Chapter 8

BCH Codes

8.1 Definitions

We defined the least common multiple \(\text{lcm}(f_1(x), f_2(x)) \) of two nonzero polynomials \(f_1(x), f_2(x) \in \mathbb{F}_q[x] \) to be the monic polynomial of the lowest degree which is a multiple of both \(f_1(x) \) and \(f_2(x) \). Suppose we have \(t \) nonzero polynomials \(f_1(x), f_2(x), \ldots, f_t(x) \in \mathbb{F}_q[x] \). The least common multiple of \(f_1(x), \ldots, f_t(x) \) is the monic polynomial of the lowest degree which is a multiple of all of \(f_1(x), \ldots, f_t(x) \), denoted by \(\text{lcm}(f_1(x), \ldots, f_t(x)) \).

It can be proved that the least common multiple of the nonzero polynomials \(f_1(x), f_2(x), f_3(x) \) is the same as \(\text{lcm}(\text{lcm}(f_1(x), f_2(x)), f_3(x)) \) By induction, one can prove that the least common multiple of the polynomials \(f_1(x), f_2(x), \ldots, f_t(x) \) is the same as \(\text{lcm}(\text{lcm}(f_1(x), \ldots, f_{t-1}(x)), f_t(x)) \).

Lemma 8.1. Let \(f(x), f_1(x), f_2(x), \ldots, f_t(x) \) be nonzero polynomials over \(\mathbb{F}_q \). If nonzero polynomial \(f(x) \) is divisible by every polynomial \(f_i(x) \) for \(i = 1, 2, \ldots, t \), then \(f(x) \) is divisible by \(\text{lcm}(f_1(x), f_2(x), \ldots, f_t(x)) \) as well.

Definition 8.2 (BCH codes). Let \(\alpha \) be an element of order \(n \) in a finite field \(\mathbb{F}_{q^m} \). A BCH code of length \(n \) and design distance \(d \) is a cyclic code generated by the least common multiple of minimal polynomials in \(\mathbb{F}_{q}[x] \) of the elements \(\alpha, \alpha^2, \ldots, \alpha^{d-1} \).

Remark. 1). Since \(n \mid q^m - 1 \), then we have \(\gcd(n, q) = 1 \).

2). In this course, we focus on the case \(n = q^m - 1 \) then \(\alpha \) is a primitive element of field \(\mathbb{F}_{q^m} \). The resulting BCH code is known as a primitive BCH code.
Example 8.1. Let $α ∈ F_8$ be a root of $1 + x + x^3 ∈ F_2[x]$. Then it is a primitive element of $F_8 = F_2[α]$. The polynomials $M^{(1)}(x)$ and $M^{(2)}(x)$ are both equal to $1 + x + x^3$. Hence, a narrow-sense binary BCH code of length 7 generated by $\text{lcm}(M^{(1)}(x), M^{(2)}(x)) = 1 + x + x^3$ is a [7, 4]-code. In fact, it is a binary [7, 4, 3]-Hamming code.

Lecture 24, April 7, 2011

Remark. For $t ≥ 1$, t and $2t$ belong to the same cyclotomic coset of 2 modulo $2^m − 1$. This is equivalent to the fact that $M^{(t)}(x) = M^{(2t)}(x)$. Therefore,

$$\text{lcm}(M^{(1)}(x), \ldots, M^{(2t-1)}(x)) = \text{lcm}(M^{(1)}(x), \ldots, M^{(2t)}(x))$$

i.e., the primitive binary BCH codes of length $2^m − 1$ with designed distance $2t + 1$ are the same as the primitive binary BCH codes of length $2^m − 1$ with designed distance $2t$.

In this course, we focus on primitive BCH codes. Now let’s discuss Parameters of BCH codes. The length of a primitive BCH code is clearly $q^m − 1$. For the rest of this subsection, we study the minimum distance of BCH codes.

Lemma 8.3. Let C be a q-ary cyclic code of length n with generator polynomial $g(x)$. Suppose $α_1, \ldots, α_r$ are all the roots of $g(x)$ and the polynomial $g(x)$ has no multiple roots. Then an element $u(x)$ of $R^q_n = F_q[x]/(x^n − 1)$ is a codeword of C if and only if $u(α_i) = 0$ for all $i = 1, \ldots, r$.

Proof. If $u(x)$ is a codeword of $C = \langle g(x) \rangle$, then there exists a polynomial $f(x)$ such that $u(x) = g(x)f(x)$. Thus, we have $u(α_i) = g(α_i)f(α_i) = 0$ for all $i = 1, \ldots, r$.

Conversely, if $u(α_i) = 0$ for all $i = 1, \ldots, r$, then $u(x)$ is divisible by $g(x)$ since $g(x)$ has no multiple roots. This means that $u(x)$ is a codeword of C. \qed

Theorem 8.1 (Vandermonde Determinants). For $t ≥ 2$ the $t×t$ Vandermonde matrix

$$G = \begin{bmatrix}
1 & 1 & \ldots & 1 \\
e_1 & e_2 & \ldots & e_t \\
e_1^2 & e_2^2 & \ldots & e_t^2 \\
\vdots & \vdots & \ddots & \vdots \\
e_1^{t-1} & e_2^{t-1} & \ldots & e_t^{t-1}
\end{bmatrix}$$

has determinant $\prod_{1 \leq j < i \leq t} (e_i - e_j)$.
\textbf{Theorem 8.2.} A BCH code with designed distance \(d\) has minimum distance at least \(d\).

\textit{Proof.} Let \(\alpha\) be a primitive element of \(F_{p^m}\) and let \(C\) be a BCH code generated by \(g(x) = \text{lcm}(M^{(1)}(x), \ldots, M^{(d-1)}(x))\). It is clear that the elements \(\alpha, \alpha^2, \ldots, \alpha^{d-1}\) are roots of \(g(x)\).

Suppose that the minimum distance \(r\) of \(C\) is less than \(d\). Then there exists a nonzero codeword \(u(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}\) such that \(\text{wt}(u(x)) = r < d\). By proof of Lemma 8.5, we have \(u(\alpha^i) = 0\) for all \(i = 1, \ldots, d - 1\) i.e.,

\[
\begin{bmatrix}
1 & \alpha & \alpha^2 & \cdots & \alpha^{n-1} \\
1 & \alpha^2 & (\alpha^2)^2 & \cdots & (\alpha^2)^{n-1} \\
1 & \alpha^3 & (\alpha^3)^2 & \cdots & (\alpha^3)^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha^{d-1} & (\alpha^{d-1})^2 & \cdots & (\alpha^{d-1})^{n-1}
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
a_2 \\
\vdots \\
a_{n-1}
\end{bmatrix} = 0.
\]

Let \(R = \{i_1, \ldots, i_r\}\) such that \(0 \leq i_1 < i_2 < \cdots < i_r \leq n - 1\) and \(i_j \neq 0\) if and only if \(j \in R\). Then we have

\[
\begin{bmatrix}
(\alpha)^{i_1} & (\alpha)^{i_2} & (\alpha)^{i_3} & \cdots & (\alpha)^{i_r} \\
(\alpha^2)^{i_1} & (\alpha^2)^{i_2} & (\alpha^2)^{i_3} & \cdots & (\alpha^2)^{i_r} \\
(\alpha^3)^{i_1} & (\alpha^3)^{i_2} & (\alpha^3)^{i_3} & \cdots & (\alpha^3)^{i_r} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(\alpha^{d-1})^{i_1} & (\alpha^{d-1})^{i_2} & (\alpha^{d-1})^{i_3} & \cdots & (\alpha^{d-1})^{i_r}
\end{bmatrix}
\begin{bmatrix}
a_{i_1} \\
a_{i_2} \\
a_{i_3} \\
\vdots \\
a_{i_r}
\end{bmatrix} = 0.
\]

Since \(r \leq d - 1\), we obtain the following system of equations by choosing the first \(r\) equations of the above system of equations:

\[
\begin{bmatrix}
(\alpha)^{i_1} & (\alpha)^{i_2} & (\alpha)^{i_3} & \cdots & (\alpha)^{i_r} \\
(\alpha^2)^{i_1} & (\alpha^2)^{i_2} & (\alpha^2)^{i_3} & \cdots & (\alpha^2)^{i_r} \\
(\alpha^3)^{i_1} & (\alpha^3)^{i_2} & (\alpha^3)^{i_3} & \cdots & (\alpha^3)^{i_r} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(\alpha^{d-1})^{i_1} & (\alpha^{d-1})^{i_2} & (\alpha^{d-1})^{i_3} & \cdots & (\alpha^{d-1})^{i_r}
\end{bmatrix}
\begin{bmatrix}
a_{i_1} \\
a_{i_2} \\
a_{i_3} \\
\vdots \\
a_{i_r}
\end{bmatrix} = 0.
\]

The determinant \(D\) of the coefficient matrix of the above equation is equal to

\[
\prod_{j=1}^{r} \alpha^{i_j} \det
\begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
(\alpha)^{i_1} & (\alpha)^{i_2} & (\alpha)^{i_3} & \cdots & (\alpha)^{i_r} \\
(\alpha^2)^{i_1} & (\alpha^2)^{i_2} & (\alpha^2)^{i_3} & \cdots & (\alpha^2)^{i_r} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(\alpha^{d-1})^{i_1} & (\alpha^{d-1})^{i_2} & (\alpha^{d-1})^{i_3} & \cdots & (\alpha^{d-1})^{i_r}
\end{bmatrix} = \prod_{j=1}^{r} \alpha^{i_j} \prod_{1 \leq i < k \leq r} (\alpha^i - \alpha^k) \neq 0.
\]

Combining these, we obtain \((a_{i_1}, a_{i_2}, a_{i_3}, \ldots, a_{i_r}) = 0\). This is a contradiction. \(\square\)
Example 8.2. Let α be a root of $1 + x + x^4 \in F_2[x]$. Then α is a primitive element of F_{16}. Consider the primitive binary BCH code of length 15 with designed distance 7. Then the generator polynomial is

$$g(x) = \text{lcm}(M^{(1)}(x), \ldots, M^{(6)}(x)) = M^{(1)}(x)M^{(3)}(x)M^{(5)}(x) = 1 + x + x^2 + x^3 + x^5 + x^8 + x^{10}.$$

Therefore, $d(C) \leq \text{wt}(g(x)) = 7$. On the other hand, we have, by Theorem 8.3, that $d(C) \geq 7$. Hence, $d(C) = 7$.

8.2 Decoding of BCH codes

Suppose α is a primitive element of field F_{q^m}. Let C be a primitive q-ary BCH code of length $n = q^m - 1$ and design distance d. Set

$$H = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{n-1} \\ 1 & \alpha^2 & (\alpha^2)^2 & \cdots & (\alpha^2)^{n-1} \\ 1 & \alpha^3 & (\alpha^3)^2 & \cdots & (\alpha^3)^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha^{d-1} & (\alpha^{d-1})^2 & \cdots & (\alpha^{d-1})^{n-1} \end{bmatrix}$$

Then

$$u(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1} \in C \subset R_q^n \iff H \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} u(\alpha) \\ u(\alpha^2) \\ u(\alpha^3) \\ \vdots \\ u(\alpha^{d-1}) \end{bmatrix} = 0.$$

In decoding rule of BCH codes, for any word $u = (a_0, a_1, \ldots, a_{n-1}) \in F_q^n$ we define the syndrome $S(u)$ of u as $S(u) = Hu'$.

The decoding procedure for C is now as follows: Suppose a vector f is received, which we think of as a polynomial of degree $< n$. We assume that $d = 2t + 1$ is odd. We need to compute the error vector e.

1). **Compute the syndromes:** $S_1 = f(\alpha), S_2 = f(\alpha^2), \ldots, S_{d-1} = f(\alpha^{d-1})$. These are elements of F_{q^m}.
2). If all of the S_i are zero, f is a codeword. Otherwise, for $k = 1, 2, 3, \ldots, t$ consider

$$M_k = \begin{bmatrix} S_1 & S_2 & \cdots & S_k \\ S_2 & S_3 & \cdots & S_{k+1} \\ \vdots & \vdots & \ddots & \vdots \\ S_k & S_{k+1} & \cdots & S_{2k-1} \end{bmatrix}$$

This is a $k \times k$ matrix with entries in F_{q^m}.

Find the maximum value k such that $\det M_k \neq 0$. We think of k as the number of errors that occurred. It is potentially possible that $\det M_k = 0$ for all k but some S_i are nonzero nevertheless. In this case more than t errors occurred, and we have to seek retransmission.

We assume that k is the number of errors that actually occurred.

3). Solve the following system of linear equations (over F_{q^m}):

$$M_k b = -S$$

with indeterminate b and coefficient matrix S

$$b = \begin{bmatrix} b_k \\ b_{k-1} \\ \vdots \\ b_1 \end{bmatrix}, \quad S = \begin{bmatrix} S_{k+1} \\ S_{k+2} \\ \vdots \\ S_{2k} \end{bmatrix}$$

The solution to this system gives us the **error locator polynomial**

$$\sigma(x) = b_k x^k + b_{k-1} x^{k-1} + \cdots + b_1 x + 1.$$

The coefficients b_i of $\sigma(x)$ are elements of F_{q^m} in general, and need not be elements of F_q.

4). **Find the roots of the error locator polynomial.** $\sigma(x)$ must have precisely k distinct roots $\beta_1, \beta_2, \ldots, \beta_k$ unless more than k errors occurred. Again, the roots are in F_{q^m}. If the roots do not exist, then we have to seek retransmission.

5). **Compute the error locations:** First compute $\alpha_i = \beta_i^{-1}$. Now find l_1, l_2, \ldots, l_k such that $\alpha_i = \alpha^{l_i}$. Notice that the l_i are unique as long as we require $0 \leq l_i < n = q^m - 1$.

We now have worked our way to an **error vector** of the form

$$e(x) = e_1 x^{l_1} + e_2 x^{l_2} + \cdots + e_k x^{l_k}$$

We therefore conjecture the error locations to be l_1, l_2, \ldots, l_k.
6). **Determine the values of** e_1, e_2, \ldots, e_k. Solve the equations

$$S_i = e_1(\alpha^i)^1 + e_2(\alpha^i)^2 + \cdots + e_k(\alpha^i)^k \quad (i = 1, 2, \ldots, 2k)$$

for the e_j in F_q. (Notice that often not all $2k$ equations are needed to determine the e_i because each single equation corresponds to multiple linear equations over F_q, but you still need to check all $2k$ equations hold).

It could potentially happen that the e_i computed in this manner are not elements of F_q but are in F_q^m rather. In this case, decoding is not possible, because of course our error vector must have coefficients in F_q.

7). **Check for consistency.** Check that $S_i = e(\alpha^i)$ for $i = 2k+1, 2k+2, \ldots, 2t = d−1$. If this fails for any i, more than t errors occurred, and decoding is not possible.

8). **Celebrate.** We are done. The decoded codeword is now $u = f - e$.

Lecture 25, April 12, 2011

We focus on primitive BCH codes:

Let α be a primitive element of F_{q^m}. A BCH code C of length $n = q^m - 1$ and design distance d is a cyclic code generated by the least common multiple of minimal polynomials in $F_q[x]$ of the elements $\alpha, \alpha^2, \ldots, \alpha^{d−1}$.

$$C = \langle g(x) \rangle, \quad \text{where } g(x) = \text{lcm}(M^{(1)}(x), \ldots, M^{(d−1)}(x)).$$

Fact. Let α be a primitive element of F_{q^m} and C be a q-ary primitive BCH code of length $n = q^m - 1$ with design distance d. Then we have

$$C = \{u(x) \in R_q^n = F_q[x]/(x^n - 1) \mid u(\alpha^i) = 0 \text{ for all } i = 1, 2, \ldots, d−1\}.$$

Theorem 8.1. A BCH code with designed distance d has minimum distance at least d. □

Example 8.3. Let α be a root of $1 + x + x^3 \in F_2[x]$ and C be the binary primitive BCH code of length 7 with designed distance $3 = 2 \times 1 + 1$. Note α is a primitive element $F_8 = F_2[x]/(1 + x + x^3)$. Indeed all elements in $F_2[\alpha]$ can be expressed as powers of α:

$$F_8 = \{0, 1, \alpha, \alpha^2, \alpha^3 = \alpha + 1, \alpha^4 = \alpha^2 + \alpha, \alpha^5 = \alpha^2 + \alpha + 1, \alpha^6 = \alpha^2 + 1\}.$$

Suppose a vector $u = (1, 0, 0, 1, 1, 0, 0)$ is received, then the corresponding polynomial is $u(x) = 1 + x^3 + x^4$.

1). Compute the syndromes:

\[S_1 = u(\alpha) = 1 + \alpha^3 + \alpha^4 = 1 + \alpha + 1 + \alpha^2 + \alpha = \alpha^2, \]
\[S_2 = u(\alpha^2) = 1 + \alpha^6 + \alpha^8 = 1 + \alpha^2 + 1 + \alpha = \alpha + \alpha^2. \]

2). Notice that \(t = 1 \) and \(\det M_1 = S_1 = \alpha^2 \neq 0 \). We assume that 1 error occurred.

3). Solve the following system of linear equations (over \(F_{q^m} \)):

\[M_k b = -S, \text{ i.e., } S_1 b_1 = -S_2. \]

We get \(b_1 = \alpha^{-2}(\alpha^2 + \alpha) = \alpha^5(\alpha^2 + \alpha) = 1 + \alpha^6 = 1 + \alpha^2 + 1 = \alpha^2 \). Thus the error locator polynomial is

\[\sigma(x) = b_kx^k + b_{k-1}x^{k-1} + \cdots + b_1x + 1 = b_1x + 1 = \alpha^2x + 1. \]

4). Find the roots of the error locator polynomial: Obviously \(\sigma(x) \) has just one root, namely, \(-\alpha^{-2} = \alpha^5 \). Thus \(\beta_1 = \alpha^5 \).

5). Compute the error locations: \(\alpha_1 = \beta^{-1} = \alpha^2 \). Hence we have \(l_1 = 2 \) such that \(\alpha_1 = \alpha^{l_1} \).

6). Determine the values of \(e_1, e_2, \ldots, e_k \): The error vector \(e(x) = e_1x^2 \). We need to compute \(e_1 \). Solve the equations

\[S_1 = e_1\alpha^2 \text{ and } S_2 = e_1(\alpha^2)^2 = e_1\alpha^4 = e_1(\alpha^2 + \alpha). \]

We get \(e_1 = 1 \).

7). Check for consistency: Since \(t = k \) so we do not need to check.

8). Celebrate: We are done. The decoded codeword is now \(u(x) - e(x) = 1 + x^2 + x^3 + x^4 = (1 + x)(1 + x + x^3) \in C \).