affecting the co-transport of phages and bacteria according to the
definition of critical wave speed.

Mathematically, a large number of literature papers have been devoted to the
study of traveling wave solutions. At present, there is a relatively uniform treat-
ment method for cooperative (i.e., the principle of comparison holds) systems (see
[8, 20, 21, 23, 38]). However, for noncooperative systems, there is no unified theoretical
framework to prove the existence of traveling wave solutions (see [5, 6, 7, 10, 18, 35, 40,
41, 47, 48]). In our model, for a class of noncooperative systems with nonisolated equi-
librium states, we obtain complete information about the existence and nonexistence
of nontrivial traveling wave solutions. The threshold conditions for the existence
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and nonexistence of traveling wave solutions are obtained by using Schauder's fixed
point theorem, limiting argument, and one-sided Laplace transform. Furthermore,
we extend the related results from reaction-diffusion systems to partially degenerate
reaction-diffusion systems to describe the propagation dynamics of systems in differ-
ent media. Moreover, without considering nutrients and mortality of bacteria, our
conclusion is similar to that in [15, 13, 14], we have proved that the system has a
traveling wave solution, in which the bacterial component B(\cdot ) is monotonically de-
creasing (front type), but the phage components V (\cdot ) is not monotone (pulse wave).
However, considering the system with nutrients and mortality of bacteria, bacteria
and phages propagate in the form of pulse waves.

From the perspective of invasion ecology, the traveling wave solution of our system
has a different ecological interpretation from the classical traveling wave solution. For
the classical traveling wave solution, it can be seen that the population density in some
fixed sites is always greater than zero, and such areas show an expanding trend, that
is, invasive species has local persistence. However, the invasion phenomenon described
in our work is a different matter. The first type of traveling waves (described in Theo-
rems 2.6 and 3.1) that our paper focuses on is that the bacteriophages are placed in the
culture medium (liquid or agar) in advance to resist bacterial invasion, thus the bacte-
rial population cannot establish a permanent population, and bacterial invasion fails.
The pulsed wave phenomenon indicates that the bacteria only spread geographically
but cannot establish colonies at any given location, thus the bacterial population is
weakly persistent rather than locally persistent. We also find that the traveling wave
of phage invasion cannot be observed if the bacterial mortality d is not equal to zero.
It should be noted that the topology of the system will change when the mortality rate
of bacteria d equals zero. The system may have a second type of traveling waves (de-
scribed in Theorem 3.2), which represent the phage invading bacteria and removing
bacteria after the bacteria have established a colony, and the phage is also extirpated
due to a lack of hosts to be infected. Both types of traveling waves suggest that phages
propagate at the same speed with bacteria through some kind of hitchhiking mech-
anism. The key parameters affecting the existence of traveling wave solutions have
certain enlightening effect on the study of co-transport mechanism in microbiology.

Traveling waves are not only an important mechanism for species invasion and
transmission, but also reflect the temporal and spatial evolution of the genetic struc-
ture of expanding populations to some extent [9, 25, 34]. Roughly speaking, traveling
waves can be divided into pulled and pushed waves depending on whether the crit-
ical wave speed of a system is equal to the minimum wave speed of a linear system
(see [1, 30]). For the pulled waves, only the very tip of the expansion contributes to
reproduction. On the contrary, the organisms at the forefront of the push wave have
almost no offspring, and the population mainly descends from the organisms in the
high growth area. This shift in the spatial patterns of ancestry is closely related to the
diversity of genes, and has a profound impact on the evolution of species [3, 11, 29].
The transition from a pulled wave to a pushed wave has usually been associated with
increased cooperativity between individuals. Our numerical simulations verify that
when the bacterial diffusion coefficient is zero, the spreading speed (greater than zero)
of the system is not equal to the minimum wave speed (equal to zero) of the linearized
system, that is, the pulled wave of the system transforms into a pushed wave. Ge-
netically, our results provide insight into the evolution of spatial patterns tracing the
ancestors of bacteria and phages.

As an important concept to describe the dynamics of population propagation,
the asymptotic spreading speed has not been fully studied in the multispecies model.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/0

2/
24

 to
 1

98
.1

66
.1

07
.1

10
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



NONTRIVIAL PHAGE-BACTERIA TRAVELING WAVES 577

Considering the spreading speed for solutions of our model that the initial values of
phage and bacteria components have compact support is quite meaningful. However,
our numerical simulations show that even if the initial function of only one component
is compact supported, there will be unusual propagation phenomena, such as two
components propagate at different speeds (see Figure 4.7) or the propagation speed
is time-varying (see Figure 4.8). Therefore, the analysis of the spreading speed is
a challenging and open problem. By setting the initial concentration of nutrients,
we observed propagating terraces and multipulse waves (see Figures 4.9 and 4.10).
Exploring further why multipulse waves occur is another interesting question. We
leave these questions for future investigation.

Appendix.

Proof of Lemma 2.3. From Lemma 2.2, it follows that \alpha NN  - 1
\gamma h(N)B \geq \alpha NN  - 

1
\gamma h(N)B \geq \alpha NN  - DNN

\prime \prime 
+ cN

\prime 
(\xi \not = \xi 1); \alpha BB+h(N)B - kBV  - dB - \epsilon B2 \geq \alpha BB+

h(N)B - kBV  - dB - \epsilon B2 \geq \alpha BB - DBB
\prime \prime 
+cB

\prime 
(\xi \not = \xi 2); \alpha V V +\beta kBV  - \delta V  - \epsilon V 2 \geq 

\alpha V V + \beta kBV  - \delta V  - \epsilon V 2 \geq \alpha V V  - DV V
\prime \prime 
+ cV

\prime 
(\xi \not = \xi 4, \xi 5); \alpha NN  - 1

\gamma h(N)B \leq 
\alpha NN = \frakD NN ; \alpha BB + h(N)B  - kBV  - dB  - \epsilon B2 \leq \alpha BB + h(N)B  - kBV  - dB  - 
\epsilon B

2 \leq \alpha BB  - DBB
\prime \prime 

+ cB
\prime 

(\xi \not = \xi 6); \alpha V V + \beta kBV  - \delta V  - \epsilon V 2 \leq \alpha V V + \beta kBV  - 
\delta V  - \epsilon V

2 \leq \alpha V V  - DV V
\prime \prime 

+ cV
\prime 

(\xi \not = \xi 7). Thus, for any (N,B,V ) \in \Gamma such that
N \leq N(\xi ) \leq N,B \leq B(\xi ) \leq B,V \leq V (\xi ) \leq V , we can obtain N \leq \frakD  - 1

N (\frakD NN) \leq 
GN (N,B,V )\leq \frakD  - 1

N (\frakD NN)\leq N ; B \leq \frakD  - 1
B (\frakD BN)\leq G\epsilon 

B(N,B,V )\leq \frakD  - 1
B (\frakD BB)\leq B;

V \leq \frakD  - 1
V (\frakD VN)\leq G\epsilon 

V (N,B,V )\leq \frakD  - 1
V (\frakD V V )\leq V .

Proof of Lemma 2.4. For any (N1,B1, V1) \in \Gamma and (N2,B2, V2) \in \Gamma , it is easy to
see that there exists a constant z1 > 0 such that | (\alpha NN1  - 1

\gamma h(N1)B1)  - (\alpha NN2  - 
1
\gamma h(N2)B2)| \leq z1(| N1  - N2| + | B1  - B2| ). Consequently, we obtain

| GN (N1,B1, V1)(\xi ) - GN (N2,B2, V2)(\xi )| e - \mu | \xi | \leq z1
\rho N

(| N1  - N2| \mu + | B1  - B2| \mu )C(\xi ),
(A.1)

where C(\xi ) := e - \mu | \xi | [
\int \xi 

 - \infty e\lambda 
 - 
N (\xi  - s)+\mu | s| ds+

\int \infty 
\xi 
e\lambda 

+
N (\xi  - s)+\mu | s| ds], N1 - N2 \in C - \mu ,\mu (\BbbR ) =

B\mu (\BbbR ,\BbbR ) and | N1  - N2| \mu = sup\xi \in \BbbR e
 - \mu | \xi | | N1(\xi ) - N2(\xi )| . Since \lambda  - N <  - \mu < \mu < \lambda +N ,

the direct calculations show that

C( - \infty ) =
1

\mu + \lambda +N
 - 1

\mu + \lambda  - N
, C(\infty ) =

1

\lambda +N  - \mu 
+

1

\mu  - \lambda  - N
.

Hence, C(\xi ) is uniformly bounded on \BbbR , which follows from (A.1) that the operator
GN is continuous with respect to the norm | \cdot | \mu . Similarly, we also can show that
operators G\epsilon 

B and G\epsilon 
V are continuous with respect to the norm | \cdot | \mu . Consequently,

G\epsilon is a continuous operator on \Gamma with respect to the norm | \cdot | \mu .
Since G\epsilon maps \Gamma into \Gamma , it is obvious that G\epsilon is uniformly bounded. Next, we will

show that G\epsilon is equi-continuous. Set g2(N,B,V ) = \alpha BB+h(N)B - kBV  - dB - \epsilon B2.
From the definition of G\epsilon 

B and integral representation for the derivative of \frakD  - 1
B ,

G\epsilon 
B
\prime (N,B,V )(\xi ) = (\frakD  - 1

B g2)
\prime (x) =

\lambda  - B
\rho B

\int \xi 

 - \infty 
e\lambda 

 - 
B(\xi  - s)g2(s)ds+

\lambda +B
\rho B

\int \infty 

\xi 

e\lambda 
+
B(\xi  - s)g2(s)ds.
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Then we have

| G\epsilon 
B
\prime (N,B,V )(\xi )| \mu \leq 

 - \lambda  - B
\rho B

| g2(N,B,V )(\xi )| \mu sup
\xi \in R

e\lambda 
 - 
B\xi  - \mu | \xi | 

\int \xi 

 - \infty 
e - \lambda  - 

Bse\mu | s| ds

+
\lambda +B
\rho B

| g2(N,B,V )(\xi )| \mu sup
\xi \in R

e\lambda 
+
B\xi  - \mu | \xi | 

\int \infty 

\xi 

e - \lambda +
Bse\mu | s| ds

\leq 1

\rho B

\biggl( 
\lambda  - B

\mu + \lambda  - B
+

\lambda +B
\lambda +B  - \mu 

\biggr) 
| g2(N,B,V )(\xi )| \mu .

In fact, note that u= (N,B,V ) \in \Gamma . It is easy to see that | g2(u) | \mu is bounded by a

positive number. Therefore, there exists a constantK0 such that | G\epsilon 
\prime 

B(N,B,V )(\xi )| \mu \leq 
K0. Similarly, | G\prime 

N (N,B,V )(\xi )| \mu and | G\epsilon 
\prime 

V (N,B,V )(\xi )| \mu are also bounded, which
shows that G\epsilon (\Gamma ) is uniformly bounded and equi-continuous with respect the norm
| \cdot | \mu in any compact interval. Moreover, for fixed positive integer n. Then we define

G\epsilon n(N,B,V )(\xi ) =

\left\{     
G\epsilon (\phi ,\varphi ,\psi )(\xi ), \xi \in [ - n,n],
G\epsilon (\phi ,\varphi ,\psi )(n), \xi \in (n,\infty ),

G\epsilon (\phi ,\varphi ,\psi )( - n), \xi \in ( - \infty , - n).

Then, for each n \geq 1,G\epsilon n is also equi-continuous and uniformly bounded. Now, in
the interval [ - n,n], it follows from the Ascoli--Arzela theorem that G\epsilon n is compact.
Since

| G\epsilon 
B(N,B,V )(\xi )| \leq H0

\rho B

\Biggl[ \int \xi 

 - \infty 
e\lambda 

 - 
B(\xi  - s)ds+

\int +\infty 

\xi 

e\lambda 
+
B(\xi  - s)ds

\Biggr] 
=

H0

DB

\bigm| \bigm| \lambda  - B\bigm| \bigm| \lambda +B .
Then

sup
\xi \in R

| G\epsilon 
B
n(N,B,V )(\xi ) - G\epsilon 

B(N,B,V )(\xi )| e - \mu | \xi | 

= sup
\xi \in ( - \infty , - n)\cup (n,\infty )

| G\epsilon 
B
n(N,B,V )(\xi ) - G\epsilon 

B(N,B,V )(\xi )| e - \mu | \xi | 

\leq 2
H0

DB

\bigm| \bigm| \lambda  - B\bigm| \bigm| \lambda +B e - \mu n \rightarrow 0, n\rightarrow \infty .

Similarly, we can prove that | GN
n - GN | \rightarrow 0, | G\epsilon 

V
n - G\epsilon 

V | \rightarrow 0, when n\rightarrow +\infty . Thus,
| G\epsilon n  - G\epsilon | \rightarrow 0 when n\rightarrow +\infty . By [44, Proposition 2.12], we have that G\epsilon : \Gamma \rightarrow \Gamma is
compact.
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